JP2013238366A - Oil separator - Google Patents

Oil separator Download PDF

Info

Publication number
JP2013238366A
JP2013238366A JP2012112391A JP2012112391A JP2013238366A JP 2013238366 A JP2013238366 A JP 2013238366A JP 2012112391 A JP2012112391 A JP 2012112391A JP 2012112391 A JP2012112391 A JP 2012112391A JP 2013238366 A JP2013238366 A JP 2013238366A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
central axis
wall surface
introduction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012112391A
Other languages
Japanese (ja)
Other versions
JP6007584B2 (en
Inventor
Takeshi Matsubara
健 松原
Mikio Goto
幹生 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012112391A priority Critical patent/JP6007584B2/en
Publication of JP2013238366A publication Critical patent/JP2013238366A/en
Application granted granted Critical
Publication of JP6007584B2 publication Critical patent/JP6007584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cyclones (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oil separator capable of promoting improvement in oil separation efficiency while suppressing an increase in cost.SOLUTION: In an oil separator 20 including a device body 21 which has a cylindrical trunk part 211 and in which an upper end opening and lower end opening of the trunk part 211 are respectively closed by an upper lid 212 and a lower lid 213, and an introduction pipe 22 which is connected to a side face of the trunk part 211 such that its central axis L2 horizontally deviates from a central axis L1 of the trunk part 211 to introduce an oil mixed refrigerant into the device body 21, centrifugally separating the oil mixed refrigerant introduced through the introduction pipe 22 into the refrigerant and oil by turning it around the central axis L1 within the trunk part 211, discharging the refrigerant through a refrigerant discharge pipe 23 connected to the upper lid 212, and discharging the oil through an oil discharge pipe 24 connected to the lower lid 213, a curvature of an inner wall surface 222 of the introduction pipe 22 on a side separating from the central axis L1 is formed larger than that of an inner wall surface 221 on a side approaching the central axis L1 of the trunk part 211.

Description

本発明は、油分離装置に関し、より詳細には、例えば冷媒を循環させる冷媒回路に適用され、かつ導入した油混合冷媒を冷媒とオイルとに分離させてそれぞれを別個に吐出させる油分離装置に関するものである。   The present invention relates to an oil separator, and more particularly to an oil separator that is applied to, for example, a refrigerant circuit that circulates refrigerant, and that separates an introduced oil-mixed refrigerant into refrigerant and oil and discharges them separately. Is.

従来、例えば冷媒を循環させる冷媒回路に適用され、かつ導入した油混合冷媒を冷媒とオイルとに分離させてそれぞれを別個に吐出させる油分離装置が知られている。   2. Description of the Related Art Conventionally, there is known an oil separation device that is applied to, for example, a refrigerant circuit that circulates refrigerant and separates an introduced oil-mixed refrigerant into refrigerant and oil and discharges them separately.

このような油分離装置は、装置本体、導入管、冷媒吐出管及び油吐出管を備えて構成されている。   Such an oil separation device includes an apparatus main body, an introduction pipe, a refrigerant discharge pipe, and an oil discharge pipe.

装置本体は、円筒状の胴部を有しており、該胴部の上端開口及び下端開口がそれぞれ上蓋及び下蓋により閉塞されている。導入管は、潤滑油等のオイルが混合した冷媒(油混合冷媒)を導入するためのもので、装置本体の胴部の側面における所定の接続個所において接線方向に延在する態様で接続されている。冷媒吐出管は上蓋に接続されており、油吐出管は下蓋に接続されている。   The apparatus main body has a cylindrical body, and an upper end opening and a lower end opening of the body are closed by an upper lid and a lower lid, respectively. The introduction pipe is for introducing a refrigerant (oil mixture refrigerant) mixed with oil such as lubricating oil, and is connected in a manner extending in a tangential direction at a predetermined connection point on the side surface of the body portion of the apparatus main body. Yes. The refrigerant discharge pipe is connected to the upper lid, and the oil discharge pipe is connected to the lower lid.

このような油分離装置では、導入管を通じて導入した油混合冷媒を装置本体の内部で中心軸回りに旋回させることで気相冷媒とオイルとに遠心分離させ、冷媒吐出管より気相冷媒を吐出させる一方、油吐出管よりオイルを吐出させるようにしている。   In such an oil separator, the oil-mixed refrigerant introduced through the introduction pipe is swung around the central axis inside the apparatus body to be centrifuged into the gas-phase refrigerant and oil, and the gas-phase refrigerant is discharged from the refrigerant discharge pipe. On the other hand, oil is discharged from the oil discharge pipe.

ところで、上記導入管の断面形状が円形であるために、その内部においては、中心部に冷媒とオイルとの混合流体が流れ、内壁面には表面張力によりオイルが付着することで円環状のオイル層が形成されている。そして、混合流体とオイル層との界面では、摩擦力により液滴が剥離してオイルミストが生成することから、上記導入管では、内壁面全周に亘って一様にオイルミストが生成されることなる。   By the way, since the cross-sectional shape of the introduction pipe is circular, a mixed fluid of refrigerant and oil flows in the center, and the oil adheres to the inner wall surface due to surface tension. A layer is formed. Then, at the interface between the mixed fluid and the oil layer, droplets are peeled off due to frictional force and oil mist is generated. Therefore, in the introduction pipe, oil mist is generated uniformly over the entire inner wall surface. It will be different.

そのため、上記油分離装置では、導入管から装置本体に油混合冷媒が流入する際、装置本体の内壁面に向けてオイルミストが飛散するだけでなく、装置本体の中心部に向けてもオイルミストが飛散することとなり、かかる中心部に飛散するオイルミストに対して作用する遠心力が小さいために遠心分離効果が低下してしまう。この結果、良好にオイルを分離できない虞れがあった。   Therefore, in the oil separation device, when the oil mixed refrigerant flows into the device main body from the introduction pipe, not only the oil mist is scattered toward the inner wall surface of the device main body but also the oil mist toward the center of the device main body. Since the centrifugal force acting on the oil mist scattered in the central portion is small, the centrifugal separation effect is reduced. As a result, there was a possibility that the oil could not be separated well.

そこで、油分離効率の向上を図るべく、内側管と外側管との二重管構造とし、内側管の入口部分は外側管の略中心に位置し、内側管の出口部分は装置本体の中心よりに偏位して外側管に接するようにした導入管を備えた油分離装置が提案されている(例えば、特許文献1参照)。   Therefore, in order to improve the oil separation efficiency, a double tube structure of the inner tube and the outer tube is adopted, the inlet portion of the inner tube is located at the approximate center of the outer tube, and the outlet portion of the inner tube is located closer to the center of the apparatus body. An oil separation device having an introduction pipe that is displaced to contact the outer pipe has been proposed (see, for example, Patent Document 1).

特開平5−312438号公報JP-A-5-31438

ところが、上述したような特許文献1に提案されている油分離装置では、導入管を二重管構造としており、しかも内側管の位置を入口側と出口側とで変形させているために、導入管構成が複雑なものとなり、かかる導入管の製造に必要な材料や加工等にかかるコストが高いものとなり、コストの増大化を招来するものであった。   However, in the oil separation apparatus proposed in Patent Document 1 as described above, the introduction pipe has a double pipe structure, and the position of the inner pipe is deformed between the inlet side and the outlet side. The pipe structure becomes complicated, and the cost required for materials and processing required for manufacturing the introduction pipe is high, resulting in an increase in cost.

本発明は、上記実情に鑑みて、コストの増大化を抑制しつつ油分離効率の向上を図ることができる油分離装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an oil separation apparatus capable of improving oil separation efficiency while suppressing an increase in cost.

上記目的を達成するために、本発明に係る油分離装置は、円筒状の胴部を有し、かつ該胴部の上端開口及び下端開口が蓋部材により閉塞された装置本体と、前記胴部の側面に自身の中心軸が該胴部の中心軸と水平方向にずれるよう接続され、該装置本体に油混合冷媒を導入する導入管とを備え、前記導入管を通じて導入した油混合冷媒を前記胴部の内部でその中心軸回りに旋回させることで冷媒とオイルとに遠心分離させ、前記胴部の上端開口を閉塞する蓋部材に接続された冷媒吐出管より冷媒を吐出させる一方、前記胴部の下端開口を閉塞する蓋部材に接続された油吐出管よりオイルを吐出させる油分離装置において、前記導入管は、前記胴部の中心軸に近接する側の内壁面よりも該中心軸から離隔する側の内壁面の曲率が大きく形成されていることを特徴とする。   In order to achieve the above object, an oil separator according to the present invention includes a device body having a cylindrical body portion, and an upper end opening and a lower end opening of the body portion closed by a lid member, and the body portion. And an introduction pipe for introducing an oil-mixed refrigerant into the apparatus main body, and the oil-mixed refrigerant introduced through the introduction pipe is The cylinder is swung around its central axis to be centrifugally separated into refrigerant and oil, and the refrigerant is discharged from a refrigerant discharge pipe connected to a lid member closing the upper end opening of the cylinder. In the oil separation device that discharges oil from an oil discharge pipe connected to a lid member that closes the lower end opening of the part, the introduction pipe is more from the central axis than the inner wall surface on the side close to the central axis of the trunk part The inner wall surface on the separated side is formed with a large curvature. And said that you are.

また、本発明は、上記油分離装置において、前記胴部の内面には、小径孔が多数形成されたシート状の捕捉部材が敷設してあることを特徴とする。   Moreover, the present invention is characterized in that, in the oil separating apparatus, a sheet-like capturing member having a large number of small-diameter holes is laid on the inner surface of the body portion.

本発明の油分離装置によれば、導入管は、胴部の中心軸に近接する側の内壁面よりも該中心軸から離隔する側の内壁面の曲率が大きく形成されているので、オイルは表面張力により離隔する側の内壁面に多く集まる結果、離隔する側の内壁面に形成されるオイル層の方が中心軸に近接する側の内壁面に形成されるオイル層よりも厚みが大きいものとなる。これにより導入管より装置本体に流入する際に飛散するオイルミストは、胴部の内壁面側に多くなり、しかも遠心力は旋回半径に反比例することが知られているため、オイルミストに働く遠心力が増大することになる。この結果、装置本体の胴部の内壁面近傍におけるオイル濃度を増加させることができ、油分離効率の向上を図ることができる。しかも、導入管の内壁面の曲率を変化させればよいだけなので、従来のような二重管構造とする場合に比べてコストの増大化を抑制することができる。従って、コストの増大化を抑制しつつ油分離効率の向上を図ることができるという効果を奏する。   According to the oil separation device of the present invention, the introduction pipe is formed such that the curvature of the inner wall surface on the side separated from the central axis is larger than that of the inner wall surface on the side close to the central axis of the trunk portion. As a result of gathering more on the inner wall surface on the side separated by the surface tension, the oil layer formed on the inner wall surface on the separated side is thicker than the oil layer formed on the inner wall surface on the side closer to the central axis It becomes. As a result, the oil mist scattered when flowing into the main body of the apparatus from the introduction pipe increases on the inner wall surface side of the trunk, and the centrifugal force is known to be inversely proportional to the turning radius. The power will increase. As a result, the oil concentration in the vicinity of the inner wall surface of the body portion of the apparatus main body can be increased, and the oil separation efficiency can be improved. In addition, since it is only necessary to change the curvature of the inner wall surface of the introduction pipe, an increase in cost can be suppressed as compared with the conventional double pipe structure. Therefore, it is possible to improve the oil separation efficiency while suppressing an increase in cost.

図1は、本発明の実施の形態である油分離装置が適用された冷媒回路の概略図である。FIG. 1 is a schematic diagram of a refrigerant circuit to which an oil separation device according to an embodiment of the present invention is applied. 図2は、図1に示した油分離装置を示す側面図である。FIG. 2 is a side view showing the oil separation device shown in FIG. 図3は、図2に示した油分離装置の要部の横断面と、この油分離装置を構成する導入管の縦断面とを示す説明図である。FIG. 3 is an explanatory view showing a transverse section of a main part of the oil separation device shown in FIG. 2 and a longitudinal section of an introduction pipe constituting the oil separation device. 図4は、図3に示した油分離装置の要部を拡大して示す説明図である。FIG. 4 is an explanatory diagram showing an enlarged main part of the oil separation device shown in FIG. 3. 図5は、本発明の実施の形態である油分離装置の変形例を示す説明図である。FIG. 5 is an explanatory view showing a modification of the oil separation device according to the embodiment of the present invention.

以下に添付図面を参照して、本発明に係る油分離装置の好適な実施の形態について詳細に説明する。   Exemplary embodiments of an oil separation device according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の実施の形態である油分離装置が適用された冷媒回路の概略図である。ここで例示する冷媒回路10は、例えば二酸化炭素を冷媒として封入したもので、圧縮機11、放熱器12、膨張機構13及び蒸発器14を配管にて順次接続して構成されたものである。   FIG. 1 is a schematic diagram of a refrigerant circuit to which an oil separation device according to an embodiment of the present invention is applied. The refrigerant circuit 10 exemplified here is one in which, for example, carbon dioxide is sealed as a refrigerant, and is configured by sequentially connecting a compressor 11, a radiator 12, an expansion mechanism 13, and an evaporator 14 by piping.

圧縮機11は、吸引口を通じて冷媒を吸引し、吸引した冷媒を圧縮して高温高圧の状態(高圧冷媒)にして吐出口より吐出するものである。本実施の形態における圧縮機11は、2回に分けて圧縮動作を行う二段式圧縮機である。より詳細に説明すると、圧縮機11は、1回目の圧縮動作を行う第1圧縮要素111と、2回目の圧縮動作を行う第2圧縮要素112とを有し、これらの間に中間熱交換器113が設けられている。中間熱交換器113は、第1圧縮要素111による1回目の圧縮動作により圧縮された冷媒を放熱させて第2圧縮要素112に送出するものである。   The compressor 11 sucks the refrigerant through the suction port, compresses the sucked refrigerant to be in a high temperature and high pressure state (high pressure refrigerant), and discharges it from the discharge port. The compressor 11 in the present embodiment is a two-stage compressor that performs a compression operation in two steps. More specifically, the compressor 11 includes a first compression element 111 that performs a first compression operation and a second compression element 112 that performs a second compression operation, and an intermediate heat exchanger therebetween. 113 is provided. The intermediate heat exchanger 113 dissipates the refrigerant compressed by the first compression operation by the first compression element 111 and sends it to the second compression element 112.

放熱器12は、圧縮機11で圧縮された冷媒が自身の流路を通過する場合に、該冷媒を周囲空気と熱交換させて放熱させるものである。膨張機構13は、例えばキャピラリーチューブや膨張弁等により構成されるもので、放熱器12で放熱した冷媒を減圧して断熱膨張させるものである。蒸発器14は、通過する冷媒、すなわち膨張機構13で断熱膨張された冷媒を蒸発させて周囲空気を冷却するものである。この蒸発器14で蒸発した冷媒は圧縮機11に吸引される。   When the refrigerant compressed by the compressor 11 passes through its flow path, the heat radiator 12 exchanges heat with the ambient air to dissipate heat. The expansion mechanism 13 is composed of, for example, a capillary tube or an expansion valve, and decompresses the refrigerant radiated by the radiator 12 to adiabatic expansion. The evaporator 14 evaporates the passing refrigerant, that is, the refrigerant adiabatically expanded by the expansion mechanism 13 to cool the ambient air. The refrigerant evaporated in the evaporator 14 is sucked into the compressor 11.

このような冷媒回路10には、上記構成の他、内部熱交換器15及び油分離装置20が設けられている。内部熱交換器15は、放熱器12を通過した高圧冷媒と、蒸発器14を通過した冷媒(低圧冷媒)とを熱交換させるものである。   Such a refrigerant circuit 10 is provided with an internal heat exchanger 15 and an oil separator 20 in addition to the above configuration. The internal heat exchanger 15 exchanges heat between the high-pressure refrigerant that has passed through the radiator 12 and the refrigerant (low-pressure refrigerant) that has passed through the evaporator 14.

油分離装置20は、いわゆるオイルセパレータと称されるもので、圧縮機11を構成する第2圧縮要素112と放熱器12との間に設けられており、図2に示すように、装置本体21、導入管22、冷媒吐出管23及び油吐出管24を備えて構成されている。   The oil separator 20 is a so-called oil separator, and is provided between the second compression element 112 and the radiator 12 constituting the compressor 11, and as shown in FIG. , An introduction pipe 22, a refrigerant discharge pipe 23, and an oil discharge pipe 24.

装置本体21は、円筒状の胴部211と、この胴部211の上端開口を閉塞する上蓋(蓋部材)212と、該胴部211の下端開口を閉塞する下蓋(蓋部材)213とを備えている。   The apparatus main body 21 includes a cylindrical body 211, an upper lid (lid member) 212 that closes the upper end opening of the body 211, and a lower lid (lid member) 213 that closes the lower end opening of the body 211. I have.

導入管22は、入口側が圧縮機11の第2圧縮要素112の出口側に接続された配管に連通する態様で接続され、かつ出口側が装置本体21の内部に連通する態様で該装置本体21の胴部211の側面に接続されている。より詳細に説明すると、導入管22は、図3に示すように、胴部211の側面に自身の中心軸L2が該胴部211の中心軸L1と水平方向にずれるよう出口側が接続されている。このような導入管22は、圧縮機11から吐出された冷媒、すなわち第2圧縮要素112から吐出された冷媒と潤滑油(オイル)との油混合冷媒を装置本体21に導入するためのものである。   The introduction pipe 22 is connected in such a manner that the inlet side communicates with a pipe connected to the outlet side of the second compression element 112 of the compressor 11, and the outlet side communicates with the inside of the device main body 21. It is connected to the side surface of the trunk portion 211. More specifically, as shown in FIG. 3, the introduction pipe 22 has an outlet side connected to the side surface of the body portion 211 such that the center axis L2 of the introduction tube 22 is shifted from the center axis L1 of the body portion 211 in the horizontal direction. . Such an introduction pipe 22 is for introducing into the apparatus main body 21 the refrigerant discharged from the compressor 11, that is, the oil-mixed refrigerant of the lubricating oil (oil) discharged from the second compression element 112. is there.

かかる導入管22は、管壁の厚みは一様なものであり、中心軸L2と直交する方向の縦断面形状が左右非対称となる形態を有している。より詳細には、導入管22は、胴部211の中心軸L1に近接する側(以下、中心側ともいう)内壁面221よりも該中心軸L1から離隔する側(以下、離隔側ともいう)内壁面222の曲率が大きくなるように形成されている。   The introduction tube 22 has a uniform tube wall thickness, and has a shape in which the longitudinal sectional shape in the direction orthogonal to the central axis L2 is asymmetrical in the left-right direction. More specifically, the introduction pipe 22 is a side (hereinafter also referred to as a separation side) that is farther from the central axis L1 than an inner wall surface 221 that is closer to the central axis L1 (hereinafter also referred to as the central side) of the body 211. The inner wall surface 222 is formed to have a large curvature.

冷媒吐出管23は、入口側が装置本体21の内部に連通する態様で上蓋212に接続され、かつ出口側が放熱器12の入口側に接続された配管に連通する態様で接続されている。油吐出管24は、入口側が装置本体21の内部に連通する態様で下蓋213に接続され、かつ出口側が2つに分岐して一方が第1圧縮要素111に接続されるとともに他方が第2圧縮要素112に接続されている。   The refrigerant discharge pipe 23 is connected in such a manner that the inlet side is connected to the upper lid 212 in a mode communicating with the inside of the apparatus main body 21 and the outlet side is connected to a pipe connected to the inlet side of the radiator 12. The oil discharge pipe 24 is connected to the lower lid 213 in such a manner that the inlet side communicates with the inside of the apparatus main body 21, the outlet side branches into two, one is connected to the first compression element 111, and the other is the second Connected to the compression element 112.

上記構成を有する油分離装置20においては、圧縮機11で圧縮されて吐出された高温高圧の冷媒と、この高温高圧の冷媒とともに吐出されるオイルとの混合物である油混合冷媒が導入管22を通じて装置本体21(胴部211)の内部に導入されると、この油混合冷媒を胴部211の中心軸L1回りに旋回させることで冷媒(高温高圧の冷媒)とオイルとに遠心分離させる。   In the oil separator 20 having the above-described configuration, an oil mixed refrigerant that is a mixture of the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 11 and the oil discharged together with the high-temperature and high-pressure refrigerant passes through the introduction pipe 22. When introduced into the apparatus main body 21 (body 211), the oil-mixed refrigerant is swung around the central axis L1 of the body 211 to be centrifuged into refrigerant (high-temperature and high-pressure refrigerant) and oil.

この遠心分離により分離された冷媒(気相冷媒)は、冷媒吐出管23より吐出されて放熱器12に至り、該放熱器12で周囲空気と熱交換を行うことで放熱する。放熱器12で放熱した冷媒は、内部熱交換器15を通過した後に膨張機構13で断熱膨張し、低温低圧の冷媒として蒸発器14に至る。蒸発器14に至った冷媒は、周囲空気と熱交換して蒸発し、その後に内部熱交換器15を経て圧縮機11(第1圧縮要素111に)に吸引される。   The refrigerant (gas phase refrigerant) separated by the centrifugal separation is discharged from the refrigerant discharge pipe 23 to reach the radiator 12, and radiates heat by exchanging heat with the surrounding air by the radiator 12. The refrigerant radiated by the radiator 12 is adiabatically expanded by the expansion mechanism 13 after passing through the internal heat exchanger 15, and reaches the evaporator 14 as a low-temperature and low-pressure refrigerant. The refrigerant that has reached the evaporator 14 evaporates by exchanging heat with the ambient air, and then is sucked into the compressor 11 (to the first compression element 111) through the internal heat exchanger 15.

上記遠心分離により胴部211の内壁面に付着したオイルは、下方に向けて流れて油吐出管24より吐出される。油吐出管24から吐出されたオイルは、油吐出管24に従って2つに分岐し、一方が第1圧縮要素111に吸引され、他方が第2圧縮要素112に吸引される。   The oil adhering to the inner wall surface of the body 211 by the centrifugal separation flows downward and is discharged from the oil discharge pipe 24. The oil discharged from the oil discharge pipe 24 branches into two according to the oil discharge pipe 24, and one is sucked by the first compression element 111 and the other is sucked by the second compression element 112.

ところで、導入管22の内部のおいては、中心部に冷媒とオイルとの混合流体が流れ、内壁面には表面張力によりオイルが付着することでオイル層が形成されている。上記導入管22は、中心側内壁面221よりも離隔側内壁面222の曲率が大きくなるように形成されているので、付着するオイルは表面張力により曲率の大きい方に集まり、これにより、図4に示すように、離隔側内壁面222に形成されるオイル層OSの方が中心側内壁面221に形成されるオイル層OSよりも厚みが大きいものとなる。つまり、装置本体21の内部に導入する前の段階において、装置本体21の径方向外側のオイル濃度分布を径方向内側よりも大きくしている。   By the way, in the inside of the introduction pipe 22, the fluid mixture of the refrigerant and oil flows in the center, and the oil layer is formed on the inner wall surface by the oil adhering due to surface tension. Since the introduction pipe 22 is formed so that the curvature of the separation-side inner wall surface 222 is larger than that of the center-side inner wall surface 221, the adhering oil gathers in the larger curvature due to the surface tension. As shown, the oil layer OS formed on the remote inner wall surface 222 is thicker than the oil layer OS formed on the central inner wall surface 221. That is, the oil concentration distribution on the outer side in the radial direction of the apparatus main body 21 is made larger than that on the inner side in the radial direction before being introduced into the apparatus main body 21.

これにより導入管22より装置本体21に流入する際に飛散するオイルミストOMは、装置本体21(胴部211)の内壁面側に多くなり、しかも遠心力は旋回半径に反比例することが知られているため、オイルミストOMに働く遠心力が増大することになる。この結果、装置本体21の胴部211の内壁面近傍におけるオイル濃度を増加させることができ、油分離効率の向上を図ることができる。しかも、導入管22を中心側内壁面221と離隔側内壁面222との曲率を変化させればよいだけなので、従来のような二重管構造とする場合に比べてコストの増大化を抑制することができる。   As a result, it is known that the oil mist OM scattered when flowing into the apparatus main body 21 from the introduction pipe 22 increases on the inner wall surface side of the apparatus main body 21 (body 211), and the centrifugal force is inversely proportional to the turning radius. Therefore, the centrifugal force acting on the oil mist OM increases. As a result, the oil concentration in the vicinity of the inner wall surface of the body 211 of the apparatus main body 21 can be increased, and the oil separation efficiency can be improved. In addition, since it is only necessary to change the curvature of the introduction side wall 221, the center side inner wall surface 221 and the separation side inner wall surface 222, it is possible to suppress an increase in cost compared to the conventional double tube structure. be able to.

従って、本発明の実施の形態である油分離装置20によれば、コストの増大化を抑制しつつ油分離効率の向上を図ることができる。   Therefore, according to the oil separation device 20 according to the embodiment of the present invention, it is possible to improve the oil separation efficiency while suppressing an increase in cost.

以上、本発明の好適な実施の形態について説明したが、本発明はこれに限定されるものではなく、種々の変更を行うことができる。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to this, and various modifications can be made.

例えば、図5に示すように胴部211の内壁面に網目構造のメッシュ材や多数の小径孔が形成されたパンチングメタル等のシート状の捕捉部材30が敷設されても良い。このような構成によれば、装置本体21の内壁面に沿ってオイルミストOMとの接触面積を増大させることにより、装置本体21の内壁面におけるオイルの濃度を増加させることができ、油分離効率の向上を図ることができる。   For example, as shown in FIG. 5, a sheet-like capturing member 30 such as a punching metal or the like having a mesh-structured mesh material or a large number of small-diameter holes may be laid on the inner wall surface of the body portion 211. According to such a configuration, by increasing the contact area with the oil mist OM along the inner wall surface of the apparatus main body 21, the oil concentration on the inner wall surface of the apparatus main body 21 can be increased, and the oil separation efficiency can be increased. Can be improved.

上述した実施の形態においては、導入管22は、管壁の厚みが一様なものであったが、本発明においては、胴部の中心軸に近接する側の内壁面よりも該中心軸から離隔する側の内壁面の曲率を大きくしてあれば、管壁の厚みが変化しても構わない。   In the embodiment described above, the introduction pipe 22 has a uniform thickness on the pipe wall. However, in the present invention, the introduction pipe 22 is further away from the central axis than the inner wall surface on the side close to the central axis of the trunk. As long as the curvature of the inner wall surface on the separated side is increased, the thickness of the tube wall may be changed.

10 冷媒回路
11 圧縮機
111 第1圧縮要素
112 第2圧縮要素
113 中間熱交換器
12 放熱器
13 膨張機構
14 蒸発器
15 内部熱交換器
20 油分離装置
21 装置本体
211 胴部
212 上蓋(蓋部材)
213 下蓋(蓋部材)
22 導入管
221 中心側内壁面
222 離隔側内壁面
23 冷媒吐出管
24 油吐出管
30 捕捉部材
OM オイルミスト
OS オイル層
DESCRIPTION OF SYMBOLS 10 Refrigerant circuit 11 Compressor 111 1st compression element 112 2nd compression element 113 Intermediate heat exchanger 12 Radiator 13 Expansion mechanism 14 Evaporator 15 Internal heat exchanger 20 Oil separator 21 Apparatus body 211 Body 212 Upper lid (lid member) )
213 Lower lid (lid member)
22 Introduction pipe 221 Center side inner wall surface 222 Separation side inner wall surface 23 Refrigerant discharge pipe 24 Oil discharge pipe 30 Trapping member OM Oil mist OS Oil layer

Claims (2)

円筒状の胴部を有し、かつ該胴部の上端開口及び下端開口が蓋部材により閉塞された装置本体と、
前記胴部の側面に自身の中心軸が該胴部の中心軸と水平方向にずれるよう接続され、該装置本体に油混合冷媒を導入する導入管と
を備え、
前記導入管を通じて導入した油混合冷媒を前記胴部の内部でその中心軸回りに旋回させることで冷媒とオイルとに遠心分離させ、前記胴部の上端開口を閉塞する蓋部材に接続された冷媒吐出管より冷媒を吐出させる一方、前記胴部の下端開口を閉塞する蓋部材に接続された油吐出管よりオイルを吐出させる油分離装置において、
前記導入管は、前記胴部の中心軸に近接する側の内壁面よりも該中心軸から離隔する側の内壁面の曲率が大きく形成されていることを特徴とする油分離装置。
An apparatus main body having a cylindrical body, and an upper end opening and a lower end opening of the body being closed by a lid member;
An inlet pipe for introducing an oil-mixed refrigerant into the apparatus main body, connected to the side surface of the barrel part so that its own central axis is displaced horizontally with respect to the central axis of the trunk part;
Refrigerant connected to a lid member that closes the upper end opening of the barrel part by centrifuging the oil-mixed refrigerant introduced through the introduction pipe around the central axis inside the barrel part to be centrifuged into refrigerant and oil. In the oil separator for discharging the refrigerant from the oil discharge pipe connected to the lid member that closes the lower end opening of the trunk while discharging the refrigerant from the discharge pipe,
The oil separator according to claim 1, wherein the introduction pipe is formed such that the curvature of the inner wall surface on the side separated from the central axis is larger than the inner wall surface on the side close to the central axis of the body portion.
前記胴部の内面には、小径孔が多数形成されたシート状の捕捉部材が敷設してあることを特徴とする請求項1に記載の油分離装置。   2. The oil separation device according to claim 1, wherein a sheet-like capturing member having a large number of small-diameter holes is laid on the inner surface of the body portion.
JP2012112391A 2012-05-16 2012-05-16 Oil separator Active JP6007584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112391A JP6007584B2 (en) 2012-05-16 2012-05-16 Oil separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112391A JP6007584B2 (en) 2012-05-16 2012-05-16 Oil separator

Publications (2)

Publication Number Publication Date
JP2013238366A true JP2013238366A (en) 2013-11-28
JP6007584B2 JP6007584B2 (en) 2016-10-12

Family

ID=49763550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112391A Active JP6007584B2 (en) 2012-05-16 2012-05-16 Oil separator

Country Status (1)

Country Link
JP (1) JP6007584B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277109A (en) * 2001-03-15 2002-09-25 Mitsubishi Electric Corp Oil separator
JP2009074756A (en) * 2007-09-21 2009-04-09 Mitsubishi Electric Corp Compressor muffler
JP2010286193A (en) * 2009-06-12 2010-12-24 Mitsubishi Electric Corp Cyclone type oil separator, and compression type refrigerating device and air compressing device having the same
JP2011247575A (en) * 2010-04-26 2011-12-08 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277109A (en) * 2001-03-15 2002-09-25 Mitsubishi Electric Corp Oil separator
JP2009074756A (en) * 2007-09-21 2009-04-09 Mitsubishi Electric Corp Compressor muffler
JP2010286193A (en) * 2009-06-12 2010-12-24 Mitsubishi Electric Corp Cyclone type oil separator, and compression type refrigerating device and air compressing device having the same
JP2011247575A (en) * 2010-04-26 2011-12-08 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device including the same

Also Published As

Publication number Publication date
JP6007584B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
KR101658582B1 (en) Battery system and method for cooling battery cell assembly
JP5887518B2 (en) Gas-liquid separator and refrigeration cycle apparatus
CN105247298B (en) Turborefrigerator
AU2015201553B2 (en) Rotary Compressor
KR20070106875A (en) Hermetic vessel equipped with inserted type discharge pipe, and oil separator, gas-liquid separator and air conditioning system using the same
KR102303676B1 (en) Ejector and Cooling Apparatus having the same
JP2016121858A5 (en)
JP2009109063A (en) Four-way selector valve and refrigeration cycle device using this
US9903356B2 (en) Compressor and discharging muffler thereof
CN110418899A (en) Compressor sucking piping, compression unit and refrigeration machine
WO2018072512A1 (en) Multi-stage centrifugal compressor
JP5657061B2 (en) Cyclone oil separator, compression refrigeration apparatus and air compression apparatus provided with the same
JP6007584B2 (en) Oil separator
CN203980699U (en) Air-conditioning system
JP2013117372A5 (en)
JP6131621B2 (en) Oil separator
JP6273838B2 (en) Heat exchanger
EP2944364B1 (en) Oil separator and air conditioner having the same
JP2013238367A (en) Oil separator
US9518680B2 (en) Compressor and valve assembly thereof for reducing pulsation and/or noise
JP7358833B2 (en) oil separation equipment
US10557651B2 (en) Oil-gas balancing apparatus and compressor system with the same
JP2008304097A (en) Accumulator
JP2015014413A (en) Gas liquid separator and refrigerating device
KR20130022753A (en) Heat exchanger for vehicle air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 6007584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250