JP2013235403A - Gradation restoration apparatus and program of the same - Google Patents
Gradation restoration apparatus and program of the same Download PDFInfo
- Publication number
- JP2013235403A JP2013235403A JP2012107178A JP2012107178A JP2013235403A JP 2013235403 A JP2013235403 A JP 2013235403A JP 2012107178 A JP2012107178 A JP 2012107178A JP 2012107178 A JP2012107178 A JP 2012107178A JP 2013235403 A JP2013235403 A JP 2013235403A
- Authority
- JP
- Japan
- Prior art keywords
- gradation
- gradation value
- value
- pixels
- restoration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 14
- 230000014509 gene expression Effects 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 36
- 230000009467 reduction Effects 0.000 abstract description 5
- 238000004321 preservation Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000013139 quantization Methods 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
Description
本発明は、原画像から削減された階調を復元する階調復元装置及びそのプログラムに関する。 The present invention relates to a gradation restoration apparatus for restoring gradations reduced from an original image and a program thereof.
従来から、画像やファクシミリのベクトル量子化において、階調を復元する発明が提案されている(特許文献1,2参照)。
この特許文献1に記載の発明は、N階調値のカラー画像から、同じ色成分のデータを取り出すことで、複数画素で同じ色成分のデータを取得する。そして、取得した同じ色成分のデータを用いて、N階調値のカラー画像から、M階調値のカラー画像を復元するものである(但し、N<M)。
Conventionally, inventions for restoring gradation in image and facsimile vector quantization have been proposed (see
In the invention described in
また、特許文献2に記載の発明は、画像をベクター変換するときに、いわゆる“同方向直線化法”を用いるものである。具体的に、特許文献2に記載の発明は、主走査線方向又は副走査線方向の階調変化の特徴点間において、ベクター線分の方向が同一事象にある階調点を、1本の2値化直線(基準線)で表す。そして、各特徴点間の量子化階調値を、基準線を中心にして対象階調値がこの基準線の左側又は右側にある面積範囲を黒又は白のパターンで表して、ベクター間でのパターン化を行う。
The invention described in
しかし、特許文献1,2に記載の発明は、何れも空間方向で階調の相関を考慮していないため、中間階調値を正確に復元できないという問題があった。
そこで、本発明は、前記した問題を解決し、中間階調値を正確に復元できる階調復元装置及びそのプログラムを提供することを課題とする。
However, since the inventions described in
Therefore, an object of the present invention is to solve the above-described problem and provide a gradation restoration device and a program thereof that can accurately restore intermediate gradation values.
前記した課題に鑑みて、本願第1発明に係る階調復元装置は、原画像から削減された階調を復元する階調復元装置であって、階調重み情報生成手段と、ヒストグラム算出手段と、中間階調復元画像生成手段と、を備えることを特徴とする。 In view of the above-described problem, the gradation restoration apparatus according to the first invention of the present application is a gradation restoration apparatus that restores gradations reduced from an original image, and includes gradation weight information generation means, histogram calculation means, And an intermediate gradation restored image generating means.
かかる構成によれば、階調復元装置は、階調重み情報生成手段によって、原画像の階調を削減した階調削減画像が入力され、入力された階調削減画像にエッジ保存型フィルタを適用することで、階調削減画像の各画素の階調値が重み付けられた階調重み情報を生成する。 According to this configuration, the gradation restoration device receives the gradation reduced image obtained by reducing the gradation of the original image by the gradation weight information generation unit, and applies the edge preserving filter to the input gradation reduced image. Thus, gradation weight information in which the gradation value of each pixel of the gradation reduced image is weighted is generated.
ここで、一般的な画像において、前景と背景の境界のようなエッジ領域では、そのエッジの両側で各画素の階調値が大きく異なり、空間方向で階調の相関が低くなる。一方、一般的な画像において、被写体の内部のようなグラデーション領域では、各画素の階調値が滑らかに連続し、空間方向で階調の相関が高くなる。そこで、階調重み情報生成手段は、エッジ保存型フィルタを用いて、エッジ領域では急峻に、グラデーション領域では滑らかとなるように、階調の空間連続性を考慮して階調値を重み付ける。 Here, in a general image, in an edge region such as the boundary between the foreground and the background, the gradation value of each pixel is greatly different on both sides of the edge, and the correlation of gradation is low in the spatial direction. On the other hand, in a general image, in a gradation area such as the inside of a subject, the gradation values of each pixel are smoothly continuous, and the gradation correlation is high in the spatial direction. Therefore, the tone weight information generation means weights the tone values in consideration of spatial continuity of the tone using an edge preserving filter so that the edge region is steep and the gradation region is smooth.
また、階調復元装置は、ヒストグラム算出手段によって、階調値毎の画素数を示す階調削減画像ヒストグラムを階調削減画像から算出し、算出した階調削減画像ヒストグラムの階調値に、原画像と階調削減画像との階調数の比を乗じて復元階調値を算出し、復元階調値毎の画素数及び復元階調値の間にある中間階調値毎の画素数を示す階調値ヒストグラムを算出する。 In addition, the gradation restoration device calculates a gradation-reduced image histogram indicating the number of pixels for each gradation value from the gradation-reduced image by the histogram calculation means, and adds the original gradation value to the calculated gradation-reduced image histogram. The restoration gradation value is calculated by multiplying the ratio of the number of gradations between the image and the gradation-reduced image, and the number of pixels for each restoration gradation value and the number of pixels for each intermediate gradation value between the restoration gradation values are calculated. The gradation value histogram shown is calculated.
また、階調復元装置は、中間階調復元画像生成手段によって、階調削減画像で同一階調値の画素について、階調重み情報による並び順を算出し、階調値ヒストグラムを参照して、同一階調値の画素数と、同一階調値に対応する復元階調値及び中間階調値の画素数の割合とに基づいて、算出した並び順で同一階調値の画素に復元階調値又は中間階調値を割り当てた中間階調復元画像を生成する。つまり、中間階調復元画像生成手段は、階調の空間連続性を考慮して、各画素に復元階調値又は中間階調値を割り当てる。 Further, the gradation restoration device calculates the arrangement order based on the gradation weight information for pixels having the same gradation value in the gradation reduced image by the intermediate gradation restoration image generation unit, and refers to the gradation value histogram, Based on the number of pixels of the same gradation value and the ratio of the number of pixels of the restored gradation value and the intermediate gradation value corresponding to the same gradation value, the restored gradation is applied to the pixels of the same gradation value in the calculated arrangement order. An intermediate gradation restored image to which values or intermediate gradation values are assigned is generated. That is, the halftone restored image generation means assigns a restored tone value or an intermediate tone value to each pixel in consideration of spatial continuity of the tone.
また、本願第2発明に係る階調復元装置は、階調重み情報生成手段が、エッジ保存型フィルタとして、階調値I、空間距離D1、輝度距離D2、画素の水平位置i、画素の垂直位置j、ガウシアンフィルタの領域サイズS、及び、ガウシアン分散値σで表される式(1)のガウシアンフィルタを用いて、階調重み情報O(i,j)を算出することを特徴とする。 Further, in the gradation restoration apparatus according to the second invention of the present application, the gradation weight information generation means uses the gradation value I, the spatial distance D 1 , the luminance distance D 2 , the horizontal position i of the pixel, the pixel as the edge preserving filter. The tone weight information O (i, j) is calculated using the Gaussian filter of the formula (1) expressed by the vertical position j, the Gaussian filter region size S, and the Gaussian variance σ. To do.
かかる構成によれば、階調復元装置は、式(1)に空間距離D1及び輝度距離D2の項が含まれるため、階調重み情報O(i,j)に階調の空間連続性をより正確に反映することができる。 According to such a configuration, since the gradation restoration apparatus includes the terms of the spatial distance D 1 and the luminance distance D 2 in the expression (1), the spatial continuity of gradation is included in the gradation weight information O (i, j). Can be reflected more accurately.
また、本願第3発明に係る階調復元装置は、ヒストグラム算出手段が、最小二乗法により階調値ヒストグラムを算出することを特徴とする。
かかる構成によれば、階調復元装置は、一般的な画像で各画素の階調値が滑らかに連続する性質を利用して、階調値ヒストグラムを算出する。
Further, the gradation restoration apparatus according to the third invention of the present application is characterized in that the histogram calculation means calculates a gradation value histogram by a least square method.
According to such a configuration, the gradation restoration device calculates a gradation value histogram using the property that the gradation values of each pixel are smoothly continuous in a general image.
また、本願第4発明に係る階調復元装置は、ヒストグラム算出手段が、中間階調値の画素数が復元階調値の画素数と同じ値となるように階調値ヒストグラムを算出することを特徴とする。
かかる構成によれば、階調復元装置は、簡易な演算処理により階調値ヒストグラムを算出することができる。
In the gradation restoration apparatus according to the fourth invention of the present application, the histogram calculation means calculates the gradation value histogram so that the number of pixels of the intermediate gradation value is the same as the number of pixels of the restoration gradation value. Features.
According to such a configuration, the gradation restoration device can calculate the gradation value histogram by a simple calculation process.
なお、本願第1発明に係る階調復元装置は、CPU、メモリ、ハードディスク等のハードウェア資源を備える一般的なコンピュータを、前記した各手段として協調動作させる階調復元プログラムによって実現することもできる。この階調復元プログラムは、通信回線を介して配布しても良く、CD−ROMやフラッシュメモリ等の記録媒体に書き込んで配布してもよい。 The gradation restoration apparatus according to the first invention of the present application can also be realized by a gradation restoration program that causes a general computer having hardware resources such as a CPU, a memory, and a hard disk to operate cooperatively as the above-described means. . This gradation restoration program may be distributed via a communication line, or may be distributed by writing in a recording medium such as a CD-ROM or a flash memory.
本発明によれば、以下のような優れた効果を奏する。
本願第1発明によれば、階調の空間連続性が考慮された階調重み情報を生成すると共に、この階調重み情報の並び順で、各画素に復元階調値又は中間階調値を割り当てるため、中間階調値を正確に復元することができる。
According to the present invention, the following excellent effects can be obtained.
According to the first invention of the present application, gradation weight information in consideration of the spatial continuity of gradation is generated, and a restored gradation value or an intermediate gradation value is assigned to each pixel in the arrangement order of the gradation weight information. As a result of the assignment, the intermediate gradation value can be accurately restored.
本願第2発明によれば、階調重み情報に階調の空間連続性がより正確に反映されるため、中間階調値の正確性をより向上させることができる。
本願第3発明によれば、中間階調値の画素数が滑らかに連続する階調値ヒストグラムを算出するため、中間階調値の正確性をより向上させることができる。
本願第4発明によれば、簡易な演算処理により階調値ヒストグラムを算出するため、演算処理の高速化を図ることができる。
According to the second aspect of the present invention, since the spatial continuity of the gradation is more accurately reflected in the gradation weight information, the accuracy of the intermediate gradation value can be further improved.
According to the third aspect of the present invention, since the gradation value histogram in which the number of pixels of the intermediate gradation value is continuously continuous is calculated, the accuracy of the intermediate gradation value can be further improved.
According to the fourth aspect of the present invention, since the gradation value histogram is calculated by a simple calculation process, the calculation process can be speeded up.
以下、本発明の各実施形態について、適宜図面を参照しながら詳細に説明する。なお、各実施形態において、同一の機能を有する手段には同一の符号を付し、説明を省略した。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In each embodiment, means having the same function are denoted by the same reference numerals and description thereof is omitted.
(第1実施形態)
[階調復元装置の構成]
図1を参照し、本発明の第1実施形態に係る階調復元装置1の構成について、説明する。
階調復元装置1は、原画像から削減された階調を復元するものであり、周辺階調重み情報生成手段(階調重み情報生成手段)10と、階調値ヒストグラム推定手段(ヒストグラム算出手段)20と、中間階調復元画像生成手段30とを備える。
(First embodiment)
[Configuration of gradation restoration device]
With reference to FIG. 1, the configuration of the
The
ここで、原画像とは、例えば、人物、風景等を撮影した一般的な画像である。また、CG(コンピュータグラフィックス)で作成したCG画像は、階調の空間連続性が乏しいため、この原画像から除かれる。
階調削減画像とは、切り捨て法、四捨五入法、ロイド−マックス法等の階調削減処理を用いて、原画像の階調を削減した画像である。
このロイド−マックス法は、例えば、参考文献「“A genetic Lloyd-max image quantization algorithm”,P.Scheumders,Pattern Recognition Letters,Vol.17,issue 4,p.547-556.1996」に記載されている。
Here, the original image is a general image obtained by photographing a person, a landscape, and the like, for example. In addition, a CG image created by CG (computer graphics) is excluded from this original image because the spatial continuity of gradation is poor.
The gradation-reduced image is an image in which the gradation of the original image is reduced using gradation reduction processing such as a truncation method, a rounding off method, and a Lloyd-Max method.
This Lloyd-Max method is described, for example, in the reference ““ A genetic Lloyd-max image quantization algorithm ”, P. Scheumders, Pattern Recognition Letters, Vol. 17,
本実施形態では、原画像の階調数を10ビット(階調値=0〜1023、階調数=1024)とし、階調削減画像の階調数を8ビット(階調値=0〜255、階調数=256)とする。そして、階調復元装置1は、階調削減画像を、原画像と同じ階調数に復元することとする。
In this embodiment, the gradation number of the original image is 10 bits (gradation value = 0 to 1023, gradation number = 1024), and the gradation number of the gradation reduced image is 8 bits (gradation value = 0 to 255). , Number of gradations = 256). Then, the
<周辺階調重み情報生成手段>
周辺階調重み情報生成手段10は、階調削減画像にエッジ保存型フィルタを適用することで、階調削減画像の各画素の階調値が重み付けられた周辺階調重み情報(階調重み情報)を生成するものである。
<Peripheral gradation weight information generation means>
The peripheral gradation weight information generation means 10 applies peripheral edge weight information (tone weight information) in which the gradation value of each pixel of the gradation reduced image is weighted by applying an edge preserving filter to the gradation reduced image. ).
まず、周辺階調重み情報生成手段10の入出力について説明する。
この周辺階調重み情報生成手段10は、外部から、階調削減画像と、後記するフィルタ情報とが入力される。
また、周辺階調重み情報生成手段10は、生成した周辺階調重み情報を、中間階調復元画像生成手段30(周辺階調重み情報検出手段33)に出力する。
First, input / output of the peripheral gradation weight
The peripheral gradation weight
The peripheral gradation weight
次に、周辺階調重み情報生成手段10の処理について説明する。
本実施形態では、周辺階調重み情報生成手段10は、エッジ保存型フィルタとして、下記の式(1)で定義されたバイラテラル(bilateral)なガウシアンフィルタを用いて、周辺階調重み情報O(i,j)を生成する。すなわち、周辺階調重み情報生成手段10は、フィルタ情報を用いた畳込処理により、階調削減画像の各画素の階調値I(i,j)に空間距離D1及び輝度距離D2による重み付けを行う。このとき、周辺階調重み情報生成手段10は、ラスタスキャンを行うように画素位置(i,j)を変化させて、階調削減画像の全ての画素から周辺階調重み情報O(i,j)を生成する。
Next, the processing of the peripheral gradation weight
In the present embodiment, the peripheral tone weight information generating means 10 uses the bilateral Gaussian filter defined by the following formula (1) as the edge preserving filter, and uses the peripheral tone weight information O ( i, j) is generated. That is, the peripheral gradation weight information generation means 10, the convolution processing using the filter information, according to the spatial distance D 1 and the luminance distance D 2 to the gradation value I of each pixel of the gradation reduced image (i, j) Perform weighting. At this time, the peripheral gradation weight
この式(1)では、階調値(輝度値)I、空間距離D1、輝度距離D2、画素の水平位置i、画素の垂直位置j、ガウシアンフィルタを適用する画素領域のサイズS、及び、ガウシアン分散値σで表される。
また、m,nは、例えば、ガウシアンフィルタの領域サイズSが3の場合、−3から3までの値をとる。
また、フィルタ情報は、ガウシアンフィルタの領域サイズS及びガウシアン分散値σ1,σ2であり、手動で設定される。例えば、ガウシアン分散値σ1,σ2は、例えば、0.1から10.1まで、1.0刻みの値の何れかで設定できる。
以後、周辺階調重み情報は、各画素の階調値を重み付けた値であるため、重み付き階調値と呼ぶことがある。
In this equation (1), the gradation value (luminance value) I, the spatial distance D 1 , the luminance distance D 2 , the horizontal position i of the pixel, the vertical position j of the pixel, the size S of the pixel area to which the Gaussian filter is applied, and The Gaussian dispersion value σ.
For example, when the Gaussian filter region size S is 3, m and n take values from -3 to 3.
The filter information includes the Gaussian filter region size S and Gaussian variance values σ 1 and σ 2, which are set manually. For example, the Gaussian dispersion values σ 1 and σ 2 can be set to any value in increments of 1.0 from 0.1 to 10.1, for example.
Hereinafter, the peripheral tone weight information is a value obtained by weighting the tone value of each pixel, and thus may be referred to as a weighted tone value.
<階調値ヒストグラム推定手段>
階調値ヒストグラム推定手段20は、階調値毎の画素数を示す階調削減画像ヒストグラムを階調削減画像から算出し、後記する復元倍率に階調削減画像の各画素の階調値を乗じて復元階調値を算出し、復元階調値の画素数及び復元階調値の間にある中間階調値の画素数の階調値ヒストグラムを推定(算出)するものである。
<Tone value histogram estimation means>
The gradation value histogram estimation means 20 calculates a gradation reduced image histogram indicating the number of pixels for each gradation value from the gradation reduced image, and multiplies the restoration magnification described later by the gradation value of each pixel of the gradation reduced image. Thus, the restored gradation value is calculated, and the gradation value histogram of the number of pixels of the restored gradation value and the number of pixels of the intermediate gradation value between the restored gradation values is estimated (calculated).
まず、階調値ヒストグラム推定手段20の入出力について説明する。
この階調値ヒストグラム推定手段20は、階調削減画像と、階調数情報とが入力される。この階調数情報は、原画像の階調数(例えば、1024)及び階調削減画像の階調数(例えば、256)を示す情報であり、手動で設定される。
また、階調値ヒストグラム推定手段20は、推定した階調値ヒストグラムを、中間階調復元画像生成手段30(中間階調値復元手段35)に出力する。
First, input / output of the gradation value histogram estimation means 20 will be described.
This gradation value histogram estimation means 20 receives a gradation reduced image and gradation number information. This gradation number information is information indicating the number of gradations of the original image (for example, 1024) and the number of gradations of the gradation-reduced image (for example, 256), and is manually set.
Further, the gradation value histogram estimation means 20 outputs the estimated gradation value histogram to the intermediate gradation restoration image generation means 30 (intermediate gradation value restoration means 35).
次に、図2,図3を参照し、階調値ヒストグラム推定手段20の処理について説明する(適宜図1参照)。
なお、図2では、階調値0,1,2,3の画素数を符号α0,α1,α2,α3で図示すると共に、階調値の一部のみを図示した(図3,図4,図8も同様)。
Next, the processing of the gradation value histogram estimation means 20 will be described with reference to FIGS. 2 and 3 (see FIG. 1 as appropriate).
In FIG. 2, the number of pixels of the gradation values 0 , 1 , 2 , and 3 is indicated by symbols α 0 , α 1 , α 2 , and α 3 and only a part of the gradation values is illustrated (FIG. 3). , FIG. 4 and FIG. 8 are the same).
階調値ヒストグラム推定手段20は、階調数情報を参照し、原画像と階調削減画像との階調数の比(例えば、1024/256=4)を、復元倍率として算出する。
また、図2に示すように、階調値ヒストグラム推定手段20は、階調削減画像で階調値毎の画素数を示す階調削減画像ヒストグラム90を算出する。本実施形態では、階調削減画像の階調数=256である。従って、階調値ヒストグラム推定手段20は、階調値=0,1,2,3,・・・,255の画素数を示す階調削減画像ヒストグラム90を算出する。
The gradation value histogram estimation means 20 refers to the gradation number information, and calculates the ratio of the gradation numbers of the original image and the gradation-reduced image (for example, 1024/256 = 4) as the restoration magnification.
Further, as shown in FIG. 2, the gradation value histogram estimation means 20 calculates a gradation reduced
そして、図3に示すように、階調値ヒストグラム推定手段20は、算出した階調削減画像ヒストグラム90の階調値に復元倍率を乗じて、階調値ヒストグラム91の復元階調値を算出する。本実施形態では、復元倍率が4であり、階調削減画像ヒストグラム90の階調値=0,1,2,3,・・・,255である。従って、階調値ヒストグラム推定手段20は、階調値ヒストグラム91の復元階調値=0,4,8,12,・・・,1020を算出する。このとき、階調値ヒストグラム91の画素数(縦軸)は、図2の階調削減画像ヒストグラム90と同じ値になる。つまり、図2の符号α0,α1,α2,α3における階調値(横軸)を4倍したものが、図3の符号α0,α1,α2,α3となる。
Then, as shown in FIG. 3, the gradation value
さらに、階調値ヒストグラム推定手段20は、一般的な画像で各画素の階調値が滑らかに連続する性質を利用して、最小二乗法により中間階調値の画素数を推定(算出)する。図3では、中間階調値は、復元階調値0,4の間にある1〜3と、復元階調値4,8の間にある5〜7と、復元階調値8,12の間にある9〜11とになる。まず、階調値ヒストグラム推定手段20は、最小二乗法を用いて、復元階調値0,4の間にある中間階調値1〜3の画素数を推定する。具体的には、階調値ヒストグラム推定手段20は、階調値ヒストグラム91で復元階調値=0,4の画素数を結ぶように、最小二乗直線β1を引く。すなわち、最小二乗直線β1は、復元階調値=0,4の間にある中間階調値=1〜3の画素数を推定したものになる。従って、階調値ヒストグラム推定手段20は、この最小二乗直線β1が示す値を中間階調値=1〜3の画素数として推定する。その後、階調値ヒストグラム推定手段20は、最小二乗直線β1と同様に最小二乗直線β2,β3を引いて、中間階調値=5〜7,9〜11の画素数を求め、階調値ヒストグラム91を推定する。
なお、階調値ヒストグラム推定手段20は、全ての階調値で画素数を推定することは言うまでもない。
Further, the gradation value histogram estimation means 20 estimates (calculates) the number of pixels of the intermediate gradation value by the least square method using the property that the gradation value of each pixel in a general image is smoothly continuous. . In FIG. 3, the intermediate gradation values are 1 to 3 between the restored
Needless to say, the gradation value histogram estimation means 20 estimates the number of pixels for all gradation values.
<中間階調復元画像生成手段>
図1に戻り、階調復元装置1の構成について説明を続ける。
中間階調復元画像生成手段30は、階調削減画像で同一階調値の画素について階調重み情報による並び順を算出する。そして、中間階調復元画像生成手段30は、階調値ヒストグラムを参照して、同一階調値の画素数と、同一階調値に対応する復元階調値及び中間階調値の画素数の割合とに基づいて、算出した並び順で同一階調値の画素に復元階調値又は中間階調値を割り当てた中間階調復元画像を生成するものである。このため、中間階調復元画像生成手段30は、階調値位置情報生成手段31と、周辺階調重み情報検出手段33と、中間階調値復元手段35とを備える。
<Intermediate tone restoration image generation means>
Returning to FIG. 1, the description of the configuration of the
The intermediate gradation restored image generation means 30 calculates the arrangement order based on the gradation weight information for pixels having the same gradation value in the gradation reduced image. Then, the halftone restored image generation means 30 refers to the tone value histogram to determine the number of pixels having the same tone value, the number of restored tone values corresponding to the same tone value, and the number of pixels of the halftone value. Based on the ratio, an intermediate gradation restored image is generated by assigning a restored gradation value or an intermediate gradation value to pixels having the same gradation value in the calculated arrangement order. Therefore, the intermediate gradation restoration
まず、中間階調復元画像生成手段30の入出力について説明する。
この中間階調復元画像生成手段30は、階調削減画像と、周辺階調重み情報と、階調数情報と、階調値ヒストグラムとが入力される。
また、中間階調復元画像生成手段30は、生成した中間階調復元画像を外部に出力する。
First, input / output of the halftone restored image generating means 30 will be described.
The intermediate gradation restored image generation means 30 receives a gradation reduced image, peripheral gradation weight information, gradation number information, and a gradation value histogram.
Further, the halftone restored image generation means 30 outputs the generated halftone restored image to the outside.
次に、図4,図5を参照し、中間階調復元画像生成手段30が備える各手段の処理について説明する。
中間階調復元画像生成手段30は、入力された階調数情報93を参照し、階調削減画像92の最小階調値(例えば、0)から最大階調値(例えば、255)までを順に指定階調値(同一階調値)として指定し、中間階調復元画像生成手段30の各手段が、指定階調値の画素に対して処理を行う。
Next, with reference to FIGS. 4 and 5, processing of each unit included in the halftone restored
The intermediate gradation restoration image generating means 30 refers to the input
以下、説明を簡易にするために、指定階調値=32であり、階調削減画像92に指定階調値=32の画素が100個含まれることとする。従って、図4に示すように、復元階調値は、指定階調値=32に復元倍率=4を乗じた128となる。また、中間階調値は、復元階調値=128を基準として、復元倍率=4の階調値だけ前後する127,129,130となる。つまり、階調削減画像92での指定階調値=32には、中間階調復元画像94での階調値127〜130が対応する。
Hereinafter, in order to simplify the description, it is assumed that the designated gradation value = 32 and the gradation-reduced
また、図4の階調値ヒストグラム91では、階調値=127の画素数が19であり、階調値=128の画素数が29であり、階調値=129の画素数が27であり、階調値=130の画素数が25であることとする(階調値127〜130で画素数の合計が100)。
In the
図5では、エッジEgの付近に着目し、各画素の階調値を5,8,32といった数値で表し、指定階調値=32の画素を符号a,b,c,dで図示した(丸付きの数値)。
また、100個存在する指定階調値=32の画素のうち、4個の画素a,b,c,dに着目して説明する。
In FIG. 5, paying attention to the vicinity of the edge Eg, the gradation value of each pixel is represented by numerical values such as 5, 8, and 32, and the pixel of the designated gradation value = 32 is illustrated by reference symbols a, b, c, and d ( Number with circles).
Further, description will be made by paying attention to four pixels a, b, c, and d out of 100 pixels having designated gradation value = 32.
階調値位置情報生成手段31は、図5(a)に示すように、階調削減画像92から、指定階調値=32の画素a,b,c,dを検出するものである。そして、階調値位置情報生成手段31は、検出した画素a,b,c,dの位置情報(画素座標)を生成して、周辺階調重み情報検出手段33に出力する。
As shown in FIG. 5A, the gradation value position
周辺階調重み情報検出手段33は、図5(b)に示すように、入力された全画素分の周辺階調重み情報93から、位置情報で特定される画素a,b,c,dの重み付き階調値=33,37,34,28を抽出する。そして、周辺階調重み情報検出手段33は、画素a,b,c,dの位置情報及び重み付き階調値(周辺階調重み情報)を、中間階調値復元手段35に出力する。
As shown in FIG. 5B, the peripheral gradation weight
中間階調値復元手段35は、図5(b)に示すように、階調削減画像92で指定階調値=32の画素a,b,c,dについて、重み付き階調値による並び順を算出するものである。つまり、中間階調値復元手段35は、100個存在する指定階調値=32の画素を重み付き階調値の昇順で並び替えて、各画素の並び順を算出する。図5(b)では、画素a,b,c,dの並び順を上付き数値で図示し、画素aが42番目であり、画素bが87番目であり、画素cが63番目であり、画素dが31番目となっている。
As shown in FIG. 5B, the intermediate gradation
また、中間階調値復元手段35は、図5(c)に示すように、図4の階調値ヒストグラム91を参照して、重み付き階調値の並び順で、指定階調値=32の画素a,b,c,dに復元階調値=128又は中間階調値=127,129,130を割り当てる。前記したように、指定階調値=32の画素は、合計100個である。また、図4の階調値ヒストグラム91において、階調値が127,128,129,130となる画素数の割合は、19:29:27:25となっている。このため、中間階調値復元手段35は、100個存在する指定階調値=32の画素に対し、重み付き階調値の昇順で、19個の画素に中間階調値=127、29個の画素に復元階調値=128、27個の画素に中間階調値=129、25個の画素に中間階調値=130をそれぞれ割り当てる。従って、画素a,b,c,dは、それぞれ、階調値=128,130,129,128が割り当てられる。
Further, as shown in FIG. 5C, the intermediate gradation value restoring means 35 refers to the
その後、中間階調復元画像生成手段30の各手段は、図5の処理を全ての指定階調値の画素に対して行い、全ての画素に階調値=0〜1023を割り当てた中間階調復元画像94を生成する。
After that, each unit of the halftone restored
[階調復元装置の動作]
図6を参照し、階調復元装置1の動作について、説明する(適宜図1参照)。
階調復元装置1は、周辺階調重み情報生成手段10によって、階調削減画像にエッジ保存型フィルタを適用することで、周辺階調重み情報を生成する(ステップS1)。
[Operation of gradation restoration device]
The operation of the
The
階調復元装置1は、階調値ヒストグラム推定手段20によって、階調削減画像ヒストグラムを算出する。また、階調復元装置1は、階調値ヒストグラム推定手段20によって、復元階調値を算出し、中間階調値を推定し、階調値ヒストグラムを推定する(ステップS2)。
The
階調復元装置1は、中間階調復元画像生成手段30によって、中間階調復元画像を生成する。
階調値位置情報生成手段31は、階調削減画像から、指定階調値を有する画素を検出し、検出した画素の位置情報を生成する(ステップS3)。
周辺階調重み情報検出手段33は、全ての画素の周辺階調重み情報から、位置情報で特定される画素の重み付き階調値を抽出する(ステップS4)。
中間階調値復元手段35は、階調削減画像で指定階調値を有する画素について、重み付き階調値による並び順を算出し、階調値ヒストグラムを参照して、重み付き階調値の並び順で指定階調値の画素に復元階調値又は中間階調値を割り当てる(ステップS5)。
In the
The gradation value position
The peripheral gradation weight
The intermediate gradation
以上のように、本発明の第1実施形態に係る階調復元装置1は、階調の空間連続性が考慮された階調重み情報を生成すると共に、この重み付き階調値の並び順で、各画素に復元階調値又は中間階調値を割り当てるため、中間階調値を正確に復元することができる。
As described above, the
さらに、階調復元装置1は、式(1)のガウシアンフィルタにより、階調重み情報に階調の空間連続性をより正確に反映させるため、中間階調値の正確性をより向上させることができる。
Furthermore, since the
さらに、階調復元装置1は、一般的な画像で各画素の階調値が滑らかに連続する性質を利用して、最小二乗法により中間階調値の画素数を推定する。このため、階調復元装置1は、階調値ヒストグラムにおいて、中間階調値の画素数が滑らかに連続し、中間階調値の正確性をより向上させることができる。
Furthermore, the
ここで、超高精細画像は、画素密度が細かいため、通常の精細度を有する画像で空間周波数が高い箇所の階調値が、中間階調値となる可能性が高くなる。このため、階調復元装置1は、超高精細画像に対して特に効果を発揮する。
Here, since the pixel density of the ultra-high-definition image is fine, there is a high possibility that a gradation value at a portion having a high spatial frequency in an image having a normal definition becomes an intermediate gradation value. For this reason, the
(第2実施形態)
図7を参照し、本発明の第2実施形態に係る階調復元装置1Aについて、第1実施形態と異なる点を説明する。
図7に示すように、階調復元装置1Aは、図1の階調値ヒストグラム推定手段20の代わりに、階調値ヒストグラム生成手段(ヒストグラム算出手段)20Aを備える。
この階調値ヒストグラム生成手段20Aは、中間階調値を復元階調値と同じ値としてコピー(算出)する点が、図1の階調値ヒストグラム推定手段20と異なる。
(Second Embodiment)
With reference to FIG. 7, a difference from the first embodiment will be described regarding the
As shown in FIG. 7, the
This gradation value histogram generation means 20A is different from the gradation value histogram estimation means 20 of FIG. 1 in that the intermediate gradation value is copied (calculated) as the same value as the restored gradation value.
<階調値ヒストグラム生成手段>
図8を参照し、階調値ヒストグラム生成手段20Aの処理について説明する(適宜図7参照)。
階調値ヒストグラム生成手段20Aは、図1の階調値ヒストグラム推定手段20と同様、階調削減画像ヒストグラム90(図2)を算出し、復元階調値を算出する。つまり、図2の符号α0,α1,α2,α3における階調値を4倍したものが、図8の符号α0,α1,α2,α3となる。
<Tone value histogram generating means>
With reference to FIG. 8, the processing of the gradation value histogram generation means 20A will be described (see FIG. 7 as appropriate).
The gradation value
また、図8に示すように、階調値ヒストグラム生成手段20Aは、中間階調値を復元階調値と同じ値としてコピー(算出)する。例えば、復元階調値4を基準として、復元倍率=4の階調値だけ前後する中間階調値=3,5,6に着目する。この場合、階調値ヒストグラム生成手段20Aは、復元階調値4の画素数を中間階調値=3,5,6の画素数としてコピーする。つまり、階調値ヒストグラム91Aでは、階調値=3〜6の画素数が同じ値となる。
As shown in FIG. 8, the gradation value
これと同様、階調値ヒストグラム生成手段20Aは、復元階調値=8の画素数を中間階調値=7,9,10の画素数としてコピーし、復元階調値=12の画素数を中間階調値=11,13,14の画素数としてコピーする。このようにして、階調値ヒストグラム生成手段20Aは、全ての階調値の画素数を示す階調値ヒストグラム91Aを生成する。
なお、階調値ヒストグラム生成手段20Aは、階調値ヒストグラム91Aに負の階調値が存在しないため、復元階調値0の画素数を中間階調値1,2の画素数としてコピーする。
Similarly, the gradation value histogram generation means 20A copies the number of pixels with the restored gradation value = 8 as the number of pixels with the intermediate gradation value = 7, 9, 10 and sets the number of pixels with the restored gradation value = 12. Copying is performed as the number of pixels of the intermediate gradation value = 11, 13, and 14. In this way, the gradation value
Note that the gradation value
以上のように、本発明の第2実施形態に係る階調復元装置1Aは、第1実施形態と同様、中間階調値を正確に復元することができる。さらに、階調復元装置1Aは、階調値ヒストグラム生成手段20Aが簡易な演算処理で階調値ヒストグラムを生成するため、演算処理の高速化を図ることができる。
As described above, the
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、その趣旨を変えない範囲で実施することができる。実施形態の変形例を以下に示す。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can implement in the range which does not change the meaning. The modification of embodiment is shown below.
(変形例1)
各実施形態では、式(1)のガウシアンフィルタを用いることとして説明したが、本発明のエッジ保存型フィルタは、これに限定されない。
つまり、周辺階調重み情報生成手段10は、エッジ保存型フィルタとして、下記の式(2)で定義されたモノラテラル(monolateral)なガウシアンフィルタを用いることもできる。この式(2)は、式(1)から輝度距離D2に関する項を削除したものである。
(Modification 1)
In each embodiment, it has been described that the Gaussian filter of Expression (1) is used, but the edge preserving filter of the present invention is not limited to this.
That is, the peripheral tone weight information generating means 10 can also use a monolateral Gaussian filter defined by the following equation (2) as the edge preserving filter. The equation (2) is obtained by deleting the section on luminance distance D 2 from equation (1).
<中間階調復元画像の比較>
式(2)のガウシアンフィルタを用いた場合でも、中間階調復元画像生成手段30の各手段は、第1実施形態と同様の処理により、中間階調復元画像94Aを生成する。しかし、生成した中間階調復元画像94Aは、式(1)及び式(2)のようにガウシアンフィルタが異なるため、中間階調復元画像94と異なる階調値を有することになる。そこで、図9を参照し、式(1)及び式(2)のガウシアンフィルタで生成した中間階調復元画像の相違について、説明する(適宜図1,図5参照)。
<Comparison of halftone restored images>
Even when the Gaussian filter of Expression (2) is used, each unit of the halftone restored
階調値位置情報生成手段31は、図9(a)に示すように、階調削減画像92から、指定階調値=32の画素a,b,c,dを検出する。この処理結果は、図5(a)と何ら変わることがない。
The gradation value position
周辺階調重み情報検出手段33は、図9(b)に示すように、全ての画素の周辺階調重み情報93Aから、画素a,b,c,dの重み付き階調値33,34,33,19を抽出する。つまり、図5(b)及び図9(b)では、式(1)及び式(2)のようにガウシアンフィルタが異なるため、画素a,b,c,dの重み付き階調値が異なっている。
As shown in FIG. 9B, the peripheral gradation weight
中間階調値復元手段35は、図9(b)に示すように、画素a,b,c,dについて、重み付き階調値の並び順を算出し、重み付き階調値の並び順で画素a,b,c,dに復元階調値=128又は中間階調値=127,129,130を割り当てる。図9(b)では、画素aが36番目であり、画素bが65番目であり、画素cが37番目であり、画素dが4番目である。従って、画素a,b,c,dは、それぞれ、階調値128,129,129,127が割り当てられる。 As shown in FIG. 9B, the intermediate tone value restoring means 35 calculates the order of weighted tone values for the pixels a, b, c, and d, and uses the order of weighted tone values. The restored gradation value = 128 or the intermediate gradation value = 127, 129, 130 is assigned to the pixels a, b, c, d. In FIG. 9B, the pixel a is the 36th, the pixel b is the 65th, the pixel c is the 37th, and the pixel d is the 4th. Accordingly, the gradation values 128, 129, 129, and 127 are assigned to the pixels a, b, c, and d, respectively.
ここで、図5(c)の中間階調復元画像94では、画素b,c,dの階調値=130,129,128である。一方、図9(c)の中間階調復元画像94Aでは、画素b,c,dの階調値=129,128,127である。つまり、画素b,c,dの階調値は、中間階調復元画像94が中間階調復元画像94Aよりも高く、エッジEgの右側に位置する画素の階調値との差もより大きくなる。以上より、中間階調復元画像94AではエッジEgが十分に鮮明であり、中間階調復元画像94ではエッジEgが極めて鮮明になることがわかる。
Here, in the intermediate
(その他変形例)
各実施形態では、階調を線形的に復元することとして説明したが、本発明は、これに限定されない。
つまり、階調復元装置1,1Aは、ロイド−マックス(Lloyd-max)法等の非線形量子化を行うことができる。この場合、階調復元装置1,1Aは、階調削減画像の階調値と、中間階調復元画像の階調値との対応関係を示すコードブックを予め記憶し、このコードブックを参照して、復元する中間階調値の範囲を決定すればよい。
(Other variations)
In each embodiment, the gradation is linearly restored, but the present invention is not limited to this.
That is, the
各実施形態では、階調値ヒストグラム推定手段20又は階調値ヒストグラム生成手段20Aの何れか一方を備えることとして説明したが、本発明は、これに限定されない。つまり、本発明に係る階調復元装置は、階調値ヒストグラム推定手段20及び階調値ヒストグラム生成手段20Aの両方を備え、何れの手段により階調値ヒストグラムを算出するか手動で設定してもよい。 Each embodiment has been described as including either the gradation value histogram estimation means 20 or the gradation value histogram generation means 20A, but the present invention is not limited to this. That is, the gradation restoration apparatus according to the present invention includes both the gradation value histogram estimation means 20 and the gradation value histogram generation means 20A, and it is possible to manually set which means calculates the gradation value histogram. Good.
1,1A 階調復元装置
10 周辺階調重み情報生成手段(階調重み情報生成手段)
20 階調値ヒストグラム推定手段(ヒストグラム算出手段)
20A 階調値ヒストグラム生成手段(ヒストグラム算出手段)
30 中間階調復元画像生成手段
31 階調値位置情報生成手段
33 周辺階調重み情報検出手段
35 中間階調値復元手段
1,1A
20 gradation value histogram estimation means (histogram calculation means)
20A gradation value histogram generating means (histogram calculating means)
30 Intermediate tone restoration image generation means 31 Tone value position information generation means 33 Peripheral gradation weight information detection means 35 Intermediate gradation value restoration means
Claims (5)
前記原画像の階調を削減した階調削減画像が入力され、入力された前記階調削減画像にエッジ保存型フィルタを適用することで、前記階調削減画像の各画素の階調値が重み付けられた階調重み情報を生成する階調重み情報生成手段と、
階調値毎の画素数を示す階調削減画像ヒストグラムを前記階調削減画像から算出し、算出した前記階調削減画像ヒストグラムの階調値に、前記原画像と前記階調削減画像との階調数の比を乗じて復元階調値を算出し、前記復元階調値毎の画素数及び前記復元階調値の間にある中間階調値毎の画素数を示す階調値ヒストグラムを算出するヒストグラム算出手段と、
前記階調削減画像で同一階調値の画素について、前記階調重み情報による並び順を算出し、前記階調値ヒストグラムを参照して、前記同一階調値の画素数と、前記同一階調値に対応する復元階調値及び中間階調値の画素数の割合とに基づいて、算出した前記並び順で前記同一階調値の画素に前記復元階調値又は前記中間階調値を割り当てた中間階調復元画像を生成する中間階調復元画像生成手段と、
を備えることを特徴とする階調復元装置。 A gradation restoration device for restoring gradations reduced from an original image,
A gradation-reduced image obtained by reducing the gradation of the original image is input, and a gradation value of each pixel of the gradation-reduced image is weighted by applying an edge preserving filter to the input gradation-reduced image. Gradation weight information generating means for generating the specified gradation weight information;
A gradation-reduced image histogram indicating the number of pixels for each gradation value is calculated from the gradation-reduced image, and the gradation values of the calculated gradation-reduced image histogram are added to the levels of the original image and the gradation-reduced image. The restoration gradation value is calculated by multiplying the ratio of the logarithm, and the gradation value histogram indicating the number of pixels for each restoration gradation value and the number of pixels for each intermediate gradation value between the restoration gradation values is calculated. Histogram calculating means for
For the pixels with the same gradation value in the gradation-reduced image, the arrangement order based on the gradation weight information is calculated, and the number of pixels with the same gradation value and the same gradation are calculated with reference to the gradation value histogram. Based on the restored gradation value corresponding to the value and the ratio of the number of pixels of the intermediate gradation value, the restored gradation value or the intermediate gradation value is assigned to the pixels having the same gradation value in the calculated arrangement order. Halftone restored image generating means for generating a halftone restored image;
A gradation restoration apparatus comprising:
前記原画像の階調を削減した階調削減画像が入力され、入力された前記階調削減画像にエッジ保存型フィルタを適用することで、前記階調削減画像の各画素の階調値が重み付けられた階調重み情報を生成する階調重み情報生成手段、
階調値毎の画素数を示す階調削減画像ヒストグラムを前記階調削減画像から算出し、算出した前記階調削減画像ヒストグラムの階調値に、前記原画像と前記階調削減画像との階調数の比を乗じて復元階調値を算出し、前記復元階調値毎の画素数及び前記復元階調値の間にある中間階調値毎の画素数を示す階調値ヒストグラムを算出するヒストグラム算出手段、
前記階調削減画像で同一階調値の画素について、前記階調重み情報による並び順を算出し、前記階調値ヒストグラムを参照して、前記同一階調値の画素数と、前記同一階調値に対応する復元階調値及び中間階調値の画素数の割合とに基づいて、算出した前記並び順で前記同一階調値の画素に前記復元階調値又は前記中間階調値を割り当てた中間階調復元画像を生成する中間階調復元画像生成手段、
として機能させるための階調復元プログラム。 In order to restore the reduced gradation from the original image,
A gradation-reduced image obtained by reducing the gradation of the original image is input, and a gradation value of each pixel of the gradation-reduced image is weighted by applying an edge preserving filter to the input gradation-reduced image. Gradation weight information generating means for generating received gradation weight information,
A gradation-reduced image histogram indicating the number of pixels for each gradation value is calculated from the gradation-reduced image, and the gradation values of the calculated gradation-reduced image histogram are added to the levels of the original image and the gradation-reduced image. The restoration gradation value is calculated by multiplying the ratio of the logarithm, and the gradation value histogram indicating the number of pixels for each restoration gradation value and the number of pixels for each intermediate gradation value between the restoration gradation values is calculated. Histogram calculation means to
For the pixels with the same gradation value in the gradation-reduced image, the arrangement order based on the gradation weight information is calculated, and the number of pixels with the same gradation value and the same gradation are calculated with reference to the gradation value histogram. Based on the restored gradation value corresponding to the value and the ratio of the number of pixels of the intermediate gradation value, the restored gradation value or the intermediate gradation value is assigned to the pixels having the same gradation value in the calculated arrangement order. Intermediate gradation restored image generating means for generating a restored intermediate gradation image,
Gradation restoration program to function as
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012107178A JP5934019B2 (en) | 2012-05-09 | 2012-05-09 | Gradation restoration device and program thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012107178A JP5934019B2 (en) | 2012-05-09 | 2012-05-09 | Gradation restoration device and program thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013235403A true JP2013235403A (en) | 2013-11-21 |
JP5934019B2 JP5934019B2 (en) | 2016-06-15 |
Family
ID=49761486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012107178A Active JP5934019B2 (en) | 2012-05-09 | 2012-05-09 | Gradation restoration device and program thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5934019B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022190249A1 (en) * | 2021-03-10 | 2022-09-15 | 日本電信電話株式会社 | Signal processing device, signal processing method, and signal processing program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008051558A (en) * | 2006-08-22 | 2008-03-06 | Sharp Corp | Visual inspection method and device |
JP2011119928A (en) * | 2009-12-02 | 2011-06-16 | Sharp Corp | Image processing device and image processing method |
-
2012
- 2012-05-09 JP JP2012107178A patent/JP5934019B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008051558A (en) * | 2006-08-22 | 2008-03-06 | Sharp Corp | Visual inspection method and device |
JP2011119928A (en) * | 2009-12-02 | 2011-06-16 | Sharp Corp | Image processing device and image processing method |
Non-Patent Citations (1)
Title |
---|
JPN6016002376; 藤原孝幸 外5名: '区分ヒストグラム平坦化処理を用いた超階調解像技術' 電気学会論文誌 Vol.130 No.9, 20100901, 第1597頁-第1603頁, 社団法人 電気学会 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022190249A1 (en) * | 2021-03-10 | 2022-09-15 | 日本電信電話株式会社 | Signal processing device, signal processing method, and signal processing program |
Also Published As
Publication number | Publication date |
---|---|
JP5934019B2 (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6507846B2 (en) | Image noise removing method and image noise removing apparatus | |
CN111681174B (en) | Joint filtering method for inhibiting salt-pepper/Gaussian noise mixing target image | |
EP2164040B1 (en) | System and method for high quality image and video upscaling | |
KR20150008744A (en) | Method and apparatus processing a depth image | |
JP2018195084A (en) | Image processing apparatus, image processing method, program, and storage medium | |
CN105723416B (en) | Image denoising method | |
JP5824155B2 (en) | Anisotropic gradient regularization for image denoising, compression and interpolation | |
TWI314301B (en) | Adaptive image sharpening method | |
JP2020197915A (en) | Image processing device, image processing method, and program | |
JP6624061B2 (en) | Image processing method, image processing device, and recording medium for storing image processing program | |
JP2020061080A (en) | Image processing device, imaging device, and image processing method | |
CN107404600B (en) | Image processing apparatus and method | |
JP2023003763A (en) | Learning apparatus, image processing apparatus, learning processing method, and program | |
JP5431501B2 (en) | Image processing apparatus and method | |
JP5934019B2 (en) | Gradation restoration device and program thereof | |
CN103618904B (en) | Motion estimation method and device based on pixels | |
Mohamadi et al. | A new hybrid denoising model based on PDEs | |
US9154671B2 (en) | Image processing apparatus, image processing method, and program | |
JP6273750B2 (en) | Image processing apparatus and program | |
Borraa | An Efficient Shape Adaptive Techniques for the Digital Image Denoising | |
JP2020191030A (en) | Image processing device | |
JP4035546B2 (en) | Image processing method and computer-readable storage medium | |
JP2007156954A (en) | Reliability table creation method, optical flow estimation method, reliability table creation device, optical flow estimation device, and program | |
Zain et al. | Hybrid singular value decomposition based alpha trimmed mean-median filter in eliminating high density salt and pepper noise from grayscale image | |
JP2015076676A (en) | Image processing apparatus, image processing method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140326 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160506 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5934019 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |