JP2013237100A - Method for producing ceramic circuit board, and ceramic circuit board - Google Patents

Method for producing ceramic circuit board, and ceramic circuit board Download PDF

Info

Publication number
JP2013237100A
JP2013237100A JP2013039872A JP2013039872A JP2013237100A JP 2013237100 A JP2013237100 A JP 2013237100A JP 2013039872 A JP2013039872 A JP 2013039872A JP 2013039872 A JP2013039872 A JP 2013039872A JP 2013237100 A JP2013237100 A JP 2013237100A
Authority
JP
Japan
Prior art keywords
circuit board
phase
ceramic
plating layer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013039872A
Other languages
Japanese (ja)
Other versions
JP6256733B2 (en
Inventor
Toshiyuki Imamura
寿之 今村
Junichi Watanabe
渡辺  純一
Hiroyuki Tejima
博幸 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013039872A priority Critical patent/JP6256733B2/en
Publication of JP2013237100A publication Critical patent/JP2013237100A/en
Application granted granted Critical
Publication of JP6256733B2 publication Critical patent/JP6256733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a ceramic circuit board, capable of forming a circuit board having an Ni plating layer in which the wettability of molten solder is improved, and to provide a ceramic circuit board with a circuit board formed to have an Ni plating layer in which the wetting spreadability of molten solder is improved.SOLUTION: There is provided a method for producing a ceramic circuit board that has: a ceramic board; a circuit board essentially consisting of copper and joined to one side of the ceramic board via a brazing filler metal layer; and an Ni plating layer deposited on the surface of the circuit board. The method includes: a joining step of heating a circuit original board and joined to one side of the ceramic board; a chemical polishing step of chemically polishing the circuit board formed in the joining step; and a plating step of depositing an Ni plating layer to the surface of the circuit board; wherein the circuit original board is a copper board made of copper or a copper alloy equivalent to 1/2H to H in a temper designation, and the joining step has a first temperature range of 400 to 750°C in its temperature profile.

Description


本発明は、セラミックス基板の一面に銅を主体とした回路板がろう材を介して接合されたセラミックス回路基板の製造方法およびセラミックス回路基板に係る発明である。

The present invention relates to a method for manufacturing a ceramic circuit board in which a circuit board mainly composed of copper is bonded to one surface of a ceramic substrate via a brazing material, and an invention related to the ceramic circuit board.


かかる技術分野に関連する先行技術が、下記特許文献1〜3に開示されている。特許文献1に開示されたセラミックス回路基板は、「セラミックス基板の表面に金属回路板をろう材を介して取着するとともに、該金属回路基板の表面にニッケルめっき層を被着させて成るセラミックス回路基板であって、前記ニッケルめっき層の表面粗さを十点平均粗さ(Rz)で10μm以下としたことを特徴とする」セラミックス回路基板である。また、特許文献1には、そのようなセラミックス回路基板の製造方法として、セラミックス基板にろう材を介して接合された金属回路板を過酸化水素が5〜15%添加された3〜7%硫酸浴に5〜10分間(室温)で酸洗いし、当該金属回路板の表面を十点平均粗さ(Rz)で10μm以下となし、その後無電解めっき法や電界めっき法でニッケルめっき層を金属回路板の表面に形成する製造方法が記載されている。

Prior arts related to this technical field are disclosed in Patent Documents 1 to 3 below. The ceramic circuit board disclosed in Patent Document 1 is “a ceramic circuit formed by attaching a metal circuit board to the surface of a ceramic substrate via a brazing material and depositing a nickel plating layer on the surface of the metal circuit board. A ceramic circuit board characterized in that the nickel plating layer has a surface roughness of 10 μm or less in terms of 10-point average roughness (Rz) ”. Further, in Patent Document 1, as a method for manufacturing such a ceramic circuit board, a metal circuit board joined to a ceramic substrate via a brazing material is added to 3 to 7% sulfuric acid to which 5 to 15% of hydrogen peroxide is added. Pickle in a bath for 5 to 10 minutes (room temperature), make the surface of the metal circuit board 10 point average roughness (Rz) to 10 μm or less, and then apply a nickel plating layer by electroless plating or electroplating. A manufacturing method for forming on the surface of a circuit board is described.


また、特許文献2に開示されたセラミックス回路基板は、「セラミックス基板の一方の面には金属回路、他方の面には金属放熱板がそれぞれめっきが施されて形成せれてなり、しかもその表面粗さがRmax≦5μmで光沢度が40以上であることを特徴とする」セラミックス回路基板である。また、特許文献2には、そのようなセラミックス回路基板の製造方法として、セラミックス基板にろう材を介して金属回路板および金属放熱板を接合し、金属回路板および金属放熱板を硫酸および過酸化水素を含む溶液を用いて化学的研磨を施し、無電解めっきでめっきを施す製造方法が記載されている。

Further, the ceramic circuit board disclosed in Patent Document 2 is described as follows: “A ceramic circuit board is formed by plating a metal circuit on one side and a metal heat sink on the other side, and has a rough surface. Rmax ≦ 5 μm and glossiness is 40 or more. ”A ceramic circuit board. Further, in Patent Document 2, as a method for manufacturing such a ceramic circuit board, a metal circuit board and a metal heat sink are joined to the ceramic board via a brazing material, and the metal circuit board and the metal heat sink are mixed with sulfuric acid and peroxide. A manufacturing method is described in which chemical polishing is performed using a solution containing hydrogen and plating is performed by electroless plating.


さらに、本願出願人の出願に係る特許文献3には、「セラミックス基板の一面に回路基板、他方の面に金属放熱板が設けられた回路基板の製造方法であって、前記セラミックス基板の一面に前記金属回路を形成し、他方の面に前記金属放熱板を形成した後に化学研磨を行い、前記化学研磨を行った後に防錆剤を付与することを特徴とする」セラミックス回路基板の製造方法、およびその製造方法により製造された回路基板であって、「前記金属回路または前記金属放熱板の表面粗さがRaにして0.1〜10μm、またはRmaxにして1.0〜5.0μmである」セラミックス回路基板が、開示されている。

Further, Patent Document 3 relating to the application of the present applicant states that “a circuit board manufacturing method in which a circuit board is provided on one surface of a ceramic substrate and a metal heat sink is provided on the other surface, The method for producing a ceramic circuit board, wherein the metal circuit is formed, the metal heat sink is formed on the other surface, then chemical polishing is performed, and a rust inhibitor is applied after the chemical polishing is performed. And a circuit board manufactured by the manufacturing method, wherein “the surface roughness of the metal circuit or the metal heat sink is 0.1 to 10 μm in Ra, or 1.0 to 5.0 μm in Rmax. A ceramic circuit board is disclosed.

特開2001−24296号公報JP 2001-24296 A 特開平7−147465号公報JP-A-7-147465 特開2007−81217号公報JP 2007-81217 A


上記特許文献1〜3は、いずれも金属回路板に半導体素子等を実装する場合に、両者を接合する溶融半田の濡れ性や形成された半田層の健全性を確保するためになされており、各々一定の効果を奏することができるものの、回路板に半導体素子等を接合する工程における回路板表面における溶融半田の濡れ広がり性の点で改善できる余地があった。

The above Patent Documents 1 to 3 are all made in order to ensure the wettability of the molten solder and the soundness of the formed solder layer when the semiconductor elements are mounted on the metal circuit board, Although each of them can provide a certain effect, there is room for improvement in terms of wet solder spreading on the surface of the circuit board in the process of bonding a semiconductor element or the like to the circuit board.

すなわち、接合工程は、回路板の出発材である銅からなる回路原板とセラミックス基板とをろう材を介して接合する加熱プロセスである。そして、接合工程では、周知のように、回路原板に付加される熱により回路原板を構成する結晶子は再結晶し、粗粒化する。そして、回路原板をセラミックス基板に接合するため、図3(d)において温度プロファイルPOとして示すように、単に、ろう材が溶融する温度域P5まで昇温すると、接合工程を経て形成されてなる回路板9aには、図5(a)に示すように、回路板9aを鉛直方向(厚み方向)に沿い切断してその切断面を見たとき、回路板9aの表面の垂直方向に対して±30°以内の成長方位を有する結晶子C1を主体とした第1再結晶相N1、回路板9aの表面の平行方向に対して±30°以内の成長方位を有する結晶子C2を主体とした第2再結晶相N2、および結晶子C1の成長方位と結晶子C2の成長方位の間の成長方位を有する結晶子C3を主体とした第3再結晶相N3が生じる場合がある。なお、図5(a)において、符号1eはセラミックス基板、符号1dは、セラミックス基板1eと回路板9aとを接合しているろう材層である。ここで、図5(a)は、接合工程を経た後の回路板9aの組織の模式的な拡大断面図であり、理解のため結晶子C1〜C3は矩形状に描いており、また各構成要素のハッチングは省略している(図5(b)および(c)において同様である)。さらに、概念的な図である図5(a)では、第1再結晶相N1および第2再結晶相N2ともに一つの結晶子C1〜C3がその成長方向と直交する方向に並列した状態で構成された第1再結晶相N1〜第3再結晶相N3となっているが、現実の第1再結晶相N1〜第3再結晶相N3では、成長方向においても複数の結晶子C1〜C3を有している。
In other words, the bonding step is a heating process in which a circuit original plate made of copper, which is a starting material for a circuit board, and a ceramic substrate are bonded via a brazing material. In the joining process, as is well known, crystallites constituting the circuit original plate are recrystallized and coarsened by heat applied to the circuit original plate. Then, in order to join the circuit original plate to the ceramic substrate, as shown as a temperature profile PO in FIG. 3 (d), the circuit formed simply through the joining process when the temperature is raised to the temperature range P5 where the brazing material melts. 5A, when the circuit board 9a is cut along the vertical direction (thickness direction) and the cut surface is viewed, the board 9a is ±± First recrystallized phase N1 mainly composed of crystallite C1 having a growth orientation within 30 ° and first crystallite C2 mainly composed of crystallite C2 having a growth orientation within ± 30 ° with respect to the parallel direction of the surface of circuit board 9a. There are cases where the second recrystallization phase N2 and the third recrystallization phase N3 mainly composed of the crystallite C3 having a growth orientation between the growth orientation of the crystallite C1 and the growth orientation of the crystallite C2 may occur. In FIG. 5A, reference numeral 1e denotes a ceramic substrate, and reference numeral 1d denotes a brazing material layer that joins the ceramic substrate 1e and the circuit board 9a. Here, FIG. 5 (a) is a schematic enlarged cross-sectional view of the structure of the circuit board 9a after the joining process, and the crystallites C1 to C3 are drawn in a rectangular shape for the sake of understanding. The hatching of elements is omitted (the same applies to FIGS. 5B and 5C). Further, in FIG. 5A, which is a conceptual diagram, both the first recrystallized phase N1 and the second recrystallized phase N2 are configured in a state where one crystallite C1 to C3 is juxtaposed in a direction perpendicular to the growth direction. The first recrystallized phase N1 to the third recrystallized phase N3 are formed. In the actual first recrystallized phase N1 to third recrystallized phase N3, a plurality of crystallites C1 to C3 are also formed in the growth direction. Have.

ここで、回路原板を構成する結晶が再結晶し、第1再結晶相N1〜第3再結晶相を各々構成する結晶子C1〜結晶子C3が粗粒化した回路板9aが形成された場合、つまり鉛直方向に沿う切断面における結晶子C1〜C3の個々の長軸長が大きな場合には、次のような問題が生じる。すなわち、接合工程に引き続き行われる化学研磨工程において、図5(b)に示すように、第2再結晶相N2の表面は平滑なままであるが、結晶子C1および結晶子C3の間の境界が選択的に除去されて第1再結晶相N1,第3再結晶相N3の表面には凹凸が生じるとともに略鉛直方向の成長方位を有する第1再結晶相N1の表面は優先的に除去される。このため、各再結晶相の組み合わせの中で、特に第1再結晶相N1と第2再結晶相N2との境界部Kに過度な大きさの凹部O1や段差D1が生じる場合がある。
Here, when the crystal constituting the circuit original plate is recrystallized, and the circuit board 9a in which the crystallites C1 to C3 constituting the first recrystallization phase N1 to the third recrystallization phase are coarsened is formed. That is, when the individual long axis lengths of the crystallites C1 to C3 in the cut surface along the vertical direction are large, the following problem occurs. That is, in the chemical polishing step performed subsequent to the bonding step, as shown in FIG. 5B, the surface of the second recrystallization phase N2 remains smooth, but the boundary between the crystallite C1 and the crystallite C3. Are selectively removed, and the surfaces of the first recrystallized phase N1 and the third recrystallized phase N3 are uneven, and the surface of the first recrystallized phase N1 having a substantially vertical growth orientation is preferentially removed. The For this reason, in each combination of recrystallized phases, an excessively large recess O1 or step D1 may be generated particularly at the boundary K between the first recrystallized phase N1 and the second recrystallized phase N2.

そして、化学研磨工程後のNiめっき工程において、図5(c)に示すように、回路板9aの表面にNiめっき層9iが被着される。上記のような表面状態の回路板9aの表面に形成されたNiめっき層9iには、上記第1再結晶相N1の表面状態が転写された表面が粗い粒状相M1と、上記第2再結晶相N2の表面状態が転写された表面が平滑な平滑相M2および上記第3再結晶相N3の表面状態が転写された相M3が形成されるとともに、上記第1再結晶相N1と第2再結晶相N2の境界部Kに生じた段差D1や凹部O1も粒状相M1と平滑相M2の境界に転写される。すると、Niめっき工程後の例えば洗浄工程において、上記粒状相M1と平滑相M2の境界に存在する凹部O2や段差D2に水分が残留し、または雰囲気の酸素により選択的に酸化され、溶融半田との濡れ性の悪い酸化層が当該境界部Kに形成されるため溶融半田の濡れ広がりの障壁となり、Niめっき層9iの表面における溶融半田の濡れ広がりを阻害する。
Then, in the Ni plating step after the chemical polishing step, as shown in FIG. 5C, the Ni plating layer 9i is deposited on the surface of the circuit board 9a. The Ni plating layer 9i formed on the surface of the circuit board 9a having the above surface state has a granular phase M1 having a rough surface to which the surface state of the first recrystallization phase N1 is transferred, and the second recrystallization. A smooth phase M2 to which the surface state of the phase N2 is transferred and a phase M3 to which the surface state of the third recrystallization phase N3 is transferred are formed, and the first recrystallization phase N1 and the second recrystallization phase N3 The step D1 and the recess O1 generated at the boundary K of the crystal phase N2 are also transferred to the boundary between the granular phase M1 and the smooth phase M2. Then, in, for example, a cleaning process after the Ni plating process, moisture remains in the concave portion O2 or the step D2 existing at the boundary between the granular phase M1 and the smooth phase M2, or is selectively oxidized by oxygen in the atmosphere, Since an oxide layer having poor wettability is formed at the boundary portion K, it becomes a barrier to the spread of wetness of the molten solder and inhibits the spread of wetness of the molten solder on the surface of the Ni plating layer 9i.


本発明は、上記従来技術に鑑みなされたものであり、溶融半田の濡れ性が改善されたNiめっき層を有する回路板を形成可能なセラミックス回路基板の製造方法および溶融半田の濡れ広がり性が改善されたNiめっき層を有する回路板が形成されたセラミックス回路基板を提供することを目的としている。

The present invention has been made in view of the above prior art, and a method for producing a ceramic circuit board capable of forming a circuit board having a Ni plating layer with improved wet solder wettability and improved wet solder wettability. An object of the present invention is to provide a ceramic circuit board on which a circuit board having a Ni plating layer is formed.


上記課題を解決するため本発明者らは鋭意検討し、上記したとおり、表面の粗さが異なる二の相、すなわち平滑相と粒状相とがNiめっき層に形成されており、その二の相の境界が障害となり溶融半田の濡れ広がり性を阻害していること、およびその二の相の境界の状態を制御することにより溶融半田の濡れ広がり性を改善できることを知見し、本発明を完成させたものである。

In order to solve the above problems, the present inventors have intensively studied, and as described above, two phases having different surface roughness, that is, a smooth phase and a granular phase are formed in the Ni plating layer, and the two phases are formed. The fact that the boundary of the solder hinders the wet solder spreading property of the molten solder, and that the wet solder spreading property of the molten solder can be improved by controlling the boundary state of the two phases, has completed the present invention. It is a thing.


かかる知見に基づき構成された本発明の一態様は、セラミックス基板と、前記セラミックス基板の一面にろう材層を介し接合された銅を主体とした回路板と、前記回路板の表面に被着されたNiめっき層を有するセラミックス回路基板の製造方法であって、ろう材を介しセラミックス基板の一面に回路原板を配置する配置工程と、セラミックス基板の一面に回路原板を加熱し接合する接合工程と、接合工程で形成されてなる回路板を化学研磨する化学研磨工程と、化学研磨工程の後に回路板の表面にNiめっき層を被着するめっき工程と、を含み、前記回路原板は、調質記号1/2H〜H相当の銅または銅合金からなる銅板であり、前記接合工程は、その温度プロファイルにおいて、第1の温度域と、前記第1の温度域の後に配置された、ろう材の溶融温度で加熱する第2の温度域とを有し、前記第1の温度域の温度が400〜750℃であることを特徴するセラミックス回路基板の製造方法である。

An aspect of the present invention configured based on such knowledge is attached to a surface of a ceramic substrate, a circuit board mainly composed of copper bonded to one surface of the ceramic substrate through a brazing material layer, and the surface of the circuit board. A method of manufacturing a ceramic circuit board having a Ni plating layer, a placement step of placing a circuit original plate on one surface of the ceramic substrate via a brazing material, a joining step of heating and joining the circuit original plate to one surface of the ceramic substrate, A chemical polishing step for chemically polishing the circuit board formed in the joining step, and a plating step for depositing a Ni plating layer on the surface of the circuit board after the chemical polishing step, wherein the circuit original plate is a tempering symbol A copper plate made of copper or a copper alloy corresponding to 1 / 2H to H, and in the temperature profile, the joining step is arranged in a first temperature range and after the first temperature range. And a second temperature zone for heating at a melt temperature of wood is a method of manufacturing a ceramic circuit board, wherein the temperature of the first temperature range is 400 to 750 ° C..


かかるセラミックス回路基板(以下、単に回路基板と言う場合がある。)の製造方法によれば、配置工程においてセラミックス基板の一面にろう材を介して配置された回路原板は、接合工程において、加熱されてろう材を介しセラミックス基板に接合される。そして、接合工程において加熱されてなる回路板は、化学工程において化学研磨され回路板の表面が清浄化され、その後、めっき工程において回路板の表面にはNiメッキ層が形成される。

According to the method for manufacturing such a ceramic circuit board (hereinafter, sometimes simply referred to as a circuit board), the circuit original plate placed on one surface of the ceramic substrate via the brazing material in the placing step is heated in the joining step. Bonded to the ceramic substrate through a brazing filler metal. The circuit board heated in the bonding process is chemically polished in the chemical process to clean the surface of the circuit board, and then a Ni plating layer is formed on the surface of the circuit board in the plating process.


ここで、上記配置工程において配置される回路原板は、配置工程の後行われる接合工程において回路原板に付加される熱により再結晶して組織が変化し、回路基板を構成する回路板となる回路板の出発材料である。この回路原板としては、定義される調質記号1/2H〜H相当の銅または銅合金からなる銅板を選択する。

Here, the circuit original plate arranged in the arrangement step is recrystallized by heat applied to the circuit original plate in the joining step performed after the arrangement step, and the structure is changed, and the circuit becomes the circuit board constituting the circuit board. The starting material for the board. As the circuit original plate, a copper plate made of copper or a copper alloy corresponding to the defined tempering symbols 1 / 2H to H is selected.

銅または銅合金からなる回路原板の平均結晶粒径は100μm以下とすることが好ましく、より好ましくは50μm以下である。結晶粒径を評価する際のエッチングは、10%硫酸溶液を用い50℃×1minの条件で行った。
The average crystal grain size of the circuit original plate made of copper or copper alloy is preferably 100 μm or less, and more preferably 50 μm or less. Etching for evaluating the crystal grain size was performed using a 10% sulfuric acid solution at 50 ° C. × 1 min.


さらに、上記態様の回路基板の製造方法において、図3(a)に示すように、接合工程の温度プロファイルPAは、ろう材が溶融する温度で加熱する第2の温度域P5の前に、400〜750℃の温度で加熱する第1の温度域P3が配置されている。その結果、図4(a)に示すように、接合工程を経て回路原板が加熱することにより形成された接合体3の回路板1aは、成長方位が回路板1aの表面の垂直方向に対して±30°以内である結晶子S1からなり当該結晶子S1の長軸長L1の平均値が100〜400μmである第1再結晶相Q1と、成長方位が回路板1aの表面の平行方向に対して±30°以内である結晶子S2からなり当該結晶子S2の長軸長の平均値L2が100〜400μmである第2再結晶相Q2とを有することとなる。なお、回路板1aは、図示するように、成長方位が回路板1aの表面に対して傾斜した結晶子S3からなる第3再結晶相Q3も含み、当該結晶子S3の長軸長の平均値も100〜400μm程度となっている。

Further, in the circuit board manufacturing method of the above aspect, as shown in FIG. 3A, the temperature profile PA of the bonding step is 400 before the second temperature range P5 where the brazing material is heated at a melting temperature. The 1st temperature range P3 heated at the temperature of -750 degreeC is arrange | positioned. As a result, as shown in FIG. 4A, the circuit board 1a of the joined body 3 formed by heating the circuit original plate through the joining process has a growth orientation with respect to the direction perpendicular to the surface of the circuit board 1a. A first recrystallized phase Q1 that is made of a crystallite S1 that is within ± 30 ° and that has an average value of the major axis L1 of the crystallite S1 of 100 to 400 μm, and a growth orientation with respect to the parallel direction of the surface of the circuit board 1a. And a second recrystallized phase Q2 having an average value L2 of the major axis length of the crystallite S2 of 100 to 400 μm. The circuit board 1a also includes a third recrystallized phase Q3 composed of crystallites S3 whose growth orientation is inclined with respect to the surface of the circuit board 1a as shown in the figure, and the average value of the major axis lengths of the crystallites S3 Is about 100 to 400 μm.


このように、特に、それぞれ第1再結晶相Q1および第2再結晶相Q2を構成する結晶子S1,S2の長軸長L1,L2は所定範囲に制御されて結晶子が微細化されるため、その後の化学研磨工程において、図4(b)に示すように、第1再結晶相Q1と第2再結晶相Q2との境界部Kに形成される段差T1および凹部U1は従来の段差O1および凹部D1に比べて非常に小さい。そして、化学研磨工程後、めっき工程を行うことにより、図4(c)に示すように、回路基板1のNiめっき層1iには、上記第1再結晶相Q1の表面上に粒状相R1が、上記第2再結晶相Q2の表面上に平滑相R2が形成される。ここで、上記したように回路板1aの第1再結晶相Q1および第2再結晶相Q2との境界部Kには過大な大きさの段差や凹部が形成されていないので、Niめっき層1iの粒状相R1および平滑相R2の境界部に形成される段差T2および凹部U2は従来の段差O2および凹部D2に比べて非常に小さいので、当該境界部に、溶融半田の濡れ広がりを阻害する酸化層が形成されることが抑制され、もって所望の溶融半田の濡れ広がり性を確保することができる。なお、第1の温度域の温度が400℃未満の場合、および750℃を超える場合、いずれにおいても第1再結晶相および第2再結晶相を構成する結晶子が粗粒化し、その長軸長が400μmを超えるので好ましくない。さらに、第1の温度域の温度域は、500℃〜600℃であればより好適である。

In this way, in particular, since the long axis lengths L1 and L2 of the crystallites S1 and S2 constituting the first recrystallization phase Q1 and the second recrystallization phase Q2 are controlled within a predetermined range, the crystallites are miniaturized. In the subsequent chemical polishing step, as shown in FIG. 4B, the step T1 and the recess U1 formed at the boundary K between the first recrystallization phase Q1 and the second recrystallization phase Q2 are the conventional step O1. And it is very small compared with the recessed part D1. Then, by performing a plating step after the chemical polishing step, as shown in FIG. 4C, the Ni plating layer 1i of the circuit board 1 has a granular phase R1 on the surface of the first recrystallized phase Q1. A smooth phase R2 is formed on the surface of the second recrystallized phase Q2. Here, as described above, an excessively large step or recess is not formed at the boundary K between the first recrystallized phase Q1 and the second recrystallized phase Q2 of the circuit board 1a. The step T2 and the recess U2 formed at the boundary between the granular phase R1 and the smooth phase R2 are very small as compared with the conventional step O2 and the recess D2, and therefore, oxidation that inhibits the wetting and spreading of the molten solder at the boundary The formation of the layer is suppressed, so that the desired molten solder wettability can be ensured. When the temperature in the first temperature range is less than 400 ° C. and exceeds 750 ° C., the crystallites constituting the first recrystallized phase and the second recrystallized phase are coarsened and the major axis thereof Since the length exceeds 400 μm, it is not preferable. Furthermore, the temperature range of the first temperature range is more preferably 500 ° C to 600 ° C.


上記第1の温度域までの昇温速度が、2.0〜20.0℃/分であることが望ましい。昇温速度が2.0℃/分未満の場合および20.0℃/分を超える場合には、結晶成長方向が回路板の表面の垂直方向に対して±30°以内の結晶子から構成され、化学研磨のためにその粒界が侵食された第1再結晶相の表面状態が反映された、表面粗さの粗いNiめっき層の粒状相の面積が多く、その結果、溶融半田の濡れ広がり性がやや低下する。

It is desirable that the rate of temperature rise to the first temperature range is 2.0 to 20.0 ° C./min. When the rate of temperature increase is less than 2.0 ° C./min and exceeds 20.0 ° C./min, the crystal growth direction is composed of crystallites within ± 30 ° with respect to the direction perpendicular to the surface of the circuit board. The area of the granular phase of the Ni-plated layer having a rough surface reflects the surface state of the first recrystallized phase whose grain boundaries have been eroded due to chemical polishing, and as a result, the wet solder spreads. Sexually decreases.


さらに、上記化学研磨工程において、硫酸5.0〜30.0重量%、過酸化水素2.0〜10.0重量%を含む混合溶液を使用することが望ましい。硫酸が5.0%未満の場合には、回路板表面の清浄化が十分に行われないため溶融半田の濡れ広がり性が低下する。また、硫酸が30.0%を超える場合または過酸化水素が2.0%未満の場合には、第1再結晶相と第2再結晶相の境界に過大な大きさの段差や凹部が形成されやすく、当該段差や凹部のため物理的に溶融半田の濡れ広がり性が低下する。さらに、過酸化水素が10.0%を超える場合には、回路板の表面が平滑となりすぎるため溶融半田の濡れ広がりが過剰となる。

Further, in the chemical polishing step, it is desirable to use a mixed solution containing 5.0 to 30.0% by weight of sulfuric acid and 2.0 to 10.0% by weight of hydrogen peroxide. When sulfuric acid is less than 5.0%, the circuit board surface is not sufficiently cleaned, so that the wet solder spreadability decreases. Further, when sulfuric acid exceeds 30.0% or hydrogen peroxide is less than 2.0%, an excessively large step or recess is formed at the boundary between the first recrystallization phase and the second recrystallization phase. It is easy to be done, and the wet-spreading property of the molten solder is physically lowered due to the step and the concave portion. Furthermore, when hydrogen peroxide exceeds 10.0%, the surface of the circuit board becomes too smooth, and the wet solder spreads excessively.


本発明の別の態様は、セラミックス基板と、前記セラミックス基板の一面にろう材層を介し接合された銅または銅合金からなる回路板と、前記回路板の表面に被着されたNiめっき層を有するセラミックス回路基板であって、前記回路板は下記で定義される第1再結晶相および第2再結晶相を含み、前記Niめっき層は、前記第1再結晶相の表面上に形成された粒状相および前記第2再結晶相の表面上に形成された平滑相を含み、前記粒状相と平滑相との境界部における酸素濃度が25.0原子%以下であるセラミックス回路基板である。但し、酸素濃度が低すぎると、Niめっき表面に極微量の不動態膜を形成して過剰の酸化を防止することができにくくなる。このため、前記粒状相と平滑相との境界部における酸素濃度が2原子%以上となることが好ましい。一方、酸素濃度が25原子%超となると、半導体素子の実装過程で用いるはんだを酸化させてしまい、所望のはんだ濡れ性が確保できず、半導体素子と回路基板との接合を介するはんだ相内においてボイドが散在する不具合が生じることがある。

第1再結晶相:成長方位が回路板の表面の垂直方向に対して±30°以内である結晶子からなり、当該結晶子の長軸長の平均値が100〜400μmである相

第2再結晶相:成長方位が回路板の表面の平行方向に対して±30°以内である結晶子からなり、当該結晶子の長軸長の平均値が100〜400μmである相

Another aspect of the present invention includes a ceramic substrate, a circuit board made of copper or a copper alloy bonded to one surface of the ceramic substrate via a brazing material layer, and a Ni plating layer deposited on the surface of the circuit board. The circuit board includes a first recrystallized phase and a second recrystallized phase defined below, and the Ni plating layer is formed on a surface of the first recrystallized phase. The ceramic circuit board includes a smooth phase formed on the surface of the granular phase and the second recrystallized phase, and an oxygen concentration at a boundary between the granular phase and the smooth phase is 25.0 atomic% or less. However, if the oxygen concentration is too low, it becomes difficult to form an extremely small amount of a passive film on the Ni plating surface and prevent excessive oxidation. For this reason, it is preferable that the oxygen concentration in the boundary part of the said granular phase and a smooth phase will be 2 atomic% or more. On the other hand, when the oxygen concentration exceeds 25 atomic%, the solder used in the mounting process of the semiconductor element is oxidized, and the desired solder wettability cannot be ensured, and in the solder phase through the bonding between the semiconductor element and the circuit board. In some cases, voids are scattered.

First recrystallized phase: a phase composed of crystallites whose growth orientation is within ± 30 ° with respect to the direction perpendicular to the surface of the circuit board, and whose average major axis length is 100 to 400 μm

Second recrystallized phase: a phase composed of crystallites whose growth orientation is within ± 30 ° with respect to the parallel direction of the surface of the circuit board, and whose average major axis length of the crystallite is 100 to 400 μm

結晶子は、1つ1つ配向していて再結晶粒子内で配向集合組織となる。配向方向により、化学研磨におけるエッチング速度が異なるため、結晶子が確認できる。
The crystallites are oriented one by one and become an oriented texture in the recrystallized particles. Since the etching rate in chemical polishing differs depending on the orientation direction, crystallites can be confirmed.


かかる回路基板によれば、図4(b)に示すように、銅または銅合金からなる回路板1aは、成長方位が回路板1aの表面の垂直方向に対して±30°以内である結晶子S1からなり当該結晶子S1の長軸長L1の平均値が100〜400μmである第1再結晶相Q1と、成長方位が回路板1aの表面の平行方向に対して±30°以内である結晶子S2からなり当該結晶子S2の長軸長の平均値L2が100〜400μmである第2再結晶相Q2とを有している。なお、回路板1aは、図示するように、成長方位が回路板1aの表面に対して傾斜した結晶子S3からなる第3再結晶相Q3も含み、当該結晶子S3の長軸長の平均値も100〜400μm程度となっている。

According to such a circuit board, as shown in FIG. 4B, the circuit board 1a made of copper or a copper alloy has a crystallite whose growth orientation is within ± 30 ° with respect to the direction perpendicular to the surface of the circuit board 1a. A first recrystallized phase Q1 composed of S1 and having an average value of the long axis length L1 of the crystallite S1 of 100 to 400 μm, and a crystal whose growth orientation is within ± 30 ° with respect to the parallel direction of the surface of the circuit board 1a And a second recrystallized phase Q2 having an average value L2 of the major axis length of the crystallite S2 of 100 to 400 μm. The circuit board 1a also includes a third recrystallized phase Q3 composed of crystallites S3 whose growth orientation is inclined with respect to the surface of the circuit board 1a as shown in the figure, and the average value of the major axis lengths of the crystallites S3 Is about 100 to 400 μm.


ここで、第1再結晶相Q1および第2結晶Q2相を構成する結晶子S1・S2の長軸長は、いずれも100〜400μmの範囲に制御されて結晶子が微細化されている。かかる微細な結晶子S1・S2で構成された第1再結晶相Q1および第2再結晶相Q2からなる回路板1aは、化学研磨工程においての当該第1再結晶相Q1と第2再結晶相Q2との境界部Kに過大な段差T1や凹部U1が発生することが抑制される。そして、図4(c)および図4(d)に示すように、回路板1aの表面に被着されたNiめっき層1iは、第1再結晶相Q1の表面上に形成された粒状相R1、第2再結晶相Q2の表面上に形成された平滑相R2を含んでいる。上記のように微細化された結晶子S1・S2からなる回路板1aの第1再結晶相Q1および第2再結晶相Q2の境界部Kには、化学研磨による過大な段差や凹部が形成されておらず、その結果、回路板1aの表面、すなわち第1再結晶相Q1および第2再結晶相Q2の表面に被着されたNiめっき層1iの粒状部R1および平滑部R2の境界部にも過大な段差や凹部が形成されていない。したがって、上記回路基板1は、そのNiめっき層1iの粒状相R1と平滑相R2との境界部に、溶融半田の濡れ広がりを阻害する酸素濃度の高い酸化層が形成され難く、当該境界部の酸素濃度が25%以下となり、所望の溶融半田の濡れ広がり性を確保することができる。

Here, the major axis lengths of the crystallites S1 and S2 constituting the first recrystallized phase Q1 and the second crystal Q2 phase are both controlled in the range of 100 to 400 μm, and the crystallites are miniaturized. The circuit board 1a composed of the first recrystallized phase Q1 and the second recrystallized phase Q2 composed of the fine crystallites S1 and S2 has the first recrystallized phase Q1 and the second recrystallized phase in the chemical polishing step. Generation | occurrence | production of the excessive level | step difference T1 and the recessed part U1 in the boundary part K with Q2 is suppressed. And as shown in FIG.4 (c) and FIG.4 (d), Ni plating layer 1i deposited on the surface of the circuit board 1a is granular phase R1 formed on the surface of the 1st recrystallized phase Q1. And a smooth phase R2 formed on the surface of the second recrystallized phase Q2. Excessive steps or recesses due to chemical polishing are formed at the boundary K between the first recrystallized phase Q1 and the second recrystallized phase Q2 of the circuit board 1a composed of the fine crystallites S1 and S2 as described above. As a result, at the boundary between the granular portion R1 and the smooth portion R2 of the Ni plating layer 1i deposited on the surface of the circuit board 1a, that is, the surfaces of the first recrystallization phase Q1 and the second recrystallization phase Q2. There is no excessive step or recess. Therefore, in the circuit board 1, it is difficult to form an oxide layer having a high oxygen concentration that inhibits the wet spread of the molten solder at the boundary between the granular phase R1 and the smooth phase R2 of the Ni plating layer 1i. The oxygen concentration is 25% or less, and the desired wet solder spreading property can be ensured.


さらに、Niめっき層の表面における任意の10mm×10mmの領域における前記粒状相の面積率が40%以下であることが好ましい。粒状相の面積率が40%を超えると、当該粒状相は、結晶成長方向が回路板の表面の垂直方向に対して±30°以内の結晶子から構成され、化学研磨のためにその粒界が侵食された第1再結晶相の表面状態が反映され、その表面粗さが粗いため、溶融半田の濡れ広がり性が低下する

Furthermore, it is preferable that the area ratio of the granular phase in an arbitrary region of 10 mm × 10 mm on the surface of the Ni plating layer is 40% or less. When the area ratio of the granular phase exceeds 40%, the granular phase is composed of crystallites whose crystal growth direction is within ± 30 ° with respect to the direction perpendicular to the surface of the circuit board. The surface state of the first recrystallized phase in which the solder is eroded is reflected, and the surface roughness is rough, so that the wet spreadability of the molten solder is lowered.


さらに加えて、Niめっき層の表面における任意の10mm×10mmの領域における全ての相の境界長をS1前記粒状相と平滑相との境界長をS2としたとき、S2/S1≦30%であることが望ましい。粒状相と平滑相との境界部の割合を上記範囲とすることで、溶融半田の濡れ広がり性をより高めることができる。

In addition, when the boundary length of all phases in an arbitrary 10 mm × 10 mm region on the surface of the Ni plating layer is S1, the boundary length between the granular phase and the smooth phase is S2, S2 / S1 ≦ 30% It is desirable. By setting the ratio of the boundary portion between the granular phase and the smooth phase within the above range, the wet solder spreadability can be further improved.


加えて、粒状相と平滑相との境界部に形成された段差が1.0〜10.0μmであるか、前記粒状相と平滑相との境界部に形成された凹部の深さが5.0〜25.0μmであることが望ましい。境界部に形成された段差や凹部の大きさが上位範囲とすることにより、境界部に形成された酸化層による障壁のみならず、境界部に形成された該段差や凹部が物理的な障壁となり溶融半田の濡れ広がりを阻害することを効果的に抑制でき、溶融半田の濡れ広がり性をさらに高めることができる。

In addition, the step formed at the boundary portion between the granular phase and the smooth phase is 1.0 to 10.0 μm, or the depth of the concave portion formed at the boundary portion between the granular phase and the smooth phase is 5. It is desirable that it is 0-25.0 micrometers. By setting the size of the step or recess formed at the boundary to the upper range, not only the barrier due to the oxide layer formed at the boundary but also the step or recess formed at the boundary becomes a physical barrier. Inhibiting the spread of wet solder by the solder can be effectively suppressed, and the wet spread of the molten solder can be further enhanced.


上記説明したように、本発明によればその目的を達成することができる。

As described above, according to the present invention, the object can be achieved.

本発明に係るセラミックス回路基板の正断面図である。It is a front sectional view of a ceramic circuit board according to the present invention. 本発明に係るセラミックス回路基板の平面図である。1 is a plan view of a ceramic circuit board according to the present invention. 図1のセラミックス回路基板の製造工程のうち配置工程を説明する図 である。It is a figure explaining the arrangement | positioning process among the manufacturing processes of the ceramic circuit board of FIG. 図1のセラミックス回路基板の製造工程のうち接合工程を説明する図 である。It is a figure explaining a joining process among the manufacturing processes of the ceramic circuit board of FIG. 図1のセラミックス回路基板の製造工程のうちめっき工程を説明する 図である。It is a figure explaining a plating process among the manufacturing processes of the ceramic circuit board of FIG. 接合工程における温度プロファイルの第1例の図である。It is a figure of the 1st example of the temperature profile in a joining process. 接合工程における温度プロファイルの第2例の図である。It is a figure of the 2nd example of the temperature profile in a joining process. 接合工程における温度プロファイルの第3例の図である。It is a figure of the 3rd example of the temperature profile in a joining process. 従来技術の接合工程における温度プロファイルの図である。It is a figure of the temperature profile in the joining process of a prior art. 本発明に係る接合工程後の回路板の拡大断面図である。It is an expanded sectional view of the circuit board after the joining process concerning the present invention. 本発明に係る化学研磨工程後の回路板の拡大断面図である。It is an expanded sectional view of the circuit board after the chemical polishing process according to the present invention. 本発明に係るめっき工程後の回路板およびNiめっき層の拡大断面図 である。It is an expanded sectional view of the circuit board and the Ni plating layer after the plating process according to the present invention. 図4(c)のNiめっき層の表面の拡大平面図である。It is an enlarged plan view of the surface of the Ni plating layer of FIG.4 (c). 従来技術における接合工程後の回路板の拡大断面図である。It is an expanded sectional view of the circuit board after the joining process in a prior art. 従来技術における化学研磨工程後の回路板の拡大断面図である。It is an expanded sectional view of the circuit board after the chemical polishing process in the prior art. 従来技術におけるめっき工程後の回路板およびNiめっき層の拡大断 面図である。FIG. 6 is an enlarged cross-sectional view of a circuit board and a Ni plating layer after a plating process in the prior art.


以下、本発明の実施態様に係るセラミックス回路基板の製造方法およびセラミックス回路基板について、図面を参照しつつ説明する。なお、本発明は、下記説明するその実施態様に限定されることなく、その同一性の範囲内において適宜変形して実施することができる。

Hereinafter, a method for manufacturing a ceramic circuit board and a ceramic circuit board according to embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiment described below, and can be carried out by being appropriately modified within the range of the sameness.


まず、本発明に係る回路基板の基本的構成について、その正断面図である図1(a)および平面図である図1(b)を参照して説明する。なお、図1(a)は、図1(b)のA−A断面図である。回路基板1は、セラミックス基板1eと、セラミックス基板1eの一面に配置されたろう材層1dを介してセラミックス基板1eに接合された銅または銅合金からなる回路板1aと、セラミックス基板1eの他面に配置されたろう材層1fを介してセラミックス基板1eに接合された金属製の放熱板1hと、回路板1aおよび金属製の放熱板1hの表面に形成されたNiめっき層1i,1kとを、その基本的な構成として有している。

First, a basic configuration of a circuit board according to the present invention will be described with reference to FIG. 1A which is a front sectional view and FIG. 1B which is a plan view. 1A is a cross-sectional view taken along the line AA in FIG. The circuit board 1 includes a ceramic substrate 1e, a circuit board 1a made of copper or a copper alloy joined to the ceramic substrate 1e via a brazing material layer 1d disposed on one surface of the ceramic substrate 1e, and the other surface of the ceramic substrate 1e. The metal heat sink 1h joined to the ceramic substrate 1e through the brazing filler metal layer 1f, and the Ni plating layers 1i and 1k formed on the surfaces of the circuit board 1a and the metal heat sink 1h, It has as a basic configuration.


図1(b)に示すように、回路板1aは、平面方向において形成された間隙1gを介し配置された第1の回路板1bおよび第2の回路板1cの二の銅板で構成されており、これらにより回路パターンが形成されている。なお、回路板1aは、1枚であってもよく、3枚以上であってもよい。ここで、放熱板1hおよびろう材層1fは任意に配置される要素であるが、以下の説明では、ろう材層1dと同一構成のろう材層1fを介して銅またはそ銅合金からなる放熱板1hがセラミックス基板1eに接合された構成の回路基板1の製造方法について説明する。さらに、回路基板の製造工程において、回路板1aおよび放熱板1hに係る各工程の内容は同一であるので、回路板1aに係る内容のみ詳述し、放熱板1hに係る内容の説明は省略する。

As shown in FIG. 1B, the circuit board 1a is composed of two copper plates, a first circuit board 1b and a second circuit board 1c, which are arranged with a gap 1g formed in the plane direction. Thus, a circuit pattern is formed. The number of circuit boards 1a may be one, or three or more. Here, the heat radiating plate 1h and the brazing filler metal layer 1f are elements that are arbitrarily arranged, but in the following description, the heat radiation is made of copper or a copper alloy via the brazing filler metal layer 1f having the same configuration as the brazing filler metal layer 1d. A method of manufacturing the circuit board 1 having a configuration in which the plate 1h is bonded to the ceramic substrate 1e will be described. Further, in the circuit board manufacturing process, the contents of each process relating to the circuit board 1a and the heat sink 1h are the same, so only the contents relating to the circuit board 1a will be described in detail, and the description relating to the contents related to the heat sink 1h will be omitted. .


回路板1aの表面に形成されたNiめっき層の構成をその要旨とする本発明で使用されるセラミックス基板1eの材質は特に限定されず、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体等、基本的に電気絶縁材料からなる焼結体で構成すればよい。しかしながら、回路基板に実装される半導体素子は、近年、発熱量が増大しかつその動作速度も高速化しているため、強度および破壊靭性など機械的強度が高く、高い熱伝導率を有する窒化珪素質焼結体でセラミックス基板1eを構成することが望ましい。

The material of the ceramic substrate 1e used in the present invention having the structure of the Ni plating layer formed on the surface of the circuit board 1a as its gist is not particularly limited, and is an aluminum oxide sintered body, a mullite sintered body, a carbonized body. What is necessary is just to comprise by the sintered compact which consists of an electrically insulating material fundamentally, such as a silicon sintered compact and an aluminum nitride sintered compact. However, since semiconductor elements mounted on circuit boards have recently increased in calorific value and have increased their operating speed, silicon nitride has high mechanical strength such as strength and fracture toughness and high thermal conductivity. The ceramic substrate 1e is preferably made of a sintered body.


窒化珪素質焼結体でセラミックス基板1eを構成する場合には、例えば窒化珪素90〜97質量%、MgまたはYその他希土類元素を含む焼結助剤3〜10質量%を含む原料粉末に、適量の有機バインダ、可塑剤、分散剤および有機溶剤を添加し、ボールミル等で混合し、スラリーを形成し、当該スラリーをドクターブレード法やカレンダーロール法で成形し、薄板状の成形体であるセラミックスグリーンシートを形成し、しかる後に、セラミックスグリーンシートを所望の形状となるよう打ち抜きまたは裁断をし、1700〜1900℃の温度で焼成することにより、窒化珪素質焼結体からなるセラミックス基板1eを得ることができる。なお、以下の実施例・比較例では、セラミックス基板1eとして、全原料粉100重量部においてSiを93質量%、Mgを酸化物換算で4質量%、Yを酸化物換算で3質量%含む、縦横の大きさが其々30mmおよび40mm、厚みが0.32mmの窒化珪素基板を使用した。

When the ceramic substrate 1e is composed of a silicon nitride sintered body, for example, an appropriate amount of raw material powder containing 90 to 97% by mass of silicon nitride and 3 to 10% by mass of a sintering aid containing Mg or Y or other rare earth elements. Of ceramic binder, plasticizer, dispersant and organic solvent, mixed with a ball mill, etc. to form a slurry, and the slurry is formed by a doctor blade method or a calender roll method. A ceramic substrate 1e made of a silicon nitride sintered body is obtained by forming a sheet and then punching or cutting the ceramic green sheet into a desired shape and firing at a temperature of 1700 to 1900 ° C. Can do. In the following Examples and Comparative Examples, as ceramic substrate 1e, Si 3 N 4 is 93% by mass, Mg is 4% by mass in terms of oxide, and Y is 3% in terms of oxide in 100 parts by weight of the total raw material powder. A silicon nitride substrate having a vertical and horizontal size of 30 mm and 40 mm and a thickness of 0.32 mm was used.


以下、上記窒化珪素基板を使用した回路基板の製造方法について説明する。

Hereinafter, a method for manufacturing a circuit board using the silicon nitride substrate will be described.

[配置工程]

まず、配置工程を行う。図2(a)に示すように、上記セラミックス基板1eの一面にろう材2dを塗布しておく。次いで、ろう材2dを介しセラミックス基板1eの一面に回路原板2aを配置し、被接合体2を形成する。この回路原板2aは、配置工程後に引き続き行われる、回路原板2aとセラミックス基板1eとの接合工程において回路原板2aに付加される熱によりその組織が変化し、回路基板1を構成する回路板1a(図1参照)となる回路板1aの出発材料であり、上記したように調質記号1/2H〜H相当の銅または銅合金からなる銅板を使用する。以下の実施例では、回路原板2aとして2種、厚みが0.5mmの無酸素銅基板C1020H材(JIS規格 H3100)で調質記号1/2H相当の回路原板2aおよび同材質で調質記号H相当の回路原板2aを使用した。回路原板2の縦横の大きさは、接合工程における熱膨張を考慮し、各々29.5mmおよび39.5mmとセラミックス基板1eの大きさより小さいものを使用した。また、比較例としては、同材質および同寸法で調質記号のみO相当および1/4H相当の回路原板を使用した。
[Arrangement process]

First, an arrangement process is performed. As shown in FIG. 2A, a brazing material 2d is applied to one surface of the ceramic substrate 1e. Next, the circuit original plate 2a is arranged on one surface of the ceramic substrate 1e through the brazing material 2d, and the joined body 2 is formed. The circuit original plate 2a has its structure changed by heat applied to the circuit original plate 2a in the joining process of the circuit original plate 2a and the ceramic substrate 1e, which is performed after the arranging step, and the circuit substrate 1a ( As described above, a copper plate made of copper or a copper alloy corresponding to the tempering symbols 1 / 2H to H is used. In the following embodiment, two types of circuit original plate 2a, an oxygen-free copper substrate C1020H material (JIS standard H3100) having a thickness of 0.5 mm, a circuit original plate 2a equivalent to a refining symbol 1 / 2H, and a refining symbol H of the same material An equivalent circuit original plate 2a was used. In consideration of thermal expansion in the joining process, the circuit board 2 was 29.5 mm and 39.5 mm, respectively, which was smaller than the ceramic substrate 1e. Further, as a comparative example, circuit original plates corresponding to O and 1 / 4H were used only for the tempering symbols with the same material and the same dimensions.


接合工程を経た後にろう材層1d(図1(a)参照)となるろう材2dの材質は、特段限定されないが、代表的には、高強度・高封着性等が得られる、共晶組成であるAgとCuを主体としTi,Zr,Hf等の活性金属を添加したAg−Cu系活性ろう材、さらにセラミックス基板Sと回路板の接合強度の観点から好ましくはこれにInが添加された三元系のAg−Cu−In系活性ろう材を使用することが好ましい。以下の実施例では、表1に示す、溶解温度が異なる3種のろう材としてA〜Cの組成となるよう調整されたろう材粉末100質量部に対し、有機バインダとしてアクリル系樹脂を5.3質量部、有機溶剤としてα-テルピネオール19.1質量部、界面活性剤および分散剤0.5質量部を混合したろう材ペーストを使用した。なお、表1には、図3(a)に示す温度プロファイルPAにおいて、ろう材を溶融させる温度である第2の温度域P5の温度を、「第2の温度域 加熱温度」の欄に示している。

The material of the brazing filler metal layer 2d that becomes the brazing filler metal layer 1d (see FIG. 1 (a)) after the joining process is not particularly limited, but typically, eutectic that provides high strength, high sealing properties, and the like. From the viewpoint of the bonding strength between the ceramic substrate S and the circuit board, In is preferably added to the Ag—Cu based active brazing material mainly composed of Ag and Cu and added with active metals such as Ti, Zr, and Hf. It is preferable to use a ternary Ag—Cu—In based active brazing material. In the following examples, an acrylic resin is used as an organic binder in an amount of 5.3 parts by weight with respect to 100 parts by mass of a brazing material powder adjusted to have a composition of A to C as three kinds of brazing materials having different melting temperatures shown in Table 1. A brazing filler paste in which 19.1 parts by mass of α-terpineol as an organic solvent and 0.5 parts by mass of a surfactant and a dispersant were mixed was used. In Table 1, in the temperature profile PA shown in FIG. 3A, the temperature of the second temperature range P5, which is the temperature at which the brazing material is melted, is shown in the column of “second temperature range heating temperature”. ing.

Figure 2013237100
Figure 2013237100

[接合工程:概要]

上記配置工程の後、図2(b)に示すように、セラミックス基板1eと回路原板2aとの接合工程を行う。接合工程では、上記配置工程により形成されたセラミックス基板1eおよび回路原板2aからなる被接合体2は、加熱炉に挿入され、両者が接合された接合体3が形成される。なお、接合工程に関する詳細な説明は、後述する。
[Jointing process: overview]

After the arrangement step, as shown in FIG. 2B, a bonding step between the ceramic substrate 1e and the circuit original plate 2a is performed. In the joining step, the joined body 2 composed of the ceramic substrate 1e and the circuit original plate 2a formed by the placement step is inserted into a heating furnace to form a joined body 3 in which both are joined. In addition, the detailed description regarding a joining process is mentioned later.

[エッチング工程]

次いで、接合体3を構成する回路板1aの表面に所望のパターンで二のレジスト膜を形成し、その後エッチング処理を施して回路板1aを分割し、図1(b)に示すように、平面方向において間隙1gを挟む状態で回路パターンである二の回路板1b,1cを形成した。具体的には、回路板1aの表面に、紫外線硬化型エッチングレジストをスクリーン印刷法で、下記の第1の回路板お1aよび第2の回路板1bの寸法に対応したパターンで塗布し、その後、液温を50℃に設定したエッチング液である塩化第2鉄(FeCl)溶液(46.5Be)に接合体を浸漬し、回路板1b,1cを形成した。第1の回路板1bの縦横の大きさは各々28mmおよび12mm、第2の回路板1cの縦横の大きさは各々28mmおよび24mmとした。なお、エッチング工程は必ずしも必要な工程ではなく、予め上記の寸法となるようパターンニングされた回路原板を使用した場合には不要となる。
[Etching process]

Next, a second resist film is formed in a desired pattern on the surface of the circuit board 1a constituting the joined body 3, and then the etching process is performed to divide the circuit board 1a. As shown in FIG. Two circuit boards 1b and 1c, which are circuit patterns, were formed with a gap 1g in the direction. Specifically, an ultraviolet curable etching resist is applied to the surface of the circuit board 1a by a screen printing method in a pattern corresponding to the dimensions of the following first circuit board 1a and second circuit board 1b, and thereafter Then, the joined body was dipped in a ferric chloride (FeCl 3 ) solution (46.5Be), which is an etching solution set at a liquid temperature of 50 ° C., to form circuit boards 1b and 1c. The vertical and horizontal sizes of the first circuit board 1b were 28 mm and 12 mm, respectively, and the vertical and horizontal sizes of the second circuit board 1c were 28 mm and 24 mm, respectively. Note that the etching process is not necessarily a necessary process, and is unnecessary when a circuit original plate that has been previously patterned to have the above dimensions is used.

[化学研磨工程]

必要に応じ行うエッチング工程の後、化学研磨工程において、接合工程において形成された接合体の回路板の表面を化学研磨する。なお、この回路板は、上記したように加熱プロセスである接合工程を経て回路原板の組織が再結晶化したものである。化学研磨工程は、接合工程等で荒れた回路板の表面を清浄化し、その平滑性を回復させるために行われるプロセスであり、例えば、接合体を50℃程度の温度で管理された化学研磨液に3〜10分程度浸漬して行う。この化学研磨液としては、例えば、硫酸(HSO)と過酸化水素水(H)からなる混合溶液を用いることができる。そして、第1再結晶相および第2再結晶相の境界部に過大な大きさの段部や凹部を形成させないという点からは、好ましくは硫酸5.0〜30.0重量%、過酸化水素2.0〜10.0重量%を含む混合溶液を使用することが望ましい。下記の実施例・比較例の化学研磨工程では、硫酸および過酸化水素の組成範囲を変化させつつ、50℃に管理された化学研磨液に接合体を5分間浸漬する条件で化学研磨を行った。
[Chemical polishing process]

After the etching process performed as necessary, in the chemical polishing process, the surface of the circuit board of the joined body formed in the bonding process is chemically polished. In addition, as described above, this circuit board is obtained by recrystallizing the structure of the circuit original board through the joining process which is a heating process. The chemical polishing step is a process performed to clean the surface of the circuit board roughened in the bonding step or the like and restore its smoothness. For example, the chemical polishing liquid in which the bonded body is managed at a temperature of about 50 ° C. For about 3 to 10 minutes. As this chemical polishing liquid, for example, a mixed solution composed of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) can be used. And from the point of not forming an excessively large step or recess at the boundary between the first recrystallized phase and the second recrystallized phase, preferably 5.0 to 30.0% by weight of sulfuric acid, hydrogen peroxide It is desirable to use a mixed solution containing 2.0 to 10.0% by weight. In the chemical polishing steps of the following examples and comparative examples, chemical polishing was performed under conditions in which the joined body was immersed in a chemical polishing liquid controlled at 50 ° C. for 5 minutes while changing the composition range of sulfuric acid and hydrogen peroxide. .

[めっき工程]

化学研磨工程の後、図2(c)に示すめっき工程において、回路板1dの表面にNiめっき層1iを被着する。ここで、Niめっき層1iは、電界めっき法・無電解めっき法いずれで形成してもよいが、以下の実施例・比較例では無電解めっき法でNiめっき層1iを形成した。具体的には、化学研磨工程を経た接合体3を、ニッケル(Ni)を主成分としリン(P)の濃度が8重量%に調整された無電解メッキ液を85℃に管理し、その無電解メッキ液中に25分間浸漬し、厚みが5μmのNiめっき層1iが回路板1aの表面に形成された回路基板1を得た。
[Plating process]

After the chemical polishing step, a Ni plating layer 1i is deposited on the surface of the circuit board 1d in the plating step shown in FIG. Here, the Ni plating layer 1i may be formed by either an electroplating method or an electroless plating method, but in the following examples and comparative examples, the Ni plating layer 1i was formed by an electroless plating method. Specifically, the joined body 3 that has undergone the chemical polishing step is controlled at 85 ° C. with an electroless plating solution in which nickel (Ni) is the main component and the concentration of phosphorus (P) is adjusted to 8 wt%. It was immersed in an electrolytic plating solution for 25 minutes to obtain a circuit board 1 on which a Ni plating layer 1i having a thickness of 5 μm was formed on the surface of the circuit board 1a.

[洗浄工程]

Niめっき工程の後、洗浄工程において、回路板を水洗浄する。洗浄工程は、形成されたNiめっき層に付着する余分なめっき液を除去する工程である。下記の実施例・比較例では、Niめっき工程を経た接合体を、30℃程度の温度で管理された純水中に2分間浸漬して行った。
[Washing process]

After the Ni plating process, the circuit board is washed with water in the cleaning process. The cleaning step is a step of removing excess plating solution adhering to the formed Ni plating layer. In the following examples / comparative examples, the joined body that had undergone the Ni plating step was immersed in pure water controlled at a temperature of about 30 ° C. for 2 minutes.

[接合工程:詳細]

上記概説した回路原板とセラミックス基板との接合工程では、図3(a)に示す温度プロファイルPAで温度を制御しつつ加熱し、回路原板とセラミックス基板とをろう材を介して接合する。そして、当該温度プロファイルPAにおいて、最初に現れる温度の温度域P1は、上記説明したように、好ましくはスクリーン印刷法でセラミックス基板の一面に印刷されたろう材ペーストの添加物である有機バインダを除去するための温度パターンである。その温度は、例えば熱示差分析において有機バインダが初期重量の0.05%となる温度に対し±25℃程度の温度域に設定し、その保持時間は0.5〜5時間程度とすればよい。なお、この温度域P1は、ろう材ペーストが有機バインダを含むために設けられているのであり、有機バインダが添加されずろう材が単体としてセラミックス基板の一面に配置されている場合には、もちろん不要である。
[Bonding process: details]

In the joining process of the circuit original plate and the ceramic substrate outlined above, heating is performed while controlling the temperature with the temperature profile PA shown in FIG. 3A, and the circuit original plate and the ceramic substrate are joined through the brazing material. In the temperature profile PA, the temperature range P1 of the first appearing temperature removes the organic binder, which is an additive of the brazing material paste printed on one surface of the ceramic substrate, preferably by the screen printing method as described above. It is a temperature pattern for. The temperature is set in a temperature range of about ± 25 ° C. with respect to the temperature at which the organic binder is 0.05% of the initial weight in thermal differential analysis, for example, and the holding time may be about 0.5 to 5 hours. . This temperature range P1 is provided because the brazing material paste contains an organic binder. Of course, when the brazing material is disposed on one surface of the ceramic substrate as a simple substance without the addition of the organic binder. It is unnecessary.


有機バインダを除去するための温度域P1の後には、図3(a)に示すように、第1の昇温部P2を介し、400〜750℃の範囲で温度が制御される第1の温度域P3が配置され、第1の保持帯P3の後には、第2の昇温部P4を介し、ろう材が溶融する温度、具体的にはろう材の融点に対し25〜75℃高い温度範囲から選択される所望の温度で制御される第2の温度域P5が配置されている。ここで、第1の温度域P3は、400〜750℃の範囲で温度制御されていればよく、例えば図3(a)に示す温度プロファイルPAの第1の温度域P3のように400〜750℃の範囲から選択された一の温度で保持するようにしてもよく、図3(b)に示す温度プロファイルPBの第1の温度域P3のように当該温度範囲の中で序々に昇温するようにしてもよい。また、図3(c)に示す温度プロファイルPCの第1の温度域P3のように、400〜750℃の温度の中から選択された一の温度P31を前段で一定に保持し、その後昇温部P32を介し、当該温度範囲の中で選択された前記温度P31よりも高い温度P33で一定に保持するよう、第1の温度域P3の中に二の温度域P31およびP33を設けてもよい。なお、以下の実施例・比較例では、図3(a)に示す温度プロファイルで温度を制御した。

After the temperature range P1 for removing the organic binder, as shown in FIG. 3A, the first temperature is controlled in the range of 400 to 750 ° C. via the first temperature raising unit P2. The region P3 is arranged, and after the first holding band P3, the temperature at which the brazing material melts, specifically, the temperature range 25 to 75 ° C. higher than the melting point of the brazing material, via the second temperature raising part P4. A second temperature range P5 controlled at a desired temperature selected from the above is arranged. Here, it is sufficient that the first temperature range P3 is temperature-controlled within a range of 400 to 750 ° C., for example, 400 to 750 like the first temperature range P3 of the temperature profile PA shown in FIG. You may make it hold | maintain at one temperature selected from the range of ° C, and it heats up gradually in the said temperature range like the 1st temperature range P3 of the temperature profile PB shown in FIG.3 (b). You may do it. Further, as in the first temperature range P3 of the temperature profile PC shown in FIG. 3C, one temperature P31 selected from the temperatures of 400 to 750 ° C. is kept constant in the previous stage, and then the temperature rises Two temperature ranges P31 and P33 may be provided in the first temperature range P3 so as to be kept constant at a temperature P33 higher than the temperature P31 selected in the temperature range via the part P32. . In the following examples and comparative examples, the temperature was controlled by the temperature profile shown in FIG.


第1の昇温部P2の昇温速度は、上記したように2.0〜20.0℃/分とすることが好ましい。昇温速度をこの範囲にすることにより、Niめっき層を構成する粒状相および平滑相のうち、Niめっき層の表面における任意の10mm×10mmの領域における粒状相の面積率が40%以下となる。すなわち、理由は不明であるが、第1の昇温部P2の昇温速度を上記範囲にすることにより、回路板を構成する第1再結晶相および第2再結晶相のうち、回路板の表面における任意の10mm×10mmの領域における第1再結晶相の面積率は40%以下となる。ここで、第1再結晶相は、結晶成長方向が回路板の表面の垂直方向に対して±30°以内の結晶子から構成され、その表面に露出した結晶子の粒界が化学研磨工程において侵食されやすい。その結果、Niめっき層のうち上記第1再結晶相の表面上に形成された粒状相は、当該第1再結晶相の表面において結晶子の粒界が腐食した状態が反映され、平滑相の表面粗さ(Ra)が0.1〜0.3μm程度であるのに対し、粒状相の表面粗さ(Ra)は1.0〜2.0μmと粗い。このため、Niめっき層の表面から選択された10mm×10mmの領域における粒状相の面積率が40%を超えると、溶融半田の濡れ広がり性が低下する。このため、第1の昇温部P2の昇温速度は、2.0〜20.0℃/分とすることが好ましい。

As described above, the temperature raising rate of the first temperature raising part P2 is preferably 2.0 to 20.0 ° C./min. By setting the temperature rising rate within this range, the area ratio of the granular phase in an arbitrary 10 mm × 10 mm region on the surface of the Ni plating layer among the granular phase and the smooth phase constituting the Ni plating layer becomes 40% or less. . That is, although the reason is unknown, by setting the rate of temperature rise of the first temperature raising part P2 within the above range, the circuit board of the first recrystallized phase and the second recrystallized phase constituting the circuit board The area ratio of the first recrystallization phase in an arbitrary region of 10 mm × 10 mm on the surface is 40% or less. Here, the first recrystallized phase is composed of crystallites whose crystal growth direction is within ± 30 ° with respect to the direction perpendicular to the surface of the circuit board, and the grain boundaries of the crystallites exposed on the surface are in the chemical polishing step. Easily eroded. As a result, the granular phase formed on the surface of the first recrystallized phase in the Ni plating layer reflects the state in which the grain boundaries of the crystallites corroded on the surface of the first recrystallized phase. While the surface roughness (Ra) is about 0.1 to 0.3 μm, the surface roughness (Ra) of the granular phase is as rough as 1.0 to 2.0 μm. For this reason, when the area ratio of the granular phase in the region of 10 mm × 10 mm selected from the surface of the Ni plating layer exceeds 40%, the wet spreadability of the molten solder decreases. For this reason, it is preferable that the temperature increase rate of the 1st temperature rising part P2 shall be 2.0-20.0 degreeC / min.


また、第1の昇温部P2の昇温温度を上記範囲とすることで、Niめっき層の表面10mm×10mmの領域における全ての相の境界長をS1、粒状相と平滑相との境界長をS2としたとき、S2/S1≦30%となり、溶融半田の濡れ広がり性を高めることができ望ましい。

Further, by setting the temperature rise temperature of the first temperature rise portion P2 in the above range, the boundary length of all phases in the surface area of 10 mm × 10 mm of the Ni plating layer is S1, and the boundary length between the granular phase and the smooth phase When S2 is S2, S2 / S1 ≦ 30%, which is desirable because the wet spreadability of the molten solder can be improved.


なお、ろう材が溶融する温度で加熱する第2の温度域P5の温度は、上記したとおりろう材の融点に対し25〜75℃高い範囲の中から選択されるが、以下の実施例・比較例では、表1に示す温度で1時間保持する温度パターンとした。さらに、第2の温度域P5の後の冷却速度は、いずれの実施例・比較例でも2℃/分とした。

The temperature of the second temperature range P5 that is heated at the temperature at which the brazing material melts is selected from a range that is 25 to 75 ° C. higher than the melting point of the brazing material as described above. In the example, it was set as the temperature pattern hold | maintained at the temperature shown in Table 1 for 1 hour. Furthermore, the cooling rate after the second temperature range P5 was set to 2 ° C./min in both the examples and the comparative examples.

[実施例]

以下、本発明について、その実施例に基づき説明する。
[Example]

Hereinafter, the present invention will be described based on examples.


各実施例・比較例ともに表2に示す回路原板を用い、表2に示す接合条件および化学研磨条件で処理して回路基板を作製した。なお、表2に示す以外の製造条件については、上記したとおりである。ここで、接合条件のうち第1の温度域は、実施例は500〜750℃とし、比較例は480℃および780℃とした。また、第1の昇温部の昇温速度は、実施例および比較例ともに1.5〜32℃/分とした。化学研磨条件のうち硫酸の濃度は、実施例および比較例ともに4〜32質量%とし、過酸化水素の濃度は1.2〜12質量%とした。

In each of the Examples and Comparative Examples, a circuit board was prepared by using the circuit original plate shown in Table 2 and processing under the joining conditions and chemical polishing conditions shown in Table 2. The manufacturing conditions other than those shown in Table 2 are as described above. Here, the 1st temperature range was set to 500-750 degreeC in the Example among joining conditions, and was set to 480 degreeC and 780 degreeC in the comparative example. Moreover, the temperature increase rate of the 1st temperature rising part was 1.5-32 degreeC / min in the Example and the comparative example. Among the chemical polishing conditions, the concentration of sulfuric acid was 4 to 32% by mass in both Examples and Comparative Examples, and the concentration of hydrogen peroxide was 1.2 to 12% by mass.

Figure 2013237100
Figure 2013237100


各実施例および比較例で得られた回路基板の特性を表3に示す。なお、回路板を構成する第1再結晶相および第2再結晶相の各々の結晶子の長軸長の平均値は、回路基板を厚み方向に切断し、その回路板の切断面を500番および1000番のエメリー紙で粗研磨、粒径0.1μmのダイヤモンド砥粒で仕上げ研磨、硫酸20質量%および過酸化水素5.5質量%の化学研磨液で化学研磨(エッチング)し、走査型電子顕微鏡(Scanning Electron Microscope:SEM)で撮像して得られた切断面の画像から各々第1再結晶相および第2再結晶相を確認した。そして、第1再結晶相および第2再結晶相各々の相の中から選択した任意の10区画の1mm×1mmの領域にある結晶子の長軸長を確認し、その平均値を求めた。

Table 3 shows the characteristics of the circuit boards obtained in each example and comparative example. In addition, the average value of the major axis length of each crystallite of the first recrystallized phase and the second recrystallized phase constituting the circuit board is obtained by cutting the circuit board in the thickness direction and setting the cut surface of the circuit board to No. 500. And rough polishing with No. 1000 emery paper, finish polishing with diamond abrasive grains with a particle size of 0.1 μm, chemical polishing (etching) with a chemical polishing solution of 20 mass% sulfuric acid and 5.5 mass% hydrogen peroxide, scanning type The first recrystallized phase and the second recrystallized phase were confirmed from images of cut surfaces obtained by imaging with an electron microscope (Scanning Electron Microscope: SEM). And the major axis length of the crystallite in the area | region of 1 mm x 1 mm of arbitrary 10 divisions selected from each phase of a 1st recrystallization phase and a 2nd recrystallization phase was confirmed, and the average value was calculated | required.

Figure 2013237100
Figure 2013237100


Niめっき層の粒状相と平滑相の境界部の酸素濃度は、Niめっき層を表面から観察して確認された境界部から選択した任意の10点について、オージェ電子分光装置(AES)で測定し、その平均値を求めた。なお、粒状相および平滑相の境界部の確認方法は、下記粒状相の面積比の説明にて詳述する。

The oxygen concentration at the boundary between the granular phase and the smooth phase of the Ni plating layer was measured with an Auger electron spectrometer (AES) at any 10 points selected from the boundary confirmed by observing the Ni plating layer from the surface. The average value was obtained. In addition, the confirmation method of the boundary part of a granular phase and a smooth phase is explained in full detail by description of the area ratio of a granular phase below.


表3に示す粒状相の面積比については以下のようにして求めた。まず、回路板の表面、すなわちNiめっき層を硫酸20質量%および過酸化水素5.5質量%の化学研磨液で化学研磨(エッチング)する。すると、SEMで観察した場合に、図4(d)に示すように、表面に凹凸のある粒状相R1は白色の像として、平滑相R2は黒色の像として、その境界部を明確に分離して確認することができる。上記粒状相の面積比は、化学研磨後のNiめっき層の表面をSEMで撮像し、得られた画像の任意の位置に設定した10mm×10mmの領域の中の白色の像の面積を求め、その率より算出した。

About the area ratio of the granular phase shown in Table 3, it calculated | required as follows. First, the surface of the circuit board, that is, the Ni plating layer is chemically polished (etched) with a chemical polishing solution of 20% by mass sulfuric acid and 5.5% by mass hydrogen peroxide. Then, when observed by SEM, as shown in FIG. 4 (d), the granular phase R1 having an uneven surface is a white image, and the smooth phase R2 is a black image. Can be confirmed. The area ratio of the granular phase is obtained by imaging the surface of the Ni plating layer after chemical polishing with an SEM, and obtaining the area of a white image in a 10 mm × 10 mm region set at an arbitrary position of the obtained image. It was calculated from the rate.


表3に示す境界比は、Niめっき層の表面における任意の10mm×10mmの領域における全ての相の境界長をS1、粒状相と平滑相との境界長をS2としたときのS2/S1である。この境界比は、化学研磨後のNiめっき層の表面をSEMで撮像し、得られた画像の任意の位置に設定した10mm×10mmの領域において、白色の像(粒状相)と黒色の像(平滑相)の境界の長さ(S2)および全ての境界の長さ(S1)を求め、S2をS1で除して算出した。

The boundary ratio shown in Table 3 is S2 / S1 where S1 is the boundary length of all phases in an arbitrary 10 mm × 10 mm region on the surface of the Ni plating layer, and S2 is the boundary length between the granular phase and the smooth phase. is there. This boundary ratio is obtained by imaging the surface of the Ni plating layer after chemical polishing with an SEM, and in a 10 mm × 10 mm region set at an arbitrary position of the obtained image, a white image (granular phase) and a black image ( The boundary length (S2) and all the boundary lengths (S1) of (smooth phase) were obtained, and S2 was divided by S1.


Niめっき層の粒状相と平滑相の境界部に形成された段差または凹部の深さは、当該境界部から選択した任意の10点について、レーザー式3次元評価装置(オリンパス株式会社製、OLS3000)で測定し、その平均値を求めた。

The depth of the step or the recess formed in the boundary portion between the granular phase and the smooth phase of the Ni plating layer is a laser type three-dimensional evaluation apparatus (OLS3000 manufactured by Olympus Corporation) for any 10 points selected from the boundary portion. The average value was obtained.


溶融半田の濡れ広がり性の指標である濡れ広がり率には次のようにして求めた。Sn3.5質量%、Ag0.5質量%、残部Cuの組成で、縦横が各々10mm、厚みが0.15mmの半田シートを準備し、この半田シートを回路板の表面にセットし、50%H2−50%N2に混合ガス雰囲気中において、270℃×5分間の条件にて加熱し、その後冷却した。そして、回路板の表面において溶融凝固した後の半田面積のA1、半田シート面積をA0とし、(A1/A0)×100を濡れ広がり率とし、溶融前の半田シートに対し、溶融後の半田シートがどの程度濡れ広がったかを評価した。なお、回路板に接続される半導体素子との接合強度の面から、濡れ広がり率は85%以上であることが望ましく、より好ましくは90%以上である。また、回路板への接続時に半導体素子の接続端子同士を短絡させないという点から、濡れ広がり率は120%以下であることが望ましく、より好ましくは110%以下である。

The wet spreading rate, which is an index of the wet spreading property of the molten solder, was determined as follows. A solder sheet having a composition of Sn 3.5% by mass, Ag 0.5% by mass and the balance Cu, 10 mm in length and width and 0.15 mm in thickness is prepared, and this solder sheet is set on the surface of a circuit board. The mixture was heated to -50% N 2 in a mixed gas atmosphere at 270 ° C. for 5 minutes, and then cooled. Then, the solder area after melting and solidification on the surface of the circuit board is A1, the solder sheet area is A0, (A1 / A0) × 100 is the wetting spread rate, and the solder sheet after melting is compared with the solder sheet before melting. It was evaluated how much wetting spread. Note that the wet spreading rate is desirably 85% or more, more preferably 90% or more, from the viewpoint of bonding strength with the semiconductor element connected to the circuit board. In addition, the wet spreading rate is desirably 120% or less, more preferably 110% or less, from the viewpoint that the connection terminals of the semiconductor elements are not short-circuited when connected to the circuit board.


表3に示す実施例1〜27および比較例1〜4によれば、次のことが確認された。回路原板として調質記号が1/2H〜H相当の銅または銅合金からなる銅板を用い、第1の温度域が400〜750℃である実施例1〜27によれば、いずれも回路板を構成する第1再結晶相および第2再結晶相の結晶子の長軸長は100〜400μmとなり、Niめっき層の粒状相と平滑相の境界部に形成された段差の深さは10μm以下、凹部の深さは20μmいずれとも小さく、当該境界部における酸素濃度は25%以下となり、その結果濡れ広がり率も85%以上となった。なお、実施例7および8はろう材組成が他の実施例と異なり、ろう材を溶融させる第2の温度域の設定温度が異なるが、同様な結果であった。一方で、第1の温度域が480℃の比較例1、780℃の比較例2、回路原板が調質記号O相当である比較例3、調質記号1/4相当である比較例4においては、いずれも第1再結晶相および第2再結晶相の結晶子の長軸長が400μmを超え、そのためNiめっき層の粒状相と平滑相の境界部に形成された段差の深さは10μmを超えるとともに凹部の深さも25μmを超え、当該境界部における酸素濃度は25%を超え、その結果濡れ広がり率も85%以下となった。

According to Examples 1-27 and Comparative Examples 1-4 shown in Table 3, the following was confirmed. According to Examples 1 to 27 in which the first temperature range is 400 to 750 ° C., the circuit board is a copper plate made of copper or a copper alloy having a tempering symbol equivalent to 1 / 2H to H as the circuit original plate. The major axis length of the crystallites of the first recrystallized phase and the second recrystallized phase to constitute is 100 to 400 μm, and the depth of the step formed at the boundary between the granular phase and the smooth phase of the Ni plating layer is 10 μm or less, The depths of the recesses were all small at 20 μm, and the oxygen concentration at the boundary portion was 25% or less. As a result, the wet spreading rate was 85% or more. Examples 7 and 8 differed from the other examples in the brazing material composition, and the set temperatures in the second temperature range for melting the brazing material differed, but the results were similar. On the other hand, in Comparative Example 1 in which the first temperature range is 480 ° C., Comparative Example 2 in which the circuit temperature is 780 ° C., Comparative Example 3 in which the circuit original plate corresponds to the tempering symbol O, and Comparative Example 4 in which the tempering symbol corresponds to ¼. In both cases, the major axis length of the crystallites of the first recrystallized phase and the second recrystallized phase exceeds 400 μm, and therefore the depth of the step formed at the boundary between the granular phase and the smooth phase of the Ni plating layer is 10 μm. And the depth of the concave portion exceeded 25 μm, and the oxygen concentration at the boundary portion exceeded 25%. As a result, the wetting spread rate was also 85% or less.


次に、第1の昇温部の昇温速度の点では以下のことが確認された。回路原板の材質、ろう材種別その他条件を実施例2と同一とし昇温速度のみ変化させた実施例9〜12および実施例2によれば、昇温速度が1.5℃/分および22℃/分の場合には、いずれも粒状相の面積比が40%以上、境界比が30%以上となり、濡れ広がり率が90%以下とやや低い。もって、第1の昇温部の昇温速度は、2.5〜20℃/分とすることが望ましい。

Next, the following was confirmed in terms of the rate of temperature rise in the first temperature raising portion. According to Examples 9 to 12 and Example 2 in which the material of the circuit original plate, the brazing material type and other conditions were the same as in Example 2 and only the temperature increase rate was changed, the temperature increase rates were 1.5 ° C./min and 22 ° C. In each case, the area ratio of the granular phase is 40% or more, the boundary ratio is 30% or more, and the wetting and spreading rate is 90% or less. Therefore, it is desirable that the temperature raising rate of the first temperature raising part is 2.5 to 20 ° C./min.


次に、化学研磨工程で用いる混合溶液に含まれる硫酸の濃度の点では以下のことが確認された。回路原板の材質、ろう材種別その他条件を実施例2と同一とし硫酸濃度のみ変化させた実施例13〜17および実施例2によれば、硫酸の濃度が4質量%の場合には、回路板の表面が十分に清浄化されず、その結果、回路板の表面に被着したNiめっき層の表面に凹凸が多く、濡れ広がり率が90%以下とやや低い。一方で、硫酸濃度が32%の場合には、回路板の第1再結晶相と第2再結晶相の境界部の腐食が進み過度な段差や凹部が形成され、もってNiめっき層の粒状相および平滑相の境界部の酸素濃度も高く、さらにNiめっき層に転写された段差や凹部も溶融半田の濡れ広がりを阻害するため、濡れ広がり率が90%以下とやや低くなる。もって、硫酸の濃度は、5〜30質量%とすることが望ましい。

Next, in terms of the concentration of sulfuric acid contained in the mixed solution used in the chemical polishing step, the following was confirmed. According to Examples 13 to 17 and Example 2 in which the material of the circuit board, the type of brazing material and other conditions were the same as those of Example 2, and only the sulfuric acid concentration was changed, when the sulfuric acid concentration was 4% by mass, the circuit board As a result, the surface of the Ni plating layer deposited on the surface of the circuit board has many irregularities, and the wet spread rate is slightly low at 90% or less. On the other hand, when the sulfuric acid concentration is 32%, corrosion at the boundary between the first recrystallized phase and the second recrystallized phase of the circuit board proceeds and excessive steps and recesses are formed, so that the granular phase of the Ni plating layer is formed. Also, the oxygen concentration at the boundary portion of the smooth phase is high, and the steps and recesses transferred to the Ni plating layer also inhibit the wet spread of the molten solder, so the wet spread rate is slightly low at 90% or less. Therefore, the concentration of sulfuric acid is desirably 5 to 30% by mass.


次に、化学研磨工程で用いる混合溶液に含まれる過酸化水素の点では以下のことが確認された。回路原板の材質、ろう材種別その他条件を実施例2と同一とし硫酸濃度のみ変化させた実施例19〜23および実施例2によれば、過酸化水素の濃度が1.2質量%の場合には、回路板の第1再結晶相と第2再結晶相の境界部の腐食が進み過度な段差や凹部が形成され、もってNiめっき層の粒状相および平滑相の境界部の酸素濃度も高く、さらにNiめっき層に転写された段差や凹部も溶融半田の濡れ広がりを阻害するため、濡れ広がり率が90%以下とやや低い。一方で、過酸化水素の濃度が12%の場合には、回路板の表面が過度に平滑化されたために、回路板の表面に被着されたNiめっき層の表面も過度に平滑となり、溶融半田がより濡れ広がりやすい状態となった。その結果、濡れ広がり率が140%以上と好ましくない結果となった。もって、過酸化水素の濃度は、2〜10質量%とすることが望ましい。

Next, in terms of hydrogen peroxide contained in the mixed solution used in the chemical polishing step, the following was confirmed. According to Examples 19 to 23 and Example 2 in which the material of the circuit board, the type of brazing material and other conditions were the same as in Example 2 and only the sulfuric acid concentration was changed, the hydrogen peroxide concentration was 1.2% by mass. The corrosion of the boundary between the first recrystallized phase and the second recrystallized phase of the circuit board proceeds and excessive steps or recesses are formed, so that the oxygen concentration in the boundary between the granular phase and the smooth phase of the Ni plating layer is also high. Furthermore, since the steps and recesses transferred to the Ni plating layer also inhibit the wet spread of the molten solder, the wet spread rate is slightly low at 90% or less. On the other hand, when the concentration of hydrogen peroxide is 12%, the surface of the circuit board is excessively smoothed, so that the surface of the Ni plating layer deposited on the surface of the circuit board is excessively smooth and melted. The solder became more easily wet and spread. As a result, the wet spread rate was 140% or more, which was not preferable. Therefore, the concentration of hydrogen peroxide is desirably 2 to 10% by mass.


1 セラミックス回路基板

1a
回路板

1d
ろう材層

1e
セラミックス基板

1f
ろう材層

1g
間隙

1h
放熱板

1i
Niめっき層

1k
Niめっき層

2 被接合体

2a
回路原板

2d
ろう材

3 接合体

N1
第1再結晶相

N2
第2再結晶相

M1
粒状相

M2
平滑相


1 Ceramic circuit board

1a
Circuit board

1d
Brazing filler metal layer

1e
Ceramic substrate

1f
Brazing filler metal layer

1g
gap

1h
Heat sink

1i
Ni plating layer

1k
Ni plating layer

2 To-be-joined body

2a
Circuit board

2d
Brazing material

3 joints

N1
First recrystallization phase

N2
Second recrystallization phase

M1
Granular phase

M2
Smooth phase

Claims (8)


セラミックス基板と、前記セラミックス基板の一面にろう材層を介し接合された銅を主体とした回路板と、前記回路板の表面に被着されたNiめっき層を有するセラミックス回路基板の製造方法であって、ろう材を介しセラミックス基板の一面に回路原板を配置する配置工程と、セラミックス基板の一面に回路原板を加熱し接合する接合工程と、接合工程で形成されてなる回路板を化学研磨する化学研磨工程と、化学研磨工程の後に回路板の表面にNiめっき層を被着するめっき工程と、を含み、前記回路原板は、調質記号1/2H〜H相当の銅または銅合金からなる銅板であり、前記接合工程は、その温度プロファイルにおいて、第1の温度域と、前記第1の温度域の後に配置された、ろう材が溶融する温度で加熱する第2の温度域とを有し、前記第1の温度域の温度が400〜750℃であることを特徴するセラミックス回路基板の製造方法。

A method of manufacturing a ceramic circuit board comprising: a ceramic substrate; a circuit board mainly composed of copper bonded to one surface of the ceramic substrate through a brazing material layer; and a Ni plating layer deposited on the surface of the circuit board. The placement process of placing the circuit board on one surface of the ceramic substrate via the brazing material, the joining process of heating and joining the circuit board to one surface of the ceramic substrate, and the chemical polishing for chemically polishing the circuit board formed in the joining process A copper plate made of copper or a copper alloy corresponding to a tempering symbol 1 / 2H to H, and a plating step of depositing a Ni plating layer on the surface of the circuit board after the chemical polishing step In the temperature profile, the joining step has a first temperature range and a second temperature range that is arranged after the first temperature range and is heated at a temperature at which the brazing filler metal melts. , Ceramic circuit substrate manufacturing method of wherein the temperature of the first temperature range is 400 to 750 ° C..

前記第1の温度域までの昇温速度が、2.0〜20.0℃/分である請求項1に記載のセラミックス回路基板の製造方法。

The method for manufacturing a ceramic circuit board according to claim 1, wherein a temperature increase rate to the first temperature range is 2.0 to 20.0 ° C./min.

前記化学研磨工程において、硫酸5.0〜30.0重量%、過酸化水素2.0〜10.0重量%を含む混合溶液を使用する請求項1または2のいずれかに記載のセラミックス回路基板の製造方法。

3. The ceramic circuit board according to claim 1, wherein in the chemical polishing step, a mixed solution containing 5.0 to 30.0 wt% sulfuric acid and 2.0 to 10.0 wt% hydrogen peroxide is used. Manufacturing method.

セラミックス基板と、前記セラミックス基板の一面にろう材層を介し接合された銅または銅合金からなる回路板と、前記回路板の表面に被着されたNiめっき層を有するセラミックス回路基板であって、前記回路板は下記で定義される第1再結晶相および第2再結晶相を含み、前記Niめっき層は、前記第1再結晶相の表面上に形成された粒状相および前記第2再結晶相の表面上に形成された平滑相を含み、前記粒状相と平滑相との境界部における酸素濃度が25.0原子%以下であるセラミックス回路基板。

第1再結晶相:成長方位が回路板の表面の垂直方向に対して±30°以内である結晶子からなり、当該結晶子の長軸長の平均値が100〜400μmである相

第2再結晶相:成長方位が回路板の表面の平行方向に対して±30°以内である結晶子からなり、当該結晶子の長軸長の平均値が100〜400μmである相

A ceramic circuit board having a ceramic substrate, a circuit board made of copper or a copper alloy bonded to one surface of the ceramic substrate via a brazing material layer, and a Ni plating layer deposited on the surface of the circuit board, The circuit board includes a first recrystallized phase and a second recrystallized phase defined below, and the Ni plating layer includes a granular phase formed on the surface of the first recrystallized phase and the second recrystallized phase. A ceramic circuit board including a smooth phase formed on a surface of a phase, wherein an oxygen concentration at a boundary portion between the granular phase and the smooth phase is 25.0 atomic% or less.

First recrystallized phase: a phase composed of crystallites whose growth orientation is within ± 30 ° with respect to the direction perpendicular to the surface of the circuit board, and whose average major axis length is 100 to 400 μm

Second recrystallized phase: a phase composed of crystallites whose growth orientation is within ± 30 ° with respect to the parallel direction of the surface of the circuit board, and whose average major axis length of the crystallite is 100 to 400 μm

前記Niめっき層の表面における任意の10mm×10mmの領域における前記粒状相の面積率が40%以下である請求項4に記載のセラミックス回路基板。

5. The ceramic circuit board according to claim 4, wherein an area ratio of the granular phase in an arbitrary region of 10 mm × 10 mm on the surface of the Ni plating layer is 40% or less.

前記Niめっき層の表面における任意の10mm×10mmの領域における全ての相の境界長をS1前記粒状相と平滑相との境界長をS2としたとき、S2/S1≦30%である請求項4に記載のセラミックス回路基板。

5. The boundary length of all phases in an arbitrary 10 mm × 10 mm region on the surface of the Ni plating layer is S1, and the boundary length between the granular phase and the smooth phase is S2, S2 / S1 ≦ 30%. The ceramic circuit board according to 1.

前記粒状相と平滑相との境界部に形成された段差が1.0〜10.0μmである請求項4乃至6のいずれかに記載のセラミックス回路基板。

The ceramic circuit board according to any one of claims 4 to 6, wherein a step formed at a boundary portion between the granular phase and the smooth phase is 1.0 to 10.0 µm.

前記粒状相と平滑相との境界部に形成された凹部の深さが5.0〜25.0μmである請求項4乃至6のいずれかに記載のセラミックス回路基板。


The ceramic circuit board according to any one of claims 4 to 6, wherein a depth of a concave portion formed at a boundary portion between the granular phase and the smooth phase is 5.0 to 25.0 µm.

JP2013039872A 2012-02-29 2013-02-28 Ceramic circuit board manufacturing method and ceramic circuit board Active JP6256733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039872A JP6256733B2 (en) 2012-02-29 2013-02-28 Ceramic circuit board manufacturing method and ceramic circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012044163 2012-02-29
JP2012044163 2012-02-29
JP2013039872A JP6256733B2 (en) 2012-02-29 2013-02-28 Ceramic circuit board manufacturing method and ceramic circuit board

Publications (2)

Publication Number Publication Date
JP2013237100A true JP2013237100A (en) 2013-11-28
JP6256733B2 JP6256733B2 (en) 2018-01-10

Family

ID=49762615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039872A Active JP6256733B2 (en) 2012-02-29 2013-02-28 Ceramic circuit board manufacturing method and ceramic circuit board

Country Status (1)

Country Link
JP (1) JP6256733B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019041108A (en) * 2017-08-25 2019-03-14 京セラ株式会社 Substrate for power module and power module
KR20190134455A (en) * 2017-03-31 2019-12-04 후루카와 덴키 고교 가부시키가이샤 Copper plate material for insulated substrates with copper plate and manufacturing method thereof
KR20200002941A (en) * 2018-03-29 2020-01-08 후루카와 덴끼고교 가부시키가이샤 Insulation substrate and its manufacturing method
CN111051546A (en) * 2018-03-29 2020-04-21 古河电气工业株式会社 Insulating substrate and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246769A (en) * 1991-03-15 1993-09-24 Toshiba Corp Ceramic-metal joining composition and ceramic-metal joined body using the same
JP2000064067A (en) * 1998-06-09 2000-02-29 Ebara Densan Ltd Etching solution and roughening treatment of copper surface
JP2000340912A (en) * 1999-05-27 2000-12-08 Kyocera Corp Ceramic circuit board
JP2001024296A (en) * 1999-07-07 2001-01-26 Kyocera Corp Ceramic circuit board
JP2002274964A (en) * 2001-03-13 2002-09-25 Denki Kagaku Kogyo Kk Method of manufacturing joined body
JP2005187945A (en) * 2000-12-27 2005-07-14 Ebara Udylite Kk Micro-etching agent for copper and copper alloy
JP2007066995A (en) * 2005-08-29 2007-03-15 Hitachi Metals Ltd Ceramic wiring board and its manufacturing method, and semiconductor module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246769A (en) * 1991-03-15 1993-09-24 Toshiba Corp Ceramic-metal joining composition and ceramic-metal joined body using the same
JP2000064067A (en) * 1998-06-09 2000-02-29 Ebara Densan Ltd Etching solution and roughening treatment of copper surface
JP2000340912A (en) * 1999-05-27 2000-12-08 Kyocera Corp Ceramic circuit board
JP2001024296A (en) * 1999-07-07 2001-01-26 Kyocera Corp Ceramic circuit board
JP2005187945A (en) * 2000-12-27 2005-07-14 Ebara Udylite Kk Micro-etching agent for copper and copper alloy
JP2002274964A (en) * 2001-03-13 2002-09-25 Denki Kagaku Kogyo Kk Method of manufacturing joined body
JP2007066995A (en) * 2005-08-29 2007-03-15 Hitachi Metals Ltd Ceramic wiring board and its manufacturing method, and semiconductor module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190134455A (en) * 2017-03-31 2019-12-04 후루카와 덴키 고교 가부시키가이샤 Copper plate material for insulated substrates with copper plate and manufacturing method thereof
KR102326618B1 (en) 2017-03-31 2021-11-16 후루카와 덴키 고교 가부시키가이샤 Copper plate material for insulating substrate with copper plate and manufacturing method thereof
JP2019041108A (en) * 2017-08-25 2019-03-14 京セラ株式会社 Substrate for power module and power module
JP7207904B2 (en) 2017-08-25 2023-01-18 京セラ株式会社 Substrates for power modules and power modules
KR20200002941A (en) * 2018-03-29 2020-01-08 후루카와 덴끼고교 가부시키가이샤 Insulation substrate and its manufacturing method
CN111051546A (en) * 2018-03-29 2020-04-21 古河电气工业株式会社 Insulating substrate and method for manufacturing same
KR102343189B1 (en) * 2018-03-29 2021-12-24 후루카와 덴끼고교 가부시키가이샤 Insulation substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JP6256733B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
KR101522807B1 (en) Ceramic circuit board
JP6129738B2 (en) Ceramic circuit board
JP6256733B2 (en) Ceramic circuit board manufacturing method and ceramic circuit board
KR20200004799A (en) Ceramic circuit board, its manufacturing method and module using the same
JP6828856B2 (en) Manufacturing method of copper / ceramics joint, manufacturing method of insulated circuit board, copper / ceramics joint, and insulated circuit board
JP2011129880A (en) Heat sink for electronic device, and process for production thereof
JP5189669B2 (en) Active metal brazing material
KR20210107699A (en) Method for manufacturing ceramic-copper composite, ceramic circuit board, power module and ceramic-copper composite
JP2014189817A (en) Pure copper plate and heat radiation substrate
JP6940997B2 (en) Aluminum-ceramic bonded substrate and its manufacturing method
JP5129189B2 (en) Metal-ceramic bonding substrate and manufacturing method thereof
JP4915013B2 (en) Aluminum-ceramic bonding substrate and manufacturing method thereof
JP2023126262A (en) Method for producing silicon nitride substrate
KR20210097123A (en) Ceramics-Copper Composite, Method for Manufacturing Ceramics-Copper Composite, Ceramics Circuit Board and Power Module
JP7451964B2 (en) Cu alloy plate and its manufacturing method
JP2021143120A (en) Ceramic circuit board and its manufacturing method
JP6123410B2 (en) Manufacturing method of ceramic circuit board
EP3799965A1 (en) Metallized ceramic substrate and method for manufacturing same
JP2013082077A (en) Screen printing method
JP2006144047A (en) Cu-Ni-Ti BASED COPPER ALLOY AND COOLING PLATE
JP4119024B2 (en) Method for producing metal balls
JP2009277991A (en) Substrate for power module, power module, and method of manufacturing substrate for power module
KR100593680B1 (en) Manufacturing method of gold-tin eutectic strip for solder
JP3729637B2 (en) Electronic components
JP7383582B2 (en) Aluminum-ceramic bonded substrate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6256733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350