JP2013237203A - Laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013237203A
JP2013237203A JP2012112000A JP2012112000A JP2013237203A JP 2013237203 A JP2013237203 A JP 2013237203A JP 2012112000 A JP2012112000 A JP 2012112000A JP 2012112000 A JP2012112000 A JP 2012112000A JP 2013237203 A JP2013237203 A JP 2013237203A
Authority
JP
Japan
Prior art keywords
porous film
layer
resin
polyolefin resin
laminated porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012112000A
Other languages
Japanese (ja)
Other versions
JP5848193B2 (en
Inventor
Yuto Yamada
裕人 山田
Tomoyuki Nemoto
友幸 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2012112000A priority Critical patent/JP5848193B2/en
Publication of JP2013237203A publication Critical patent/JP2013237203A/en
Application granted granted Critical
Publication of JP5848193B2 publication Critical patent/JP5848193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a laminated porous film having properties excellent in high binding ability and heat resistance of a polyolefin base resin porous film (I layer) being a base film and a covering layer (II) and compatively having excellent properties when using as a separator for a nonaqueous electrolyte secondary battery.SOLUTION: A laminated porous film having a covering layer (II layer) containing filler (a) and resin binder (b) in at least one surface of a polyolefin base resin porous film (I layer) is characterized in that the resin binder (b) is constituted of two kinds or more of resins including modified polyolefin resin (c).

Description

本発明は、積層多孔フィルムに関し、包装用、衛生用、畜産用、農業用、建築用、医療用、分離膜、光拡散板、電池用セパレータとして利用でき、特に、非水電解液二次電池用セパレータとして好適に利用できるものである。   The present invention relates to a laminated porous film, and can be used as a packaging, sanitary, livestock, agricultural, architectural, medical, separation membrane, light diffusion plate, battery separator, and particularly a non-aqueous electrolyte secondary battery. It can be suitably used as a separator for use.

多数の微細連通孔を有する高分子多孔体は、超純水の製造、薬液の精製、水処理などに使用する分離膜、衣類・衛生材料などに使用する防水透湿性フィルム、あるいは二次電池などに使用する電池セパレータなど各種の分野で利用されている。   The polymer porous body with many fine communication holes is the separation membrane used for the production of ultrapure water, the purification of chemicals, the water treatment, the waterproof and moisture permeable film used for clothing and sanitary materials, or the secondary battery, etc. It is used in various fields such as battery separators.

二次電池はOA、FA、家庭用電器または通信機器等のポータブル機器用電源として幅広く使用されている。特に機器に装備した場合に容積効率がよく機器の小型化および軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧および長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。   Secondary batteries are widely used as power sources for portable devices such as OA, FA, household electric appliances and communication devices. In particular, portable devices using lithium ion secondary batteries are increasing because they have a high volumetric efficiency when mounted on devices, leading to a reduction in size and weight of the devices. On the other hand, large-sized secondary batteries are being researched and developed in many fields related to energy / environmental issues, including road leveling, UPS, and electric vehicles, and are excellent in large capacity, high output, high voltage, and long-term storage. Therefore, the use of lithium ion secondary batteries, which are a kind of non-aqueous electrolyte secondary battery, is expanding.

リチウムイオン二次電池の使用電圧は通常4.1Vから4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用したいわゆる非水電解液が用いられている。非水電解液用溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、該高誘電率有機溶媒としてプロピレンカーボネートやエチレンカーボネート等の有機炭酸エステル化合物が主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶解させて使用している。   The working voltage of a lithium ion secondary battery is usually designed with an upper limit of 4.1V to 4.2V. At such a high voltage, the aqueous solution causes electrolysis and cannot be used as an electrolyte. Therefore, so-called non-aqueous electrolytes using organic solvents are used as electrolytes that can withstand high voltages. As the solvent for the non-aqueous electrolyte, a high dielectric constant organic solvent capable of allowing more lithium ions to be present is used, and organic carbonate compounds such as propylene carbonate and ethylene carbonate are mainly used as the high dielectric constant organic solvent. It is used. As a supporting electrolyte that becomes a lithium ion source in the solvent, a highly reactive electrolyte such as lithium hexafluorophosphate is dissolved in the solvent and used.

リチウムイオン二次電池には内部短絡の防止の点からセパレータが正極と負極の間に介在されている。該セパレータにはその役割から当然絶縁性が要求される。また、リチウムイオンの通路となる透気性と電解液の拡散・保持機能を付与するために微細孔構造である必要がある。これらの要求を満たすためセパレータとしては多孔性フィルムが使用されている。   In the lithium ion secondary battery, a separator is interposed between the positive electrode and the negative electrode from the viewpoint of preventing an internal short circuit. Of course, the separator is required to have insulating properties due to its role. Moreover, it is necessary to have a microporous structure in order to provide air permeability as a lithium ion passage and a function of diffusing and holding the electrolyte. In order to satisfy these requirements, a porous film is used as a separator.

最近の電池の高容量化に伴い、電池の安全性に対する重要度が増してきている。電池用セパレータの安全に寄与する特性として、シャットダウン特性(以後、「SD特性」と称す)がある。このSD特性は、100〜150℃程度の高温状態になると微細孔が閉塞され、その結果電池内部のイオン伝導が遮断されるため、その後の電池内部の温度上昇を防止できるという機能である。この時、積層多孔性フィルムの微細孔が閉塞される温度のうち最も低い温度をシャットダウン温度(以後、「SD温度」と称す)という。電池用セパレータとして使用する場合は、このSD特性を具備していることが必要である。   With the recent increase in battery capacity, the importance of battery safety has increased. As a characteristic that contributes to the safety of the battery separator, there is a shutdown characteristic (hereinafter referred to as “SD characteristic”). This SD characteristic is a function that can prevent a subsequent increase in temperature inside the battery because the micropores are closed when the temperature is about 100 to 150 ° C., and as a result, ion conduction inside the battery is cut off. At this time, the lowest temperature among the temperatures at which the micropores of the laminated porous film are blocked is referred to as a shutdown temperature (hereinafter referred to as “SD temperature”). When used as a battery separator, it is necessary to have this SD characteristic.

しかしながら、近年リチウムイオン二次電池の高エネルギー密度化、高容量化に伴い、通常のシャットダウン機能が十分に機能せず、電池内部の温度がポリエチレンの融点である130℃前後を超え、さらに上昇し、セパレータの熱収縮に伴う破膜によって、両極が短絡し、発火に至る事故が発生している。そこで、安全性を確保するため、セパレータには現在のSD特性よりもさらに高い耐熱性が求められている。   However, with the recent increase in energy density and capacity of lithium ion secondary batteries, the normal shutdown function does not function sufficiently, and the temperature inside the battery exceeds 130 ° C., the melting point of polyethylene, and further increases. Accidents have occurred in which both electrodes are short-circuited due to the film breakage accompanying the thermal contraction of the separator, resulting in ignition. Therefore, in order to ensure safety, the separator is required to have higher heat resistance than the current SD characteristics.

前記要望に対し、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、金属酸化物と樹脂バインダーとを含む多孔層を備えた多層多孔フィルム(特許文献1〜3)が提案されている。これらは、多孔フィルム上にαアルミナ等の無機微粒子を高充填させたコート層を設けることで、異常発熱を起こし、SD温度を越え、温度が上昇し続けた際においても、両極の短絡を防ぐことができ、非常に安全性に優れる方法とされている。   In response to the demand, a multilayer porous film (Patent Documents 1 to 3) is proposed in which a porous layer containing a metal oxide and a resin binder is provided on at least one surface of a polyolefin-based resin porous film. By providing a coating layer that is highly filled with inorganic fine particles such as α-alumina on the porous film, abnormal heating occurs, and even when the temperature continues to rise beyond the SD temperature, both electrodes are prevented from being short-circuited. It is possible to be a very safe method.

特開2004−227972号公報JP 2004-227972 A 特表2010−517811号公報Special table 2010-517811 gazette 特表2010−520095号公報Special table 2010-520095 gazette

しかしながら、前記特許文献1に記載の方法では、水性バインダーを使用するため多孔膜内の水分を除去するのが困難であった。一方、前記特許文献2あるいは3記載の方法では、油性バインダーを使用しているため、水性バインダーを使用する際のような問題は生じないが、その反面として多孔フィルムへの結着力が弱く、コート層が剥離しやすいという問題があった。   However, in the method described in Patent Document 1, it is difficult to remove moisture in the porous film because an aqueous binder is used. On the other hand, in the method described in Patent Document 2 or 3, since an oily binder is used, there is no problem as in the case of using an aqueous binder, but on the other hand, the binding force to the porous film is weak, There was a problem that the layer was easily peeled off.

本発明の課題は、前記問題点を解決することにある。すなわち、油性バインダーを使用しつつ、結着力を向上し、これにより、耐粉落ち性、耐熱性に優れ、非水電解液二次電池用セパレータとして用いた際に、優れた特性を有した積層多孔フィルムを提供することを目的とする。   The subject of this invention is solving the said problem. That is, while using an oil-based binder, the binding force is improved, thereby excellent anti-powder resistance and heat resistance, and a laminate having excellent characteristics when used as a separator for a non-aqueous electrolyte secondary battery. An object is to provide a porous film.

本発明は、ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に、フィラー(a)及び樹脂バインダー(b)を含有する被覆層(II層)を有する積層多孔フィルムであって、前記樹脂バインダー(b)が変性ポリオレフィン樹脂(c)を含む2種以上の樹脂から構成されていることを特徴とする積層多孔フィルムである。   The present invention is a laminated porous film having a coating layer (II layer) containing a filler (a) and a resin binder (b) on at least one surface of a polyolefin resin porous film (I layer), wherein the resin binder ( A laminated porous film characterized in that b) is composed of two or more kinds of resins including the modified polyolefin resin (c).

また本発明について、前記被覆層(II層)の全固形分中における、前記変性ポリオレフィン樹脂(c)の含有率が0.1質量%以上、8質量%以下の範囲であることが好ましい。   Moreover, about this invention, it is preferable that the content rate of the said modified polyolefin resin (c) in the total solid of the said coating layer (II layer) is the range of 0.1 mass% or more and 8 mass% or less.

また本発明について、前記変性ポリオレフィン樹脂(c)は酸変性ポリオレフィン樹脂を含んでなることが好ましい。   In the present invention, the modified polyolefin resin (c) preferably comprises an acid-modified polyolefin resin.

また本発明について、前記フィラー(a)の平均粒径が、0.01μm以上、3.0μm以下であることが好ましい。   Moreover, about this invention, it is preferable that the average particle diameter of the said filler (a) is 0.01 micrometer or more and 3.0 micrometers or less.

また本発明について、前記ポリオレフィン系樹脂多孔フィルム(I層)がポリプロピレン系樹脂を含んでなることが好ましい。   In the present invention, it is preferable that the polyolefin resin porous film (I layer) comprises a polypropylene resin.

また本発明について、前記ポリオレフィン系樹脂多孔フィルム(I層)がβ晶活性を有することが好ましい。   In the present invention, the polyolefin resin porous film (I layer) preferably has β crystal activity.

また本発明について、前記ポリオレフィン系樹脂多孔フィルム(I層)と前記被覆層(II層)との引き剥がし強度が300mN/cm以上であることが好ましい。   Moreover, about this invention, it is preferable that the peeling strength of the said polyolefin resin porous film (I layer) and the said coating layer (II layer) is 300 mN / cm or more.

本発明によれば、基膜であるポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II)の高い結着性、耐熱性に優れた特性を有し、非水電解液二次電池用セパレータとして用いた際に、優れた特性を兼ね備えた積層多孔フィルムを得ることができる。   According to the present invention, the polyolefin resin porous film (I layer) and the coating layer (II) as the base film have high binding properties and excellent heat resistance, and are separators for non-aqueous electrolyte secondary batteries. When used as, a laminated porous film having excellent characteristics can be obtained.

本発明の積層多孔フィルムを収容している電池の概略的断面図である。It is a schematic sectional drawing of the battery which accommodates the lamination | stacking porous film of this invention. 耐熱性、広角X線回折測定における積層多孔フィルムの固定方法を説明する図である。It is a figure explaining the fixing method of the laminated porous film in heat resistance and wide-angle X-ray-diffraction measurement. 引き剥がし強度の測定方法を説明する図である。It is a figure explaining the measuring method of peeling strength.

以下、本発明の積層多孔フィルムの実施形態について詳細に説明する。
なお、本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は組成物中の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。
また、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含するものである。
Hereinafter, embodiments of the laminated porous film of the present invention will be described in detail.
In the present invention, the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified. The content ratio of the components is not specified, but the main component includes 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100%) in the composition. It is.
In addition, when described as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” and “preferably smaller than Y” together with the meaning of “X to Y” unless otherwise specified. Is included.

以下に、本発明の積層多孔フィルムを構成する各成分について説明する。   Below, each component which comprises the laminated porous film of this invention is demonstrated.

<ポリオレフィン系樹脂多孔フィルム(I層)>
ポリオレフィン系樹脂多孔フィルム(I層)に用いるポリオレフィン系樹脂としては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどのα−オレフィンを重合した単独重合体または共重合体が挙げられる。また、これらの単独重合体または共重合体を2種以上混合することもできる。この中でもポリプロピレン系樹脂、または、ポリエチレン系樹脂を用いることが好ましく、特に、本発明の積層多孔フィルムの機械的強度、耐熱性などを維持する観点から、ポリプロピレン系樹脂を用いることが好ましい。
<Polyolefin resin porous film (I layer)>
The polyolefin resin used for the polyolefin resin porous film (I layer) is a homopolymer or copolymer made by polymerizing an α-olefin such as ethylene, propylene, 1-butene, 4-methyl-1-pentene and 1-hexene. Coalesce is mentioned. Also, two or more of these homopolymers or copolymers can be mixed. Among these, it is preferable to use a polypropylene-based resin or a polyethylene-based resin, and it is particularly preferable to use a polypropylene-based resin from the viewpoint of maintaining the mechanical strength, heat resistance, and the like of the laminated porous film of the present invention.

(ポリプロピレン系樹脂)
本発明に用いるポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1−ブテン、1−ペンテン、1−へキセン、1−へプテン、1−オクテン、1−ノネンもしくは1−デセンなどα−オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、本発明の積層多孔フィルムの機械的強度、耐熱性などを維持する観点から、ホモポリプロピレンがより好適に使用される。
(Polypropylene resin)
Examples of the polypropylene resin used in the present invention include homopropylene (propylene homopolymer), propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or Examples thereof include random copolymers or block copolymers with α-olefins such as 1-decene. Among these, homopolypropylene is more preferably used from the viewpoint of maintaining the mechanical strength and heat resistance of the laminated porous film of the present invention.

また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80〜99%であることが好ましい。より好ましくは83〜98%、更に好ましくは85〜97%であるものを使用する。アイソタクチックペンタッド分率が低すぎるとフィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。 アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素−炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al(Macromolecules8,687,(1975))に準拠した。   Moreover, as a polypropylene resin, it is preferable that the isotactic pentad fraction (mmmm fraction) which shows stereoregularity is 80 to 99%. More preferably 83-98%, still more preferably 85-97%. If the isotactic pentad fraction is too low, the mechanical strength of the film may be reduced. On the other hand, the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not. The isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of arbitrary five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. It conformed to Zambelli et al (Macromolecules 8,687, (1975)).

また、ポリプロピレン系樹脂としては、分子量分布を示すパラメータであるMw/Mnが2.0〜10.0であることが好ましい。より好ましくは2.0〜8.0、更に好ましくは2.0〜6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが2.0未満であると押出成形性が低下する等の問題が生じるほか、工業的に生産することも困難である。一方、Mw/Mnが10.0を超えた場合は低分子量成分が多くなり、積層多孔フィルムの機械的強度が低下しやすい。Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。   Moreover, as a polypropylene resin, it is preferable that Mw / Mn which is a parameter which shows molecular weight distribution is 2.0-10.0. More preferably, 2.0 to 8.0, and still more preferably 2.0 to 6.0 is used. This means that the smaller the Mw / Mn is, the narrower the molecular weight distribution is. However, when the Mw / Mn is less than 2.0, problems such as a decrease in extrusion moldability occur, and it is difficult to produce industrially. . On the other hand, when Mw / Mn exceeds 10.0, low molecular weight components increase, and the mechanical strength of the laminated porous film tends to decrease. Mw / Mn is obtained by GPC (gel permeation chromatography) method.

また、ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.5〜15g/10分であることが好ましく、1.0〜10g/10分であることがより好ましい。MFRが0.5g/10分以上とすることで、成形加工時の樹脂の溶融粘度が高く、十分な生産性を確保することができる。一方、15g/10分以下とすることで、得られる積層多孔フィルムの機械的強度を十分に保持することができる。MFRはJIS K7210に従い、温度230℃、荷重2.16kgの条件で測定する。   Further, the melt flow rate (MFR) of the polypropylene-based resin is not particularly limited, but usually the MFR is preferably 0.5 to 15 g / 10 minutes, and 1.0 to 10 g / 10 minutes. It is more preferable. When the MFR is 0.5 g / 10 min or more, the resin has a high melt viscosity at the time of molding, and sufficient productivity can be ensured. On the other hand, the mechanical strength of the obtained laminated porous film can be sufficiently maintained by setting it to 15 g / 10 min or less. MFR is measured according to JIS K7210 under conditions of a temperature of 230 ° C. and a load of 2.16 kg.

なお、前記ポリプロピレン系樹脂の製造方法は、特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた、スラリー重合、溶融重合法、塊状重合法、気相重合法、またラジカル開始剤を用いた塊状重合法などが挙げられる。   The method for producing the polypropylene resin is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst or a metallocene catalyst represented by a Ziegler-Natta type catalyst. Examples thereof include slurry polymerization, melt polymerization, bulk polymerization, gas phase polymerization, and bulk polymerization using a radical initiator.

ポリプロピレン系樹脂としては、例えば、商品名「ノバテックPP」、「WINTEC」(以上、日本ポリプロ社製)、「ノティオ」、「タフマーXR」(以上、三井化学社製)、「ゼラス」、「サーモラン」(以上、三菱化学社製)、「住友ノーブレン」、「タフセレン」(以上、住友化学社製)、「プライムポリプロ」、「プライムTPO」(以上、プライムポリマー社製)、「Adflex」、「Adsyl」、「HMS−PP(PF814)」(以上、サンアロマー社製)、「バーシファイ」、「インスパイア」(以上、ダウケミカル社製)など市販されている商品を使用できる。   Examples of the polypropylene resin include trade names “NOVATEC PP”, “WINTEC” (manufactured by Nippon Polypro Co., Ltd.), “NOTIO”, “Toughmer XR” (manufactured by Mitsui Chemicals, Inc.), “Zeras”, “Thermo Lan”. (Mitsubishi Chemical Corporation), Sumitomo Noblen, Tough Selenium (Sumitomo Chemical Co., Ltd.), Prime Polypro, Prime TPO (Prime Polymer Co., Ltd.), Adflex, Commercially available products such as “Adsyl”, “HMS-PP (PF814)” (manufactured by Sun Allomer Co., Ltd.), “Versify”, “Inspire” (manufactured by Dow Chemical Co., Ltd.) can be used.

(ポリエチレン系樹脂)
本発明に用いるポリエチレン系樹脂としては、低密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン及びエチレンを主成分とする共重合体、すなわち、エチレンとプロピレン、ブテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1、オクテン−1などの炭素数3〜10のα−オレフィン;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチルなどの不飽和カルボン酸エステル、共役ジエンや非共役ジエンのような不飽和化合物の中から選ばれる1種または2種以上のコモノマーとの共重合体または多元共重合体あるいはその混合組成物が挙げられる。エチレン系重合体のエチレン単位の含有量は通常50質量%を超えるものである。
(Polyethylene resin)
Polyethylene resins used in the present invention include low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, medium-density polyethylene, high-density polyethylene, and a copolymer mainly composed of ethylene, that is, ethylene and propylene. , Butene-1, pentene-1, hexene-1, heptene-1, octene-1, etc., α-olefins having 3 to 10 carbon atoms; vinyl esters such as vinyl acetate and vinyl propionate; methyl acrylate, ethyl acrylate Copolymer or multi-component copolymer with one or more comonomers selected from unsaturated carboxylic acid esters such as methyl methacrylate and ethyl methacrylate, and unsaturated compounds such as conjugated and non-conjugated dienes A coalescence or a mixed composition thereof may be mentioned. The ethylene unit content of the ethylene polymer is usually more than 50% by mass.

これらのポリエチレン系樹脂の中では、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレンの中から選ばれる少なくとも1種のポリエチレン系樹脂が好ましく、高密度ポリエチレンがより好ましい。   Among these polyethylene resins, at least one polyethylene resin selected from low density polyethylene, linear low density polyethylene, and high density polyethylene is preferable, and high density polyethylene is more preferable.

前記ポリエチレン系樹脂の密度は、0.910〜0.970g/cmであることが好ましく、0.930〜0.970g/cmであることがより好ましく、0.940〜0.970g/cmであることが更に好ましい。密度が0.910g/cm以上であれば適度なSD特性を有することができるため好ましい。一方、0.970g/cm以下であれば適度なSD特性を有することができるほか、延伸性が維持される点で好ましい。
密度の測定は密度勾配管法を用いてJIS K7112に準じて測定することができる。
Density of the polyethylene resin is preferably 0.910~0.970g / cm 3, more preferably 0.930~0.970g / cm 3, 0.940~0.970g / cm 3 is more preferable. A density of 0.910 g / cm 3 or more is preferable because it can have appropriate SD characteristics. On the other hand, 0.970 g / cm 3 or less is preferable in that it can have an appropriate SD characteristic and can maintain stretchability.
The density can be measured according to JIS K7112 using a density gradient tube method.

また、前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.03〜30g/10分であることが好ましく、0.3〜10g/10分であることがより好ましい。MFRが0.03g/10分以上であれば成形加工時の樹脂の溶融粘度が十分に低いため生産性に優れ好ましい。一方、30g/10分以下であれば、十分な機械的強度を得ることができるために好ましい。
MFRはJIS K7210に従い、温度190℃、荷重2.16kgの条件で測定している。
Further, the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 30 g / 10 minutes, and preferably 0.3 to 10 g / 10 minutes. It is more preferable. If the MFR is 0.03 g / 10 min or more, the melt viscosity of the resin during the molding process is sufficiently low, which is excellent in productivity and preferable. On the other hand, if it is 30 g / 10 minutes or less, since sufficient mechanical strength can be obtained, it is preferable.
MFR is measured in accordance with JIS K7210 under conditions of a temperature of 190 ° C. and a load of 2.16 kg.

ポリエチレン系樹脂の製造方法は特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン触媒に代表されるシングルサイト触媒を用いた重合方法が挙げられる。ポリエチレン系樹脂の重合方法として、一段重合、二段重合、もしくはそれ以上の多段重合等があり、いずれの方法のポリエチレン系樹脂も使用可能である。   The production method of the polyethylene resin is not particularly limited, and is a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst. A polymerization method using a single site catalyst may be mentioned. As a polymerization method of the polyethylene resin, there are a one-stage polymerization, a two-stage polymerization, or a multistage polymerization more than that, and any method of the polyethylene resin can be used.

(β晶活性)
本発明の積層多孔フィルムにおいて、前記I層はβ晶活性を有することが好ましい。β晶活性は、延伸前の膜状物においてβ晶を生成していたことを示す一指標と捉えることができる。延伸前の膜状物中にβ晶を生成していれば、フィラー等の添加剤を使用しない場合においても、延伸を施すことで微細孔が容易に形成されるため、透気特性を有する積層多孔フィルムを得ることができる。
(Β crystal activity)
In the laminated porous film of the present invention, the I layer preferably has β crystal activity. The β crystal activity can be regarded as an index indicating that β crystals were generated in the film-like material before stretching. If β crystals are generated in the film before stretching, even if no fillers or other additives are used, micropores can be easily formed by stretching, so a laminate with air permeability A porous film can be obtained.

本発明の積層多孔フィルムにおいて、「β晶活性」の有無は、後述する示差走査型熱量計によりβ晶に由来する結晶融解ピーク温度が検出された場合か、及び/又は後述するX線回折装置を用いた測定により、β晶に由来する回折ピークが検出された場合、「β晶活性」を有すると判断する。   In the laminated porous film of the present invention, the presence or absence of “β crystal activity” is determined when the crystal melting peak temperature derived from the β crystal is detected by a differential scanning calorimeter described later and / or the X-ray diffractometer described later. When a diffraction peak derived from the β crystal is detected by measurement using, it is determined that the crystal has “β crystal activity”.

以下、前記ポリオレフィン系樹脂が前記ポリプロピレン系樹脂である場合について具体的に例示する。   Hereinafter, the case where the polyolefin resin is the polypropylene resin will be specifically exemplified.

「β晶活性」の有無は、示差走査型熱量計で積層多孔フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β晶活性を有すると判断している。   Presence or absence of “β crystal activity” is determined by holding the laminated porous film with a differential scanning calorimeter at a heating rate of 10 ° C./min from 25 ° C. to 240 ° C. for 1 minute and then cooling from 240 ° C. to 25 ° C. Crystal melting peak temperature (Tmβ) derived from β crystals of polypropylene resin when the temperature is lowered at 10 ° C / min and held for 1 minute and then heated again from 25 ° C to 240 ° C at a heating rate of 10 ° C / min. Is detected, it is determined to have β crystal activity.

また、前記積層多孔フィルムのβ晶活性度は、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
β晶活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
例えば、ポリプロピレン系樹脂がホモポリプロピレンの場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上170℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1〜4モル%共重合されているランダムポリプロピレンの場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
Further, the β crystal activity of the laminated porous film is calculated by the following formula using the crystal heat of fusion derived from the α crystal of the polypropylene resin (ΔHmα) and the crystal heat of heat derived from the β crystal (ΔHmβ). Yes.
β crystal activity (%) = [ΔHmβ / (ΔHmβ + ΔHmα)] × 100
For example, when the polypropylene resin is homopolypropylene, the amount of heat of crystal melting derived from the β crystal (ΔHmβ) detected mainly in the range of 145 ° C. or higher and lower than 160 ° C., and mainly detected at 160 ° C. or higher and 170 ° C. or lower. It can be calculated from the heat of crystal melting (ΔHmα) derived from the α crystal. Further, for example, in the case of random polypropylene copolymerized with 1 to 4 mol% of ethylene, the crystal melting heat amount (ΔHmβ) derived from the β crystal detected mainly in the range of 120 ° C. or more and less than 140 ° C., and mainly 140 It can be calculated from the crystal melting calorie (ΔHmα) derived from the α crystal detected in the range of ℃ to 165 ℃.

前記I層のβ晶活性度は大きい方が好ましく、β晶活性度は20%以上であることが好ましい。40%以上であることがさらに好ましく、60%以上であることが特に好ましい。積層多孔フィルムが20%以上のβ晶活性度を有すれば、延伸前の膜状物中においてもポリプロピレン系樹脂のβ晶が多く生成することができることを示し、延伸により微細かつ均一な孔が多く形成され、結果として機械的強度が高く、透気性能に優れた非水電解液二次電池用セパレータとすることができる。
β晶活性度の上限値は特に限定されないが、β晶活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
The β-crystal activity of the I layer is preferably large, and the β-crystal activity is preferably 20% or more. More preferably, it is 40% or more, and particularly preferably 60% or more. If the laminated porous film has a β crystal activity of 20% or more, it indicates that a large number of β crystals of polypropylene resin can be produced in the film-like material before stretching, and fine and uniform pores are formed by stretching. As a result, a separator for a non-aqueous electrolyte secondary battery having high mechanical strength and excellent air permeability can be obtained.
The upper limit value of the β crystal activity is not particularly limited, but the higher the β crystal activity, the more effective the effect is obtained, so the closer it is to 100%, the better.

また前記β晶活性の有無は、特定の熱処理を施した積層多孔フィルムの広角X線回折測定により得られる回折プロファイルでも判断できる。
詳細には、ポリプロピレン系樹脂の融点を超える温度である170℃〜190℃の熱処理を施し、徐冷してβ晶を生成・成長させた積層多孔フィルムについて広角X線測定を行い、ポリプロピレン系樹脂のβ晶の(300)面に由来する回折ピークが2θ=16.0°〜16.5°の範囲に検出された場合、β晶活性が有ると判断している。
ポリプロピレン系樹脂のβ晶構造と広角X線回折に関する詳細は、Macromol.Chem.187,643−652(1986)、Prog.Polym.Sci.Vol.16,361−404(1991)、Macromol.Symp.89,499−511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。広角X線回折を用いたβ晶活性の詳細な評価方法については、後述の実施例にて示す。
The presence or absence of the β crystal activity can also be determined by a diffraction profile obtained by wide-angle X-ray diffraction measurement of a laminated porous film subjected to a specific heat treatment.
Specifically, wide-angle X-ray measurement was performed on a laminated porous film that was subjected to heat treatment at 170 ° C. to 190 ° C., which is a temperature exceeding the melting point of the polypropylene resin, and was slowly cooled to generate and grow β crystals. When the diffraction peak derived from the (300) plane of β crystal is detected in the range of 2θ = 16.0 ° to 16.5 °, it is determined that there is β crystal activity.
Details on the β crystal structure and wide angle X-ray diffraction of polypropylene resins can be found in Macromol. Chem. 187, 643-652 (1986), Prog. Polym. Sci. Vol. 16, 361-404 (1991), Macromol. Symp. 89, 499-511 (1995), Macromol. Chem. 75, 134 (1964), and references cited therein. A detailed evaluation method of the β crystal activity using wide-angle X-ray diffraction will be described in Examples described later.

前記β晶活性は、本発明の積層多孔フィルムが積層多孔フィルム全層の状態で測定することができる。
また、仮に、ポリプロピレン系樹脂からなる層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、両層ともにβ晶活性を有することが好ましい。
The β crystal activity can be measured in the state where the laminated porous film of the present invention is in the entire laminated porous film.
Further, if a layer containing a polypropylene resin other than the layer made of polypropylene resin is laminated, it is preferable that both layers have β crystal activity.

前述したβ晶活性を得る方法としては、前記ポリプロピレン系樹脂のα晶の生成を促進させる物質を添加しない方法や、特許第3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したポリプロピレンを添加する方法、及び組成物にβ晶核剤を添加する方法などが挙げられる。   As the method for obtaining the β crystal activity described above, there is a method in which a substance that promotes the generation of α crystal of the polypropylene resin is not added, or a treatment for generating a peroxide radical as described in Japanese Patent No. 3739481. Examples thereof include a method of adding the applied polypropylene and a method of adding a β crystal nucleating agent to the composition.

(β晶核剤)
本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、ポリプロピレン系樹脂のβ晶の生成・成長を増加させるものであれば特に限定される訳ではなく、また2種類以上を混合して用いても良い。
β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2−ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。そのほか核剤の具体的な種類については、特開2003−306585号公報、特開平06−289566号公報、特開平09−194650号公報に記載されている。
(Β crystal nucleating agent)
Examples of the β crystal nucleating agent used in the present invention include those shown below, but are not particularly limited as long as they increase the formation and growth of β crystals of polypropylene resin, and two or more types are mixed. May be used.
Examples of the β crystal nucleating agent include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc. Alkali or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; di- or triesters of dibasic or tribasic carboxylic acids; phthalocyanine blue Phthalocyanine pigments typified by: a two-component compound comprising component A which is an organic dibasic acid and a component B which is an oxide, hydroxide or salt of a Group IIA metal of the periodic table; a cyclic phosphorus compound; Made of magnesium compound Such as the formation thereof. In addition, specific types of nucleating agents are described in JP-A No. 2003-306585, JP-A Nos. 06-228966, and JP-A Nos. 09-194650.

β晶核剤の市販品としては新日本理化社製β晶核剤「エヌジェスターNU−100」、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン「Bepol B−022SP」、Borealis社製ポリプロピレン「Beta(β)−PP BE60−7032」、Mayzo社製ポリプロピレン「BNX BETAPP−LN」などが挙げられる。   As a commercial product of β crystal nucleating agent, β crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd., as a specific example of polypropylene resin to which β crystal nucleating agent is added, polypropylene manufactured by Aristech “Bepol B -022SP ", polypropylene manufactured by Borealis" Beta (β) -PP BE60-7032 ", polypropylene manufactured by Mayzo" BNX BETAPP-LN ", and the like.

前記ポリオレフィン系樹脂に添加するβ晶核剤の割合は、β晶核剤の種類またはポリオレフィン系樹脂の組成などにより適宜調整することが必要であるが、前記I層を構成するポリオレフィン系樹脂100質量部に対しβ晶核剤は0.0001〜5質量部であることが好ましい。0.001〜3質量部がより好ましく、0.01〜1質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分にポリオレフィン系樹脂のβ晶を生成・成長させることができ、セパレータとして用いる際にも十分なβ晶活性が確保でき、所望の透気性能が得られる。また、5質量部以下の添加であれば、経済的にも有利になるほか、積層多孔フィルム表面へのβ晶核剤のブリードなどがなく好ましい。   The proportion of the β-crystal nucleating agent added to the polyolefin-based resin needs to be appropriately adjusted depending on the type of the β-crystal nucleating agent or the composition of the polyolefin-based resin, but 100 mass of the polyolefin-based resin constituting the I layer. The β crystal nucleating agent is preferably 0.0001 to 5 parts by mass with respect to parts. 0.001-3 mass parts is more preferable, and 0.01-1 mass part is still more preferable. If it is 0.0001 part by mass or more, β-crystals of polyolefin-based resin can be sufficiently generated and grown during production, and sufficient β-crystal activity can be secured even when used as a separator, and the desired air permeability performance. Is obtained. The addition of 5 parts by mass or less is preferable because it is economically advantageous and there is no bleeding of the β crystal nucleating agent on the surface of the laminated porous film.

(他の成分)
本発明においては、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性およびポリオレフィン系樹脂多孔フィルム(I層)の諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。
また開孔を促進するためや、成形加工性を付与するために、本発明の効果を著しく阻害しない範囲で、変性ポリオレフィン系樹脂、脂肪族飽和炭化水素樹脂もしくはその変性体、エチレン系重合体、ワックス、または低分子量ポリプロピレンを添加しても構わない。
(Other ingredients)
In the present invention, in addition to the components described above, additives generally added to the resin composition can be added as appropriate within a range that does not significantly impair the effects of the present invention. The additive is added for the purpose of improving and adjusting the molding processability, productivity and various physical properties of the polyolefin resin porous film (I layer), recycled resin generated from trimming loss such as ears, silica, Inorganic particles such as talc, kaolin and calcium carbonate, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinkers, lubricants, nucleating agents, plastics Additives such as an agent, an anti-aging agent, an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizing agent, an antifogging agent, an antiblocking agent, a slipping agent or a coloring agent.
Further, in order to promote the opening and impart moldability, the modified polyolefin resin, the aliphatic saturated hydrocarbon resin or a modified product thereof, an ethylene polymer, as long as the effects of the present invention are not significantly impaired. Wax or low molecular weight polypropylene may be added.

(ポリオレフィン系樹脂多孔フィルム(I層)の層構成)
本発明において、ポリオレフィン系樹脂多孔フィルム(I層)は、単層でも積層でもよく、特に制限されるものではない。中でも、前記ポリオレフィン系樹脂を含む層(以下「A層」と称する場合がある)の単層、当該A層の機能を妨げない範囲で、当該A層と他の層(以降「B層」と称する場合がある)との積層が好ましい。B層の例としては、強度保持層、耐熱層(高融解温度樹脂層)、シャットダウン層(低融解温度樹脂層)などを積層させた構成が挙げられる。例えば、リチウムイオン電池用セパレータとして用いる際には、特開平04−181651号公報に記載されているような高温雰囲気化で孔閉塞し、電池の安全性を確保する低融点樹脂層を積層させることが好ましい。
具体的にはA層/B層を積層した2層構造、A層/B層/A層、若しくは、B層/A層/B層として積層した3層構造などが例示できる。また、他の機能を持つ層と組み合わせて3種3層の様な形態も可能である。この場合、他の機能を持つ層との積層順序は特に問わない。更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。
(Layer structure of polyolefin resin porous film (I layer))
In the present invention, the polyolefin resin porous film (I layer) may be a single layer or a laminate, and is not particularly limited. Among them, a single layer of the polyolefin resin-containing layer (hereinafter sometimes referred to as “A layer”), within a range that does not interfere with the function of the A layer, the A layer and other layers (hereinafter referred to as “B layer”) Is sometimes preferred). As an example of B layer, the structure which laminated | stacked the intensity | strength maintenance layer, the heat-resistant layer (high melting temperature resin layer), the shutdown layer (low melting temperature resin layer), etc. are mentioned. For example, when using as a separator for a lithium ion battery, a low melting point resin layer that ensures the safety of the battery is laminated by closing the hole in a high temperature atmosphere as described in JP-A No. 04-181651. Is preferred.
Specific examples include a two-layer structure in which A layers / B layers are stacked, a three-layer structure in which A layers / B layers / A layers, or B layers / A layers / B layers are stacked. In addition, it is possible to adopt a form of three types and three layers in combination with layers having other functions. In this case, the order of stacking with layers having other functions is not particularly limited. Further, the number of layers may be increased as necessary to 4 layers, 5 layers, 6 layers, and 7 layers.

なお、本発明に用いるポリオレフィン系樹脂多孔フィルム(I層)の物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。   In addition, the physical property of the polyolefin resin porous film (I layer) used for this invention can be freely adjusted with a layer structure, a lamination ratio, a composition of each layer, and a manufacturing method.

(ポリオレフィン系樹脂多孔フィルム(I層)の製造方法)
次に本発明のポリオレフィン系樹脂多孔フィルム(I層)の製造方法について説明するが、本発明はかかる製造方法により製造されるポリオレフィン系樹脂多孔フィルム(I層)のみに限定されるものではない。
(Method for producing polyolefin resin porous film (I layer))
Next, although the manufacturing method of the polyolefin resin porous film (I layer) of this invention is demonstrated, this invention is not limited only to the polyolefin resin porous film (I layer) manufactured by this manufacturing method.

具体的には、前記ポリオレフィン系樹脂を用いて、溶融押出により無孔膜状物を作製し、当該無孔膜状物を延伸することにより厚さ方向に連通性を有する微細孔を多数形成した多孔フィルムを得ることができる。   Specifically, using the polyolefin-based resin, a non-porous film-like product was produced by melt extrusion, and a number of fine pores having communication in the thickness direction were formed by stretching the non-porous film-like product. A porous film can be obtained.

無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。
無孔膜状物の多孔化方法としては、特に限定されることなく、湿式による一軸以上の延伸多孔化、乾式による一軸以上の延伸多孔化など、公知の方法を用いてもよい。延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法があり、これらを単独あるいは2つ以上組み合わせて一軸延伸あるいは二軸延伸を行う。中でも、多孔構造制御の観点から逐次二軸延伸が好ましい。また必要に応じて、延伸の前後にポリオレフィン系樹脂組成物に含まれている可塑剤を溶剤によって抽出、乾燥させる方法も適用される。
The method for producing the non-porous film is not particularly limited, and a known method may be used. For example, a method of melting a thermoplastic resin composition using an extruder, extruding from a T die, and cooling and solidifying with a cast roll. Is mentioned. Moreover, the method of cutting open the film-like thing manufactured by the tubular method and making it planar is also applicable.
The method for making the nonporous film-like material is not particularly limited, and a known method such as wet uniaxial stretching or porous uniaxial stretching or porous uniaxial stretching may be used. As the stretching method, there are methods such as a roll stretching method, a rolling method, a tenter stretching method, and a simultaneous biaxial stretching method, and these methods are used alone or in combination of two or more to perform uniaxial stretching or biaxial stretching. Among these, sequential biaxial stretching is preferable from the viewpoint of controlling the porous structure. Moreover, the method of extracting and drying the plasticizer contained in the polyolefin-type resin composition with a solvent before and behind extending | stretching as needed is also applied.

また、本発明において、ポリオレフィン系樹脂多孔フィルム(I層)を積層にする場合、製造方法は、多孔化と積層の順序等によって以下の4つに大別される。
(i)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。
(ii)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。
(iii)各層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物と積層し、多孔化する方法。
(iv)多孔層を作製した後、無機・有機粒子などのコーティング塗布や、金属粒子の蒸着などを行うことにより積層多孔フィルムとする方法。
本発明においては、その工程の簡略さ、生産性の観点から(ii)の方法を用いることが好ましく、なかでも2層の層間接着性を確保するために、共押出で積層無孔膜状物を作製した後、多孔化する方法が特に好ましい。
In the present invention, when the polyolefin-based resin porous film (I layer) is laminated, the production method is roughly classified into the following four types depending on the order of the porous formation and lamination.
(I) A method in which each layer is made porous, and then the layers made porous are laminated or bonded with an adhesive or the like.
(Ii) A method of laminating each layer to produce a laminated nonporous film-like material, and then making the nonporous film-like material porous.
(Iii) A method in which one of the layers is made porous and then laminated with another layer of non-porous film to make it porous.
(Iv) A method of forming a laminated porous film by preparing a porous layer and then coating with inorganic / organic particles or depositing metal particles.
In the present invention, it is preferable to use the method (ii) from the viewpoint of simplification of the process and productivity, and in particular, in order to ensure the interlayer adhesion between the two layers, a laminated nonporous film-like material is obtained by coextrusion. A method of forming a porous layer after preparing is particularly preferable.

以下に、ポリオレフィン系樹脂多孔フィルム(I層)の製造方法の詳細を説明する。
まずポリオレフィン系樹脂と、必要であれば熱可塑性樹脂、添加剤の混合樹脂組成物を作製する。例えば、ポリプロピレン系樹脂、β晶核剤、および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、カッティングしてペレットを得る。
Below, the detail of the manufacturing method of polyolefin resin porous film (I layer) is demonstrated.
First, a mixed resin composition of a polyolefin resin and, if necessary, a thermoplastic resin and additives is prepared. For example, raw materials such as polypropylene resin, β crystal nucleating agent, and other additives as required, preferably using Henschel mixer, super mixer, tumbler type mixer, etc., or by hand-blending all ingredients in a bag After mixing, the mixture is melt-kneaded with a single-screw or twin-screw extruder, a kneader or the like, preferably a twin-screw extruder, and then cut to obtain pellets.

前記のペレットを押出機に投入し、Tダイ押出用口金から押出して膜状物を成形する。Tダイの種類としては特に限定されない。例えば本発明の積層多孔フィルムが2種3層の積層構造をとる場合、Tダイは2種3層用マルチマニホールドタイプでも構わないし、2種3層用フィードブロックタイプでも構わない。
使用するTダイのギャップは、最終的に必要なフィルムの厚み、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1〜3.0mm程度、好ましくは0.5〜1.0mmである。0.1mm以上であれば生産速度という観点から好ましく、また3.0mm以下であれば、ドラフト率が大きくなり過ぎないため生産安定性の観点から好ましい。
The pellets are put into an extruder and extruded from a T-die extrusion die to form a film. The type of T die is not particularly limited. For example, when the laminated porous film of the present invention has a laminated structure of two types and three layers, the T die may be a multi-manifold type for two types and three layers or a feed block type for two types and three layers.
The gap of the T die to be used is determined from the final required film thickness, stretching conditions, draft rate, various conditions, etc., but is generally about 0.1 to 3.0 mm, preferably 0.5. -1.0 mm. If it is 0.1 mm or more, it is preferable from a viewpoint of production speed, and if it is 3.0 mm or less, since the draft rate does not become too large, it is preferable from the viewpoint of production stability.

押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね180〜350℃が好ましく、200〜330℃がより好ましく、220〜300℃が更に好ましい。180℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れ生産性が向上することから好ましい。一方、350℃以下にすることにより、樹脂組成物の劣化、ひいては得られる積層多孔フィルムの機械的強度の低下を抑制できる。
キャストロールによる冷却固化温度は本発明において非常に重要であり、膜状物中のポリプロピレン系樹脂のβ晶の比率を調整することができる。キャストロールの冷却固化温度は好ましくは80〜150℃、より好ましくは90〜140℃、更に好ましくは100〜130℃である。冷却固化温度を80℃以上とすることで、膜状物中のβ晶の比率を十分に増加させることができるために好ましい。また、150℃以下とすることで押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルが起こりにくく、効率よく膜状物化することが可能であるので好ましい。
In extrusion molding, the extrusion temperature is appropriately adjusted depending on the flow characteristics and moldability of the resin composition, but is generally preferably 180 to 350 ° C, more preferably 200 to 330 ° C, and further preferably 220 to 300 ° C. A temperature of 180 ° C. or higher is preferable because the viscosity of the molten resin is sufficiently low and the moldability is excellent and the productivity is improved. On the other hand, by setting the temperature to 350 ° C. or lower, it is possible to suppress the deterioration of the resin composition, and hence the mechanical strength of the laminated porous film obtained.
The cooling and solidification temperature by the cast roll is very important in the present invention, and the ratio of the β crystal of the polypropylene resin in the film can be adjusted. The cooling and solidification temperature of the cast roll is preferably 80 to 150 ° C, more preferably 90 to 140 ° C, and still more preferably 100 to 130 ° C. It is preferable to set the cooling and solidification temperature to 80 ° C. or higher because the ratio of β crystals in the film can be sufficiently increased. Further, it is preferable to set the temperature to 150 ° C. or lower because troubles such as the extruded molten resin sticking to and wrapping around the cast roll hardly occur and the film can be efficiently formed into a film.

前記温度範囲にキャストロールを設定することで、延伸前の膜状物のポリオレフィン系樹脂のβ晶比率は30〜100%に調整することが好ましい。40〜100%がより好ましく、50〜100%が更に好ましく、60〜100%が最も好ましい。延伸前の膜状物中のβ晶比率を30%以上とすることで、その後の延伸操作により多孔化が行われやすく、透気特性の良いポリオレフィン系樹脂多孔フィルムを得ることができる。
延伸前の膜状物中のβ晶比率は、示差走査型熱量計を用いて、該膜状物を25℃から240℃まで加熱速度10℃/分で昇温させた際に、検出されるポリプロピレン系樹脂(A)のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算される。
β晶比率(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
It is preferable to adjust the β crystal ratio of the polyolefin resin of the film-like material before stretching to 30 to 100% by setting a cast roll in the temperature range. 40-100% is more preferable, 50-100% is still more preferable, and 60-100% is the most preferable. By setting the β crystal ratio in the film-like material before stretching to 30% or more, a polyolefin-based resin porous film having good gas permeability can be obtained because it is easily made porous by the subsequent stretching operation.
The β crystal ratio in the film before stretching is detected when the film is heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter. It is calculated by the following formula using the crystal melting calorie (ΔHmα) derived from the α crystal and the crystal melting calorie (ΔHmβ) derived from the β crystal of the polypropylene resin (A).
β crystal ratio (%) = [ΔHmβ / (ΔHmβ + ΔHmα)] × 100

延伸工程においては、縦方向又は横方向に一軸延伸してもよいし、二軸延伸であってもよい。また、二軸延伸を行う場合は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。本発明のポリオレフィン系樹脂多孔フィルムを作製する場合には、各延伸工程で延伸条件を選択でき、かつ多孔構造を制御し易い逐次二軸延伸がより好ましい。
ついで、得られた無孔膜状物を少なくとも二軸延伸することがより好ましい。二軸延伸は同時二軸延伸であってもよいし、逐次二軸延伸であってもよいが、各延伸工程で延伸条件(倍率、温度)を簡便に選択でき、多孔構造を制御し易い逐次二軸延伸がより好ましい。なお、膜状物及びフィルムの長手方向を「縦方向」、長手方向に対して垂直方向を「横方向」と称する。また、長手方向への延伸を「縦延伸」、長手方向に対して垂直方向への延伸を「横延伸」と称する。
In the stretching step, uniaxial stretching may be performed in the longitudinal direction or the transverse direction, or biaxial stretching may be performed. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be sufficient and sequential biaxial stretching may be sufficient. When producing the polyolefin resin porous film of the present invention, sequential biaxial stretching is more preferable because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled.
Next, it is more preferable to stretch the obtained nonporous film-like material at least biaxially. Biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching, but the stretching conditions (magnification, temperature) can be easily selected in each stretching step, and the porous structure can be easily controlled. Biaxial stretching is more preferable. The longitudinal direction of the film and the film is referred to as “longitudinal direction”, and the direction perpendicular to the longitudinal direction is referred to as “lateral direction”. In addition, stretching in the longitudinal direction is referred to as “longitudinal stretching”, and stretching in the direction perpendicular to the longitudinal direction is referred to as “lateral stretching”.

逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、結晶化状態によって、適時選択する必要があるが、下記条件の範囲内で選択することが好ましい。   When sequential biaxial stretching is used, the stretching temperature needs to be appropriately selected depending on the composition of the resin composition to be used and the crystallization state, but is preferably selected within the range of the following conditions.

逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、結晶融解ピーク温度、結晶化度等によって適時変える必要があるが、縦延伸での延伸温度は概ね0〜130℃が好ましく、より好ましくは10〜120℃、更に好ましくは20〜110℃の範囲で制御される。また、2〜10倍が好ましく、より好ましくは3〜8倍、更に好ましくは4〜7倍である。前記範囲内で縦延伸を行うことで、延伸時の破断を抑制しつつ、適度な空孔起点を発現させることができる。
一方、横延伸での延伸温度は概ね100〜160℃、好ましくは110〜150℃、更に好ましくは120〜140℃である。また、好ましい縦延伸倍率は1.2〜10倍が好ましく、より好ましくは1.5〜8倍、更に好ましくは2〜7倍である。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができる。
前記延伸工程の延伸速度としては、500〜12000%/分が好ましく、1500〜10000%/分がさらに好ましく、2500〜8000%/分であることが更に好ましい。
When using sequential biaxial stretching, the stretching temperature needs to be changed from time to time depending on the composition of the resin composition to be used, the crystal melting peak temperature, the degree of crystallinity, etc., but the stretching temperature in the longitudinal stretching is preferably about 0 to 130 ° C. More preferably, it is controlled in the range of 10 to 120 ° C, and more preferably 20 to 110 ° C. Moreover, 2-10 times are preferable, More preferably, it is 3-8 times, More preferably, it is 4-7 times. By performing longitudinal stretching within the above range, it is possible to develop an appropriate pore starting point while suppressing breakage during stretching.
On the other hand, the stretching temperature in transverse stretching is generally 100 to 160 ° C, preferably 110 to 150 ° C, and more preferably 120 to 140 ° C. Further, the preferred longitudinal draw ratio is preferably 1.2 to 10 times, more preferably 1.5 to 8 times, and further preferably 2 to 7 times. By transversely stretching within the above range, the pore starting point formed by longitudinal stretching can be appropriately expanded, and a fine porous structure can be expressed.
The stretching speed in the stretching step is preferably 500 to 12000% / min, more preferably 1500 to 10,000% / min, and further preferably 2500 to 8000% / min.

このようにして得られた積層多孔フィルムは、寸法安定性の改良を目的として熱処理を施すことが好ましい。この際、温度は好ましくは100℃以上、より好ましくは120℃以上、更に好ましくは140℃以上とすることで、寸法安定性の効果が期待できる。一方、熱処理温度は好ましくは170℃以下、より好ましくは165℃以下、更に好ましくは160℃以下である。熱処理温度が170℃以下であれば、熱処理によってポリプロピレン系樹脂の融解が起こりにくく、多孔構造を維持できるため好ましい。また、熱処理工程中には、必要に応じて1〜20%の弛緩処理を施しても良い。なお、熱処理後、均一に冷却して巻き取ることにより、積層多孔フィルムが得られる。   The laminated porous film thus obtained is preferably subjected to heat treatment for the purpose of improving dimensional stability. In this case, the effect of dimensional stability can be expected by setting the temperature to preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and still more preferably 140 ° C. or higher. On the other hand, the heat treatment temperature is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and further preferably 160 ° C. or lower. A heat treatment temperature of 170 ° C. or lower is preferable because the polypropylene resin hardly melts by the heat treatment and can maintain a porous structure. Moreover, you may perform a 1-20% relaxation process as needed during the heat processing process. In addition, a laminated porous film is obtained by cooling uniformly and winding up after heat processing.

<被覆層(II層)>
本発明の積層多孔フィルムは、ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に、フィラー(a)及び樹脂バインダー(b)を含有する被覆層(II層)を有する積層多孔フィルムであって、前記樹脂バインダー(b)が変性ポリオレフィン樹脂(c)を含む2種以上の樹脂から構成されていることが重要である。
すなわち、本発明においては、前記樹脂バインダー(b)として、後述する変性ポリオレフィン樹脂(c)が必須であり、さらに変性ポリオレフィン樹脂(c)以外の樹脂を少なくとも1種含有していることが必要である。
<Coating layer (II layer)>
The laminated porous film of the present invention is a laminated porous film having a coating layer (II layer) containing a filler (a) and a resin binder (b) on at least one surface of a polyolefin resin porous film (I layer), It is important that the resin binder (b) is composed of two or more kinds of resins including the modified polyolefin resin (c).
That is, in the present invention, the modified polyolefin resin (c) described later is essential as the resin binder (b), and it is necessary to contain at least one resin other than the modified polyolefin resin (c). is there.

(フィラー(a))
本発明に用いることができるフィラー(a)として、無機フィラー、有機フィラーなどが挙げられるが、特に制約されるものではない。
(Filler (a))
Examples of the filler (a) that can be used in the present invention include inorganic fillers and organic fillers, but are not particularly limited.

本発明に用いることができる無機フィラーの例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどの炭酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸バリウムなどの硫酸塩;塩化ナトリウム、塩化カルシウム、塩化マグネシウムなどの塩化物、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化チタン、シリカなどの金属酸化物のほか、タルク、クレー、マイカなどのケイ酸塩、チタン酸バリウム、チタン酸カルシウム、チタン酸ジルコン酸鉛などの多元系遷移金属酸化物等が挙げられる。これらの中でも、本発明の積層多孔フィルムを非水電解液二次電池用セパレータとして用いた場合、非水電解液二次電池に組み込んだ際に化学的に不活性であるという観点で、硫酸バリウム、チタン酸バリウム、酸化アルミニウムが好ましい。   Examples of inorganic fillers that can be used in the present invention include carbonates such as calcium carbonate, magnesium carbonate and barium carbonate; sulfates such as calcium sulfate, magnesium sulfate and barium sulfate; sodium chloride, calcium chloride and magnesium chloride. In addition to metal oxides such as chloride, aluminum oxide, calcium oxide, magnesium oxide, zinc oxide, titanium oxide, and silica, silicates such as talc, clay, and mica, barium titanate, calcium titanate, zirconate titanate Examples include multi-component transition metal oxides such as lead. Among these, when the laminated porous film of the present invention is used as a separator for a non-aqueous electrolyte secondary battery, it is barium sulfate from the viewpoint of being chemically inert when incorporated in a non-aqueous electrolyte secondary battery. Barium titanate and aluminum oxide are preferred.

本発明に用いることができる有機フィラーの例としては、超高分子量ポリエチレン、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアクリロニトリル、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリイミド、ポリエーテルイミド、メラミン、ベンゾグアナミンなどの熱可塑性樹脂及び熱硬化性樹脂が挙げられる。これらの中でも、本発明の積層多孔フィルムを非水電解液二次電池用セパレータとして用いた場合、耐電解液膨潤性の観点より、ポリアクリロニトリル、架橋ポリスチレンなどが好ましい。   Examples of organic fillers that can be used in the present invention include ultra high molecular weight polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyacrylonitrile, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone. , Thermoplastic resins such as polytetrafluoroethylene, polyimide, polyetherimide, melamine, and benzoguanamine, and thermosetting resins. Among these, when the laminated porous film of the present invention is used as a separator for a nonaqueous electrolyte secondary battery, polyacrylonitrile, crosslinked polystyrene, and the like are preferable from the viewpoint of resistance to electrolyte solution swelling.

前記フィラー(a)の平均粒径の下限としては、好ましくは0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上である。一方、上限として好ましくは3.0μm以下、より好ましくは2.0μm以下、更に好ましくは1.5μm以下である。前記平均粒径を0.01μm以上とすることで、本発明の積層多孔フィルムが、良好な透気性を維持しながら十分な耐熱性を発現することができるため好ましい。また、前記平均粒径を3.0μm以下とすることで、前記II層におけるフィラー(a)の分散性が向上し、かつ脱落を抑制できるという観点から好ましい。
なお、本実施の形態において「フィラーの平均粒径」とは、SEMを用いる方法に準じて測定される値である。
The lower limit of the average particle size of the filler (a) is preferably 0.01 μm or more, more preferably 0.1 μm or more, and still more preferably 0.2 μm or more. On the other hand, the upper limit is preferably 3.0 μm or less, more preferably 2.0 μm or less, and still more preferably 1.5 μm or less. The average particle size of 0.01 μm or more is preferable because the laminated porous film of the present invention can exhibit sufficient heat resistance while maintaining good air permeability. Moreover, it is preferable from a viewpoint that the dispersibility of the filler (a) in the said II layer improves, and omission can be suppressed because the said average particle diameter shall be 3.0 micrometers or less.
In the present embodiment, the “average particle diameter of the filler” is a value measured according to a method using SEM.

(樹脂バインダー(b))
本発明に用いる樹脂バインダー(b)としては、前記の通り変性ポリオレフィン樹脂(c)が必須であり、さらに変性ポリオレフィン樹脂(c)以外の樹脂を少なくとも1種含有していることが必要である。
従来の技術において、樹脂バインダーとして用いる樹脂は1種のみである場合が通常であったが、本発明者らは、樹脂バインダー(b)を構成する樹脂として、変性ポリオレフィン樹脂(c)を必ず用い、さらに変性ポリオレフィン樹脂(c)以外の樹脂を少なくとも1種用いることによって、驚くべきことに、積層多孔フィルムの優れた透気性をほとんど損なわずに、ポリオレフィン系樹脂多孔フィルム(I層)へのフィラー(a)の優れた結着性を発現し、その結果として耐粉落ち性、耐熱性、透気性に優れた、積層多孔フィルムを得ることができることに想到したのである。
かかる現象の理由については定かではないが、樹脂バインダー(b)において、変性ポリオレフィン樹脂(c)と、変性ポリオレフィン樹脂(c)以外の樹脂による相乗効果が発現するためであると推測される。
(Resin binder (b))
As described above, the modified polyolefin resin (c) is essential as the resin binder (b) used in the present invention, and it is necessary to contain at least one resin other than the modified polyolefin resin (c).
In the prior art, the resin used as the resin binder is usually only one type, but the present inventors always use the modified polyolefin resin (c) as the resin constituting the resin binder (b). Furthermore, by using at least one resin other than the modified polyolefin resin (c), surprisingly, the filler to the polyolefin-based resin porous film (I layer) is hardly lost without substantially deteriorating the excellent air permeability of the laminated porous film. It was conceived that a laminated porous film exhibiting the excellent binding property of (a) and, as a result, excellent powder resistance, heat resistance and air permeability could be obtained.
Although the reason for this phenomenon is not clear, it is presumed that in the resin binder (b), a synergistic effect is produced by the modified polyolefin resin (c) and a resin other than the modified polyolefin resin (c).

(変性ポリオレフィン樹脂(c))
本発明に用いることができる変性ポリオレフィン樹脂(c)としては、エチレン−無水マレイン酸共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−ビニルアルコール共重合体、エチレン−酢酸ビニル共重合体、塩素化ポリエチレン、プロピレン−無水マレイン酸共重合体、プロピレン−アクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−ビニルアルコール共重合体、プロピレン−酢酸ビニル共重合体、塩素化ポリプロピレンなどが挙げられ、特に制約されるものではないが、中でも接着強度の効果が大きいという点でエチレン−アクリル酸共重合体、エチレン−無水マレイン酸共重合体、プロピレン−アクリル酸共重合体、プロピレン−無水マレイン酸共重合体などの酸変性ポリオレフィン樹脂を含んでなることが好ましい。
また、これらの変性ポリオレフィン樹脂は、1種を単独で用いても良く、2種以上を混合して、変性ポリオレフィン樹脂(c)として用いても構わない。
(Modified polyolefin resin (c))
Examples of the modified polyolefin resin (c) that can be used in the present invention include an ethylene-maleic anhydride copolymer, an ethylene-acrylic acid copolymer, an ethylene-methyl methacrylate copolymer, an ethylene-vinyl alcohol copolymer, Ethylene-vinyl acetate copolymer, chlorinated polyethylene, propylene-maleic anhydride copolymer, propylene-acrylic acid copolymer, propylene-methyl methacrylate copolymer, propylene-vinyl alcohol copolymer, propylene-vinyl acetate Copolymers, chlorinated polypropylene and the like can be mentioned, and are not particularly limited. Among them, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, propylene Such as acrylic acid copolymer, propylene-maleic anhydride copolymer Preferably contains a acid-modified polyolefin resin.
Moreover, these modified polyolefin resins may be used individually by 1 type, and 2 or more types may be mixed and used as a modified polyolefin resin (c).

樹脂バインダー(b)を構成する、前記変性ポリオレフィン樹脂(c)以外の樹脂としては、前記フィラー(a)と、前記ポリオレフィン系樹脂多孔フィルム(I層)とを良好に接着でき、電気化学的に安定で、かつ積層多孔フィルムを非水電解液二次電池用セパレータとして使用する場合に有機電解液に対して安定であれば、特に制限されるものではない。具体的には、ポリエーテル、ポリアミド、ポリイミド、ポリアミドイミド、ポリアラミド、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン、ポリフッ化ビニリデン−トリクロロエチレン、ポリテトラフルオロエチレン、フッ素系ゴム、スチレン−ブタジエンゴム、ニトリルブタジエンゴム、ポリブタジエンゴム、ポリアクリロニトリル、ポリアクリル酸及びその誘導体、ポリメタクリル酸及びその誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、シアノエチルセルロース、ポリビニルアルコール、シアノエチルポリビニルアルコール、ポリビニルブチラゾール、ポリビニルピロリドン、ポリN−ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらの樹脂は1種単独で使用してもよく、2種以上を併用しても構わない。これらの樹脂の中でもポリオキシエチレン、ポリビニルアルコール、ポリフッ化ビニリデン、ポリビニルピロリドン、ポリアクリロニトリル、スチレン−ブタジエンゴム、カルボキシメチルセルロース、ポリアクリル酸及びその誘導体が水中でも比較的安定であることからより好ましい。
また、これら以外に必要に応じて可塑剤や安定剤、架橋剤等を含んでいてもよい。
As the resin other than the modified polyolefin resin (c) constituting the resin binder (b), the filler (a) and the polyolefin-based resin porous film (I layer) can be bonded satisfactorily and electrochemically. There is no particular limitation as long as it is stable and stable with respect to the organic electrolyte when the laminated porous film is used as a separator for a nonaqueous electrolyte secondary battery. Specifically, polyether, polyamide, polyimide, polyamideimide, polyaramid, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polytetrafluoroethylene, fluorine-based rubber, styrene-butadiene rubber, nitrile Butadiene rubber, polybutadiene rubber, polyacrylonitrile, polyacrylic acid and derivatives thereof, polymethacrylic acid and derivatives thereof, carboxymethyl cellulose, hydroxyethyl cellulose, cyanoethyl cellulose, polyvinyl alcohol, cyanoethyl polyvinyl alcohol, polyvinyl butyrazole, polyvinyl pyrrolidone, poly N- Examples include vinyl acetamide, cross-linked acrylic resin, polyurethane, and epoxy resin. These resins may be used alone or in combination of two or more. Among these resins, polyoxyethylene, polyvinyl alcohol, polyvinylidene fluoride, polyvinyl pyrrolidone, polyacrylonitrile, styrene-butadiene rubber, carboxymethyl cellulose, polyacrylic acid and derivatives thereof are more preferable because they are relatively stable in water.
In addition to these, a plasticizer, a stabilizer, a crosslinking agent, and the like may be included as necessary.

本発明において、前記フィラー(a)、前記樹脂バインダー(b)、及びその他の添加剤を含む前記被覆層(II層)の全固形分中における前記変性ポリオレフィン樹脂(c)の含有率は、0.1質量%以上、8質量%以下の範囲であることが好ましく、0.2質量%以上、5質量%以下の範囲であることがさらに好ましい。0.1質量%以上含まれていることで結着性向上の寄与が得られ、8質量%以下であることで、良好な透気性を担保することができる。   In the present invention, the content of the modified polyolefin resin (c) in the total solid content of the coating layer (II layer) containing the filler (a), the resin binder (b), and other additives is 0. The range is preferably 1% by mass or more and 8% by mass or less, and more preferably 0.2% by mass or more and 5% by mass or less. By including 0.1 mass% or more, the contribution of a binding improvement is acquired, and favorable air permeability can be ensured by being 8 mass% or less.

また、本発明における被覆層(II層)において、前記フィラー(a)、及び前記樹脂バインダー(b)の総量に占めるフィラー(a)の含有率は、75質量%以上、99.9質量%以下であることが好ましく、80質量%以上がより好ましく、85質量%以上が更に好ましい。前記フィラー(a)の含有率が75質量%以上であれば、連通性がある積層多孔フィルムを作製でき、優れた透気性能を示すことができるために好ましい。   In the coating layer (II layer) in the present invention, the filler (a) content in the total amount of the filler (a) and the resin binder (b) is 75% by mass or more and 99.9% by mass or less. It is preferably 80% by mass or more, more preferably 85% by mass or more. If the content rate of the said filler (a) is 75 mass% or more, since the laminated porous film with a communication property can be produced and the outstanding air permeation performance can be shown, it is preferable.

(被覆層(II)の製造方法)
本発明の積層多孔フィルムにおける被覆層(II層)の形成方法としては、共押出法、ラミネート法、塗布乾燥法等が挙げられるが、連続生産性の面で塗布乾燥法により形成することが好ましい。
すなわち、前記フィラー(a)、および変性ポリオレフィン樹脂(c)を含んだ前記樹脂バインダー(b)、さらに必要に応じて増粘剤、安定剤等を分散媒に溶解または分散させることで得られる分散液を、前記ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に塗布し、溶媒の除去によって、ポリオレフィン系樹脂多孔フィルム(I層)表面に被覆層(II)を形成して製造することができる。
(Manufacturing method of coating layer (II))
Examples of the method for forming the coating layer (II layer) in the laminated porous film of the present invention include a co-extrusion method, a laminating method, and a coating and drying method, but it is preferably formed by a coating and drying method in terms of continuous productivity. .
That is, the dispersion obtained by dissolving or dispersing the filler (a), the resin binder (b) containing the modified polyolefin resin (c), and, if necessary, a thickener and a stabilizer in a dispersion medium. The liquid can be applied to at least one surface of the polyolefin resin porous film (I layer), and the solvent can be removed to form a coating layer (II) on the surface of the polyolefin resin porous film (I layer). .

前記分散液の分散媒としては、環境負荷、溶剤コストの面で水を用いることが好ましい。必要に応じて、前記フィラー(a)、および変性ポリオレフィン樹脂(c)を含んだ前記樹脂バインダー(b)が適度に均一かつ安定に溶解または分散可能な溶剤であれば、水に混合していても良い。このような溶剤としては、例えば、N−メチルピロリドンやN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジオキサン、アセトニトリル、低級アルコール、グリコール類、グリセリン、乳酸エステル、などを挙げることができる。また、前記分散液を安定化させるため、あるいはポリオレフィン系樹脂多孔フィルムへの塗工性を向上させるために、前記分散液には界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤等の各種添加剤を加えてもよい。前記添加剤は、溶媒除去や可塑剤抽出の際に除去できるものが好ましい。   As a dispersion medium for the dispersion, water is preferably used in terms of environmental load and solvent cost. If necessary, if the resin binder (b) containing the filler (a) and the modified polyolefin resin (c) can be dissolved or dispersed in a reasonably uniform and stable manner, it is mixed with water. Also good. Examples of such a solvent include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dioxane, acetonitrile, lower alcohol, glycols, glycerin, and lactic acid ester. Further, in order to stabilize the dispersion or improve the coating property to the polyolefin resin porous film, the dispersion includes a dispersant such as a surfactant, a thickener, a wetting agent, an antifoaming agent. Various additives such as an agent may be added. The additive is preferably one that can be removed during solvent removal or plasticizer extraction.

前記フィラー(a)、および変性ポリオレフィン樹脂(c)を含んだ前記樹脂バインダー(b)を分散媒に溶解または分散させる方法としては、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌法等が挙げられる。   Examples of a method for dissolving or dispersing the resin binder (b) containing the filler (a) and the modified polyolefin resin (c) in a dispersion medium include, for example, a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, and a colloid mill. And a mechanical stirring method using an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, a high-speed impact mill, ultrasonic dispersion, a stirring blade, and the like.

前記分散液をポリオレフィン系樹脂多孔フィルム(I層)の表面に塗布する方法としては、前記押出成形の後であってもよいし、縦延伸工程の後であってもよいし、横延伸工程の後であってもよい。   The method of applying the dispersion to the surface of the polyolefin resin porous film (I layer) may be after the extrusion molding, after the longitudinal stretching step, or in the transverse stretching step. It may be later.

前記塗布工程における塗布方式としては、必要とする層厚や塗布面積を実現できる方式であれば特に限定されない。このような塗布方法としては、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法、等が挙げられる。また、また、前記分散液は、その用途に照らし、ポリオレフィン系樹脂多孔フィルム(I層)の片面だけに塗布されてもよいし、両面に塗布されてもよい。   The application method in the application step is not particularly limited as long as the required layer thickness and application area can be realized. Examples of such coating methods include gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod Examples include a coater method, a squeeze coater method, a cast coater method, a die coater method, a screen printing method, and a spray coating method. Moreover, the said dispersion liquid may be apply | coated only to the single side | surface of a polyolefin resin porous film (I layer) in light of the use, and may be applied to both surfaces.

前記分散媒としては、ポリオレフィン系樹脂多孔フィルム(I層)に塗布した分散液から除去され得る分散媒であることが好ましい。分散媒を除去する方法としては、ポリオレフィン系樹脂多孔フィルム(I層)に悪影響を及ぼさない方法であれば、特に限定することなく採用することが出来る。分散媒を除去する方法としては、例えば、ポリオレフィン系樹脂多孔フィルム(I層)を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、前記樹脂バインダーに対する貧溶媒に浸漬して樹脂バインダーを凝固させると同時に溶媒を抽出する方法などが挙げられる。   The dispersion medium is preferably a dispersion medium that can be removed from the dispersion applied to the polyolefin resin porous film (I layer). As a method for removing the dispersion medium, any method that does not adversely affect the polyolefin resin porous film (I layer) can be adopted without any particular limitation. As a method for removing the dispersion medium, for example, a method of drying a polyolefin-based resin porous film (I layer) at a temperature below its melting point, a method of drying under reduced pressure at a low temperature, or dipping in a poor solvent for the resin binder And a method of extracting the solvent at the same time as coagulating the resin binder.

(積層多孔フィルムの形状及び物性)
本発明の積層多孔フィルムの厚みは5〜100μmが好ましい。より好ましくは8〜50μm、更に好ましくは10〜30μmである。非水電解液二次電池用セパレータとして使用する場合、5μm以上であれば、実質的に必要な電気絶縁性を得ることができ、例えば電極の突起部分に大きな力がかかった場合でも、非水電解液二次電池用セパレータを突き破って短絡しにくく安全性に優れる。また、厚みが100μm以下であれば、積層多孔フィルムの電気抵抗を小さくすることができるので、電池の性能が十分に確保することができる。
(Shape and physical properties of laminated porous film)
The thickness of the laminated porous film of the present invention is preferably 5 to 100 μm. More preferably, it is 8-50 micrometers, More preferably, it is 10-30 micrometers. When used as a separator for a non-aqueous electrolyte secondary battery, if it is 5 μm or more, substantially necessary electrical insulation can be obtained. For example, even when a large force is applied to the protruding portion of the electrode, Breaks through the separator for the electrolyte secondary battery and is not easily short-circuited. Moreover, if thickness is 100 micrometers or less, since the electrical resistance of a lamination | stacking porous film can be made small, the performance of a battery can fully be ensured.

被覆層(II層)の厚みとしては、耐熱性の観点から、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは2μm以上、特に好ましくは3μm以上である。一方で上限としては、連通性の観点から、好ましくは90μm以下、より好ましくは50μm以下、更に好ましくは30μm以下、特に好ましくは10μm以下である。   The thickness of the coating layer (II layer) is preferably 0.5 μm or more, more preferably 1 μm or more, still more preferably 2 μm or more, and particularly preferably 3 μm or more from the viewpoint of heat resistance. On the other hand, the upper limit is preferably 90 μm or less, more preferably 50 μm or less, still more preferably 30 μm or less, and particularly preferably 10 μm or less from the viewpoint of communication.

本発明の積層多孔フィルムにおいて、空孔率は30%以上が好ましく、35%以上がより好ましく、40%以上が更に好ましい。空孔率が30%以上であれば、連通性を確保し透気特性に優れた積層多孔フィルムとすることができる。
一方、上限については70%以下が好ましく、65%以下がより好ましく、60%以下が更に好ましい。空孔率が70%以下であれば、積層多孔フィルムの強度が低下しにくく、ハンドリングの観点からも好ましい。なお、空孔率は実施例に記載の方法で測定している。
In the laminated porous film of the present invention, the porosity is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more. If the porosity is 30% or more, it is possible to obtain a laminated porous film that ensures communication and has excellent air permeability.
On the other hand, the upper limit is preferably 70% or less, more preferably 65% or less, and still more preferably 60% or less. If the porosity is 70% or less, the strength of the laminated porous film is hardly lowered, which is preferable from the viewpoint of handling. The porosity is measured by the method described in the examples.

本発明の積層多孔フィルムの透気度は2000秒/100mL以下が好ましく、10〜1000秒/100mLがより好ましく、50〜800秒/100mLが更に好ましい。透気度が2000秒/100mL以下であれば、積層多孔フィルムに連通性があることを示し、優れた透気性能を示すことができるため好ましい。
透気度はフィルム厚み方向の空気の通り抜け難さを表し、具体的には100mLの空気が当該フィルムを通過するのに必要な数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方がフィルム厚み方向の連通性が悪いことを意味する。連通性とはフィルム厚み方向の孔のつながり度合いである。本発明の積層多孔フィルムの透気度が低ければ様々な用途に使用することができる。例えば非水電解液二次電池用セパレータとして使用する場合、透気度が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
The air permeability of the laminated porous film of the present invention is preferably 2000 sec / 100 mL or less, more preferably 10 to 1000 sec / 100 mL, and further preferably 50 to 800 sec / 100 mL. If the air permeability is 2000 seconds / 100 mL or less, it is preferable that the laminated porous film has a communication property and can exhibit excellent air permeability.
The air permeability represents the difficulty of air passage in the film thickness direction, and is specifically expressed by the number necessary for 100 mL of air to pass through the film. Therefore, it means that the smaller the numerical value is, the easier it is to pass through, and the higher numerical value is, the more difficult it is to pass. That is, a smaller value means better communication in the thickness direction of the film, and a larger value means poor communication in the film thickness direction. Communication is the degree of connection of holes in the film thickness direction. If the air permeability of the laminated porous film of the present invention is low, it can be used for various applications. For example, when used as a separator for a non-aqueous electrolyte secondary battery, a low air permeability means that lithium ions can be easily transferred, which is preferable because battery performance is excellent.

本発明の積層多孔フィルムは、非水電解液二次電池用セパレータとして使用時において、SD特性を有することが好ましい。具体的には、135℃で5秒間加熱後の透気度は10000秒/100mL以上であることが好ましく、より好ましくは25000秒/100mL以上、さらに好ましくは50000秒/100mL以上である。135℃で5秒間加熱後の透気度が10000秒/100mL以上とすることで、異常発熱時において空孔が速やかに閉塞し、電流が遮断されるため、電池の破裂等のトラブルを回避することができる。   The laminated porous film of the present invention preferably has SD characteristics when used as a separator for a nonaqueous electrolyte secondary battery. Specifically, the air permeability after heating at 135 ° C. for 5 seconds is preferably 10,000 seconds / 100 mL or more, more preferably 25000 seconds / 100 mL or more, and further preferably 50000 seconds / 100 mL or more. By setting the air permeability after heating at 135 ° C for 5 seconds to 10000 seconds / 100 mL or more, the holes are quickly closed and the current is interrupted during abnormal heat generation, thus avoiding problems such as battery rupture. be able to.

本発明の積層多孔フィルムの105℃における収縮率は、縦方向と横方向の合計について10%未満が好ましく、9%未満がより好ましく、8%未満であることが更に好ましい。前記105℃における収縮率の合計が10%未満であれば、SD温度を超えて異常発熱した際においても、寸法安定性がよく、耐熱性を有することを示唆しており、破膜を防ぎ、内部短絡温度を向上することができる。下限としては特に限定しないが、0%以上がより好ましい。   The shrinkage rate at 105 ° C. of the laminated porous film of the present invention is preferably less than 10%, more preferably less than 9%, and even more preferably less than 8% with respect to the sum of the vertical direction and the horizontal direction. If the total shrinkage at 105 ° C. is less than 10%, even when abnormal heat generation exceeds the SD temperature, it is suggested that the dimensional stability is good and has heat resistance, and prevents film breakage. The internal short circuit temperature can be improved. Although it does not specifically limit as a minimum, 0% or more is more preferable.

本発明の積層多孔フィルムにおける前記ポリオレフィン系樹脂多孔フィルム(I層)と前記被覆層(II層)との引き剥がし強度は、300mN/cm以上であることが好ましく、500mN/cm以上であることがより好ましい。前記引き剥がし強度が300mN/cm以上であれば、前記フィラー(a)の脱落の可能性を大幅に低減することができるために好ましい。
なお、引き剥がし強度は後述する方法により測定される。
The peel strength between the polyolefin resin porous film (I layer) and the coating layer (II layer) in the laminated porous film of the present invention is preferably 300 mN / cm or more, and more preferably 500 mN / cm or more. More preferred. The peel strength of 300 mN / cm or more is preferable because the possibility of the filler (a) dropping off can be greatly reduced.
The peel strength is measured by the method described later.

(電池)
続いて、本発明の前記積層多孔フィルムを電池用セパレータとして収容している非水電解液二次電池について、図1に参照して説明する。
正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。
前記捲回工程について詳しく説明する。電池用セパレータの片端をピンのスリット部の間に通し、ピンを少しだけ回転させて電池用セパレータの一端をピンに巻きつけておく。この時、ピンの表面と電池用セパレータの被覆層とが接触している。その後、電池用セパレータを間に挟むようにして正極と負極を配置し、捲回機によってピンを回転させて、正負極と電池用セパレータを捲回する。捲回後、ピンは捲回物から引き抜かれる。
(battery)
Next, a nonaqueous electrolyte secondary battery containing the laminated porous film of the present invention as a battery separator will be described with reference to FIG.
Both electrodes of the positive electrode plate 21 and the negative electrode plate 22 are wound in a spiral shape so as to overlap each other via the battery separator 10, and the outside is stopped with a winding tape to form a wound body.
The winding process will be described in detail. One end of the battery separator is passed between the slit portions of the pin, and the pin is slightly rotated to wind one end of the battery separator around the pin. At this time, the surface of the pin is in contact with the coating layer of the battery separator. Thereafter, the positive electrode and the negative electrode are arranged so as to sandwich the battery separator, and the pins are rotated by a winding machine to wind the positive and negative electrodes and the battery separator. After winding, the pin is pulled out of the wound object.

前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液二次電池を作製している。   A wound body in which the positive electrode plate 21, the battery separator 10 and the negative electrode plate 22 are integrally wound is housed in a bottomed cylindrical battery case and welded to the positive and negative electrode lead bodies 24 and 25. Next, the electrolyte is injected into the battery can, and after the electrolyte has sufficiently penetrated into the battery separator 10 or the like, the positive electrode lid 27 is sealed around the opening periphery of the battery can via the gasket 26, and precharging and aging are performed. A cylindrical non-aqueous electrolyte secondary battery is manufactured.

電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジメトキシメタン、ジメトキシプロパン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフランもしくは4−メチル−1,3−ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.0mol/Lの割合で溶解した電解質が好ましい。 As the electrolytic solution, an electrolytic solution in which a lithium salt is used as an electrolytic solution and is dissolved in an organic solvent is used. The organic solvent is not particularly limited. For example, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, esters such as dimethyl carbonate, methyl propionate or butyl acetate, and nitriles such as acetonitrile. 1,2-dimethoxyethane, 1,2-dimethoxymethane, dimethoxypropane, 1,3-dioxolane, ethers such as tetrahydrofuran, 2-methyltetrahydrofuran or 4-methyl-1,3-dioxolane, or sulfolane These may be used alone or in combination of two or more. Among them, an electrolyte obtained by dissolving lithium hexafluorophosphate (LiPF 6) at a rate of 1.0 mol / L in a solvent obtained by mixing 2 parts by mass of methyl ethyl carbonate relative to ethylene carbonate 1 part by weight is preferred.

負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。 負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。   As the negative electrode, an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net is used. Examples of the alkali metal include lithium, sodium, and potassium. Examples of the compound containing an alkali metal include an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin or magnesium, a compound of an alkali metal and a carbon material, a low potential alkali metal and a metal oxide, and the like. Or a compound with a sulfide or the like. When a carbon material is used for the negative electrode, the carbon material may be any material that can be doped and dedoped with lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fibers, activated carbon and the like can be used.

本実施形態では、負極として、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。   In this embodiment, as a negative electrode, a carbon material having an average particle size of 10 μm is mixed with a solution in which polyvinylidene fluoride is dissolved in N-methylpyrrolidone to form a slurry, and this negative electrode mixture slurry is passed through a mesh of 70 mesh. After removing the large particles, uniformly apply to both sides of the negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 μm and dry, and then compression-molded with a roll press machine, cut, strip-shaped negative electrode plate and We use what we did.

正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。   As the positive electrode, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, metal oxide such as vanadium pentoxide or chromium oxide, metal sulfide such as molybdenum disulfide, etc. are used as active materials. , These positive electrode active materials are combined with conductive additives and binders such as polytetrafluoroethylene as appropriate, and finished with a current collector material such as a stainless steel mesh as a core material. It is done.

本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。 In the present embodiment, a strip-like positive electrode plate produced as follows is used as the positive electrode. That is, lithium graphite oxide (LiCoO 2 ) is added with phosphorous graphite as a conductive additive at a mass ratio of 90: 5 (lithium cobalt oxide: phosphorous graphite) and mixed, and this mixture and polyvinylidene fluoride are mixed with N -Mix with a solution dissolved in methylpyrrolidone to make a slurry. This positive electrode mixture slurry is passed through a 70-mesh net to remove large particles, and then uniformly applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm, dried, and then compressed by a roll press. After forming, it is cut into a strip-like positive electrode plate.

以下に実施例および比較例を示し、本発明の積層多孔フィルムについて更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、積層多孔フィルムの長手方向を「縦方向」、長手方向に対して垂直方向を「横方向」と称する。   Examples and Comparative Examples are shown below, and the laminated porous film of the present invention will be described in more detail. However, the present invention is not limited to these. The longitudinal direction of the laminated porous film is referred to as “longitudinal direction”, and the direction perpendicular to the longitudinal direction is referred to as “lateral direction”.

(1)樹脂バインダー(b)の含有率
分散液中のフィラー(a)と、変性ポリオレフィン樹脂(c)を含んだ前記樹脂バインダー(b)との総量に占める樹脂バインダー(b)の割合を樹脂バインダー(b)の含有率とした。
(1) Content of resin binder (b) Resin is the proportion of resin binder (b) in the total amount of filler (a) in the dispersion and the resin binder (b) containing the modified polyolefin resin (c). It was set as the content rate of a binder (b).

(2)変性ポリオレフィン樹脂(c)の含有率
分散液中のフィラー(a)と、変性ポリオレフィン樹脂(c)を含んだ前記樹脂バインダー(b)との総量に占める変性ポリオレフィン樹脂(c)の割合を、被覆層(II層)の全固形分中における変性ポリオレフィン樹脂(c)の含有率とした。
(2) Content of modified polyolefin resin (c) Ratio of modified polyolefin resin (c) in the total amount of filler (a) in the dispersion and the resin binder (b) containing modified polyolefin resin (c) Was the content of the modified polyolefin resin (c) in the total solid content of the coating layer (II layer).

(3)総厚み
1/1000mmのダイアルゲージにて、積層多孔フィルムの面内を不特定に5箇所測定し、その平均値を積層多孔フィルムの総厚み(便宜上T1+2と表記する。)とした。
(3) Total thickness With a dial gauge of 1/1000 mm, the in-plane of the laminated porous film was measured at five unspecified locations, and the average value was defined as the total thickness of the laminated porous film (denoted as T 1 + 2 for convenience). .

(4)被覆層(II)の厚み
塗工後の積層多孔フィルムの総厚み(T1+2)から、ポリオレフィン系樹脂多孔フィルム(I)の厚み(便宜上Tと表記する)を差し引くことで、被覆層(II)の厚み(便宜上Tと表記する)を算出した。
(4) from the total thickness of the laminated porous film after the thickness coating of the coating layers (II) (T 1 + 2 ), ( referred to for convenience T 1) the thickness of the polyolefin resin porous Film (I) by subtracting the, coated It was calculated thickness of the layer (II) (for convenience referred to as T 2).

(5)空孔率
空孔率は、以下の計算式により算出した。
空孔率(%)= 100 − W1+2 / (D × T + D × T
積層多孔フィルムの単位面積重量:W1+2
ポリオレフィン系樹脂多孔フィルム(I)の厚み:T
被覆層(II)の厚み:T
ポリオレフィン系樹脂多孔フィルム(I層)の真密度:D
被覆層の真密度:D
(5) Porosity The porosity was calculated by the following calculation formula.
Porosity (%) = 100−W 1 + 2 / (D 1 × T 1 + D 2 × T 2 )
Unit area weight of laminated porous film: W 1 + 2
Thickness of the polyolefin resin porous film (I): T 1
Covering layer (II) thickness: T 2
True density of polyolefin resin porous film (I layer): D 1
True density of coating layer: D 2

(6)透気度(ガーレ値)
JIS P8117に準拠して透気度(秒/100mL)を測定した。
(6) Air permeability (Gurley value)
The air permeability (second / 100 mL) was measured according to JIS P8117.

(7)引き剥がし強度
JIS Z0237に準拠して、ポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II層)との引き剥がし強度を測定した。まず、サンプルとして、積層多孔フィルムを横50mm×縦150mmに切り出し、当該サンプルの縦方向にテープ43として、セロハンテープ(ニチバン社製、JIS Z1522)を貼付け、当該テープ背面が重なるように180°に折り返し、当該サンプルから25mm剥がした。次に、引張試験機(インテスコ社製、インテスコIM−20ST)の下部チャックに剥がした部分のサンプルの片端を固定し、上部チャックにテープを固定し、試験速度300mm/分にて引き剥がし強度を測定した(図3)。測定後、最初の25mmの長さの測定値は無視し、試験片から引き剥がされた50mmの長さの引き剥がし強度測定値を平均し、その強度値をテープ幅で除し、引き剥がし強度とした。
(7) Peel strength According to JIS Z0237, the peel strength between the polyolefin resin porous film (I layer) and the coating layer (II layer) was measured. First, as a sample, the laminated porous film was cut into a width of 50 mm and a length of 150 mm, cellophane tape (manufactured by Nichiban Co., JIS Z1522) was applied as the tape 43 in the vertical direction of the sample, and the tape was stacked at 180 ° so that the back of the tape overlapped. The sample was folded and peeled from the sample by 25 mm. Next, fix one end of the peeled part of the sample to the lower chuck of a tensile tester (manufactured by Intesco, Intesco IM-20ST), fix the tape to the upper chuck, and peel off at a test speed of 300 mm / min. Measured (Figure 3). After the measurement, the first measurement value of 25 mm length is ignored, the 50 mm length peel strength measurement value peeled off from the test piece is averaged, the strength value is divided by the tape width, and the peel strength is measured. It was.

(8)結着性
結着性は、以下の評価基準によって評価した。
○:引き剥がし強度が300mN/cm以上。
×:引き剥がし強度が300mN/cm未満。
(8) Binding property Binding property was evaluated according to the following evaluation criteria.
○: Peel strength is 300 mN / cm or more.
X: The peel strength is less than 300 mN / cm.

(9)105℃における収縮率
積層多孔フィルムを150×10mm四方に切り出したサンプルをチャック間100mmとなるように印を入れ、150℃に設定したオーブン(タバイエスペック社製、タバイギヤオーブンGPH200)に該サンプルを入れ、1時間静置した。該サンプルをオーブンから取り出し冷却した後、長さを測定し、以下の式にて収縮率をそれぞれ算出した。
収縮率(%)={(100−加熱後の長さ)/100}×100
以上の測定は、積層多孔フィルムの縦方向、横方向について行った。
(9) Shrinkage rate at 105 ° C. A sample obtained by cutting a laminated porous film in a 150 × 10 mm square is marked so that the distance between chucks is 100 mm, and is set in an oven set at 150 ° C. (Tabai Gear Spec, Tabai Gear Oven GPH200). The sample was added and allowed to stand for 1 hour. After the sample was taken out of the oven and cooled, the length was measured, and the shrinkage was calculated by the following formula.
Shrinkage rate (%) = {(100−length after heating) / 100} × 100
The above measurement was performed in the longitudinal direction and the lateral direction of the laminated porous film.

(10)耐熱性
耐熱性は、以下の評価基準において評価した。
○:105℃における収縮率が、縦方向と横方向で合計10%未満
×:105℃における収縮率が、縦方向と横方向で合計10%以上
(10) Heat resistance Heat resistance was evaluated according to the following evaluation criteria.
○: Shrinkage rate at 105 ° C. is less than 10% in total in the vertical and horizontal directions. X: Shrinkage rate at 105 ° C. is 10% or more in the vertical and horizontal directions.

(11)示差走査型熱量測定(DSC)
得られた積層多孔フィルムを株式会社パーキンエルマー製の示差走査型熱量計(DSC−7)を用いて、25℃から240℃まで走査速度10℃/分で昇温後1分間保持し、次に240℃〜25℃まで走査速度10℃/分で降温後1分間保持し、次に25℃から240℃まで走査速度10℃/分で再昇温させた。この再昇温時にポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)である145〜160℃にピークが検出されるか否かによりβ晶活性の有無を以下の基準にて評価した。
○:Tmβが145℃〜160℃の範囲内に検出された場合(β晶活性あり)
×:Tmβが145℃〜160℃の範囲内に検出されなかった場合(β晶活性なし)
なお、β晶活性の測定は、試料量10mgで、窒素雰囲気下にて行った。
(11) Differential scanning calorimetry (DSC)
Using a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer Co., Ltd., the resulting laminated porous film was heated from 25 ° C. to 240 ° C. at a scanning rate of 10 ° C./min and held for 1 minute, and then The temperature was lowered from 240 ° C. to 25 ° C. at a scanning rate of 10 ° C./min and held for 1 minute, and then the temperature was raised again from 25 ° C. to 240 ° C. at a scanning rate of 10 ° C./min. The presence or absence of β crystal activity was evaluated according to the following criteria depending on whether or not a peak was detected at 145 to 160 ° C., which is the crystal melting peak temperature (Tmβ) derived from the β crystal of the polypropylene resin at the time of reheating. .
○: When Tmβ is detected within the range of 145 ° C to 160 ° C (with β crystal activity)
X: When Tmβ is not detected within the range of 145 ° C to 160 ° C (no β crystal activity)
The β crystal activity was measured with a sample amount of 10 mg in a nitrogen atmosphere.

(12)広角X線回折測定(XRD)
積層多孔フィルムを縦60mm、横60mm角に切り出し、図2(A)に示すように中央部が40mmφの円状に穴の空いたアルミ板(材質:JIS A5052、サイズ:縦60mm、横60mm、厚さ1mm)2枚の間にはさみ、図2(B)に示すように周囲をクリップで固定した。
積層多孔フィルムをアルミ板2枚に拘束した状態で設定温度180℃、表示温度180℃である送風定温恒温器(ヤマト科学株式会社製、型式:DKN602)に入れ3分間保持した後、設定温度を100℃に変更し、10分以上の時間をかけて100℃まで徐冷を行った。表示温度が100℃になった時点で取り出し、アルミ板2枚に拘束した状態のまま25℃の雰囲気下で5分間冷却して得られたものについて、以下の測定条件で、中央部の40mmφの円状の部分について広角X線回折測定を行った。
・広角X線回折測定装置:株式会社マックサイエンス製、型番:XMP18A
・X線源:CuKα線、出力:40kV、200mA
・走査方法:2θ/θスキャン、2θ範囲:5°〜25°、走査間隔:0.05°、走査速度:5°/min
得られた回折プロファイルについて、ポリプロピレン系樹脂のβ晶の(300)面に由来するピークより、β晶活性の有無を以下のように評価した。
○:ピークが2θ=16.0〜16.5°の範囲に検出された場合(β晶活性あり)
×:ピークが2θ=16.0〜16.5°の範囲に検出されなかった場合(β晶活性なし)
なお、積層多孔フィルム片が縦60mm、横60mm角に切り出せない場合は、中央部に40mmφの円状の穴に積層多孔フィルムが設置されるように調整しても構わない。
(12) Wide angle X-ray diffraction measurement (XRD)
The laminated porous film was cut into a 60 mm vertical and 60 mm horizontal square, and as shown in FIG. 2 (A), an aluminum plate having a circular hole with a central portion of 40 mmφ (material: JIS A5052, size: 60 mm vertical, 60 mm horizontal, (Thickness 1 mm) was sandwiched between two sheets, and the periphery was fixed with clips as shown in FIG. 2 (B).
In a state where the laminated porous film is constrained to two aluminum plates, put it in a constant temperature incubator (Yamato Scientific Co., Ltd., model: DKN602) with a set temperature of 180 ° C. and a display temperature of 180 ° C., and hold the set temperature for 3 minutes. The temperature was changed to 100 ° C. and gradually cooled to 100 ° C. over 10 minutes or more. When the display temperature reaches 100 ° C., the product obtained by cooling for 5 minutes in an atmosphere of 25 ° C. while being constrained by two aluminum plates is 40 mmφ at the center under the following measurement conditions. Wide angle X-ray diffraction measurement was performed on the circular portion.
-Wide-angle X-ray diffraction measurement device: manufactured by Mac Science Co., Ltd., model number: XMP18A
X-ray source: CuKα ray, output: 40 kV, 200 mA
Scanning method: 2θ / θ scan, 2θ range: 5 ° to 25 °, scanning interval: 0.05 °, scanning speed: 5 ° / min
About the obtained diffraction profile, the presence or absence of β crystal activity was evaluated as follows from the peak derived from the (300) plane of β crystal of the polypropylene resin.
◯: When a peak is detected in the range of 2θ = 16.0 to 16.5 ° (with β crystal activity)
X: When a peak is not detected in the range of 2θ = 16.0 to 16.5 ° (no β crystal activity)
In addition, when a laminated porous film piece cannot be cut out to 60 mm length and 60 mm width, you may adjust so that a laminated porous film may be installed in the circular hole of 40 mmphi in the center part.

(ポリオレフィン系樹脂多孔フィルム(I層)の製造方法)
A層として、ポリプロピレン系樹脂(プライムポリマー社製、プライムポリプロ F300SV、密度:0.90g/cm、MFR:3.0g/10分)と、β晶核剤として、3,9−ビス[4−(N−シクロヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンを準備した。このポリプロピレン系樹脂100質量部に対して、β晶核剤を0.2質量部の割合で各原材料をブレンドし、東芝機械株式会社製の同方向二軸押出機(口径:40mmφ、L/D:32)に投入し、設定温度300℃で溶融混合後、水槽にてストランドを冷却固化し、ペレタイザーにてストランドをカットし、ポリプロピレン系樹脂のペレットを作製した。ポリプロピレン系樹脂組成物のβ晶活性は80%であった。
(Method for producing polyolefin resin porous film (I layer))
As the A layer, polypropylene resin (Prime Polymer Co., Prime Polypro F300SV, density: 0.90 g / cm 3 , MFR: 3.0 g / 10 min) and β crystal nucleating agent, 3,9-bis [4 -(N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane was prepared. Each raw material is blended at a ratio of 0.2 part by mass of β-crystal nucleating agent with respect to 100 parts by mass of this polypropylene resin, and the same direction twin screw extruder manufactured by Toshiba Machine Co., Ltd. (caliber: 40 mmφ, L / D : 32), melted and mixed at a set temperature of 300 ° C., cooled and solidified in a water bath, cut into strands with a pelletizer, and produced polypropylene resin pellets. The β-crystal activity of the polypropylene resin composition was 80%.

次にB層を構成する混合樹脂組成物として、高密度ポリエチレン(日本ポリエチ社製、ノバテックHD HF560、密度:0.963g/cm、MFR:7.0g/10分)100質量部に、グリセリンモノエステルを0.04質量部、及びマイクロクリスタリンワックス(日本精蝋社製、Hi−Mic1080)10質量部を加え、同型の同方向二軸押出機を用いて220℃にて溶融混練してペレット状に加工した樹脂組成物を得た。 Next, as a mixed resin composition constituting the B layer, glycerin is added to 100 parts by mass of high-density polyethylene (manufactured by Nippon Polytechnic Co., Ltd., Novatec HD HF560, density: 0.963 g / cm 3 , MFR: 7.0 g / 10 min). Add 0.04 parts by mass of monoester and 10 parts by mass of microcrystalline wax (Hi-Mic 1080, manufactured by Nippon Seiwa Co., Ltd.), melt and knead at 220 ° C. using the same type twin screw extruder, and pellets A resin composition processed into a shape was obtained.

前記2種類の原料を用いて、外層がA層、中間層がB層となるように別々の押出機を用いて、2種3層のフィードブロックを通じて積層成型用の口金より押出し、124℃のキャスティングロールで冷却固化させて、A層/B層/A層とした2種3層の積層膜状物を作製した。
前記積層膜状物を、縦延伸機を用いて縦方向に4.6倍延伸し、その後、横延伸機にて100℃で横方向に2倍延伸後、熱固定/弛緩処理を行い、コロナ表面処理を施すことでポリオレフィン系樹脂多孔フィルム(I層)を得た。
Using the two kinds of raw materials, using a separate extruder so that the outer layer is A layer and the intermediate layer is B layer, it is extruded from a die for lamination molding through a feed block of two kinds and three layers, By cooling and solidifying with a casting roll, a two-layered / three-layered film-like product of A layer / B layer / A layer was produced.
The laminated film-like material is stretched 4.6 times in the longitudinal direction using a longitudinal stretching machine, and then stretched 2 times in the lateral direction at 100 ° C. with a transverse stretching machine, followed by heat setting / relaxation treatment, and corona. The polyolefin resin porous film (I layer) was obtained by performing the surface treatment.

[実施例1]
硫酸バリウム(堺化学社製、B−34、平均粒径:0.3μm)18質量部、ポリアクリロニトリルエマルション(平均粒径:0.2μm)1.8質量部、酸変性ポリオレフィン樹脂(日本製紙ケミカル社製、アウローレン AE−301)0.2質量部を水80.0質量部にホモジナイザーを用いて分散させた。この分散液中の固形分の含有率は、分散液100質量%に対し20質量%であり、被覆層(II層)の全固形分に対する樹脂バインダー(b)、変性ポリオレフィン樹脂(c)の含有率は、それぞれ、10質量%、1質量%であった。
得られた分散液を前記ポリオレフィン系樹脂多孔フィルム(I層)の製造方法により得た積層多孔フィルムに目付量#20のバーコーターを用いて塗布した後、60℃で2分間乾燥させた。
得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[Example 1]
18 parts by mass of barium sulfate (manufactured by Sakai Chemical Industry, B-34, average particle size: 0.3 μm), 1.8 parts by mass of polyacrylonitrile emulsion (average particle size: 0.2 μm), acid-modified polyolefin resin (Nippon Paper Chemicals) 0.2 part by mass of Auroren AE-301, manufactured by the company, was dispersed in 80.0 parts by mass of water using a homogenizer. The solid content in the dispersion is 20% by mass with respect to 100% by mass of the dispersion, and the resin binder (b) and the modified polyolefin resin (c) are included in the total solid content of the coating layer (II layer). The rates were 10% by mass and 1% by mass, respectively.
The obtained dispersion was applied to the laminated porous film obtained by the method for producing a polyolefin resin porous film (I layer) using a bar coater having a basis weight of # 20, and then dried at 60 ° C. for 2 minutes.
The physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.

[実施例2]
実施例1と同様に 硫酸バリウム(堺化学社製、B−34、平均粒径:0.3μm)18質量部、ポリアクリロニトリルエマルション(平均粒径:0.2μm)1.6質量部、酸変性ポリオレフィン樹脂(日本製紙ケミカル社製、アウローレン AE−301)0.4質量部を水80.0質量部にホモジナイザーを用いて分散させた。この分散液中の固形分の含有率は、分散液100質量%に対し20質量%であり、被覆層(II層)の全固形分に対する樹脂バインダー(b)、変性ポリオレフィン樹脂(c)の含有率は、それぞれ、10質量%、2質量%であった。
得られた分散液を前記ポリオレフィン系樹脂多孔フィルム(I層)の製造方法により得た積層多孔フィルムに目付量#20のバーコーターを用いて塗布した後、60℃で2分間乾燥させた。
得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[Example 2]
As in Example 1, 18 parts by mass of barium sulfate (manufactured by Sakai Chemical Industry, B-34, average particle size: 0.3 μm), 1.6 parts by mass of polyacrylonitrile emulsion (average particle size: 0.2 μm), acid modification 0.4 parts by mass of a polyolefin resin (Auroren AE-301, manufactured by Nippon Paper Chemical Co., Ltd.) was dispersed in 80.0 parts by mass of water using a homogenizer. The solid content in the dispersion is 20% by mass with respect to 100% by mass of the dispersion, and the resin binder (b) and the modified polyolefin resin (c) are included in the total solid content of the coating layer (II layer). The rates were 10% by mass and 2% by mass, respectively.
The obtained dispersion was applied to the laminated porous film obtained by the method for producing a polyolefin resin porous film (I layer) using a bar coater having a basis weight of # 20, and then dried at 60 ° C. for 2 minutes.
The physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.

[比較例1]
硫酸バリウム(堺化学社製、B−34、平均粒径:0.3μm)18質量部、ポリアクリロニトリルエマルション(平均粒径:0.2μm)2質量部を水80.0質量部にホモジナイザーを用いて分散させた。この分散液中の固形分の含有率は、分散液100質量%に対し20質量%であり、被覆層(II層)の全固形分に対する樹脂バインダー(b)、変性ポリオレフィン樹脂(c)の含有率は、それぞれ、10質量%、0質量%であった。すなわち、変性ポリオレフィン樹脂(c)は含まれていなかった。
得られた分散液を前記ポリオレフィン系樹脂多孔フィルム(I層)の製造方法により得た積層多孔フィルムに目付量#20のバーコーターを用いて塗布した後、60℃で2分間乾燥させた。
得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[Comparative Example 1]
18 parts by mass of barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., B-34, average particle size: 0.3 μm) and 2 parts by mass of polyacrylonitrile emulsion (average particle size: 0.2 μm) were used in 80.0 parts by mass of water using a homogenizer. And dispersed. The solid content in the dispersion is 20% by mass with respect to 100% by mass of the dispersion, and the resin binder (b) and the modified polyolefin resin (c) are included in the total solid content of the coating layer (II layer). The rates were 10% by mass and 0% by mass, respectively. That is, the modified polyolefin resin (c) was not included.
The obtained dispersion was applied to the laminated porous film obtained by the method for producing a polyolefin resin porous film (I layer) using a bar coater having a basis weight of # 20, and then dried at 60 ° C. for 2 minutes.
The physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.

[比較例2]
硫酸バリウム(堺化学社製、B−34、平均粒径:0.3μm)18質量部、酸変性ポリオレフィン樹脂(日本製紙ケミカル社製、アウローレン AE−301)2質量部を水80.0質量部にホモジナイザーを用いて分散させた。この分散液中の固形分の含有率は、分散液100質量%に対し20質量%であり、被覆層(II層)の全固形分に対する樹脂バインダー(b)、変性ポリオレフィン樹脂(c)の含有率は、それぞれ、10質量%、10質量%、すなわち樹脂バインダー(b)はすべて変性ポリオレフィン樹脂(c)であり、その他の樹脂は含まれていなかった。
得られた分散液を前記ポリオレフィン系樹脂多孔フィルム(I層)の製造方法により得た積層多孔フィルムに目付量#20のバーコーターを用いて塗布した後、60℃で2分間乾燥させた。
得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[Comparative Example 2]
Barium sulfate (manufactured by Sakai Chemical Co., Ltd., B-34, average particle size: 0.3 μm) 18 parts by mass, acid-modified polyolefin resin (manufactured by Nippon Paper Chemical Co., Ltd., Auroren AE-301) 8 parts by mass of water The part was dispersed using a homogenizer. The solid content in the dispersion is 20% by mass with respect to 100% by mass of the dispersion, and the resin binder (b) and the modified polyolefin resin (c) are included in the total solid content of the coating layer (II layer). The rates were 10% by mass and 10% by mass, respectively, that is, the resin binder (b) was all modified polyolefin resin (c), and other resins were not included.
The obtained dispersion was applied to the laminated porous film obtained by the method for producing a polyolefin resin porous film (I layer) using a bar coater having a basis weight of # 20, and then dried at 60 ° C. for 2 minutes.
The physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.

[比較例3]
前記ポリオレフィン系樹脂多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[Comparative Example 3]
The physical properties of the polyolefin resin porous film were evaluated, and the results are summarized in Table 1.

Figure 2013237203
Figure 2013237203

表1より、実施例1及び2で得た本発明の積層多孔フィルムは、ポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II)が優れた結着性を有し、かつ、優れた耐熱性及び透気性を有するものであった。
一方、比較例1で得た積層多孔フィルムは、実施例1のものと比べ、変性ポリオレフィン樹脂(c)が添加されていない為、結着性が弱いものであった。
比較例2で得た積層多孔フィルムは、実施例1のものと比べ、樹脂バインダー(b)として変性ポリオレフィン樹脂(c)以外の樹脂を含有しない為、連通孔が閉塞し、透気性が著しく損なわれた。
また、比較例3のポリオレフィン系樹脂多孔フィルムは、被覆層が積層されていないため、耐熱性が不十分であった。
From Table 1, the laminated porous films of the present invention obtained in Examples 1 and 2 have excellent binding properties in which the polyolefin resin porous film (I layer) and the coating layer (II) have excellent heat resistance. And air permeability.
On the other hand, the laminated porous film obtained in Comparative Example 1 was weaker in binding property than the one in Example 1 because the modified polyolefin resin (c) was not added.
Since the laminated porous film obtained in Comparative Example 2 does not contain a resin other than the modified polyolefin resin (c) as the resin binder (b) compared to that in Example 1, the communication holes are closed and the air permeability is significantly impaired. It was.
Moreover, since the polyolefin resin porous film of Comparative Example 3 was not laminated with a coating layer, the heat resistance was insufficient.

本発明の積層多孔フィルムは、透気特性が要求される種々の用途に応用することができる。リチウムイオン二次電池用セパレータ;使い捨て紙オムツ、生理用品等の体液吸収用パットもしくはベッドシーツ等の衛生材料;手術衣もしくは温湿布用基材等の医療用材料;ジャンパー、スポーツウエアもしくは雨着等の衣料用材料;壁紙、屋根防水材、断熱材、吸音材等の建築用材料;乾燥剤;防湿剤;脱酸素剤;使い捨てカイロ;鮮度保持包装もしくは食品包装等の包装材料等の資材として極めて好適に利用できる。   The laminated porous film of the present invention can be applied to various uses that require air permeability. Separators for lithium ion secondary batteries; sanitary materials such as disposable paper diapers and pads for absorbing body fluids such as sanitary items or bed sheets; medical materials such as surgical clothing or base materials for warm compresses; jumpers, sportswear or rainwear Material for clothing; Building materials such as wallpaper, roof waterproofing material, heat insulating material, sound absorbing material, etc .; Desiccant; Dampproofing agent; Deoxidant agent; Disposable body warmer; It can be suitably used.

10 非水電解液二次電池用セパレータ
20 二次電池
21 正極板
22 負極板
24 正極リード体
25 負極リード体
26 ガスケット
27 正極蓋
31 アルミ板
32 サンプル
33 クリップ
34 フィルム縦方向
35 フィルム横方向
41 サンプル
42 テープ
43 滑り止め
44 上部チャック
45 下部チャック
DESCRIPTION OF SYMBOLS 10 Separator for non-aqueous electrolyte secondary battery 20 Secondary battery 21 Positive electrode plate 22 Negative electrode plate 24 Positive electrode lead body 25 Negative electrode lead body 26 Gasket 27 Positive electrode lid 31 Aluminum plate 32 Sample 33 Clip 34 Film vertical direction 35 Film horizontal direction 41 Sample 42 Tape 43 Non-slip 44 Upper chuck 45 Lower chuck

Claims (9)

ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に、フィラー(a)及び樹脂バインダー(b)を含有する被覆層(II層)を有する積層多孔フィルムであって、前記樹脂バインダー(b)が変性ポリオレフィン樹脂(c)を含む2種以上の樹脂から構成されていることを特徴とする積層多孔フィルム。   A laminated porous film having a coating layer (II layer) containing a filler (a) and a resin binder (b) on at least one surface of a polyolefin resin porous film (I layer), wherein the resin binder (b) is modified A laminated porous film comprising two or more kinds of resins including a polyolefin resin (c). 前記被覆層(II層)の全固形分中における、前記変性ポリオレフィン樹脂(c)の含有率が0.1質量%以上、8質量%以下の範囲であることを特徴とする請求項1に記載の積層多孔フィルム。   The content rate of the said modified polyolefin resin (c) in the total solid of the said coating layer (II layer) is the range of 0.1 to 8 mass%, It is characterized by the above-mentioned. Laminated porous film. 前記変性ポリオレフィン樹脂(c)が酸変性ポリオレフィン樹脂を含んでなることを特徴とする請求項1又は2に記載の積層多孔フィルム。   The laminated porous film according to claim 1 or 2, wherein the modified polyolefin resin (c) comprises an acid-modified polyolefin resin. 前記フィラー(a)の平均粒径が、0.01μm以上、3.0μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の積層多孔フィルム。   The average particle diameter of the said filler (a) is 0.01 micrometer or more and 3.0 micrometers or less, The laminated porous film of any one of Claims 1-3 characterized by the above-mentioned. 前記ポリオレフィン系樹脂多孔フィルム(I層)がポリプロピレン系樹脂を含んでなることを特徴とする請求項1〜4のいずれかに1項に記載の積層多孔フィルム。   The laminated porous film according to any one of claims 1 to 4, wherein the polyolefin resin porous film (I layer) comprises a polypropylene resin. ポリオレフィン系樹脂多孔フィルム(I層)がβ晶活性を有することを特徴とする請求項1〜5のいずれか1項に記載の積層多孔フィルム。   The laminated porous film according to any one of claims 1 to 5, wherein the polyolefin resin porous film (I layer) has β crystal activity. 前記ポリオレフィン系樹脂多孔フィルム(I層)と前記被覆層(II層)との引き剥がし強度が300mN/cm以上であることを特徴とする請求項1〜6のいずれかに1項に記載の積層多孔フィルム。   The lamination according to any one of claims 1 to 6, wherein a peel strength between the polyolefin resin porous film (I layer) and the coating layer (II layer) is 300 mN / cm or more. Perforated film. 請求項1〜7のいずれか1項に記載の積層多孔フィルムを用いた非水電解液二次電池用セパレータ。   The separator for nonaqueous electrolyte secondary batteries using the lamination | stacking porous film of any one of Claims 1-7. 請求項8に記載の非水電解液二次電池用セパレータを用いた非水電解液二次電池。   A nonaqueous electrolyte secondary battery using the separator for a nonaqueous electrolyte secondary battery according to claim 8.
JP2012112000A 2012-05-16 2012-05-16 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Active JP5848193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112000A JP5848193B2 (en) 2012-05-16 2012-05-16 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112000A JP5848193B2 (en) 2012-05-16 2012-05-16 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013237203A true JP2013237203A (en) 2013-11-28
JP5848193B2 JP5848193B2 (en) 2016-01-27

Family

ID=49762687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112000A Active JP5848193B2 (en) 2012-05-16 2012-05-16 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5848193B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134247A (en) * 2015-01-16 2016-07-25 ユニチカ株式会社 Coating material and slurry for secondary battery separator, secondary battery separator, and secondary battery
JP2018022661A (en) * 2016-08-05 2018-02-08 三井化学株式会社 Lithium ion secondary battery separator, positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2020042897A (en) * 2018-09-06 2020-03-19 東レ株式会社 Separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054503A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Separator for electrochemical element, electrochemical element and manufacturing method thereof
WO2011132533A1 (en) * 2010-04-19 2011-10-27 三菱樹脂株式会社 Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2012042965A1 (en) * 2010-09-30 2012-04-05 三菱樹脂株式会社 Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054503A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Separator for electrochemical element, electrochemical element and manufacturing method thereof
WO2011132533A1 (en) * 2010-04-19 2011-10-27 三菱樹脂株式会社 Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2012042965A1 (en) * 2010-09-30 2012-04-05 三菱樹脂株式会社 Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134247A (en) * 2015-01-16 2016-07-25 ユニチカ株式会社 Coating material and slurry for secondary battery separator, secondary battery separator, and secondary battery
JP2018022661A (en) * 2016-08-05 2018-02-08 三井化学株式会社 Lithium ion secondary battery separator, positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2020042897A (en) * 2018-09-06 2020-03-19 東レ株式会社 Separator
JP7067378B2 (en) 2018-09-06 2022-05-16 東レ株式会社 Separator

Also Published As

Publication number Publication date
JP5848193B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5507766B2 (en) Method for producing laminated porous film
JP5676577B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5298247B2 (en) Multilayer porous film, battery separator and battery
JP5930032B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5685039B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5419817B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5344107B1 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6432203B2 (en) Method for producing laminated porous film
JP5690832B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2011062285A1 (en) Laminated porous film, separator for battery, and battery
JP6093636B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5699212B2 (en) Porous film, battery separator, and battery
JP6035387B2 (en) Laminated porous film, separator for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, slurry, and coating solution
JP6117493B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6137523B2 (en) Method for producing laminated porous film, laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6027401B2 (en) Coating liquid, laminated porous film, non-aqueous electrolyte secondary battery separator, and non-aqueous electrolyte secondary battery
JP5848193B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6318919B2 (en) Laminated porous film, method for producing laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5885104B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015151445A (en) Laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016087944A (en) Laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R150 Certificate of patent or registration of utility model

Ref document number: 5848193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350