JP2013235094A - Simulated blood for flow phantom for ultrasonic diagnostic device - Google Patents

Simulated blood for flow phantom for ultrasonic diagnostic device Download PDF

Info

Publication number
JP2013235094A
JP2013235094A JP2012106673A JP2012106673A JP2013235094A JP 2013235094 A JP2013235094 A JP 2013235094A JP 2012106673 A JP2012106673 A JP 2012106673A JP 2012106673 A JP2012106673 A JP 2012106673A JP 2013235094 A JP2013235094 A JP 2013235094A
Authority
JP
Japan
Prior art keywords
density
aqueous solution
water
simulated blood
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012106673A
Other languages
Japanese (ja)
Inventor
Kohei Tanaka
浩平 田仲
Tomoji Yoshida
知司 吉田
Kazuishi Sato
一石 佐藤
Toshiro Kondo
敏郎 近藤
Kazuhiro Yasukawa
和宏 安川
Nobuaki Miyamoto
信昭 宮本
Masahiko Taniguchi
雅彦 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2012106673A priority Critical patent/JP2013235094A/en
Publication of JP2013235094A publication Critical patent/JP2013235094A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide simulated blood usable for a flow phantom for ultrasonic diagnostic devices over a long time since the simulated blood is safe to organisms and harmless to the natural environment with no change over time in the density thereof and sonic speed therein nor no precipitate and floating of a resin powder.SOLUTION: The simulated blood for flow phantoms for ultrasonic diagnostic devices comprises a suspension in which a resin powder with a density of 1.05×10(kg/m) is dispersed in an aqueous solution, in which the aqueous solution is an aqueous solution with a density of 1.05×10(kg/m) including water, a water-soluble polyhydric alcohol and a water-soluble silicone. The simulated blood such that the density of the simulated blood and sonic speed in the simulated blood comply with an IEC international standard is formed by using the three-component aqueous solution including a water-soluble silicone in which the sonic speed decreases with increase in the concentration of the silicone. The precipitating and floating of the resin powder is prevented by making the density of the resin powder the same as that of the three-component aqueous solution.

Description

本発明は、ドップラー効果による生体内の血流を観察し、計測する機能を備えた超音波診断装置の性能を評価するフローファントムに用いられる疑似血液に関するものである。   The present invention relates to pseudo blood used in a flow phantom for evaluating the performance of an ultrasonic diagnostic apparatus having a function of observing and measuring blood flow in a living body due to the Doppler effect.

超音波診断装置は、X線の被爆による危険性がなく安全性が高いこと、リアルタイムで診断できること、装置が小型軽量であること等の特長から、臨床現場で実用化されており、現在では、超音波ドップラー法により生体内の血流分布像を表示する機能および特定点の血流速度を計測する機能を備えた超音波診断装置が実用に供されている。   Ultrasonic diagnostic equipment has been put to practical use in clinical settings because of its features such as high safety without risk from exposure to X-rays, real-time diagnosis, and small and lightweight equipment. An ultrasonic diagnostic apparatus having a function of displaying a blood flow distribution image in a living body by an ultrasonic Doppler method and a function of measuring a blood flow velocity at a specific point has been put to practical use.

この超音波診断装置の性能を評価するためには、生体内の血流分布像の描写能力および血流速度の計測値の精度を知る必要があり、そのために人体を被検体にして装置の性能を評価することも行われている。しかしながら、この評価方法では、生体の音波物性値に個体差があること、また、生体内の正確な血管径、血流速度も分からないことなどから、定量的な性能評価が困難である。   In order to evaluate the performance of this ultrasonic diagnostic apparatus, it is necessary to know the ability to draw blood flow distribution images in the living body and the accuracy of the measured values of blood flow velocity. Is also being evaluated. However, with this evaluation method, it is difficult to quantitatively evaluate the performance because there are individual differences in the acoustic property values of the living body, and the accurate blood vessel diameter and blood flow velocity in the living body are not known.

そこで、人体に代わりファントムを用いて超音波ドップラー法による超音波診断装置の性能評価が提案されている。例えば、フローセンなどの粉粒が疑似血球として混入された疑似血液を、疑似生体材料内に設けられた疑似血管に一定流量で間欠的に流す、ドップラー計測可能な超音波診断装置の較正方法が、既に出願公開されている(特許文献1)。   Therefore, performance evaluation of an ultrasonic diagnostic apparatus by an ultrasonic Doppler method using a phantom instead of a human body has been proposed. For example, a method for calibrating an ultrasonic diagnostic apparatus capable of Doppler measurement, in which pseudo blood mixed with powder particles such as flow sensation as pseudo blood cells is intermittently flowed into a pseudo blood vessel provided in the pseudo biomaterial at a constant flow rate, An application has already been published (Patent Document 1).

ファントムにより超音波診断装置の性能を評価する場合は、性能評価の物差しになるファントムの特性について統一された規格が必要になる。そのため、IEC国際規格(非特許文献1)には、ファントムを構成する生体擬似組織と擬似血液の物性値等が定められている。このIEC国際規格(IEC61685「超音波流速測定システム-流速試験体−」)に記載されている擬似血液の物性値を下記表1に、疑似血液の組成を下記表2にそれぞれ示す。   When evaluating the performance of an ultrasonic diagnostic apparatus using a phantom, a unified standard is required for the characteristics of the phantom, which is a measure for performance evaluation. Therefore, in the IEC international standard (Non-patent Document 1), physical property values and the like of the living body pseudo-tissue and the pseudo blood constituting the phantom are defined. The physical properties of simulated blood described in the IEC international standard (IEC61685 “Ultrasonic flow velocity measurement system—flow velocity test body”) are shown in Table 1 below, and the composition of simulated blood is shown in Table 2 below.

Figure 2013235094
Figure 2013235094

Figure 2013235094
Figure 2013235094

疑似血液は、血漿成分に相当する水溶液に、超音波の反射体である血球に相当する粉粒を分散させた懸濁液である。疑似血液には、血液と同等の超音波反射特性が求められるため、疑似血液の密度と音速を、上記表1に示すように、血液と同等の密度1.05×10(kg/m)と同等の音速1570(m/s)にすることが定められている。 The simulated blood is a suspension in which powder particles corresponding to blood cells that are ultrasonic reflectors are dispersed in an aqueous solution corresponding to a plasma component. Since pseudo blood requires ultrasonic reflection characteristics equivalent to blood, the density and sound speed of pseudo blood are as shown in Table 1 above, with a density of 1.05 × 10 3 (kg / m 3 equivalent to blood). ) Is set to be equivalent to the sound speed 1570 (m / s).

疑似血液に分散させる粉粒としては、IEC国際規格で定められている擬似血液の密度1.05×10(kg/m)と同じ密度を有する粉粒が適しており、従来から、上記の密度を有するポリスチレンの粉粒が大抵の疑似血液に広く用いられている。 As the powder particles to be dispersed in the simulated blood, powder particles having the same density as the simulated blood density of 1.05 × 10 3 (kg / m 3 ) defined in the IEC international standard are suitable. Polystyrene particles having a density of 5 are widely used in most simulated blood.

一方、上記粒子を分散させる水溶液は、上記粒子が経時的に沈殿あるいは浮遊することを防止する観点から、上記粒子と同じ密度1.05×10(kg/m)を有する水溶液を用いる必要があり、且つ、上記粒子を分散させたときに音速1570(m/s)の疑似血液を得ることができる音速を備えた水溶液を用いる必要がある。そのため、IEC国際規格などに記載された疑似血液では、前記表2に示すように水とグリセリンとデキストランを特定の含有割合とすることによって、音速1570(m/s)の疑似血液が得られるように音速を調節した、密度1.05×10(kg/m)の水溶液を用いている。 On the other hand, the aqueous solution in which the particles are dispersed needs to use an aqueous solution having the same density of 1.05 × 10 3 (kg / m 3 ) as that of the particles from the viewpoint of preventing the particles from precipitating or floating over time. In addition, it is necessary to use an aqueous solution having a sound speed capable of obtaining pseudo blood having a sound speed of 1570 (m / s) when the particles are dispersed. Therefore, in the simulated blood described in the IEC international standard etc., simulated blood having a sound velocity of 1570 (m / s) can be obtained by setting water, glycerin, and dextran to specific contents as shown in Table 2 above. An aqueous solution having a density of 1.05 × 10 3 (kg / m 3 ) with a controlled sound speed is used.

特開平09−262234号公報JP 09-262234 A

アイ イ シ(IEC)、「国際規格 アイ イ シ61685 超音波 流速測定システム-流速試験体−」(International Standard IEC61685 ULTRASONICS Flow measurements systm -Flow test object-)、2001年7月IEC (International Standard IEC61685 ULTRASONICS Flow measurements systm -Flow test object-), July 2001

しかしながら、グリセリンとデキストランを溶かした水溶液にポリスチレンの粉粒を分散させた疑似血液は、多糖類のデキストランに細菌が繁殖して腐敗するため、衛生面で問題があることに加えて、疑似血液の密度や音速などの物性が経時変化するという問題がある。そのため、長時間使用することができず、短時間で新しい疑似血液を調製しなければならないという煩わしさがあり、また、調製時の誤差によって一定した精度の較正が困難になる恐れもあった。   However, pseudo blood in which polystyrene granules are dispersed in an aqueous solution in which glycerin and dextran are dissolved has a problem in terms of hygiene, because bacteria grow and decay in polysaccharide dextran. There is a problem that physical properties such as density and sound speed change with time. Therefore, it cannot be used for a long time, and there is an annoyance that a new pseudo blood must be prepared in a short time, and there is a possibility that calibration with a constant accuracy may be difficult due to an error during preparation.

このような問題を解決するためには、デキストランに代わる水溶性物質を溶かした水溶液を用いて疑似血液を調製することが考えられる。けれども、ポリスチレン粉粒を分散させる水溶液は、以下に説明するように種々の制約があるため、デキストランに代わる水溶性物質を溶かした水溶液であってIEC国際規格に適合する疑似血液を調製できるものは、未だ実現されていない。   In order to solve such a problem, it is conceivable to prepare simulated blood using an aqueous solution in which a water-soluble substance instead of dextran is dissolved. However, since the aqueous solution in which polystyrene particles are dispersed has various limitations as described below, an aqueous solution in which a water-soluble substance replacing dextran is dissolved and pseudo blood that conforms to IEC international standards can be prepared. It has not been realized yet.

即ち、密度が1.05×10(kg/m)のポリスチレン粉粒の音速の測定値は2117(m/s)で、IEC国際規格に定められた疑似血液の音速1570(m/s)より大きいため、IEC国際規格に定められた音速を有する疑似血液を得るためには、ポリスチレン粉粒を分散させる水溶液として、1570(m/s)より小さい音速を有する水溶液を用いなければならない。 That is, the measurement value of the sound velocity of polystyrene powder having a density of 1.05 × 10 3 (kg / m 3 ) is 2117 (m / s), and the sound velocity of pseudo blood 1570 (m / s) defined in the IEC international standard. Therefore, in order to obtain pseudo blood having a sound speed defined by the IEC international standard, an aqueous solution having a sound speed smaller than 1570 (m / s) must be used as an aqueous solution in which polystyrene powder particles are dispersed.

更に詳しく説明すると、音速が1570(m/s)の疑似血液を得るために必要な水溶液の音速は、ポリスチレン粉粒の分散量に応じて変化し、下記表3に示すように、ポリスチレン粉粒の分散量が5.0(%)、7.5(%)、10.0(%)と増加するに従って、水溶液の音速は1551(m/s)、1542(m/s)、1532(m/s)と減少しなければならない。このポリスチレン粉粒の分散量と水溶液の音速との関係を示す数値は、下記文献1に記載された計算方法、即ち、懸濁液の音速について分散している粉粒と溶液の物性値が既知である場合に、それらの物性値と粉粒の分散率とからその音速を理論的に計算する方法に基づいて算出したものである。下記表3に掲げたポリスチレン粉粒の分散量は、疑似血液において規格で定められた超音波の後方散乱係数を満たすために必要なものであり、これらの数値はIEC国際規格にも記載されている。
[文献1]ピオトロウスカ(A. Piotrowska)、「懸濁液および乳状液における超音波の伝播(Propagation of ultrasonic waves in suspensions and emulsions)」,超音波(ULTRASONICS)、1971年11月、p.235−239
More specifically, the sound velocity of the aqueous solution necessary for obtaining the pseudo blood having a sound velocity of 1570 (m / s) varies depending on the amount of the dispersed polystyrene particles. As shown in Table 3 below, the polystyrene particles As the dispersion amount increases to 5.0 (%), 7.5 (%), and 10.0 (%), the sound velocity of the aqueous solution increases to 1551 (m / s), 1542 (m / s), and 1532 (m / S). The numerical value indicating the relationship between the dispersion amount of the polystyrene particles and the sound velocity of the aqueous solution is the calculation method described in the following document 1, that is, the physical properties of the particles and solution dispersed with respect to the sound velocity of the suspension are known. In this case, the sound velocity is calculated based on a method of theoretically calculating the sound speed from the physical property values and the dispersion rate of the particles. The dispersion amount of polystyrene powder listed in the following Table 3 is necessary to satisfy the ultrasonic backscattering coefficient defined in the standard in pseudo blood, and these values are also described in the IEC international standard. Yes.
[Reference 1] A. Piotrowska, “Propagation of ultrasonic waves in suspensions and emulsions”, ULTRASONICS, November 1971, p. 235-239

Figure 2013235094
Figure 2013235094

また、ポリスチレン粉粒を分散させる水溶液は、前述のように、ポリスチレン粉粒の経時的な沈殿あるいは浮遊を防止する観点から、密度が1.05×10(kg/m)でなければならず、そのため、水(純水)の密度より大きな水溶性物質(液体)を溶かして水溶液の密度を上記値にする必要がある。このように水より密度が大きな液体を水に溶かすと、通常、その水溶液の音速は増加するので、IEC国際規格に定められた1570(m/s)の音速を有する擬似血液を得るためには、密度が1.05×10(kg/m)で、且つ、音速が上記表3に掲げた音速以下となる水溶液が必要になる。けれども、生体に安全で且つ環境に悪影響を及ぼさない水溶性物質(液体)を溶かした水溶液で、音速が上記表3に示す値以下となるものは,未だに実現されていない。 In addition, the aqueous solution in which the polystyrene particles are dispersed must have a density of 1.05 × 10 3 (kg / m 3 ) from the viewpoint of preventing precipitation or floating of the polystyrene particles over time as described above. Therefore, it is necessary to dissolve a water-soluble substance (liquid) larger than the density of water (pure water) to bring the density of the aqueous solution to the above value. When a liquid having a density higher than that of water is dissolved in water as described above, the sound speed of the aqueous solution usually increases. Therefore, in order to obtain pseudo blood having a sound speed of 1570 (m / s) defined in the IEC international standard. An aqueous solution having a density of 1.05 × 10 3 (kg / m 3 ) and a sound speed equal to or lower than the sound speed listed in Table 3 is required. However, an aqueous solution in which a water-soluble substance (liquid) that is safe for the living body and does not adversely affect the environment and having a sound velocity below the value shown in Table 3 has not yet been realized.

本発明は上記事情の下になされたもので、その解決しようとする課題は、生体に安全で自然環境に悪影響を及ぼすことがなく、しかも、密度および音速の経時変化や、ポリスチレンなどの樹脂粉粒の沈殿あるいは浮遊を生じることがないため、長時間にわたって超音波診断装置のフローファントムに用いることができる疑似血液を提供することにある。   The present invention has been made under the circumstances described above, and the problem to be solved is that it is safe for the living body and does not adversely affect the natural environment, and also changes with time in density and sound speed, resin powder such as polystyrene, etc. An object of the present invention is to provide simulated blood that can be used in a flow phantom of an ultrasonic diagnostic apparatus over a long period of time because no precipitation or floating of particles occurs.

本発明者らは上記課題を解決するため鋭意研究を重ねた結果、水溶性シリコーンの水溶液は、その濃度の増加により密度がわずかに増加するけれども音速が減少する領域が存在するという事実を見出し、この水溶性シリコーンをデキストランに代えて配合した水溶液に超音波を反射する樹脂粉粒を分散させると、IEC国際規格に適合する疑似血液が得られることを知得して、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found the fact that an aqueous solution of a water-soluble silicone has a region where the density is slightly increased but the speed of sound is decreased by increasing the concentration, In order to complete the present invention, it is learned that pseudo-blood that conforms to IEC international standards can be obtained by dispersing resin powder that reflects ultrasonic waves in an aqueous solution containing this water-soluble silicone instead of dextran. It came.

即ち、本発明に係る超音波診断装置のフローファントム用疑似血液は、密度が1.05×10(kg/m)の樹脂粉粒を水溶液に分散させた懸濁液からなる疑似血液であって、上記水溶液が、水と水溶性多価アルコールと水溶性シリコーンを含んだ密度が1.05×10(kg/m)の水溶液であることを特徴とするものである。 That is, the simulated blood for flow phantom of the ultrasonic diagnostic apparatus according to the present invention is simulated blood composed of a suspension in which resin particles having a density of 1.05 × 10 3 (kg / m 3 ) are dispersed in an aqueous solution. The aqueous solution is an aqueous solution having a density of 1.05 × 10 3 (kg / m 3 ) containing water, a water-soluble polyhydric alcohol, and a water-soluble silicone.

本発明の疑似血液においては、水溶性シリコーンが、側鎖に親水性の有機基を有する水溶性シリコーンであることが好ましく、有機基がポリエーテル基である水溶性シリコーンが更に好ましい。   In the simulated blood of the present invention, the water-soluble silicone is preferably a water-soluble silicone having a hydrophilic organic group in the side chain, and more preferably a water-soluble silicone in which the organic group is a polyether group.

本発明に用いる水溶性シリコーンは、後述するように、密度が水(純水)より大きく、音速が水(純水)より小さい液状物質であり、これを水に溶かしたシリコーン水溶液は、シリコーン濃度の増加に伴って密度が少し増加するが、音速は逆に減少する。そのため、この水溶性シリコーンと前記のグリセリンなどの水溶性多価アルコールと水を含んだ三成分系の水溶液は、その密度を1.05×10(kg/m)とし、且つ、音波を前記表3に示した値以下とすることが可能である。従って、この三成分系の水溶液に、密度が1.05×10(kg/m)の樹脂粉粒を分散させた本発明の疑似血液は、IEC国際規格に適合する密度1.05×10(kg/m)と音速1570(m/s)を有するものとなる。 As will be described later, the water-soluble silicone used in the present invention is a liquid substance having a density larger than water (pure water) and a sound velocity smaller than water (pure water), and a silicone aqueous solution obtained by dissolving this in water has a silicone concentration. As the value increases, the density increases slightly, but the sound speed decreases. Therefore, the ternary aqueous solution containing the water-soluble silicone, the water-soluble polyhydric alcohol such as glycerin, and water has a density of 1.05 × 10 3 (kg / m 3 ) and a sound wave. The value shown in Table 3 or less can be set. Therefore, the simulated blood of the present invention in which resin powder having a density of 1.05 × 10 3 (kg / m 3 ) is dispersed in this ternary aqueous solution has a density of 1.05 × conforming to the IEC international standard. 10 3 (kg / m 3 ) and sound velocity 1570 (m / s).

また、水溶性シリコーンは糖類ではないので、この水溶性シリコーンを溶かした三成分系の水溶液に細菌が繁殖して腐敗する心配もない。従って、本発明の疑似血液は、生体に安全で自然環境に悪影響を及ぼすことがなく、腐敗による密度および音速の経時変化を生じることもない。しかも、本発明の疑似血液は、樹脂粉粒の密度と三成分系の水溶液の密度が等しく1.05×10(kg/m)であるため、長時間経過しても樹脂粉粒が沈殿したり浮遊したりすることなく、均一な分散、懸濁状態を維持する。
このように、本発明の疑似血液は、衛生的で変質し難いものであるため、長時間にわたって超音波診断装置のフローファントムに用いることができる。
In addition, since water-soluble silicone is not a saccharide, there is no fear that bacteria will propagate and rot in a ternary aqueous solution in which this water-soluble silicone is dissolved. Therefore, the simulated blood of the present invention is safe for the living body, does not adversely affect the natural environment, and does not cause a change in density and sound speed due to decay over time. Moreover, the simulated blood of the present invention has a resin powder particle density equal to that of the ternary aqueous solution of 1.05 × 10 3 (kg / m 3 ). Maintain uniform dispersion and suspension without settling or floating.
As described above, the simulated blood of the present invention is hygienic and hardly deteriorated, and thus can be used for a flow phantom of an ultrasonic diagnostic apparatus for a long time.

水溶性シリコーン(KF−642)水溶液のシリコーン濃度と音速との関係を示すグラフである。It is a graph which shows the relationship between the silicone concentration of water-soluble silicone (KF-642) aqueous solution, and a sound speed. グリセリン水溶液のグリセリン濃度と音速との関係を示すグラフである。It is a graph which shows the relationship between the glycerol density | concentration of a glycerol aqueous solution, and a sound speed. 水溶性シリコーン(KF−642)、グリセリン、水の三成分からなる水溶液における、密度と音速を一定値とする等高線図である。It is a contour map which makes a density and a sound speed constant in the aqueous solution which consists of three components of water-soluble silicone (KF-642), glycerol, and water. 水溶性シリコーン(KF−640)、グリセリン、水の三成分からなる水溶液における、密度と音速を一定値とする等高線図である。It is a contour map which makes density and sound speed constant in the aqueous solution which consists of three components of water-soluble silicone (KF-640), glycerol, and water. ポリエチレングリコール(平均分子量400)水溶液とグリセリン水溶液における、密度と音速との関係を示すグラフである。It is a graph which shows the relationship between a density and a sound speed in polyethyleneglycol (average molecular weight 400) aqueous solution and glycerol aqueous solution.

以下、本発明に係る超音波診断装置のフローファントム用疑似血液の実施形態について、図1,図2,図5に示すグラフや、図3,図4に示す等高線図を参照しながら説明する。   Hereinafter, embodiments of pseudo blood for flow phantoms of an ultrasonic diagnostic apparatus according to the present invention will be described with reference to the graphs shown in FIGS. 1, 2, and 5, and the contour diagrams shown in FIGS.

本発明に係る疑似血液は、密度が1.05×10(kg/m)の樹脂粉粒を水溶液に分散させた懸濁液からなる疑似血液であって、上記水溶液として、水と水溶性多価アルコールと水溶性シリコーンを含んだ、密度が1.05×10(kg/m)である三成分系の水溶液を用いたものである The simulated blood according to the present invention is simulated blood composed of a suspension in which resin particles having a density of 1.05 × 10 3 (kg / m 3 ) are dispersed in an aqueous solution. Using a ternary aqueous solution containing a functional polyhydric alcohol and water-soluble silicone and having a density of 1.05 × 10 3 (kg / m 3 ).

樹脂粉粒は、1.05×10(kg/m)の密度を有する水不溶性の樹脂粉粒であれば全て使用可能であるが、その中でも、前述のポリスチレン粉粒が好ましく使用される。この樹脂粉粒の粒径は特に限定されないが、均一な分散性や超音波反射性を考慮すると、1〜10μm程度の平均粒径を有するものが好ましい。 Any resin powder can be used as long as it is a water-insoluble resin powder having a density of 1.05 × 10 3 (kg / m 3 ). Among them, the above-mentioned polystyrene powder is preferably used. . The particle size of the resin particles is not particularly limited, but those having an average particle size of about 1 to 10 μm are preferable in consideration of uniform dispersibility and ultrasonic reflectivity.

三成分系の水溶液に含まれる水溶性多価アルコールとしては、1.05×10(kg/m)より大きい密度を有する水溶性グリセリンやポリエチレングリコールなどが好ましく使用され、モノマーのエチレングリコールも使用される。ポリエチレングリコールとしては分子量400程度のものが使用されるが、分子量は特に限定されない。 As the water-soluble polyhydric alcohol contained in the ternary aqueous solution, water-soluble glycerin or polyethylene glycol having a density greater than 1.05 × 10 3 (kg / m 3 ) is preferably used, and the monomer ethylene glycol is also used. used. Polyethylene glycol having a molecular weight of about 400 is used, but the molecular weight is not particularly limited.

また、三成分系の水溶液に含まれる水溶性シリコーンは、水(純水)より大きい密度を有し、且つ、シリコーン水溶液のシリコーン濃度の上昇に伴って音速が低下するものであれば使用可能である。そのような水溶性シリコーンとしては、例えば、下記の構造式(1)に示すような、側鎖に親水性の有機基を有する側鎖型変性シリコーンが挙げられ、特に、側鎖の有機基が下記の構造式(2)に示すようなポリエーテル基である側鎖型ポリエーテル変性シリコーンが好ましく使用される。かかる側鎖型ポリエーテル変性シリコーンの代表例としては、信越化学工業(株)製の変性シリコーンオイル「KF−642」(粘度25℃:50mm/s、比重:1.04、HLB:12)や、信越化学工業(株)製の変性シリコーンオイル「KF−640」(粘度25℃:20mm/s、比重:1.01、HLB:14)などが挙げられる。 In addition, the water-soluble silicone contained in the three-component aqueous solution can be used as long as it has a density higher than water (pure water) and the sound velocity decreases as the silicone concentration of the aqueous silicone solution increases. is there. Examples of such water-soluble silicones include side chain-modified silicones having a hydrophilic organic group in the side chain as shown in the following structural formula (1). A side chain polyether-modified silicone that is a polyether group as shown in the following structural formula (2) is preferably used. As a representative example of such side chain polyether-modified silicone, modified silicone oil “KF-642” manufactured by Shin-Etsu Chemical Co., Ltd. (viscosity 25 ° C .: 50 mm 2 / s, specific gravity: 1.04, HLB: 12) And modified silicone oil “KF-640” manufactured by Shin-Etsu Chemical Co., Ltd. (viscosity 25 ° C .: 20 mm 2 / s, specific gravity: 1.01, HLB: 14) and the like.

構造式(1)

Figure 2013235094


構造式(2)
Figure 2013235094

Structural formula (1)
Figure 2013235094


Structural formula (2)
Figure 2013235094

次に、樹脂粉粒としてポリスチレン粉粒、水溶性多価アルコールとしてグリセリン、水溶性シリコーンとして側鎖型ポリエーテル変性シリコーン(信越化学工業(株)製の変性シリコーンオイル「KF−642」)を用いる場合を例にとって、本発明に係る疑似血液を具体的に説明する。   Next, polystyrene powder is used as the resin powder, glycerin is used as the water-soluble polyhydric alcohol, and side-chain polyether-modified silicone (modified silicone oil “KF-642” manufactured by Shin-Etsu Chemical Co., Ltd.) is used as the water-soluble silicone. Taking the case as an example, the simulated blood according to the present invention will be specifically described.

信越化学工業(株)製の水溶性シリコーンオイル「KF−642」の22.0℃における密度と音速を測定したところ、下記表4に示すように、密度は1.04×10(kg/m)、音速は1308.0(m/s)であった。この測定値から、上記水溶性シリコーンオイルの密度は水(純水)より大きく、また、その音速は水の音速1500(m/s)より低いことが確認できた。 When the density and sound velocity at 22.0 ° C. of water-soluble silicone oil “KF-642” manufactured by Shin-Etsu Chemical Co., Ltd. were measured, the density was 1.04 × 10 3 (kg / kg) as shown in Table 4 below. m 3 ) and the speed of sound was 1308.0 (m / s). From this measured value, it was confirmed that the density of the water-soluble silicone oil was higher than that of water (pure water) and that the speed of sound was lower than the speed of sound of water 1500 (m / s).

Figure 2013235094
Figure 2013235094

前記の水溶性シリコーンオイル「KF−642」で水溶液を作成して、その濃度(質量%)と密度および音速の関係を測定した。図1に、シリコーンオイル水溶液における水溶性シリコーンオイルの濃度と音速との関係の測定結果を示す。水溶性シリコーンオイルを水に溶かすと、その水溶液の密度はわずかに増加したが、音速は、図1に示すように、水溶性シリコーンオイル濃度の上昇に伴って低下することが認められた。   An aqueous solution was prepared with the water-soluble silicone oil “KF-642”, and the relationship between the concentration (% by mass), the density, and the speed of sound was measured. FIG. 1 shows the measurement results of the relationship between the water-soluble silicone oil concentration in the silicone oil aqueous solution and the sound velocity. When water-soluble silicone oil was dissolved in water, the density of the aqueous solution slightly increased, but the sound speed was observed to decrease with increasing water-soluble silicone oil concentration, as shown in FIG.

一方、グリセリンの水溶液は、グリセリンの密度が1.26×10(kg/m)であるため、グリセリン濃度を調整して水溶液の密度を1.05×10(kg/m)にすることができる。しかし、グリセリンの水溶液においては、その密度が1.05×10(kg/m)になるようにグリセリン濃度を高くすると、音速が目標とする1570(m/s)を超過することが実験結果から確認できた。図2は、擬似血液の密度と音速を規定している温度22.0℃における、グリセリン水溶液のグリセリン濃度と音速との関係を測定したグラフであって、このグラフに示されるように、グリセリン水溶液の音速はグリセリン濃度の上昇に伴って大きくなる。 On the other hand, since the glycerin aqueous solution has a glycerin density of 1.26 × 10 3 (kg / m 3 ), the glycerin concentration is adjusted to bring the aqueous solution density to 1.05 × 10 3 (kg / m 3 ). can do. However, in an aqueous solution of glycerin, when the concentration of glycerin is increased so that the density is 1.05 × 10 3 (kg / m 3 ), the sound speed exceeds the target 1570 (m / s). It was confirmed from the results. FIG. 2 is a graph obtained by measuring the relationship between the glycerin concentration of a glycerin aqueous solution and the sound speed at a temperature of 22.0 ° C., which regulates the density and sound speed of simulated blood. As shown in this graph, the glycerin aqueous solution The speed of sound increases with increasing glycerin concentration.

上記のように、シリコーンオイル(KF−642)水溶液の水溶性シリコーンオイル濃度と音速の関係と、グリセリン水溶液のグリセリン濃度と音速の関係は、溶質の濃度の増加に対する音速の変化において正反対の特性を示している。この事実から、水溶性シリコーンオイルとグリセリンと水を含む三成分系の水溶液によって、密度が1.05×10(kg/m)で、且つ、音速が前記表3に掲げた値以下の水溶液を調製できることが想定される。 As described above, the relationship between the water-soluble silicone oil concentration of the silicone oil (KF-642) aqueous solution and the sound velocity, and the relationship between the glycerin concentration and the sound velocity of the glycerin aqueous solution are opposite characteristics in the change of the sound velocity with respect to the increase of the solute concentration. Show. From this fact, with a ternary aqueous solution containing water-soluble silicone oil, glycerin and water, the density is 1.05 × 10 3 (kg / m 3 ) and the speed of sound is less than the value listed in Table 3 above. It is envisioned that an aqueous solution can be prepared.

一般に水を含む3種類の液体を混合して作成した水溶液の物性は、水に溶かした2種類の溶液の間に物性に影響を与える相互作用が存在する。そのため水溶性シリコーンオイルの水溶液の濃度と音速の関係と、グリセリン水溶液の濃度と音速の関係を線形加算することによって、水溶性シリコーンオイルとグリセリンを混合した水溶液の密度や音速を算出することはできない。   In general, the physical properties of an aqueous solution prepared by mixing three types of liquids containing water include an interaction that affects the physical properties between two types of solutions dissolved in water. Therefore, it is not possible to calculate the density and sound velocity of an aqueous solution in which water-soluble silicone oil and glycerin are mixed by linearly adding the relationship between the concentration of aqueous solution of water-soluble silicone oil and sound velocity and the relationship between the concentration of glycerin aqueous solution and sound velocity. .

シリコーンオイルとグリセリンを溶かした水溶液について、3種の液体のあらゆる混合率における密度と音速を測定することにより濃度と密度あるいは濃度と音速の関係を明らかにすることは大変な手数がかかり困難である。   It is difficult and difficult to clarify the relationship between density and density or density and sound speed by measuring the density and sound speed at all mixing ratios of the three liquids in an aqueous solution in which silicone oil and glycerin are dissolved. .

上記のような手数のかかる方法に対して数少ない測定データから混合溶液の物性を推定できる方法がシェフエ(H. Scheff■)により開発された。この方法を2種類の溶質を溶かした水溶液の密度と音速の特性を知るのに応用した場合、計算値と実験値は非常に良い一致が認められている。この事実は下記文献2に記載されている。
[文献2]吉田知司、後藤朱里、田仲浩平、近藤敏郎(Tomoji Yoshida, Akari Gotow, Kouhei Tanaka, and Toshio Kondo),「音波減衰定数測定のためのレファレンス材(Reference Materials for the Measurement of Acoustic Attenuation Coefficients)」、日本応用物理誌(Jpn. J. Appl. Phys.)、50巻、2011年、p.07HF15−1
H. Scheff has developed a method that can estimate the physical properties of a mixed solution from a small amount of measurement data compared to the above-described method. When this method is applied to know the density and sound velocity characteristics of an aqueous solution in which two kinds of solutes are dissolved, the calculated values and the experimental values agree very well. This fact is described in Document 2 below.
[Reference 2] Tomoji Yoshida, Akari Goto, Kohei Tanaka, Toshiro Kondo, “Reference Materials for the Measurement of Acoustic Attenuation Coefficients ), Japan Applied Physics Journal (Jpn. J. Appl. Phys.), 50, 2011, p. 07HF15-1

上記の手法を採用することにより、目標とする密度と音速の水溶液が実現できる。
以下、文献2に記載されている方法を水溶性シリコーンオイルとグリセリンを溶かした水溶液に適用して、シリコーンオイルとグリセリンの濃度を決める場合について具体的に述べる。
By adopting the above method, an aqueous solution having a target density and sound velocity can be realized.
Hereinafter, the case where the method described in Document 2 is applied to an aqueous solution in which water-soluble silicone oil and glycerin are dissolved to determine the concentrations of silicone oil and glycerin will be specifically described.

三成分からなる溶液の成分比x1, x2, x3に対して溶液の物性値τは、次式(1)で与えられる。

Figure 2013235094

Figure 2013235094

The physical property value τ of the solution is given by the following equation (1) with respect to the component ratio x 1 , x 2 , x 3 of the three-component solution.
Figure 2013235094

Figure 2013235094

式(1)の係数β1、β2、β3、β12、β13、β123、β123を定めるため、下記表5に示すように、水溶性シリコーンオイル(KF−642)とグリセリンと水(純水)との含有割合が異なる7種類の水溶液について、それぞれの密度と音速を測定した。その測定結果を下記表5に示す。 In order to determine the coefficients β 1 , β 2 , β 3 , β 12 , β 13 , β 123 , β 123 of the formula (1), as shown in Table 5 below, water-soluble silicone oil (KF-642) and glycerin The density and sound speed of each of seven types of aqueous solutions having different contents from water (pure water) were measured. The measurement results are shown in Table 5 below.

Figure 2013235094
Figure 2013235094

上記表5に示された成分比から決まるx1, x2, x3の数値から、式(1)の係数β123121323123を求める次式(2)、(3)が与えられる。
ここに式(2)は音速に関する式であり、式(3)は密度に関する式である。
From the numerical values of x 1 , x 2 , x 3 determined from the component ratios shown in Table 5 above, the coefficients β 1 , β 2 , β 3 , β 12 , β 13 , β 23 , β 123 of equation (1) are calculated. The following equations (2) and (3) to be obtained are given.
Here, Expression (2) is an expression relating to the sound velocity, and Expression (3) is an expression relating to the density.

Figure 2013235094
Figure 2013235094

Figure 2013235094
Figure 2013235094

式(2)を解きβ123121323123を求めると次のようになる。
β1=1490.0、 β2=1410.0、 β3=1950.0、 β12=64.0、 β13=0、 β23=6455.2、 β123=−8008.0
成分比x1, x2, x3を関数とする音速Cの式は,次式(4)のようになる。
Equation (2) is solved to obtain β 1 , β 2 , β 3 , β 12 , β 13 , β 23 , and β 123 as follows.
β 1 = 1490.0, β 2 = 1410.0, β 3 = 1950.0, β 12 = 64.0, β 13 = 0, β 23 = 6455.2, β 123 = −8008.0
The expression of the sound velocity C with the component ratios x 1 , x 2 , x 3 as a function is expressed by the following expression (4).

Figure 2013235094
Figure 2013235094

式(3)を解きβ123121323123を求めると次のようになる。
β1=0.998、 β2=1.078、 β3=1.203、 β12=0.0、 β13=0.05、 β23=2.99、 β123=−3.1
成分比x1, x2, x3を関数とする密度σの式は,次式(5)で与えられる。
Equation (3) is solved to obtain β 1 , β 2 , β 3 , β 12 , β 13 , β 23 , and β 123 as follows.
β 1 = 0.998, β 2 = 1.078, β 3 = 1.203, β 12 = 0.0, β 13 = 0.05, β 23 = 2.99, β 123 = -3.1
The expression of the density σ having the component ratios x 1 , x 2 , x 3 as a function is given by the following expression (5).

Figure 2013235094
Figure 2013235094

式(4)と式(5)を用いて、水溶性シリコーンオイル(KF−642)、グリセリン、水の三成分からなる水溶液において密度と音速を一定値とする等高線を三角図上に描いた。得られた結果を図3に示す。   Using Formula (4) and Formula (5), contour lines having constant values of density and sound speed in an aqueous solution composed of three components of water-soluble silicone oil (KF-642), glycerin, and water are drawn on a triangular diagram. The obtained results are shown in FIG.

図3において、密度が1.05×10(kg/m)なる等高線と、音速がそれぞれ1540(m/s)、1550(m/s)、1560(m/s)なる等高線は交わる。この事実から、密度が1.05×10(kg/m)で且つ音速が1570(m/s)以下の液体が、水溶性シリコーンオイル(FK−642)、グリセリン、水の三成分からなる水溶液で実現できることが明らかである。 In FIG. 3, a contour line having a density of 1.05 × 10 3 (kg / m 3 ) and a contour line having sound velocities of 1540 (m / s), 1550 (m / s), and 1560 (m / s) respectively intersect. From this fact, a liquid having a density of 1.05 × 10 3 (kg / m 3 ) and a sound velocity of 1570 (m / s) or less is composed of water-soluble silicone oil (FK-642), glycerin, and water. It is clear that this can be realized with an aqueous solution.

従って、上記の三成分系の水溶液にポリスチレン粉粒を前記表3に示す分散量で分散させると、IEC国際規格の1570(m/s)の音速と、IEC国際規格の1.05×10(kg/m)の密度を有する疑似血液が得られることは明らかであり、この疑似血液ではポリスチレン粉粒の密度と三成分系水溶液の密度が完全に一致しているので、長時間放置してもポリスチレン粉粒が沈澱あるいは浮遊することはない。 Therefore, when polystyrene particles are dispersed in the ternary aqueous solution at the dispersion amount shown in Table 3, the sound speed of IEC international standard 1570 (m / s) and the IEC international standard 1.05 × 10 3 are obtained. It is clear that pseudo blood having a density of (kg / m 3 ) can be obtained. In this pseudo blood, the density of the polystyrene powder and the density of the ternary aqueous solution are completely the same, so it is left for a long time. However, polystyrene particles do not settle or float.

また、ポリエチレングリコール(平均分子量400)水溶液における密度と音速の関係を測定結果から求めた。得られた結果を図5に示す。図5のグラフから、密度が1.04×10(kg/m)での音速は、グリセリン水溶液と比べ若干高くなっているが、ポリエチレングリコール(平均分子量400)水溶液はグリセリン水溶液と類似した密度と音速の関係であることが判る。このことからポリエチレングリコールと水溶性シリコーンオイルを含んだ水溶液にポリスチレン粉粒を分散させても、IEC国際規格に適合する擬似血液を調製できることが判る。 Moreover, the relationship between the density and the sound velocity in an aqueous solution of polyethylene glycol (average molecular weight 400) was determined from the measurement results. The obtained results are shown in FIG. From the graph of FIG. 5, the sound velocity at a density of 1.04 × 10 3 (kg / m 3 ) is slightly higher than that of the glycerol aqueous solution, but the polyethylene glycol (average molecular weight 400) aqueous solution is similar to the glycerol aqueous solution. It can be seen that there is a relationship between density and sound speed. From this, it can be seen that even if polystyrene particles are dispersed in an aqueous solution containing polyethylene glycol and water-soluble silicone oil, pseudo blood conforming to IEC international standards can be prepared.

また、水溶性シリコーンオイル(FK−642)に代えて前記の水溶性シリコーンオイル(FK−640)を使用し、前述した手法で、水溶性シリコーンオイル(KF−640)、グリセリン、水の三成分からなる水溶液において密度と音速を一定値とする等高線図を作製した。この等高線図を図4に示す。   Further, the water-soluble silicone oil (FK-642) is used in place of the water-soluble silicone oil (FK-642), and the water-soluble silicone oil (KF-640), glycerin, and water are used in the above-described manner. A contour map with constant density and sound velocity in an aqueous solution was prepared. This contour map is shown in FIG.

水溶性シリコーンオイル(FK−640)は、水溶性シリコーンオイル(FK−642)と同様の側鎖型ポリエーテル変性シリコーンオイルであるが、側鎖の数や長さ、或いは、主鎖の長さの違いのため、密度が1.01×10(kg/m)と水溶性シリコーンオイル(FK−642)より小さいものである。けれども、図4から明らかなように、密度が1.05×10(kg/m)なる等高線と、音速がそれぞれ1540(m/s)、1550(m/s)、1560(m/s)なる等高線は交わっており、この事実から、密度が1.05×10(kg/m)で且つ音速が1570(m/s)以下の液体が、水溶性シリコーンオイル(FK−640)、グリセリン、水の三成分からなる水溶液で実現できることが判る。 Water-soluble silicone oil (FK-640) is a side-chain polyether-modified silicone oil similar to water-soluble silicone oil (FK-642), but the number and length of side chains or the length of the main chain. Therefore, the density is 1.01 × 10 3 (kg / m 3 ), which is smaller than the water-soluble silicone oil (FK-642). However, as is clear from FIG. 4, the contour lines having a density of 1.05 × 10 3 (kg / m 3 ) and the sound velocities of 1540 (m / s), 1550 (m / s), and 1560 (m / s), respectively. ), And the liquid having a density of 1.05 × 10 3 (kg / m 3 ) and a sound velocity of 1570 (m / s) or less is water-soluble silicone oil (FK-640). It can be seen that it can be realized with an aqueous solution composed of three components of glycerin and water.

次に、本発明の更に具体的な実施例を説明する。   Next, more specific examples of the present invention will be described.

[実施例1]
図3に示す等高線図において、密度が1.05×10(kg/m)の等高線と、音速が1540(m/s)の等高線との交点の座標を計算することによって、密度が1.05×10(kg/m)、音速が1540(m/s)の三成分系水溶液の水溶性シリコーンオイル濃度とグリセリン濃度を求めたところ、水溶性シリコーンオイル濃度は18.5質量%、グリセリン濃度は9.7質量%であった。
この水溶性シリコーンオイル濃度が18.5質量%、グリセリン濃度が9.7質量%である三成分系水溶液に、密度が1.05×10(kg/m)のポリスチレン粉粒(平均粒径5μm)を分散させて擬似血液となる懸濁液を調製するとき、この懸濁液の音速を規格値の1570(m/s)とするポリスチレン粉粒の分散量を、前記文献1に記載されている理論式で求めると、ポリスチレン粉粒の分散量は三成分系水溶液100質量%に対して8.0質量%となる。
そこで、上記の三成分系水溶液100質量%に対してポリスチレン粉粒を8質量%分散させることにより、IEC国際規格に適合した密度1.05×10(kg/m)と音速1570(m/s)を有する、下記表6に記載した組成の疑似血液を得た。
[Example 1]
In the contour map shown in FIG. 3, by calculating the coordinates of the intersection of the contour line having a density of 1.05 × 10 3 (kg / m 3 ) and the contour line having a sound velocity of 1540 (m / s), the density is 1 .05 × 10 3 (kg / m 3), the sound velocity is 1540 (m / s) was determined with water-soluble silicone oil concentration and glycerol concentration ternary aqueous solution of water-soluble silicone oil concentration of 18.5 wt% The glycerin concentration was 9.7% by mass.
In this ternary aqueous solution having a water-soluble silicone oil concentration of 18.5% by mass and a glycerin concentration of 9.7% by mass, polystyrene particles having a density of 1.05 × 10 3 (kg / m 3 ) (average particle size) When preparing a suspension to be simulated blood by dispersing (diameter 5 μm), the dispersion amount of polystyrene powder having the sound speed of this suspension as a standard value of 1570 (m / s) is described in Reference 1 above. If it calculates | requires by the theoretical formula currently performed, the dispersion amount of a polystyrene particle will be 8.0 mass% with respect to 100 mass% of ternary system aqueous solution.
Therefore, by dispersing 8% by mass of polystyrene particles in 100% by mass of the ternary aqueous solution, a density of 1.05 × 10 3 (kg / m 3 ) and a sound velocity of 1570 (m / S), pseudo blood having the composition described in Table 6 below was obtained.

Figure 2013235094
Figure 2013235094

[実施例2]
グリセリンに代えてポリエチレングリコール(分子量400)を用い、実施例1と同様の方法で、密度が1.05×10(kg/m)、音速が1540(m/s)の三成分系水溶液の水溶性シリコーンオイル濃度とポリエチレングリコール濃度を求め、IEC国際規格に適合した密度1.05×10(kg/m)と音速1570(m/s)を有する、下記表7に記載した組成の疑似血液を得た。
[Example 2]
A ternary aqueous solution having a density of 1.05 × 10 3 (kg / m 3 ) and a sound velocity of 1540 (m / s) in the same manner as in Example 1 except that polyethylene glycol (molecular weight 400) is used instead of glycerin. The water-soluble silicone oil concentration and polyethylene glycol concentration were determined, and the composition described in Table 7 below had a density of 1.05 × 10 3 (kg / m 3 ) and a sound velocity of 1570 (m / s) conforming to IEC international standards. I got the simulated blood.

Figure 2013235094
Figure 2013235094

[実施例3]
グリセリンに代えてエチレングリコールを用い、実施例1と同様の方法で、密度が1.05×10(kg/m)、音速が1540(m/s)の三成分系水溶液の水溶性シリコーンオイル濃度とエチレングリコール濃度を求め、IEC国際規格に適合した密度1.05×10(kg/m)と音速1570(m/s)を有する、下記表8に記載した組成の疑似血液を得た。
[Example 3]
A water-soluble silicone of a ternary aqueous solution having a density of 1.05 × 10 3 (kg / m 3 ) and a sound velocity of 1540 (m / s) in the same manner as in Example 1 except that ethylene glycol is used instead of glycerin. The oil concentration and ethylene glycol concentration were determined, and pseudo blood having the composition described in Table 8 below having a density of 1.05 × 10 3 (kg / m 3 ) and a sound velocity of 1570 (m / s) conforming to IEC international standards Obtained.

Figure 2013235094
Figure 2013235094

[比較例1]
グリセリンを含み水溶性シリコーンオイルを含まない下記表9に示す組成の二成分系水溶液に、ポリスチレン粉粒(平均粒径5μm)を8質量%分散させて、比較用の疑似血液を得た。
[Comparative Example 1]
A pseudo blood for comparison was obtained by dispersing 8% by mass of polystyrene particles (average particle size: 5 μm) in a two-component aqueous solution having the composition shown in Table 9 below and containing glycerin and no water-soluble silicone oil.

Figure 2013235094
Figure 2013235094

上記実施例1〜3の疑似血液と比較例1の疑似血液について、初期の密度、音速、ポリスチレン粉粒の沈降の有無を測定、観察すると共に、1日経過後のポリスチレン粉粒の沈降の有無を観察した。更に、1週間経過後の密度、音速、ポリスチレン粉粒の沈降の有無についても測定、観察した。その結果を下記表10に示す。   Regarding the simulated blood of Examples 1 to 3 and the simulated blood of Comparative Example 1, the initial density, sound speed, and presence or absence of sedimentation of polystyrene powder particles are measured and observed, and the presence or absence of sedimentation of polystyrene powder particles after one day has passed. Observed. Furthermore, the density, sound speed, and the presence or absence of sedimentation of polystyrene powder after one week were also measured and observed. The results are shown in Table 10 below.

Figure 2013235094
Figure 2013235094

表10を見ると、比較例1の疑似血液は、初期の音速が1570(m/s)でIEC国際規格に適合しているが、密度が1.04×10(kg/m)で許容誤差内となっており、ポリスチレン粉粒の密度1.05×10(kg/m)より少し小さくなっている。そのため、1日放置後にポリスチレン粉粒の沈殿が見られ、1週間経過後はポリスチレン粉粒の沈殿により密度も音速も測定が不可能である。
これに対し、本発明の疑似血液は、密度も音速もIEC国際規格に適合し、ポリスチレン粉粒の密度と疑似血液の三成分系水溶液の密度が同じであるため、1週間経過してもポリスチレン粉粒の沈殿が見られず、密度や音速の変化も生じないことが判る。
As shown in Table 10, the simulated blood of Comparative Example 1 has an initial sound velocity of 1570 (m / s) and conforms to the IEC international standard, but has a density of 1.04 × 10 3 (kg / m 3 ). It is within an allowable error, and is slightly smaller than the density of polystyrene powder particles of 1.05 × 10 3 (kg / m 3 ). Therefore, precipitation of polystyrene particles is observed after standing for 1 day, and after one week, neither density nor sound speed can be measured due to precipitation of polystyrene particles.
On the other hand, the pseudo blood of the present invention conforms to IEC international standards for density and sound speed, and the density of polystyrene powder particles and the density of the ternary aqueous solution of pseudo blood are the same. It can be seen that there is no precipitation of powder particles and no change in density or sound speed occurs.

本発明の擬似血液は、密度と音速を規定の値に正確に調節でき、且つ、それらの経時変化が生じ難い特性のため、超音波診断装置の性能を評価するのに有用なファントム用の擬似血液となる。また、この擬似血液は生体に対して安全で且つ自然環境破壊が起こらない材料で作成されているため産業上の利用価値は高い。   The simulated blood of the present invention can accurately adjust the density and sound speed to specified values, and is difficult to change over time, so that it is useful for evaluating the performance of an ultrasonic diagnostic apparatus. Become blood. Further, since the simulated blood is made of a material that is safe for a living body and does not cause destruction of the natural environment, it has a high industrial utility value.

Claims (3)

密度が1.05×10(kg/m)の樹脂粉粒を水溶液に分散させた懸濁液からなる疑似血液であって、上記水溶液が、水と水溶性多価アルコールと水溶性シリコーンを含んだ密度が1.05×10(kg/m)の水溶液であることを特徴とする、超音波診断装置のフローファントム用疑似血液。 Simulated blood comprising a suspension in which resin particles having a density of 1.05 × 10 3 (kg / m 3 ) are dispersed in an aqueous solution, wherein the aqueous solution is water, a water-soluble polyhydric alcohol, and a water-soluble silicone. A pseudo blood for a flow phantom of an ultrasonic diagnostic apparatus, characterized by being an aqueous solution having a density of 1.05 × 10 3 (kg / m 3 ). 上記水溶性シリコーンが、側鎖に親水性の有機基を有する水溶性シリコーンであることを特徴とする、請求項1に記載の疑似血液。   The simulated blood according to claim 1, wherein the water-soluble silicone is a water-soluble silicone having a hydrophilic organic group in a side chain. 上記有機基がポリエーテル基であることを特徴とする、請求項2に記載の疑似血液。   The simulated blood according to claim 2, wherein the organic group is a polyether group.
JP2012106673A 2012-05-08 2012-05-08 Simulated blood for flow phantom for ultrasonic diagnostic device Pending JP2013235094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106673A JP2013235094A (en) 2012-05-08 2012-05-08 Simulated blood for flow phantom for ultrasonic diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106673A JP2013235094A (en) 2012-05-08 2012-05-08 Simulated blood for flow phantom for ultrasonic diagnostic device

Publications (1)

Publication Number Publication Date
JP2013235094A true JP2013235094A (en) 2013-11-21

Family

ID=49761272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106673A Pending JP2013235094A (en) 2012-05-08 2012-05-08 Simulated blood for flow phantom for ultrasonic diagnostic device

Country Status (1)

Country Link
JP (1) JP2013235094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159858A (en) * 2017-03-23 2018-10-11 株式会社グッドマン Medical liquid composition and medical simulator
CN111671404A (en) * 2020-05-28 2020-09-18 重庆大学 Bionic pulse feeling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159858A (en) * 2017-03-23 2018-10-11 株式会社グッドマン Medical liquid composition and medical simulator
JP7002205B2 (en) 2017-03-23 2022-01-20 株式会社グッドマン Pseudo-body fluid for simulator and medical simulator
CN111671404A (en) * 2020-05-28 2020-09-18 重庆大学 Bionic pulse feeling system
CN111671404B (en) * 2020-05-28 2022-04-12 重庆大学 Bionic pulse feeling system

Similar Documents

Publication Publication Date Title
Khan et al. Chitosan/poly vinyl alcohol/graphene oxide based pH-responsive composite hydrogel films: Drug release, anti-microbial and cell viability studies
Zell et al. Acoustical properties of selected tissue phantom materials for ultrasound imaging
Reda et al. Ultrasound imaging in dentistry: a literature overview
JP6463342B2 (en) Viscous bubble liquid production apparatus and viscous bubble liquid production method using the same
Ramya et al. Characterizing the yielding processes in pluronic-hyaluronic acid thermoreversible gelling systems using oscillatory rheology
Poggio et al. Viscosity of endodontic irrigants: Influence of temperature
Kim et al. Enamel demineralization resistance and remineralization by various fluoride-releasing dental restorative materials
Usai et al. Effectiveness of calcium phosphate desensitising agents in dental hypersensitivity over 24 weeks of clinical evaluation
Gao et al. Effect and stability of poly (amido amine)-induced biomineralization on dentinal tubule occlusion
JP2013235094A (en) Simulated blood for flow phantom for ultrasonic diagnostic device
Stoleru et al. Synthesis of bioactive materials by in situ one-step direct loading of Syzygium aromaticum essential oil into chitosan-based hydrogels
Baron et al. Hemostatic cryogels based on oxidized pullulan/dopamine with potential use as wound dressings
Nieswandt et al. RAFT Emulsion Polymerization of Styrene Using a Poly ((N, N-dimethyl acrylamide)-co-(N-isopropyl acrylamide)) mCTA: Synthesis and Thermosensitivity
Eliasz et al. Apical extrusion of debris during root canal preparation with protaper next, waveone gold and twisted files
Atmeh et al. The effect of sealer application methods on voids volume after aging of three calcium silicate-based sealers: A micro-computed tomography study
Fangaia et al. Diffusion of vanadium ions in artificial saliva and its elimination from the oral cavity by pharmacological compounds present in mouthwashes
McMullen et al. Physicochemical properties of cellulose ethers
Mirchandani et al. Effects of Sr/F-bioactive glass nanoparticles and calcium phosphate on monomer conversion, biaxial flexural strength, surface microhardness, mass/volume changes, and color stability of dual-cured dental composites for core build-up materials
Hassan et al. In Vitro Monitoring of Magnesium-Based Implants Degradation by Surface Analysis and Optical Spectroscopy
Ballal et al. Influence of 1-hydroxyethylidene-1, 1-diphosphonic acid on the soft tissue-dissolving and gelatinolytic effect of ultrasonically activated sodium hypochlorite in simulated endodontic environments
Abdel-Maksoud et al. Evaluation of newly introduced bioactive materials in terms of cavity floor adaptation: OCT Study
Wang et al. Pipe phantoms with applications in molecular imaging and system characterization
Villefort et al. Influence of alternative and conventional surface treatments on the bonding mechanism between PEEK and veneering resin for dental application
Metlerska et al. Effect of citric acid on color changes of calcium silicate-based cements an in vitro study
Delavari et al. Optimizing Biodegradable Starch-Based Composite Films Formulation for Wound-Dressing Applications