JP2013235313A - Input device for touch switch - Google Patents

Input device for touch switch Download PDF

Info

Publication number
JP2013235313A
JP2013235313A JP2012105631A JP2012105631A JP2013235313A JP 2013235313 A JP2013235313 A JP 2013235313A JP 2012105631 A JP2012105631 A JP 2012105631A JP 2012105631 A JP2012105631 A JP 2012105631A JP 2013235313 A JP2013235313 A JP 2013235313A
Authority
JP
Japan
Prior art keywords
electrode
touch switch
detection electrode
reference electrode
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012105631A
Other languages
Japanese (ja)
Other versions
JP6096421B2 (en
Inventor
Takuo Takai
拓夫 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012105631A priority Critical patent/JP6096421B2/en
Publication of JP2013235313A publication Critical patent/JP2013235313A/en
Application granted granted Critical
Publication of JP6096421B2 publication Critical patent/JP6096421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide the input device of a capacitance type touch switch for performing an input operation by using the dielectric constant of a human body for performing a stable input operation with respect to the installation place of the touch switch in equipment or ambient use conditions such as temperature, humidity and electromagnetic noise or an instable factor such as a secular change.SOLUTION: In a touch switch input means, not only an electrode for detection of human body detection but also an electrode for reference are disposed, and the electrode for detection installed so as to be near to the finger with which an operator performs an operation and the electrode for reference installed so as to be far from the finger with which the operator performs an operation are piled up so that an electric balance between the electrode for detection and the electrode for reference can be maintained in a state that any input operation to the touch switch is not performed. When the input operation of the touch switch is performed, it is determined that electric numerical values between the electrode for detection which is near to the finger and the electrode for reference which is far from the finger deviate from each other, and the presence/absence of the input operation of the touch switch is determined.

Description

本発明は電極間の静電容量の変化によって、操作者の操作を検知する静電容量型のタッチスイッチに関し、特に多岐にわたる使用環境に適したタッチスイッチの電極配置とその電気信号処理に関するものである。   The present invention relates to a capacitance-type touch switch that detects an operator's operation based on a change in capacitance between electrodes, and particularly relates to a touch switch electrode arrangement suitable for a wide variety of usage environments and its electrical signal processing. is there.

導電性の電極間に高周波電圧を給電し、人体の指等が電極近傍に入ることで電極間の静電容量の増加によりタッチスイッチ検出回路のCR発振回路の周波数変化で検出を行うタッチスイッチが広く知られている。(特許文献1 特開平11−136116号広報、特許文献2 特開2008-42724号広報、特許文献3 特開2000-48694号広報)   A touch switch that detects a change in the frequency of the CR oscillation circuit of the touch switch detection circuit by supplying a high-frequency voltage between the conductive electrodes and increasing the capacitance between the electrodes when a human finger or the like enters the vicinity of the electrodes. Widely known. (Patent Document 1 JP 11-136116 PR, Patent Document 2 JP 2008-42724 PR, Patent Document 3 JP 2000-48694 PR)

また、電極に給電する高周波発振回路の周波数を固定とし、人体の指等が電極近傍に入ることで電極間の静電容量増加に伴い、電極電流が増すことによるタッチスイッチ検出端子の印加電圧の変化で検出を行うタッチスイッチ方式も広く知られている。(特許文献4 特開2004-22356号広報)   In addition, the frequency of the high-frequency oscillation circuit that feeds the electrodes is fixed, and the applied voltage of the touch switch detection terminal due to the increase in the electrode current due to the increase in the capacitance between the electrodes when a human finger enters the vicinity of the electrodes. A touch switch method for detecting a change is also widely known. (Patent Document 4 JP 2004-22356 PR)

ところがこれらの静電容量方式では、操作者の指先等の誘電率による僅かの静電容量変化を用いるため、タッチスイッチ入力部を機器内に設置した後の静電容量の変化、あるいは周囲温度、湿度、またそれらの経時変化、更には電磁ノイズによる影響を受けやすく、タッチスイッチ入力有無判定の電気的レベルの閾値を初期状態で固定化を行うと、先述の不安定要因による誤判定を生じるため、操作者の意思による入力操作を正しく判定するための例が提案されている。   However, these capacitance methods use a slight capacitance change due to the dielectric constant of the operator's fingertips, etc., so that the capacitance change after the touch switch input unit is installed in the device, or the ambient temperature, It is easily affected by humidity, changes over time, and electromagnetic noise. If the electrical level threshold value for touch switch input determination is fixed in the initial state, erroneous determination due to the above-mentioned instability factor will occur. An example for correctly determining an input operation according to the intention of the operator has been proposed.

特開平11−136116号広報JP 11-136116 A 特開2008-42724号広報JP 2008-42724 PR 特開2000-48694号広報JP 2000-48694 PR 特開2004-22356号広報JP 2004-22356 PR

しかしながら、タッチスイッチの入力装置に対する基本要求仕様は様々な使用環境や経時変化を予測した上で、操作者の操作とそれ以外の外乱要因の明確な判定を行い、一方で操作者のタッチスイッチ操作による僅かな静電容量変化を高感度で取り込む必要がある。   However, the basic requirement specifications for touch switch input devices predict various operating environments and changes over time, and then clearly determine the operator's operation and other disturbance factors, while the operator operates the touch switch. It is necessary to capture a slight change in electrostatic capacitance with high sensitivity.

本発明は、このような課題に鑑み考案されたもので、タッチスイッチ入力装置において周囲環境等が電気的に影響する要因を排除しながら、高感度なタッチスイッチの入力装置を提供することを目的とする。   The present invention has been devised in view of such problems, and it is an object of the present invention to provide a touch switch input device with high sensitivity while eliminating factors that electrically affect the surrounding environment in the touch switch input device. And

このため、本発明のタッチスイッチの入力装置は、静電容量式のタッチスイッチの入力装置であって、非導電性の特性を有する材料により形成された基材と、導電性の材料により形成された一対のタッチスイッチ入力検出用電極と、該入力検出用電極が形成された非導電性の材料の積み重ね方向直下の位置に設けられ、前記検出用電極と電極形状が概合同の基準用電極と、前記入力検出用電極と前記基準用電極の少なくとも各一方の電極各々にあらかじめ設定したインピーダンスを有する素子を介して高周波電圧を給電する共通の高周波発生部と、前記検出用電極に給電した印加電圧を整流する第1の整流部と、前記基準用電極に給電した印加電圧を整流する第2の整流部と、前記第1の整流部の電位と前記第2の整流部の電位に電位差を付加する電位差部と、該電位差部の各々の電圧を比較する比較部と、該比較部の判定結果を出力する判定結果出力を備えたことを特徴としている(請求項1)。   Therefore, the touch switch input device according to the present invention is an electrostatic capacitance type touch switch input device, and is formed of a base material formed of a material having non-conductive characteristics and a conductive material. A pair of touch switch input detection electrodes and a reference electrode having substantially the same electrode shape as the detection electrodes, provided at a position immediately below the stacking direction of the non-conductive material on which the input detection electrodes are formed. A common high-frequency generator for supplying a high-frequency voltage to each of at least one of the input detection electrode and the reference electrode via an element having a predetermined impedance; and an applied voltage supplied to the detection electrode A first rectifier that rectifies the voltage, a second rectifier that rectifies the applied voltage supplied to the reference electrode, and a potential difference between the potential of the first rectifier and the potential of the second rectifier. A potential difference unit which is characterized by comprising a comparator for comparing the voltage of each of the potential difference portion, the judgment result output for outputting the judgment result of the comparison unit (claim 1).

また、検出用電極に給電した印加電圧と、基準用電極に給電した印加電圧をマイクロコンピュータから出力される時間差を有するタイミングに基づき同一の整流部3に給電するゲート回路と、該ゲート回路の切り替えタイミングに同期して前記検出用電極への印加電圧と、前記基準用電極への印加電圧とを交互にA/D変換し、前記マイクロコンピュータで前記検出用電極の印加電圧と基準用電極の印加電圧を随時保存した後、前記検出用電極の印加電圧と基準用電極の印加電圧を比較しその電位差に基づいてタッチ入力信号の判定結果出力を備えたことを特徴としている(請求項2)。   Further, a gate circuit that supplies the same voltage to the same rectifier unit 3 based on a timing having a time difference output from the microcomputer between the applied voltage supplied to the detection electrode and the applied voltage supplied to the reference electrode, and switching between the gate circuits The voltage applied to the detection electrode and the voltage applied to the reference electrode are alternately A / D converted in synchronization with the timing, and the microcomputer applies the voltage applied to the detection electrode and the reference electrode. After the voltage is stored as needed, the applied voltage of the detection electrode and the applied voltage of the reference electrode are compared, and a determination result output of a touch input signal is provided based on the potential difference (claim 2).

また、検出用電極と基準用電極を1組以上備えたタッチスイッチを有する単独の機器に於いて、前記検出用電極と基準用電極の各電極への印加電圧をマイクロコンピュータから出力される時間差を有するタイミングに基づき、1つ以上の整流部nに給電するゲート回路と、該ゲート回路の切り替えタイミングに同期して前記各電極への印加電圧をA/D変換し、前記マイクロコンピュータで前記各電極への印加電圧を随時保存した後、前記1組毎の検出用電極の印加電圧と基準用電極の印加電圧を比較し、その電位差に基づいてタッチ入力信号を比較した判定結果出力を備えたことを特徴としている(請求項3)。   Further, in a single device having a touch switch having one or more sets of detection electrodes and reference electrodes, the time difference in which the voltage applied to each electrode of the detection electrodes and reference electrodes is output from the microcomputer is calculated. A gate circuit that feeds power to one or more rectifiers n, and A / D conversion of the voltage applied to each electrode in synchronization with the switching timing of the gate circuit. After the application voltage is stored at any time, the detection voltage output for each set is compared with the application voltage of the reference electrode, and a determination result output that compares the touch input signal based on the potential difference is provided. (Claim 3).

また、検出用電極と基準用電極の電極形状の相違は、高周波電圧を各々給電する予め定められたインピーダンス素子及び、前記検出用電極と前記基準用電極に給電した印加電圧を整流部へ出力する出力素子の各端子と、前記検出用電極と前記基準用電極の各導体との接続部であり、該接続部は前記検出用電極と前記基準用電極のタッチスイッチ入力操作範囲内の各導体であって、且つ前記検出用電極と前記基準用電極の各導体への給電位置が、略同一であることを特徴としている(請求項4)。   In addition, the difference between the electrode shapes of the detection electrode and the reference electrode is that a predetermined impedance element that supplies a high-frequency voltage to each other and an applied voltage that is supplied to the detection electrode and the reference electrode are output to the rectifying unit. It is a connection portion between each terminal of the output element and each conductor of the detection electrode and the reference electrode, and the connection portion is a conductor within the touch switch input operation range of the detection electrode and the reference electrode. In addition, the feeding positions of the detection electrode and the reference electrode to the respective conductors are substantially the same (claim 4).

さらに、検出用電極と基準用電極へ高周波電圧を各々給電する予め定められたインピーダンス素子は誘導性素子であって、前記検出用電極と前記基準用電極の各電極の浮遊容量と直列共振回路を形成することを特徴としている(請求項5)。   Further, the predetermined impedance element that feeds the high-frequency voltage to the detection electrode and the reference electrode is an inductive element, and the stray capacitance and the series resonance circuit of each of the detection electrode and the reference electrode are provided. It is characterized by forming (claim 5).

本発明のタッチスイッチの入力装置によれば、非導電性の特性を有する材料により形成された基材をはさんで積み重ねて形成された概ね合同の検出用電極と基準用電極を設けているので、検出用電極と基準用電極の設置箇所、あるいは温度、湿度、電磁ノイズなどの周囲の使用条件、また経時変化等の不安定要因を検出用電極と基準用電極共にうけることにより、これらの影響の低減を図ることができる。(以上、請求項1)   According to the input device of the touch switch of the present invention, since the substantially congruent detection electrode and reference electrode formed by stacking the base materials formed of the material having non-conductive characteristics are provided. , The location of the detection electrode and the reference electrode, or the ambient usage conditions such as temperature, humidity, electromagnetic noise, etc. Can be reduced. (Claim 1)

また、検出用電極と基準用電極への印加電圧整流回路を共用することで、各々整流回路を設けるより電気性能のバラツキと部品コストの低減を図ることが可能となる(以上、請求項2、請求項3)   In addition, by sharing the applied voltage rectifier circuit to the detection electrode and the reference electrode, it is possible to reduce the variation in electrical performance and reduce the component cost than providing each rectifier circuit. (Claim 3)

また、検出用電極と基準用電極への電気的接続において、高周波電圧の給電と、各電極の印加電圧を出力するための各素子を最短距離で接続することで不要な配線の浮遊容量を低減し、この結果、各電極は全体の静電容量に占める操作者の操作による静電容量変化の変化率を引き上げ、より感度の高い検出が可能となる(以上、請求項4)。   In addition, the electrical connection between the detection electrode and the reference electrode reduces the stray capacitance of unnecessary wiring by supplying high-frequency voltage and connecting each element for outputting the applied voltage of each electrode at the shortest distance. As a result, each electrode raises the rate of change of capacitance change due to the operator's operation in the total capacitance, and detection with higher sensitivity becomes possible (above claim 4).

また、電極間の給電に直列共振回路を用いることにより、操作者の操作の有無による電極間の印加電圧のダイナミックレンジを拡大できるので、従来のタッチスイッチに比べ入力段階で高感度の入力操作を提供し、併せて直列共振回路自体がバンドパスフィルタの機能を有することで耐ノイズ性能の向上を図ることができる。(請求項5)   In addition, by using a series resonant circuit for power feeding between electrodes, the dynamic range of the applied voltage between the electrodes can be expanded depending on the presence or absence of the operator's operation. In addition, the series resonant circuit itself has the function of a bandpass filter, so that the noise resistance can be improved. (Claim 5)

請求項1に記載の、本発明のブロック図を示した説明図である。It is explanatory drawing which showed the block diagram of this invention of Claim 1. 本発明を実施する際の最も簡潔な回路図を示す。1 shows the simplest circuit diagram in practicing the present invention. 比較部の入力電圧の遷移と判定結果出力を示す図である。It is a figure which shows the transition of the input voltage of a comparison part, and a determination result output. 本発明を実施するための最良の形態に係る電極の構成を示した図である。It is the figure which showed the structure of the electrode which concerns on the best form for implementing this invention. 本発明を実施する際の各電極と、高周波電圧印加のインピーダンス素子及び整流回路への出力素子との接続例を示す図である。It is a figure which shows the example of a connection of each electrode at the time of implementing this invention, the impedance element of a high frequency voltage application, and the output element to a rectifier circuit. 本発明に係る、操作者の操作を行う指と検出用電極及び基準用電極の各々の距離を示す図である。It is a figure which shows the distance of the finger | toe which an operator operates based on this invention, each of the electrode for a detection, and the electrode for a reference | standard. 請求項2に記載の、本発明のブロック図を示した説明図である。It is explanatory drawing which showed the block diagram of this invention of Claim 2. 請求項3に記載の、本発明のブロック図を示した説明図である。It is explanatory drawing which showed the block diagram of this invention of Claim 3. 請求項4に記載の、高周波電圧給電のインピーダンス素子及び整流回路への出力素子との接続例を示す図である。It is a figure which shows the example of a connection with the output element to the impedance element of a high frequency voltage electric power feeding of Claim 4, and the rectifier circuit.

以下、本発明を実施するための最良の形態に係るタッチスイッチの入力装置について図面に基づいて説明する。このタッチスイッチの入力装置は、図1に示すように高周波発生部4と、高周波電圧を各電極へ給電するインピーダンス素子(5a,5b)、非導電性の基材2の、操作者の指11に近い側に設置する検出用電極1。更に検出用電極1と非導電性の基材2の直下に積み重ねられた基準用電極3が設けられており、検出用電極1に給電された印加電圧を整流する第1の整流部6と、基準用電極3に給電された印加電圧を整流する第2の整流部7と、操作者の指11による操作の無い非操作状態で比較部9の判定結果10が、非操作の電気的レベルとなるよう、予め第1の整流部6と第2の整流部7の各出力電圧に電位差を付加する電位差部8で構成されている。   Hereinafter, an input device of a touch switch according to the best mode for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the touch switch input device includes a high frequency generator 4, an impedance element (5a, 5b) for supplying a high frequency voltage to each electrode, and a finger 11 of an operator of a non-conductive substrate 2. The detection electrode 1 installed on the side close to. Furthermore, a reference electrode 3 stacked immediately below the detection electrode 1 and the non-conductive substrate 2 is provided, and a first rectification unit 6 that rectifies the applied voltage supplied to the detection electrode 1; The second rectification unit 7 that rectifies the applied voltage supplied to the reference electrode 3 and the determination result 10 of the comparison unit 9 in a non-operation state without an operation by the operator's finger 11 indicate that the non-operation electric level is In this manner, it is configured by a potential difference unit 8 that adds a potential difference to the output voltages of the first rectification unit 6 and the second rectification unit 7 in advance.

図2は本発明を実施するための簡略な回路図である。高周波発生部4は一例としてインバーターを用いたCR発振回路である。発振周波数は概ね100KHzから数MHzの広い範囲で設定すればよく、タッチスイッチの入力装置の用途、操作者の指11と検出用電極1との検出距離、検出用電極1及び基準用電極3の形状や寸法、非導電性の基材の誘電率、また第1の整流素子6や第2の整流素子7の定数により適宜決定すればよい。正確な発振周波数であったり、予め定められた高周波電圧等である必要は無く、タッチスイッチの入力装置の仕様に合わせ適宜に決定すればよい。   FIG. 2 is a simplified circuit diagram for carrying out the present invention. The high frequency generator 4 is a CR oscillation circuit using an inverter as an example. The oscillation frequency may be set in a wide range of approximately 100 KHz to several MHz, the use of the input device of the touch switch, the detection distance between the operator's finger 11 and the detection electrode 1, the detection electrode 1 and the reference electrode 3. What is necessary is just to determine suitably according to the constant of the 1st rectification element 6 or the 2nd rectification element 7, and a dielectric constant of a nonelectroconductive base material, a shape, a dimension. It is not necessary to use an accurate oscillation frequency or a predetermined high-frequency voltage, and may be determined appropriately according to the specifications of the input device of the touch switch.

以下、図2において、タッチスイッチの入力装置へ操作者の操作が行われない非操作時の動作の概要について述べる。   Hereinafter, in FIG. 2, an outline of an operation when the operator does not perform an operation on the input device of the touch switch will be described.

高周波発生部4は所定の周波数で発振し、値の等しいインピーダンス素子(5a、5b)を介して検出用電極1と基準用電極3の各電極で構成された浮遊容量の給電点(5aa、5bb)へ給電される。(なお図2に記載の(11a、11b)は操作者の指による浮遊容量を図示するものであり、非操作時には存在しないため無視する。)ここで、検出用電極1と基準用電極3の各電極形状がほぼ等しく形成され、各電極がタッチスイッチの入力装置の同じ箇所の至近距離で形成されていれば、各電極の浮遊容量(1cap、3cap)もほぼ等しくなる。よって給電点(5aa、5bb)で観測される各印加電圧波形は、各インピーダンス素子(5a、5b)と検出用電極1と基準用電極3の各電極で構成された浮遊容量(1cap、3cap)との積分波形であり、各印加電圧の波形は概ね等しくなる。   The high-frequency generator 4 oscillates at a predetermined frequency, and feeds points (5aa, 5bb) of stray capacitance formed by the detection electrode 1 and the reference electrode 3 via impedance elements (5a, 5b) having the same value. ). (Note that (11a, 11b) shown in FIG. 2 illustrates the stray capacitance due to the operator's finger and is ignored because it does not exist when not operated.) Here, the detection electrode 1 and the reference electrode 3 If each electrode shape is formed substantially the same and each electrode is formed at a close distance of the same portion of the input device of the touch switch, the floating capacitance (1cap, 3cap) of each electrode is also approximately equal. Therefore, each applied voltage waveform observed at the feeding point (5aa, 5bb) is a stray capacitance (1cap, 3cap) composed of each impedance element (5a, 5b), each electrode of the detection electrode 1 and the reference electrode 3. The waveform of each applied voltage is substantially equal.

次に、図2に於いて検出用電極1への印加電圧を整流する第1の整流部6と、基準用電極3への印加電圧を整流する第2の整流部7は各々同じ値の素子で構成され、整流素子(6c、7c)で各々半端整流を行い、抵抗素子(6a、7a)と容量性素子(6d、7d)で各々平滑を行っている。この結果、第1の整流部6の出力6gと第2の整流部7の出力7gで各出力電圧がほぼ等しくなり、その結果、比較部9の判定結果10の電気的レベルを一律に固定することが困難となるため、予め第2の整流部7の出力7g側のみ電位差部8の抵抗素子8aを、出力7gとGNG間に設けることにより、非操作時には常に基準用電極3側の出力7gの電位が検出用電極1側より低くなるように設定している。   Next, in FIG. 2, the first rectifying unit 6 that rectifies the voltage applied to the detection electrode 1 and the second rectifying unit 7 that rectifies the voltage applied to the reference electrode 3 are elements having the same value. The rectifying elements (6c, 7c) perform half-end rectification, and the resistance elements (6a, 7a) and the capacitive elements (6d, 7d) perform smoothing. As a result, the output voltages of the output 6g of the first rectification unit 6 and the output 7g of the second rectification unit 7 are substantially equal, and as a result, the electrical level of the determination result 10 of the comparison unit 9 is fixed uniformly. Therefore, by providing the resistance element 8a of the potential difference unit 8 only between the output 7g and GNG in advance only on the output 7g side of the second rectifying unit 7, the output 7g on the reference electrode 3 side is always provided when not operated. Is set to be lower than the detection electrode 1 side.

図3は、比較部9の動作を示す図である。タッチスイッチの入力装置の非操作時において、比較素子9aの(+)側入力は(−)側入力より低い電圧が供給され、比較素子9aの出力には低レベル信号(以下、L信号と記す)が判定結果として出力され、この結果タッチスイッチの入力装置に対し操作者の操作が行われてない非操作時の判定結果出力10はL信号となる。   FIG. 3 is a diagram illustrating the operation of the comparison unit 9. When the input device of the touch switch is not operated, the (+) side input of the comparison element 9a is supplied with a lower voltage than the (−) side input, and the output of the comparison element 9a is a low level signal (hereinafter referred to as L signal). ) Is output as a determination result, and as a result, the determination result output 10 when the operator is not operating the touch switch input device is an L signal.

次に、タッチスイッチの入力装置へ操作者の操作が行われた操作時の動作の概要について述べる。   Next, an outline of an operation at the time when the operator performs an operation on the input device of the touch switch will be described.

はじめに、図2の回路図において(11a、11b)はタッチスイッチの入力装置に対する操作者の指先11の浮遊容量を示し、検出用電極1に付加される操作者の指先11の浮遊容量が11a、基準用電極3に付加される操作者の指先11の浮遊容量が11bとし、この静電容量については次式で表される。
First, in the circuit diagram of FIG. 2, (11a, 11b) indicates the stray capacitance of the operator's fingertip 11 with respect to the input device of the touch switch, and the stray capacitance of the operator's fingertip 11 added to the detection electrode 1 is 11a. The stray capacitance of the operator's fingertip 11 added to the reference electrode 3 is 11b, and this capacitance is expressed by the following equation.

数式(数1)より、静電容量は誘電率と電極面積が一定であれば電極の間隔dに反比例することが理解できる。これにより、図6で示す通り、操作者の指11がタッチスイッチの入力装置に接近した場合の各距離は、検出用電極1のGND、1gndから操作者の指11を中継し給電点5aaにいたる距離は(1da+1db)であるのに対し、基準用電極3のGND、3gndから操作者の指11を中継し給電点5bbにいたる距離は(3da+3db)であることから、操作者の指11がタッチスイッチの入力装置に接近した場合の静電容量は、見かけ上の電極間隔が短い検出用電極1に付加される操作者の指先の浮遊容量11aが多く、見かけ上の電極間隔の長い基準用電極3に付加される操作者の指先の浮遊容量11bが少ないことが分かる。   From the formula (Equation 1), it can be understood that the capacitance is inversely proportional to the electrode spacing d if the dielectric constant and the electrode area are constant. As a result, as shown in FIG. 6, when the operator's finger 11 approaches the touch switch input device, the distances from the GND 1gnd of the detection electrode 1 to the operator's finger 11 are relayed to the feeding point 5aa. The distance is (1da + 1db), whereas the distance from the GND 3gnd of the reference electrode 3 to the operator's finger 11 to the feeding point 5bb is (3da + 3db). The capacitance when the finger 11 approaches the input device of the touch switch has a large floating capacitance 11a at the fingertip of the operator added to the detection electrode 1 with a short apparent electrode interval, and the apparent electrode interval It can be seen that the stray capacitance 11b at the fingertip of the operator added to the long reference electrode 3 is small.

以上により、本発明のタッチスイッチの入力装置に操作者の指11が接近した場合、検出用電極1の容量1capに、図2の操作者の指の浮遊容量11aが付加され、基準用電極3の容量3capには、図2の操作者の指の浮遊容量11bが付加される。この時、検出用電極1側に付加される操作者の指の浮遊容量11aが基準用電極3に付加される操作者の指の浮遊容量11bより大きいため、高周波電圧を各電極に給電する各インピーダンス素子(5a、5b)の電流値は共に増加するが、基準用電極3側の高周波電流増加分より検出用電極1側に流れる高周波電流増加分の方が多くなり、インピーダンス素子5aによって給電される給電点5aaの高周波電圧の印加電圧は、インピーダンス素子5bによって給電される給電点5bbの高周波電圧の印加電圧より低くなる。   As described above, when the operator's finger 11 approaches the touch switch input device of the present invention, the stray capacitance 11a of the operator's finger in FIG. 2 is added to the capacitance 1cap of the detection electrode 1, and the reference electrode 3 2 is added with the stray capacitance 11b of the operator's finger in FIG. At this time, since the stray capacitance 11a of the operator's finger added to the detection electrode 1 side is larger than the stray capacitance 11b of the operator's finger added to the reference electrode 3, each high-frequency voltage is supplied to each electrode. Although both the current values of the impedance elements (5a, 5b) increase, the increase in the high-frequency current flowing on the detection electrode 1 side is larger than the increase in the high-frequency current on the reference electrode 3 side, and power is supplied by the impedance element 5a. The applied voltage of the high frequency voltage at the feeding point 5aa is lower than the applied voltage of the high frequency voltage at the feeding point 5bb fed by the impedance element 5b.

この結果、第1の整流部6の出力電圧は第2の整流部7の出力電圧より低くなり、図3に示すとおり、操作者の操作により、比較素子9aの入力端子電圧は、+側入力端子と−側入力端子で反転し、比較素子9aの出力には高レベル信号(以下、H信号と記す)が判定結果として出力され、操作者の操作が行われたとする判定結果出力10はH信号となる。   As a result, the output voltage of the first rectifying unit 6 becomes lower than the output voltage of the second rectifying unit 7, and as shown in FIG. The high-level signal (hereinafter referred to as H signal) is output as the determination result to the output of the comparison element 9a, and the determination result output 10 that the operator's operation is performed is H Signal.

図4は本発明の実施において、導電性材料により形成された検出用電極1と、非導電性の基材2と、導電性の材料により形成された基準電極3を積み重ねた例を示す図である。   FIG. 4 is a diagram showing an example in which the detection electrode 1 made of a conductive material, the non-conductive base material 2, and the reference electrode 3 made of a conductive material are stacked in the practice of the present invention. is there.

図4は本発明の電極の構成を示した図である。操作者が入力操作入行う検出用電極1があり、その下に非導電性の基材2がある。非導電性の基材2の裏面に基準用電極3が積み重ねて形成され、各辺の頂点(3a、3b、3c、3d)は検出用電極1と基準用電極3との位置を合わせ積み重ねられていることを示している。なお、図中(GND)は回路におけるGND(接地)電極、6bは第1の整流部6への出力端子、7bは第2の整流部7のへ出力端子、5は高周波電圧の発振回路からの入力端子である。また、電極の形態について、くし型電極を用いて説明を行ったが、電極形状はこの形態に限るものではない。   FIG. 4 is a diagram showing the configuration of the electrode of the present invention. There is a detection electrode 1 on which an operator inputs an input operation, and a non-conductive base material 2 is provided thereunder. The reference electrode 3 is formed by stacking on the back surface of the non-conductive substrate 2, and the apexes (3a, 3b, 3c, 3d) of each side are stacked with the positions of the detection electrode 1 and the reference electrode 3 aligned. It shows that. In the figure, (GND) is a GND (ground) electrode in the circuit, 6b is an output terminal to the first rectification unit 6, 7b is an output terminal to the second rectification unit 7, and 5 is an oscillation circuit of a high-frequency voltage. Input terminal. Moreover, although the form of the electrode was demonstrated using the comb-shaped electrode, the electrode shape is not limited to this form.

図5は、本発明を実施する際の各電極と、高周波電圧印加のインピーダンス素子及び整流回路への出力素子との接続例を示す図である。特に本発明の非導電性の基材2にプリント基板を用いた場合、検出用電極1の面と基準用電極3の面の電気的接続を図示するものであり、図中、検出用電極1の面の(3e、3g、3f)と基準用電極3の面の(3e、3g、3f)は重なり形成され、スルホール等で電気的に接続されていることを示している。   FIG. 5 is a diagram showing a connection example between each electrode, an impedance element to which a high-frequency voltage is applied, and an output element to the rectifier circuit when the present invention is implemented. In particular, when a printed circuit board is used for the non-conductive base material 2 of the present invention, the electrical connection between the surface of the detection electrode 1 and the surface of the reference electrode 3 is illustrated. (3e, 3g, 3f) on the surface of (3) and (3e, 3g, 3f) on the surface of the reference electrode 3 are formed so as to overlap each other and are electrically connected by through holes or the like.

図7は、請求項2に記載の、本発明のブロック図を示した説明図である。タッチスイッチの入力信号処理に於いてマイクロコンピュータ14を用いる例は多くある。その場合、検出用電極1と基準用電極3への印加電圧測定を、マイクロコンピュータにより制御されるゲート12で交互に切り替えることで、整流部は第3の整流部13のみで処理し、検出用電極1と基準用電極3の印加電圧の比較もマイクロコンピュータで行うことにより部品点数の削減と、信頼性の向上を図ることが可能である。   FIG. 7 is an explanatory diagram showing a block diagram of the present invention. There are many examples of using the microcomputer 14 in the input signal processing of the touch switch. In that case, the voltage applied to the detection electrode 1 and the reference electrode 3 is alternately switched by the gate 12 controlled by the microcomputer, so that the rectifier is processed only by the third rectifier 13 and is used for detection. By comparing the applied voltages of the electrode 1 and the reference electrode 3 with a microcomputer, it is possible to reduce the number of parts and improve the reliability.

図8は、請求項3に記載の、本発明のブロック図を示した説明図である。タッチスイッチの入力装置を用いた機器は同一筐体に於いて一つ以上のタッチスイッチを有し、入力信号処理に於いてマイクロコンピュータ14を用いる例は多くある。その場合、検出用電極1n=1から検出用電極1nと、基準用電極3n=1から基準用電極3nへの印加電圧測定を、マイクロコンピュータにより制御されるゲート12nで切り替えることで、整流部は第n=1の整流部13n=1から第nの整流部13nで処理し、検出用電極1n=1から検出用電極1nと、基準用電極3n=1から基準用電極3nへの印加電圧の比較もマイクロコンピュータで行うことにより部品点数の削減と、信頼性の向上を図ることが可能である。   FIG. 8 is an explanatory view showing a block diagram of the present invention. Devices using touch switch input devices have one or more touch switches in the same housing, and there are many examples in which the microcomputer 14 is used in input signal processing. In that case, the rectifying unit can be switched by switching the applied voltage measurement from the detection electrode 1n = 1 to the detection electrode 1n and from the reference electrode 3n = 1 to the reference electrode 3n by the gate 12n controlled by the microcomputer. The processing is performed by the nth rectifier 13n = 1 to the nth rectifier 13n, and the applied voltage from the detection electrode 1n = 1 to the detection electrode 1n and from the reference electrode 3n = 1 to the reference electrode 3n The comparison can also be performed with a microcomputer to reduce the number of parts and improve the reliability.

図9は、請求項4に記載の検出用電極1と基準用電極3の電極形状について示した図である。一例としてプリント基板の両面に検出用電極1と基準用電極3を各々配置し、インピーダンス素子(5a、5b)及び印加電圧を整流部へ出力する出力素子(6a、7a)を基準用電極3の面に実装した例について述べる。   FIG. 9 is a diagram showing the electrode shapes of the detection electrode 1 and the reference electrode 3 according to claim 4. As an example, the detection electrode 1 and the reference electrode 3 are arranged on both sides of the printed circuit board, and the impedance element (5a, 5b) and the output element (6a, 7a) for outputting the applied voltage to the rectifying unit are connected to the reference electrode 3. An example of mounting on a surface will be described.

本発明によれば、検出用電極1と基準用電極3の電極形状が合同であれば、数式(数1)より、操作者の指11と検出用電極1、および基準用電極3との静電容量は各電極と操作者の指11の間隔に反比例することが理解でき、操作者の指11の検出用電極1と基準用電極3への接近を高感度で検出できる。更に、検出用電極1への給電点5aaと基準用電極3への給電点5bbを互いに隣接させ、検出用電極1と基準用電極3の電極形状の相違を抑えことにより、操作者の指11がタッチスイッチの垂直方向のみならず、上下左右のあらゆる方向から接近したと仮定しても、インピーダンス素子5aの給電点5aa、および第1の整流部6への出力素子6aと、インピーダンス素子5bの給電点5bb、および第2の整流部7への出力素子7aの各接続箇所と、操作者の指11の距離を概ね等しくできるので、各電極に印加する高周波の周波数を高めても分布定数回路としてバランスを保つことが可能であり、安定したタッチスイッチの操作検出が可能である。   According to the present invention, if the electrode shapes of the detection electrode 1 and the reference electrode 3 are congruent, the static relationship between the operator's finger 11, the detection electrode 1, and the reference electrode 3 is calculated according to the equation (Equation 1). It can be understood that the capacitance is inversely proportional to the distance between each electrode and the operator's finger 11, and the proximity of the operator's finger 11 to the detection electrode 1 and the reference electrode 3 can be detected with high sensitivity. Further, the feeding point 5aa to the detection electrode 1 and the feeding point 5bb to the reference electrode 3 are adjacent to each other, and the difference in the electrode shape between the detection electrode 1 and the reference electrode 3 is suppressed, so that the operator's finger 11 Is assumed to approach from not only the vertical direction of the touch switch but also from all directions of up, down, left and right, the feeding point 5aa of the impedance element 5a, the output element 6a to the first rectifying unit 6, and the impedance element 5b Since the distance between the feeding point 5bb and each connection point of the output element 7a to the second rectifying unit 7 and the operator's finger 11 can be made substantially equal, even if the frequency of the high frequency applied to each electrode is increased, the distributed constant circuit As a result, it is possible to maintain a balance, and it is possible to detect the operation of a stable touch switch.

また、図9に於いて、検出用電極1の5aaと基準用電極3の5bbへ給電を行うインピーダンス素子(5a、5b)と、第1の整流部6への出力素子6aと、第2の整流部7への出力素子7aをそれぞれ接続する導体と各素子の電極側端子は、図9の切断線a−aの範囲内にあり、電極以外の浮遊容量を抑えたことを特徴としている。また、第1の整流部6への出力素子6aと、第2の整流部7への出力素子7aは抵抗素子であり、検出用電極1と基準用電極3の浮遊容量と、第1の整流部6と、第2の整流部7への配線に伴う浮遊容量の影響を受けない様、分離している。   In FIG. 9, impedance elements (5a, 5b) for supplying power to 5aa of the detection electrode 1 and 5bb of the reference electrode 3, an output element 6a to the first rectifying unit 6, and a second The conductor connecting the output element 7a to the rectifying unit 7 and the electrode side terminal of each element are within the range of the cutting line aa in FIG. 9, and the stray capacitance other than the electrodes is suppressed. The output element 6a to the first rectification unit 6 and the output element 7a to the second rectification unit 7 are resistance elements, the stray capacitance of the detection electrode 1 and the reference electrode 3, and the first rectification. The unit 6 and the second rectifying unit 7 are separated from each other so as not to be affected by the stray capacitance associated with the wiring.

(実施例1)
以下、図1、図2、図3を参照して本発明の実施例1を説明する。
Example 1
The first embodiment of the present invention will be described below with reference to FIGS.

例えば本発明を用いてモメンタリ動作(タッチスイッチを操作している間だけ動作状態を維持)のタッチスイッチの入力装置を構成するのであれば、図1のブロック図の構成で達成可能である。回路図は図2の通りであり、高周波発生部4のインバーターにはCMOS IC、74HC04が使用でき、発振周期Tは(数2)で求めることができる。例えば、発振周波数を130KHzとし、両面プリント基板で厚さ1.6mm、基板材質がCEM3、図4の各電極の大きさは約10×15mm、櫛形電極のピッチ0.254mmを形成し、インピーダンス素子(5a、5b)を適宜加減し、検出用電極1と基準用電極3に各々4Vp−pの程度の高周波電圧を印加すれば、第1の整流部6と第2の整流部7は同じ回路構成とし、整流素子(6c、7c)は小信号のスイッチングダイオードであり、各電極へ印加された高周波電圧を半端整流する、抵抗(6a、7a)と容量性素子(6e、7e)は平滑回路であり、高周波電圧の周波数130KHz以下を通過させるロウパスフィルターであればよい。抵抗(6a、7a)を整流素子(6c、7c)より電極側に配置したのは、各電極の容量と整流部の浮遊容量を分離する目的である。また抵抗(6d、7d)は平滑回路の放電用抵抗である。
For example, if the input device of the touch switch for momentary operation (maintaining the operating state only while operating the touch switch) is configured using the present invention, the configuration of the block diagram of FIG. 1 can be used. The circuit diagram is as shown in FIG. 2. A CMOS IC, 74HC04 can be used for the inverter of the high-frequency generator 4, and the oscillation period T can be obtained by (Equation 2). For example, the oscillation frequency is 130 KHz, the thickness is 1.6 mm on a double-sided printed board, the board material is CEM3, the size of each electrode in FIG. 4 is about 10 × 15 mm, and the pitch of the comb electrodes is 0.254 mm. By appropriately adjusting (5a, 5b) and applying a high frequency voltage of about 4 Vp-p to each of the detection electrode 1 and the reference electrode 3, the first rectification unit 6 and the second rectification unit 7 are the same circuit. The rectifying elements (6c, 7c) are small-signal switching diodes, and half-rectify the high-frequency voltage applied to each electrode. The resistors (6a, 7a) and the capacitive elements (6e, 7e) are smoothing circuits. Any low pass filter that passes a high frequency voltage of 130 kHz or less may be used. The reason why the resistors (6a, 7a) are arranged on the electrode side from the rectifying elements (6c, 7c) is to separate the capacitance of each electrode and the stray capacitance of the rectifying unit. The resistors (6d, 7d) are discharging resistors for the smoothing circuit.

なお、図2の第1の整流部6と第2の整流部7共に、二段目の平滑回路(6f、6h、7f、7h)を記載しているが、ノイズの影響が無ければ削除しても問題ない。   Note that both the first rectifying unit 6 and the second rectifying unit 7 in FIG. 2 describe the second-stage smoothing circuit (6f, 6h, 7f, 7h). There is no problem.

以上により、本発明のタッチスイッチの入力装置を操作者が操作を行わない非操作時に於いて、図2の第1の整流部6の出力6g、および第2の整流部7の出力7gには3.1V程度の直流電位が出力されるが、比較部9において、この電位をこのまま判定を行うと、非操作時であっても若干の回路定数のバラつき等で出力6g、出力7gの電位の大小が一定せず、非操作時の判定結果10は、L信号かH信号に固定されない問題が生じる。そのため、電位差部8で電位差を付加する為の抵抗素子8aを設け、図3に表すとおり、非操作時の第2の整流部7の出力7gを第1の整流部6の出力6gより0.1V程度低くし、電位差比較素子9aの(+)端子を(−)端子より低い電位とすることにより、非操作時の判定結果出力10にL信号を出力している。   As described above, when the operator does not operate the touch switch input device of the present invention, the output 6g of the first rectifier 6 and the output 7g of the second rectifier 7 in FIG. Although a direct current potential of about 3.1 V is output, if the comparison unit 9 determines this potential as it is, the potentials of the output 6 g and the output 7 g may vary due to slight variations in circuit constants even during non-operation. There is a problem that the magnitude is not constant, and the determination result 10 at the time of non-operation is not fixed to the L signal or the H signal. Therefore, a resistance element 8a for adding a potential difference is provided in the potential difference unit 8, and the output 7g of the second rectification unit 7 when not operated is set to 0. 0 from the output 6g of the first rectification unit 6 as shown in FIG. By making the voltage lower by about 1V and setting the (+) terminal of the potential difference comparison element 9a to a potential lower than the (−) terminal, the L signal is output to the determination result output 10 when not operated.

次に、本発明のタッチスイッチの入力装置を操作者が操作を行う操作時に於いて、操作者の指11が接近した場合、検出用電極1の容量1capに、図2の操作者の指の浮遊容量11aが付加され、基準用電極3の容量3capには、図2の操作者の指の浮遊容量11bが付加される。この時、検出用電極1側に付加される操作者の指の浮遊容量11aが基準用電極3に付加される操作者の指の浮遊容量11bより大きいため、高周波電圧を各電極に給電する各インピーダンス素子(5a、5b)の電流値は共に増加するが、基準用電極3側の高周波電流増加分より検出用電極1側に流れる高周波電流増加分の方が多くなり、インピーダンス素子5aによって給電される給電点5aaの高周波電圧の印加電圧は、インピーダンス素子5bによって給電される給電点5bbの高周波電圧の印加電圧より低くなる。   Next, when the operator operates the touch switch input device according to the present invention, when the operator's finger 11 approaches, the capacitance 1cap of the detection electrode 1 is connected to the capacitance of the operator's finger shown in FIG. The stray capacitance 11a is added, and the stray capacitance 11b of the operator's finger in FIG. 2 is added to the capacitance 3cap of the reference electrode 3. At this time, since the stray capacitance 11a of the operator's finger added to the detection electrode 1 side is larger than the stray capacitance 11b of the operator's finger added to the reference electrode 3, each high-frequency voltage is supplied to each electrode. Although both the current values of the impedance elements (5a, 5b) increase, the increase in the high-frequency current flowing on the detection electrode 1 side is larger than the increase in the high-frequency current on the reference electrode 3 side, and power is supplied by the impedance element 5a. The applied voltage of the high frequency voltage at the feeding point 5aa is lower than the applied voltage of the high frequency voltage at the feeding point 5bb fed by the impedance element 5b.

具体的には、操作時の第1の整流部6の出力6gの電位は0.2V程度低下し約2.9Vとなる。一方、第2の整流部7の出力7gの電位の低下は0.05V程度であり、約2.95Vとなる。このため、図3に示すとおり、操作時の比較素子9aの(+)端子と(−)端子の電位は非操作時の電位と逆転することにより、判定結果出力10にH信号を出力する。   Specifically, the potential of the output 6g of the first rectifying unit 6 during operation is reduced by about 0.2V to about 2.9V. On the other hand, the decrease in the potential of the output 7g of the second rectifying unit 7 is about 0.05V, which is about 2.95V. For this reason, as shown in FIG. 3, the potentials of the (+) terminal and the (−) terminal of the comparison element 9 a during operation are reversed from those during non-operation, thereby outputting an H signal to the determination result output 10.

以上により、本発明のタッチスイッチの入力装置において、操作者が操作を行わない非操作時の判定結果出力10は、L信号であり、操作者が操作を行ったときの判定結果出力10は、H信号となる。及び操作者が本発明の入力装置から指11を遠ざけると、すぐさま判定結果出力10はL信号に戻ることにより、モメンタリ動作のタッチスイッチとして機能が達成される。   As described above, in the touch switch input device of the present invention, the determination result output 10 when the operator does not perform the operation is the L signal, and the determination result output 10 when the operator performs the operation is H signal. When the operator moves the finger 11 away from the input device of the present invention, the determination result output 10 immediately returns to the L signal, thereby achieving the function as a touch switch for momentary operation.

本発明の実施例1において、高周波発生部1の高周波電圧波形は矩形波である必要は無く、三角波、のこぎり波等であってもよく、高調波の発生を伴わない基本波だけの正弦波が理想である。高周波発生部4の回路形態は図2に示したインバータに限定する必要は無く、汎用タイマーIC、OPアンプを用いた発振回路などあらゆる回路形態であってよい。また、連続的に高周波を発生する必要も無いため、消費電力を抑えるため間欠的に高周波電圧を出力してもよい。   In the first embodiment of the present invention, the high-frequency voltage waveform of the high-frequency generator 1 does not have to be a rectangular wave, but may be a triangular wave, a sawtooth wave, or the like, and a sine wave of only a fundamental wave that does not generate harmonics. Ideal. The circuit form of the high-frequency generator 4 is not limited to the inverter shown in FIG. 2, and may be any circuit form such as a general-purpose timer IC and an oscillation circuit using an OP amplifier. Further, since it is not necessary to continuously generate a high frequency, the high frequency voltage may be output intermittently in order to reduce power consumption.

本発明のタッチスイッチの入力装置は、従来のタッチスイッチの一つの方式にある商用電源の変圧器が接地され、変圧器が接地された大地と、操作する機器の露出した電極と、操作者の人体間を微弱電流が流れることによりタッチスイッチの操作を受け付ける装置と異なり、装置の電源の接地が行われてない電池使用の機器でもタッチスイッチでの入力機能が有効である。よって、タッチスイッチの電極部表面が絶縁体あっても問題は無く、印刷の施された樹脂、ガラス等が検出用電極1の前面に設けられた機器にも設置可能なタッチスイッチの入力装置である。また、例えば多層基板の内層に検出用電極1を配置し、プリント基板の操作面側には電極が一切露出しない構造も可能であることから、人体から機器への静電気の耐性とデザイン性の向上、及びコストダウンを図る事が可能である。   The touch switch input device of the present invention has a commercial power transformer in one method of the conventional touch switch grounded, the ground where the transformer is grounded, the exposed electrode of the device to be operated, and the operator's Unlike a device that accepts touch switch operations when a weak current flows between human bodies, an input function using a touch switch is effective even in a battery-powered device in which the power source of the device is not grounded. Therefore, there is no problem even if the surface of the electrode part of the touch switch is an insulator, and it is an input device of the touch switch that can be installed on a device in which printed resin, glass, etc. are provided on the front surface of the detection electrode 1. is there. In addition, for example, it is possible to arrange the detection electrode 1 on the inner layer of the multilayer substrate and to prevent the electrode from being exposed at all on the operation surface side of the printed circuit board, thereby improving the resistance to static electricity from the human body and the design. It is possible to reduce costs.

本発明の実施にあたり、電位差部8で電位差を付加する為の抵抗素子8aを設け、非操作時の比較部9の電位差比較素子9aの(+)端子を(−)端子より低い電位に設定することにより、非操作時の判定結果出力10にL信号を出力しているが、異なる方法としてインピーダンス素子(5a、5b)の定数設定、あるいは第1の整流部6、および第2の整流部7の抵抗素子(6a、7a、6d、7d)の定数設定などにより、別途に電位差部8で電位差を付加する為の抵抗素子8aを設けることなく、比較部9の電位差比較素子9aの(+)端子を(−)端子より低い電位に設定することも可能である。   In carrying out the present invention, a resistance element 8a for adding a potential difference at the potential difference unit 8 is provided, and the (+) terminal of the potential difference comparison element 9a of the comparison unit 9 when not operated is set to a potential lower than the (−) terminal. As a result, the L signal is output to the determination result output 10 at the time of non-operation, but as a different method, constant setting of the impedance elements (5a, 5b), or the first rectifying unit 6 and the second rectifying unit 7 (+) Of the potential difference comparison element 9a of the comparison section 9 without providing a resistance element 8a for adding a potential difference separately by the potential difference section 8 by setting constants of the resistance elements (6a, 7a, 6d, 7d) of It is also possible to set the terminal at a lower potential than the (−) terminal.

(実施例2)
先述のモメンタリ動作のタッチスイッチに於いて、判定結果出力10にラッチ機能を付加すればオルタネイト動作(タッチ操作毎にL信号とH信号出力を繰り返し、指をタッチスイッチから離しても、L信号、あるいはH信号状態を保持)のスイッチを構成可能である。例えば判定結果出力10にCMOS IC 74HC74(D−TYPE FLIP FLOP)を接続することでオルタネイト動作のタッチスイッチが達成可能である。
(Example 2)
In the touch switch for the momentary operation described above, if a latch function is added to the determination result output 10, an alternate operation (L signal and H signal output is repeated for each touch operation, and even if the finger is released from the touch switch, the L signal, Alternatively, a switch for holding the H signal state can be configured. For example, by connecting a CMOS IC 74HC74 (D-TYPE FLIP FLOP) to the determination result output 10, an alternate operation touch switch can be achieved.

(実施例3)
更に、本発明のタッチスイッチの入力装置を複数並べ、マイクロコンピューターを用いて制御を行えば、ラジオスイッチ(ラジオボタン)と言われる、複数のスイッチの一つだけが常に選択されるスイッチも構成可能である。
(Example 3)
Furthermore, when a plurality of touch switch input devices of the present invention are arranged and controlled using a microcomputer, a switch called a radio switch (radio button) in which only one of a plurality of switches is always selected can be configured. It is.

以上のように、本発明にかかるタッチスイッチの入力装置によれば、機器へのタッチスイッチの設置箇所、あるいは温度、湿度、電磁ノイズなどの周囲の使用条件、また経時変化等の不安定要因に対し安定した入力操作を行うことが可能な入力装置を提供することができる。   As described above, according to the input device of the touch switch according to the present invention, the touch switch is installed in the device, or the surrounding use condition such as temperature, humidity, electromagnetic noise, or unstable factors such as a change with time. An input device capable of performing a stable input operation can be provided.

1 検出用電極
1cap 検出用電極の浮遊容量
1n=1 n=1番目の検出用電極
1n n番目の検出用電極
2 非導電性の基材
2n=1 n=1番目の非導電性の基材
2n n番目の非導電性の基材
3 基準用電極
3a 基準用電極と検出用電極の重なり位置3aを示す
3b 基準用電極と検出用電極の重なり位置3bを示す
3c 基準用電極と検出用電極の重なり位置3cを示す
3d 基準用電極と検出用電極の重なり位置3dを示す
3e 基準用電極と検出用電極のスルホール位置3eを示す
3f 基準用電極と検出用電極のスルホール位置3fを示す
3g 基準用電極と検出用電極のスルホール位置3gを示す
3cap 基準用電極の浮遊容量
3n=1 n=1番目の基準用電極
3n n番目の基準用電極
4 高周波発生部
5 インピーダンス素子の入力
5a 検出用電極インピーダンス素子
5aa 検出用電極への給電点
5an=1 n=1番目の検出用電極インピーダンス素子
5an n番目の検出用電極インピーダンス素子
5b 基準用電極インピーダンス素子
5bn=1 n=1番目の基準用電極インピーダンス素子
5bn n番目の基準用電極インピーダンス素子
5bb 基準用電極への給電点
6 第1の整流部
6a 検出用電極の出力素子
6b 第1の整流部6への出力端子
6c 第1の整流部の整流素子
6d 第1の整流部の放電抵抗
6e 第1の整流部の平滑用容量素子
6f 第2の整流部の二段目の平滑用抵抗素子
6g 第1の整流部の電圧出力点
6h 第1の整流部の二段目の平滑用容量素子
7 第2の整流部
7a 基準用電極の出力素子
7b 第2の整流部7への出力端子
7c 第2の整流部の整流素子
7d 第2の整流部の放電抵抗
7e 第2の整流部の平滑用容量素子
7f 第2の整流部の二段目の平滑用抵抗素子
7g 第2の整流部の出力点
7h 第2の整流部の二段目の平滑用容量素子
8 電位差部
8a 電位差を付加する為の抵抗素子
9 比較部
9a 電位差比較素子
10 判定結果出力
11 操作者の指
11a 検出用電極側での操作者の指の浮遊容量
11b 基準用電極側での操作者の指の浮遊容量
12 ゲート回路
12n n個の切り替え機能を有するゲート回路
13 第3の整流部
13n=1 第13n=1の整流部
13n 第13nの整流部
14 マイクロコンピュータ
DESCRIPTION OF SYMBOLS 1 Detection electrode 1cap Floating capacitance of detection electrode 1n = 1 n = 1st detection electrode 1n nth detection electrode 2 Nonconductive base material 2n = 1 n = 1st nonconductive base material 2n n-th non-conductive substrate 3 reference electrode 3a 3d indicating the overlap position 3a of the reference electrode and detection electrode 3b 3c indicating the overlap position 3b of the reference electrode and detection electrode 3c reference electrode and detection electrode 3d showing the overlapping position 3c of the reference electrode and the detecting electrode 3d showing the overlapping position 3d 3f showing the through hole position 3e of the reference electrode and the detecting electrode 3f showing the through hole position 3f of the reference electrode and the detecting electrode 3g reference 3 cap showing the through hole position 3g of the electrode for detection and the electrode for detection 3 st floating capacitance of the reference electrode 3 n = 1 n = 1 first reference electrode 3 n n th reference electrode 4 high frequency generator 5 impedance element 5a Detection electrode impedance element 5aa Feed point to detection electrode 5an = 1 n = 1st detection electrode impedance element 5an nth detection electrode impedance element 5b Reference electrode impedance element 5bn = 1 n = 1 5th reference electrode impedance element 5bn nth reference electrode impedance element 5bb Feed point to reference electrode 6 First rectifier 6a Detection electrode output element 6b First rectifier 6 output terminal 6c 1st Rectifying element of 1 rectifying unit 6d discharge resistance of first rectifying unit 6e smoothing capacitive element of first rectifying unit 6f second-stage smoothing resistive element of second rectifying unit 6g voltage of first rectifying unit Output point 6h Second-stage smoothing capacitive element of the first rectifier 7 Second rectifier 7a Reference electrode output element 7b Output terminal 7c to the second rectifier 7 2d Rectifying Element 7d Discharge Resistance of Second Rectifying Unit 7e Smoothing Capacitance Element of Second Rectifying Unit 7f Second Stage Smoothing Resistive Element of Second Rectifying Unit 7g Output of Second Rectifying Unit Point 7h Second-stage smoothing capacitive element of the second rectification unit 8 Potential difference unit 8a Resistance element for adding potential difference 9 Comparison unit 9a Potential difference comparison element 10 Determination result output 11 Operator's finger 11a On the detection electrode side The operator's finger stray capacitance 11b The operator's finger stray capacitance 12b on the reference electrode side The gate circuit 12n The gate circuit 13 having the switching function of the n pieces The third rectifier 13n = 1 The 13n = 1 rectifier 13n 13th rectifier 14 Microcomputer

Claims (5)

静電容量式のタッチスイッチの入力装置であって、非導電性の特性を有する材料により形成された基材と、導電性の材料により形成された一対のタッチスイッチ入力検出用電極と、該入力検出用電極が形成された非導電性の材料の積み重ね方向直下の位置に設けられ、前記検出用電極と電極形状が概合同の基準用電極と、前記入力検出用電極と前記基準用電極の少なくとも各一方の電極各々にあらかじめ設定したインピーダンスを有する素子を介して前記高周波電圧を給電する共通の高周波発生部と、前記検出用電極に給電した印加電圧を整流する第1の整流部と、前記基準用電極に給電した印加電圧を整流する第2の整流部と、前記第1の整流部の電位と前記第2の整流部の電位に電位差を付加する電位差部と、該電位差部の各々の電圧を比較しその電位差に基づいてタッチ入力信号を比較する比較部と、該比較部の判定結果を出力する判定結果出力を備えたことを特徴とする、前記タッチスイッチの入力装置。 An input device for a capacitance type touch switch, comprising a base material formed of a material having non-conductive characteristics, a pair of touch switch input detection electrodes formed of a conductive material, and the input Provided at a position immediately below the stacking direction of the non-conductive material on which the detection electrode is formed, the reference electrode having the same electrode shape as the detection electrode, and at least the input detection electrode and the reference electrode A common high-frequency generator for supplying the high-frequency voltage to each one of the electrodes through an element having a preset impedance; a first rectifier for rectifying the applied voltage supplied to the detection electrode; and the reference A second rectifying unit that rectifies an applied voltage supplied to the electrode, a potential difference unit that adds a potential difference between the potential of the first rectifying unit and the potential of the second rectifying unit, and each voltage of the potential difference unit The Compare and a comparison unit for comparing the touch input signal based on the potential difference, and further comprising a determination result output for outputting the judgment result of the comparison section, the input device of the touch switch. 検出用電極に給電した印加電圧と、基準用電極に給電した印加電圧をマイクロコンピュータから出力される時間差を有するタイミングに基づき同一の整流部3に給電するゲート回路と、該ゲート回路の切り替えタイミングに同期して前記検出用電極への印加電圧と、前記基準用電極への印加電圧とを交互にA/D変換し、前記マイクロコンピュータで前記検出用電極の印加電圧と基準用電極の印加電圧を随時保存した後、前記検出用電極の印加電圧と基準用電極の印加電圧を比較する比較部と、該比較部の判定結果を出力する判定結果出力を備えたことを特徴とする、請求項1に記載のタッチスイッチの入力装置。 A gate circuit that feeds the applied voltage fed to the detection electrode and the applied voltage fed to the reference electrode to the same rectifier 3 based on a timing having a time difference output from the microcomputer, and a switching timing of the gate circuit Synchronously, the voltage applied to the detection electrode and the voltage applied to the reference electrode are alternately A / D converted, and the microcomputer applies the voltage applied to the detection electrode and the voltage applied to the reference electrode. The comparison unit according to claim 1, further comprising a comparison unit that compares the applied voltage of the detection electrode and the applied voltage of the reference electrode, and a determination result output that outputs a determination result of the comparison unit after being stored as needed. A touch switch input device according to claim 1. 検出用電極と基準用電極を1組以上備えたタッチスイッチを有する単独の機器に於いて、前記検出用電極と基準用電極の各電極への印加電圧をマイクロコンピュータから出力される時間差を有するタイミングに基づき、1つ以上の整流部nに給電するゲート回路と、該ゲート回路の切り替えタイミングに同期して前記各電極への印加電圧をA/D変換し、前記マイクロコンピュータで前記各電極への印加電圧を随時保存した後、前記1組毎の検出用電極の印加電圧と基準用電極の印加電圧を比較する比較部と、該比較部の判定結果を出力する判定結果出力を備えたことを特徴とする、請求項1に記載のタッチスイッチの入力装置。 In a single device having a touch switch having at least one pair of detection electrode and reference electrode, timing having a time difference in which the voltage applied to each electrode of the detection electrode and reference electrode is output from the microcomputer Based on the above, the gate circuit for supplying power to one or more rectifiers n, A / D conversion of the voltage applied to each electrode in synchronization with the switching timing of the gate circuit, After storing the applied voltage as needed, a comparison unit for comparing the applied voltage of the detection electrode and the applied voltage of the reference electrode for each set and a determination result output for outputting the determination result of the comparison unit are provided. 2. The touch switch input device according to claim 1, wherein the input device is a touch switch. 検出用電極と基準用電極の電極形状の相違は、高周波電圧を各々給電する予め定められたインピーダンス素子及び、前記検出用電極と前記基準用電極に給電した印加電圧を整流部へ出力する出力素子の各端子と、前記検出用電極と前記基準用電極の各導体との接続部であり、該接続部は前記検出用電極と前記基準用電極のタッチスイッチ入力操作範囲内の各導体であって、且つ前記検出用電極と前記基準用電極の各導体への給電位置が、略同一であることを特徴とする、請求項1乃至請求項4に記載のタッチスイッチの入力装置。 The difference between the electrode shape of the detection electrode and the reference electrode is that a predetermined impedance element that feeds a high-frequency voltage respectively, and an output element that outputs an applied voltage fed to the detection electrode and the reference electrode to the rectifying unit Each of the terminals, and a connection portion between the detection electrode and the reference electrode conductor, and the connection portion is a conductor within the touch switch input operation range of the detection electrode and the reference electrode. 5. The touch switch input device according to claim 1, wherein feed positions to the conductors of the detection electrode and the reference electrode are substantially the same. 6. 検出用電極と基準用電極へ高周波電圧を各々給電する予め定められたインピーダンス素子は誘導性素子であって、前記検出用電極と前記基準用電極の各電極の浮遊容量と直列共振回路を形成することを特徴とする、請求項1乃至請求項4に記載のタッチスイッチの入力装置。 The predetermined impedance elements that supply high-frequency voltages to the detection electrode and the reference electrode are inductive elements, and form a series resonance circuit with the stray capacitance of each of the detection electrode and the reference electrode. The touch switch input device according to claim 1, wherein the input device is a touch switch.
JP2012105631A 2012-05-07 2012-05-07 Touch switch input device Expired - Fee Related JP6096421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012105631A JP6096421B2 (en) 2012-05-07 2012-05-07 Touch switch input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012105631A JP6096421B2 (en) 2012-05-07 2012-05-07 Touch switch input device

Publications (2)

Publication Number Publication Date
JP2013235313A true JP2013235313A (en) 2013-11-21
JP6096421B2 JP6096421B2 (en) 2017-03-15

Family

ID=49761411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012105631A Expired - Fee Related JP6096421B2 (en) 2012-05-07 2012-05-07 Touch switch input device

Country Status (1)

Country Link
JP (1) JP6096421B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169881A (en) * 2016-03-24 2017-09-28 拓夫 高井 Bed sensor and bed state determination device
CN112415604A (en) * 2021-01-22 2021-02-26 深圳市汇顶科技股份有限公司 Detection circuit, chip and related electronic device
CN115003023A (en) * 2022-05-26 2022-09-02 意力(广州)电子科技有限公司 Capacitor key circuit board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854983A (en) * 1994-08-12 1996-02-27 Fujitsu Ltd Coordinate input device
WO2004059343A1 (en) * 2002-12-25 2004-07-15 Act Elsi Inc. Electrostatic capacity detection type proximity sensor
JP2008108534A (en) * 2006-10-25 2008-05-08 Fujikura Ltd Human body approach detection device
JP2009076237A (en) * 2007-09-19 2009-04-09 Mitsubishi Motors Corp El light emitting type touch switch
JP2009218876A (en) * 2008-03-11 2009-09-24 Tokai Rika Co Ltd Electrostatic capacity touch sensor
JP2009272043A (en) * 2008-04-30 2009-11-19 Pentel Corp Capacitance type switch device
JP2010020674A (en) * 2008-07-14 2010-01-28 Tokai Rika Co Ltd Touch sensor device
JP2010238642A (en) * 2009-03-31 2010-10-21 Fujikura Ltd Device for detecting occupant's position and device for controlling expansion of airbag
JP2010273020A (en) * 2009-05-20 2010-12-02 Tokai Rika Co Ltd Switch device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854983A (en) * 1994-08-12 1996-02-27 Fujitsu Ltd Coordinate input device
WO2004059343A1 (en) * 2002-12-25 2004-07-15 Act Elsi Inc. Electrostatic capacity detection type proximity sensor
JP2008108534A (en) * 2006-10-25 2008-05-08 Fujikura Ltd Human body approach detection device
JP2009076237A (en) * 2007-09-19 2009-04-09 Mitsubishi Motors Corp El light emitting type touch switch
JP2009218876A (en) * 2008-03-11 2009-09-24 Tokai Rika Co Ltd Electrostatic capacity touch sensor
JP2009272043A (en) * 2008-04-30 2009-11-19 Pentel Corp Capacitance type switch device
JP2010020674A (en) * 2008-07-14 2010-01-28 Tokai Rika Co Ltd Touch sensor device
JP2010238642A (en) * 2009-03-31 2010-10-21 Fujikura Ltd Device for detecting occupant's position and device for controlling expansion of airbag
JP2010273020A (en) * 2009-05-20 2010-12-02 Tokai Rika Co Ltd Switch device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169881A (en) * 2016-03-24 2017-09-28 拓夫 高井 Bed sensor and bed state determination device
CN112415604A (en) * 2021-01-22 2021-02-26 深圳市汇顶科技股份有限公司 Detection circuit, chip and related electronic device
CN112415604B (en) * 2021-01-22 2021-06-18 深圳市汇顶科技股份有限公司 Detection circuit, chip and related electronic device
CN115003023A (en) * 2022-05-26 2022-09-02 意力(广州)电子科技有限公司 Capacitor key circuit board

Also Published As

Publication number Publication date
JP6096421B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
CN107533091B (en) Non-contact voltage measuring device
US8199132B1 (en) Position indicator
US10003334B2 (en) Capacitative sensor system
JP5326042B2 (en) Capacitance type sensor device and capacitance measuring device for capacitance type sensor
CN103733518A (en) Printed circuit board comprising an electrode configuration of an capacitive sensor
JP2007240479A (en) Capacitance type position detector
EP2661811A2 (en) Capacitive proximity sensor as well as method for capacitive approximation detection
JP6096421B2 (en) Touch switch input device
KR101922014B1 (en) Capacitive Sensor Device and Method for Calibrating a Capacitive Sensor Device
JP6379708B2 (en) Touch switch
JP2016051587A (en) Capacitance detector
JP5615211B2 (en) Capacitive input device
US9442609B2 (en) Sensing method and circuit for use with capacitive sensing devices
JP5605577B2 (en) Capacitive touch sensor
JP5490043B2 (en) Occupant detection device
KR102506756B1 (en) Sensor for detecting particulate matter and circuit for processing output signal of the sensor
JP5666711B2 (en) Touch recognition method, touch key structure, and touch device
JP2023500285A (en) Alignment device and method for aligning transmitter and receiver of wireless power transfer system
US10398227B2 (en) Piece of furniture with sensor device
JP6908353B2 (en) Electrode structure for capacitance coupling type switch
JP4155897B2 (en) Input device
JP2017111598A (en) Electrostatic detection device
US9838009B2 (en) Switch with user feedback
JP2017116515A (en) Capacitance type liquid level sensor
JPWO2013018120A1 (en) Capacitive touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

R150 Certificate of patent or registration of utility model

Ref document number: 6096421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees