JP2013233055A - Motor controller - Google Patents

Motor controller Download PDF

Info

Publication number
JP2013233055A
JP2013233055A JP2012104846A JP2012104846A JP2013233055A JP 2013233055 A JP2013233055 A JP 2013233055A JP 2012104846 A JP2012104846 A JP 2012104846A JP 2012104846 A JP2012104846 A JP 2012104846A JP 2013233055 A JP2013233055 A JP 2013233055A
Authority
JP
Japan
Prior art keywords
harmonic current
motor
current
electric motor
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012104846A
Other languages
Japanese (ja)
Inventor
Eiji Shirato
英治 白土
Tomotaka Iki
友貴 壱岐
Shingo Soma
慎吾 相馬
Hiroyuki Kotani
浩之 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012104846A priority Critical patent/JP2013233055A/en
Publication of JP2013233055A publication Critical patent/JP2013233055A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a controller which can suppress generation of demagnetization during operation of a motor including a permanent magnet composed while reducing or not containing a heavy rare earth element.SOLUTION: The motor controller includes: a current component determination unit for determining the basic component of a current supplied to a motor, according to the operation state of a motor and the request output for the motor; a harmonic current control unit for determining the component of a harmonic current having a frequency higher than that of a current supplied to the motor; and a superposition unit for superposing the component of a harmonic current determined by the harmonic current control unit on the basic component of a current supplied to the motor. In an electrical angle region during rotation of the rotor of the motor, the harmonic current control unit determines the component of the harmonic current so that a bottom part of the amplitude of the harmonic current matches a region of an electrical angle where the permeance for a rotary magnetic field at a corner of a permanent magnet is relatively small.

Description

本発明は、電動機の制御装置に関する。   The present invention relates to a control device for an electric motor.

EV(Electric Vehicle:電気自動車)又はHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等の車両には、駆動源としての電動機が設けられている。図12は、永久磁石界磁型の電動機の一部断面図である。図12に示す電動機50は、回転軸の周囲に同心円状に設けられた複数の永久磁石51を含む回転子53と、回転子53の外径側に設けられた3相の電機子55を含む固定子57とを備える。複数の永久磁石51の各々は板状に形成され、その側面は4つの角部を有する。また、電動機50の回転軸方向から見たときに、隣接する一対の永久磁石が回転子53の外周面に向かって開くV字状に配置されている。   A vehicle such as an EV (Electric Vehicle) or an HEV (Hybrid Electrical Vehicle) is provided with an electric motor as a drive source. FIG. 12 is a partial cross-sectional view of a permanent magnet field motor. An electric motor 50 shown in FIG. 12 includes a rotor 53 including a plurality of permanent magnets 51 concentrically provided around a rotation shaft, and a three-phase armature 55 provided on the outer diameter side of the rotor 53. And a stator 57. Each of the plurality of permanent magnets 51 is formed in a plate shape, and its side surface has four corners. Further, a pair of adjacent permanent magnets are arranged in a V shape that opens toward the outer peripheral surface of the rotor 53 when viewed from the rotation axis direction of the electric motor 50.

回転子53に含まれる永久磁石51のパーミアンスは角部で低い。すなわち、永久磁石の角部は反磁界が作用しやすい。このため、永久磁石51に逆向きの外部磁界が加わることにより磁束密度が変化すると、永久磁石51においては角部から減磁が発生する。   The permeance of the permanent magnet 51 included in the rotor 53 is low at the corners. That is, a demagnetizing field is likely to act on the corners of the permanent magnet. For this reason, when the magnetic flux density is changed by applying a reverse external magnetic field to the permanent magnet 51, demagnetization occurs from the corner portion of the permanent magnet 51.

例えば、2極3スロットの電動機であれば、パーミアンスが低くなる箇所が1周期に6箇所存在する。電動機の動作中に減磁が発生すると、当該電動機におけるトルクが減少し、トルクリプルの増加に伴う振動及びこの振動の発生に伴う騒音が生じる場合がある。このため、特許文献1では、永久磁石を、軽希土類元素を主たる構成物質とした希土類焼結磁石とし、かつ、重希土類元素が部分的に他の部分よりも相対的に高い濃度で拡散された高保磁力部が永久磁石の一部に設けている。電動機の動作時に最も強く減磁界が作用する部分に高保磁力部が形成されていれば、電動機が動作時に発生する減磁を抑えることができる。   For example, in the case of a two-pole three-slot motor, there are six places where permeance is lowered in one cycle. When demagnetization occurs during operation of the motor, the torque in the motor decreases, and vibration associated with an increase in torque ripple and noise associated with the occurrence of this vibration may occur. For this reason, in Patent Document 1, the permanent magnet is a rare earth sintered magnet mainly composed of light rare earth elements, and the heavy rare earth elements are partially diffused at a relatively higher concentration than other parts. A high coercive force portion is provided in a part of the permanent magnet. If the high coercive force portion is formed in the portion where the demagnetizing field acts most strongly during the operation of the electric motor, the demagnetization generated during the operation of the electric motor can be suppressed.

国際公開第2008/123251号International Publication No. 2008/123251

上述したように、特許文献1の永久磁石式電動機を構成する永久磁石は、重希土類元素が添加された高保磁力部を部分的に備える。しかし、ジスプロシウム(Dy)やテルビウム(Tb)等の重希土類元素は希少であるため、その使用量を抑えることが望ましい。しかし、角部に重希土類元素を含まない永久磁石を備えた電動機であると、その動作時にトルクが減少したり、トルクリプルの増加に伴う振動及び騒音が発生する。   As described above, the permanent magnet constituting the permanent magnet motor of Patent Document 1 partially includes a high coercive force portion to which a heavy rare earth element is added. However, since rare earth elements such as dysprosium (Dy) and terbium (Tb) are rare, it is desirable to suppress the amount of use. However, in the case of an electric motor provided with a permanent magnet that does not contain heavy rare earth elements at the corners, torque is reduced during the operation, and vibration and noise accompanying an increase in torque ripple are generated.

本発明の目的は、重希土類元素を低減して、あるいは含まずに構成された永久磁石を備える電動機の動作時に減磁の発生を抑制可能な制御装置を提供することである。   The objective of this invention is providing the control apparatus which can suppress generation | occurrence | production of a demagnetization at the time of operation | movement of the electric motor provided with the permanent magnet comprised by reducing or not including a heavy rare earth element.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の電動機の制御装置は、円周方向に所定間隔で並んだ複数の永久磁石(例えば、実施の形態での永久磁石51)から構成された磁極列を有する回転子(例えば、実施の形態での回転子53)と、前記円周方向に所定間隔で並んだ複数の電機子(例えば、実施の形態での電機子55)が前記磁極列に対向して配置され、電力の供給に応じて前記複数の電機子に発生する電機子磁極により、前記円周方向に移動する回転磁界を前記磁極列との間に発生させる電機子列を有する固定子(例えば、実施の形態での固定子57)と、を備えた電動機の制御装置(例えば、実施の形態でのECU100)であって、前記電動機の動作状態及び前記電動機に対する要求出力に応じて、前記電動機に供給する電流の基本成分を決定する電流成分決定部(例えば、実施の形態での電流指令決定部107)と、前記電動機に供給する電流よりも周波数の高い高調波電流の成分を決定する高調波電流制御部(例えば、実施の形態での高調波電流制御部117)と、前記電動機に供給する電流の基本成分に前記高調波電流制御部が決定した前記高調波電流の成分を重畳する重畳部(例えば、実施の形態での重畳部109d,109q)と、を備え、前記高調波電流制御部は、前記回転子の回転時の電気角度領域において、前記永久磁石の角部の前記回転磁界に対するパーミアンスが相対的に小さな電気角度の領域に前記高調波電流の振幅のボトム部分が一致するよう、前記高調波電流の成分を決定することを特徴としている。   In order to solve the above-described problems and achieve the object, an electric motor control device according to a first aspect of the present invention includes a plurality of permanent magnets arranged at predetermined intervals in the circumferential direction (for example, the permanent magnet according to the embodiment). A rotor having a magnetic pole array composed of magnets 51 (for example, the rotor 53 in the embodiment) and a plurality of armatures (for example, the electric machine in the embodiment) arranged at predetermined intervals in the circumferential direction. And a rotating magnetic field that moves in the circumferential direction is interposed between the magnetic pole row and the armature magnetic poles generated in the plurality of armatures in response to power supply. A motor control device (e.g., ECU 100 in the embodiment) having a stator (e.g., stator 57 in the embodiment) having an armature row to be generated, and an operating state of the motor and Depending on the required output for the motor, A current component determining unit (for example, a current command determining unit 107 in the embodiment) that determines a basic component of current supplied to the motor, and a harmonic current component having a frequency higher than that of the current supplied to the motor. The harmonic current control unit (for example, the harmonic current control unit 117 in the embodiment) and the harmonic current component determined by the harmonic current control unit are superimposed on the basic component of the current supplied to the electric motor. A superimposing unit (for example, the superimposing units 109d and 109q in the embodiment), and the harmonic current control unit performs the rotation of the corner portion of the permanent magnet in the electrical angle region when the rotor rotates. The harmonic current component is determined such that the bottom portion of the amplitude of the harmonic current coincides with a region of an electrical angle having a relatively small permeance with respect to the magnetic field.

さらに、請求項2に記載の発明の電動機の制御装置では、前記パーミアンスが相対的に小さな電気角度領域は、前記永久磁石の角部の内、パーミアンスがしきい値未満である角部の数が所定数以上であるとの条件を満たす電気角度の範囲であることを特徴としている。   Furthermore, in the electric motor control device according to the second aspect of the present invention, in the electrical angle region where the permeance is relatively small, the number of corners whose permeance is less than a threshold among the corners of the permanent magnet. It is a range of electrical angles that satisfies the condition that it is a predetermined number or more.

さらに、請求項3に記載の発明の電動機の制御装置では、前記高調波電流制御部は、前記回転子の回転時の電気角度領域において、前記永久磁石の角部の前記回転磁界に対するパーミアンスが相対的に大きな電気角度の領域に前記高調波電流の振幅のピーク部分が一致するよう、前記高調波電流の成分を決定することを特徴としている。   Furthermore, in the motor control device according to claim 3, the harmonic current control unit is configured such that a permeance relative to the rotating magnetic field at a corner of the permanent magnet is relative to an electrical angle region during rotation of the rotor. The component of the harmonic current is determined so that the peak portion of the amplitude of the harmonic current coincides with a region of a large electrical angle.

さらに、請求項4に記載の発明の電動機の制御装置では、前記パーミアンスが相対的に大きな電気角度領域は、前記永久磁石の角部の内、パーミアンスがしきい値以上である角部の数が所定数以上であるとの条件を満たす電気角度の範囲であることを特徴としている。   Furthermore, in the electric motor control device according to the fourth aspect of the present invention, in the electrical angle region where the permeance is relatively large, among the corners of the permanent magnet, the number of corners where the permeance is equal to or greater than a threshold value. It is a range of electrical angles that satisfies the condition that it is a predetermined number or more.

さらに、請求項5に記載の発明の電動機の制御装置では、前記複数の永久磁石を構成する隣接した2つの永久磁石は、前記電動機の回転軸(例えば、実施の形態での回転軸59)方向から見たときに、前記回転子の外周面に向かって開くV字状に配置され、前記反磁界の影響を受けやすい電気角度領域は、前記V字状に配置された2つの永久磁石の内径側の角部の内、パーミアンスがしきい値未満である角部の数が所定数以上であるとの条件を満たす電気角度の範囲であることを特徴としている。   Furthermore, in the motor control apparatus according to the fifth aspect of the present invention, the two adjacent permanent magnets constituting the plurality of permanent magnets are in the direction of the rotating shaft (for example, the rotating shaft 59 in the embodiment) of the motor. When viewed from above, the electrical angle region that is arranged in a V shape that opens toward the outer peripheral surface of the rotor and is susceptible to the demagnetizing field is the inner diameter of the two permanent magnets that are arranged in the V shape. Among the corners on the side, the electrical angle is in a range that satisfies the condition that the number of corners whose permeance is less than the threshold value is a predetermined number or more.

さらに、請求項6に記載の発明の電動機の制御装置では、前記電動機に供給する前記高調波電流の成分のdq軸座標系における高調波次数は、前記電動機の極数と相数を乗算した値であることを特徴としている。   Furthermore, in the motor control apparatus according to claim 6, the harmonic order in the dq axis coordinate system of the harmonic current component supplied to the motor is a value obtained by multiplying the number of poles and the number of phases of the motor. It is characterized by being.

請求項1〜6に記載の発明の電動機の制御装置によれば、重希土類元素を低減して、あるいは含まずに構成された永久磁石を備える電動機の動作時に減磁の発生を抑制できる。
請求項3及び4に記載の発明の電動機の制御装置によれば、永久磁石が反磁界の影響を受けにくい電気角度領域でのトルクが増大するため、電動機は所望のトルクを出力できる。
請求項5に記載の発明の電動機の制御装置によれば、永久磁石の外径側の角部よりも内径側の角部における減磁の方がその発生を抑制しやすく、外径側の角部における減磁の発生を抑制する場合と比較して高調波電流の振幅を小さくできる。
According to the motor control device of the first to sixth aspects of the invention, it is possible to suppress the occurrence of demagnetization during the operation of the motor including the permanent magnet configured to reduce or not include heavy rare earth elements.
According to the electric motor control apparatus of the third and fourth aspects of the present invention, the torque in the electrical angle region where the permanent magnet is not easily affected by the demagnetizing field increases, so that the electric motor can output a desired torque.
According to the electric motor control device of the fifth aspect of the present invention, the demagnetization at the corner portion on the inner diameter side is more easily suppressed than the corner portion on the outer diameter side of the permanent magnet, and the corner on the outer diameter side is more easily suppressed. As compared with the case where the occurrence of demagnetization in the part is suppressed, the amplitude of the harmonic current can be reduced.

一実施形態の電動機システムの構成を示す図The figure which shows the structure of the electric motor system of one Embodiment. ECU100の内部構成、及び、電動機50とECU100とPDU11の関係を示すブロック図The block diagram which shows the internal structure of ECU100, and the relationship between the electric motor 50, ECU100, and PDU11. 30度進角した正弦波の3相電流が固定子57に供給されているとき、回転子53の永久磁石に作用する磁力とパーミアンスが特に低下する箇所を30度の電気角度毎に示す図The figure which shows the part where especially the magnetic force and permeance which act on the permanent magnet of the rotor 53 fall when the three-phase current of the sine wave advanced by 30 degree | times is supplied to the stator 57 for every 30 degree | times electrical angle. 回転子53が回転したときの、一対の永久磁石の各角部のパーミアンスの変化の一例を示すグラフThe graph which shows an example of the change of the permeance of each corner | angular part of a pair of permanent magnet when the rotor 53 rotates. 永久磁石の一角部におけるB−H曲線(減磁曲線)の一例を示すグラフThe graph which shows an example of the BH curve (demagnetization curve) in the corner | angular part of a permanent magnet 2極3相の電動機の固定子に供給する基本波としての3相電流にdq軸上で6次の高調波電流を重畳する際の各電流の波形を示すグラフThe graph which shows the waveform of each current at the time of superimposing the 6th harmonic current on the dq axis to the three-phase current as the fundamental wave supplied to the stator of the two-pole three-phase motor dq軸上の基本波と重畳波のベクトルを示す図The figure which shows the vector of the fundamental wave and superposition wave on the dq axis d軸電流Id_c及びq軸電流Iq_cの関係を示す図The figure which shows the relationship between d-axis current Id_c and q-axis current Iq_c 電動機50の動作点領域を示す図The figure which shows the operating point area | region of the electric motor 50 永久磁石の角部の外径側と内径側におけるB−H曲線(減磁曲線)の一例を示すグラフThe graph which shows an example of the BH curve (demagnetization curve) in the outer diameter side and inner diameter side of the corner | angular part of a permanent magnet 回転子53が回転したときの、一対の永久磁石の内径側の角部のパーミアンスの変化の一例を示すグラフThe graph which shows an example of the permeance change of the corner | angular part of the internal diameter side of a pair of permanent magnet when the rotor 53 rotates 永久磁石界磁型の電動機の一部断面図Partial sectional view of permanent magnet field motor

以下、本発明の実施形態について、図面を参照して説明する。なお、以下説明する実施形態の電動機システムは、EV(Electric Vehicle:電気自動車)又はHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等の車両に搭載される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the electric motor system of embodiment described below is mounted in vehicles, such as EV (Electric Vehicle: Electric vehicle) or HEV (Hybrid Electrical Vehicle: Hybrid electric vehicle).

図1は、一実施形態の電動機システムの構成を示す図である。図1に示すように、本実施形態の電動機システムは、電動機50と、電動機50の動作制御を行うECU(Electronic Control Unit)100と、インバータ回路を含む駆動回路であるPDU(Power Drive Unit)11と、バッテリ13とを備える。   FIG. 1 is a diagram illustrating a configuration of an electric motor system according to an embodiment. As shown in FIG. 1, the electric motor system of this embodiment includes an electric motor 50, an ECU (Electronic Control Unit) 100 that controls the operation of the electric motor 50, and a PDU (Power Drive Unit) 11 that is a drive circuit including an inverter circuit. And a battery 13.

電動機50は、図12に示した電動機50と同様である。すなわち、図1に断面図で示される電動機50は、回転軸59の周囲に同心円状に設けられた複数の永久磁石を含む回転子53と、回転子53の外径側に設けられた3相の電機子を含む固定子57とを備える。複数の永久磁石の各々は板状に形成され、その側面は4つの角部を有する。また、電動機50の回転軸59方向から見たときに、隣接する一対の永久磁石が回転子53の外周面に向かって開くV字状に配置されている。   The electric motor 50 is the same as the electric motor 50 shown in FIG. That is, the electric motor 50 shown in a cross-sectional view in FIG. 1 includes a rotor 53 including a plurality of permanent magnets concentrically provided around a rotation shaft 59 and a three-phase provided on the outer diameter side of the rotor 53. And a stator 57 including the armature. Each of the plurality of permanent magnets is formed in a plate shape, and its side surface has four corners. Further, when viewed from the direction of the rotation shaft 59 of the electric motor 50, a pair of adjacent permanent magnets are arranged in a V shape that opens toward the outer peripheral surface of the rotor 53.

ECU100は、CPU,RAM,ROM,インターフェース回路等を含む電子回路ユニットであり、予め実装された電動機50の制御用プログラムをCPUで実行することによって、電動機50の動作制御を行う。なお、ECU100による電動機50の動作制御は、ECU100がPDU11を制御することによって行われる。すなわち、PDU11は、ECU100からの指令値に応じて、インバータ回路を構成するスイッチング素子をPWM制御によりスイッチングする。   The ECU 100 is an electronic circuit unit including a CPU, a RAM, a ROM, an interface circuit, and the like, and controls the operation of the electric motor 50 by executing a control program for the electric motor 50 mounted in advance by the CPU. The operation control of the electric motor 50 by the ECU 100 is performed by the ECU 100 controlling the PDU 11. That is, the PDU 11 switches the switching elements constituting the inverter circuit by PWM control according to the command value from the ECU 100.

図2は、ECU100の内部構成、及び、電動機50とECU100とPDU11の関係を示すブロック図である。図2に示すように、ECU100は、電気角度変換部101と、電気角速度算出部103と、3相/dq変換部105と、電流指令決定部107と、重畳部109d,109qと、減算部111d,111qと、電流制御部113と、dq/3相変換部115と、高調波電流制御部117とを有する。   FIG. 2 is a block diagram showing the internal configuration of the ECU 100 and the relationship between the electric motor 50, the ECU 100, and the PDU 11. As shown in FIG. 2, the ECU 100 includes an electrical angle conversion unit 101, an electrical angular velocity calculation unit 103, a three-phase / dq conversion unit 105, a current command determination unit 107, superposition units 109d and 109q, and a subtraction unit 111d. , 111q, current controller 113, dq / 3-phase converter 115, and harmonic current controller 117.

ECU100には、アクセルペダル開度及び車速等に基づくトルク指令値Tr_cが入力される。さらに、ECU100には、レゾルバ等の回転位置センサ61によって検出された、電動機50の回転子53の機械角度位置θと、相電流センサ63u,63wによって検出された、PDU11から電動機50の固定子57に出力されたu相電流の検出値Iu_s及びw相電流の検出値Iw_sとが入力される。   The ECU 100 receives a torque command value Tr_c based on the accelerator pedal opening, the vehicle speed, and the like. Further, the ECU 100 detects the mechanical angle position θ of the rotor 53 of the electric motor 50 detected by the rotational position sensor 61 such as a resolver and the stator 57 of the electric motor 50 from the PDU 11 detected by the phase current sensors 63u and 63w. The detected value Iu_s of the u-phase current and the detected value Iw_s of the w-phase current output to are input.

電気角度変換部101は、回転子53の機械角度位置θに基づいて、電動機50における回転磁界の磁束ベクトル回転角度位置θmfを算出する。なお、回転磁界の磁束ベクトル回転角度位置θmfは電気角度を示す。   The electrical angle conversion unit 101 calculates the magnetic flux vector rotation angle position θmf of the rotating magnetic field in the electric motor 50 based on the mechanical angle position θ of the rotor 53. The magnetic flux vector rotation angle position θmf of the rotating magnetic field indicates an electrical angle.

電気角速度算出部103は、電動機50における回転磁界の磁束ベクトル回転角度位置θmfを時間微分することによって、磁束ベクトル回転角速度ωmfを算出する。電気角速度算出部103が算出した磁束ベクトル回転角速度ωmfは、電流制御部113及び高調波電流制御部117に入力される。   The electric angular velocity calculation unit 103 calculates the magnetic flux vector rotation angular velocity ωmf by time-differentiating the magnetic flux vector rotation angle position θmf of the rotating magnetic field in the electric motor 50. The magnetic flux vector rotation angular velocity ωmf calculated by the electrical angular velocity calculation unit 103 is input to the current control unit 113 and the harmonic current control unit 117.

3相/dq変換部105は、相電流センサ63u,63wから出力されたu相電流及びw相電流の各検出値Iu_s,Iw_sと、電気角度変換部101が算出した磁束ベクトル回転角度位置θmfとに基づいて3相/dq変換を行って、d軸電流の検出値Id_s及びq軸電流の検出値Iq_sを算出する。   The three-phase / dq converter 105 detects the detected values Iu_s and Iw_s of the u-phase current and the w-phase current output from the phase current sensors 63u and 63w, and the magnetic flux vector rotation angle position θmf calculated by the electrical angle converter 101. Based on the three-phase / dq conversion, a d-axis current detection value Id_s and a q-axis current detection value Iq_s are calculated.

電流指令決定部107は、トルク指令値Tr_cに基づいて、電動機50の固定子57に供給するd軸電流及びq軸電流の各指令値Id_c,Iq_cを決定する。電流指令決定部107が決定したd軸電流の指令値Id_cは重畳部109dに入力される。また、電流指令決定部107が決定したq軸電流の指令値Iq_cは重畳部109qに入力される。   The current command determination unit 107 determines the command values Id_c and Iq_c for the d-axis current and the q-axis current supplied to the stator 57 of the electric motor 50 based on the torque command value Tr_c. The d-axis current command value Id_c determined by the current command determination unit 107 is input to the superimposing unit 109d. Further, the command value Iq_c of the q-axis current determined by the current command determination unit 107 is input to the superimposition unit 109q.

重畳部109dは、d軸電流の指令値Id_cと、高調波電流制御部117から出力された高調波電流のd軸成分を示す値Id_hとを加算して、その加算値Id_mを出力する。重畳部109dから出力されたd軸成分の加算値Id_mは減算部111dに入力される。同様に、重畳部109qは、q軸電流の指令値Iq_cと、高調波電流制御部117から出力された高調波電流のq軸成分を示す値Iq_hとを加算して、その加算値Iq_mを出力する。重畳部109qから出力されたq軸成分の加算値Iq_mは減算部111qに入力される。   The superimposing unit 109d adds the command value Id_c of the d-axis current and the value Id_h indicating the d-axis component of the harmonic current output from the harmonic current control unit 117, and outputs the added value Id_m. The added value Id_m of the d-axis component output from the superimposing unit 109d is input to the subtracting unit 111d. Similarly, the superimposing unit 109q adds the command value Iq_c of the q-axis current and the value Iq_h indicating the q-axis component of the harmonic current output from the harmonic current control unit 117, and outputs the added value Iq_m. To do. The q-axis component addition value Iq_m output from the superimposing unit 109q is input to the subtracting unit 111q.

減算部111dは、d軸成分の加算値Id_mとd軸電流の検出値Id_sの偏差ΔIdを算出する。減算部111dが算出した偏差ΔIdは電流制御部113に入力される。同様に、減算部111qは、q軸成分の加算値Iq_mとq軸電流の検出値Iq_sの偏差ΔIqを算出する。減算部111qが算出した偏差ΔIqは電流制御部113に入力される。   The subtractor 111d calculates a deviation ΔId between the added value Id_m of the d-axis component and the detected value Id_s of the d-axis current. The deviation ΔId calculated by the subtraction unit 111d is input to the current control unit 113. Similarly, the subtractor 111q calculates a deviation ΔIq between the q-axis component addition value Iq_m and the q-axis current detection value Iq_s. Deviation ΔIq calculated by subtraction unit 111q is input to current control unit 113.

電流制御部113は、偏差ΔId及び偏差ΔIqが減少するよう、当該偏差ΔId,ΔIqと、電気角速度算出部103が算出した磁束ベクトル回転角速度ωmfとに基づいて、電動機50の固定子57に印加するd軸電圧の指令値Vd_c及びq軸電圧の指令値Vq_cを決定する。   The current control unit 113 applies the deviation ΔId and ΔIq to the stator 57 of the electric motor 50 based on the deviations ΔId and ΔIq and the magnetic flux vector rotation angular velocity ωmf calculated by the electric angular velocity calculation unit 103 so that the deviation ΔId and the deviation ΔIq decrease. A command value Vd_c for the d-axis voltage and a command value Vq_c for the q-axis voltage are determined.

dq/3相変換部115は、電流制御部113によって決定されたd軸電圧の指令値Vd_c及びq軸電圧の指令値Vq_cと、電気角度変換部101が算出した磁束ベクトル回転角度位置θmfとに基づいてdq/3相変換を行って、電動機50の固定子57に印加する3相電圧Vu,Vv,Vwの各指令値Vu_c,Vv_c,Vw_cを算出する。dq/3相変換部115が算出した3相電圧の各指令値Vu_c,Vv_c,Vw_cは、PDU11に入力される。   The dq / 3-phase conversion unit 115 converts the d-axis voltage command value Vd_c and the q-axis voltage command value Vq_c determined by the current control unit 113 and the magnetic flux vector rotation angle position θmf calculated by the electrical angle conversion unit 101. Based on this, dq / 3-phase conversion is performed, and command values Vu_c, Vv_c, Vw_c of the three-phase voltages Vu, Vv, Vw applied to the stator 57 of the electric motor 50 are calculated. Each command value Vu_c, Vv_c, Vw_c of the three-phase voltage calculated by the dq / 3-phase conversion unit 115 is input to the PDU 11.

高調波電流制御部117は、電動機50の固定子57に出力される相電流に重畳する高調波電流の成分を決定する。図2に示すように、高調波電流制御部117は、高調波電流振幅決定部121と、振幅重み係数決定部123と、乗算部125と、高調波電流位相決定部127と、高調波電流決定部129と、dq変換部131とを有する。なお、高調波電流振幅決定部121、振幅重み係数決定部123及び高調波電流位相決定部127は、それぞれ異なるマップ(ルックアップテーブル)を用いて所望の値を決定する。   The harmonic current control unit 117 determines a harmonic current component to be superimposed on the phase current output to the stator 57 of the electric motor 50. As shown in FIG. 2, the harmonic current control unit 117 includes a harmonic current amplitude determination unit 121, an amplitude weighting factor determination unit 123, a multiplication unit 125, a harmonic current phase determination unit 127, and a harmonic current determination. Unit 129 and dq converter 131. Note that the harmonic current amplitude determining unit 121, the amplitude weighting factor determining unit 123, and the harmonic current phase determining unit 127 determine desired values using different maps (look-up tables).

高調波電流振幅決定部121は、トルク指令値Tr_cに基づいて、高調波電流の振幅成分を決定する。振幅重み係数決定部123は、電気角速度算出部103が算出した磁束ベクトル回転角速度ωmfに基づいて、高調波電流における振幅重み係数を決定する。乗算部125は、高調波電流振幅決定部121が決定した高調波電流の振幅成分に、振幅重み係数決定部123が決定した振幅重み係数を乗算する。   The harmonic current amplitude determining unit 121 determines the amplitude component of the harmonic current based on the torque command value Tr_c. The amplitude weighting coefficient determination unit 123 determines an amplitude weighting coefficient in the harmonic current based on the magnetic flux vector rotation angular velocity ωmf calculated by the electrical angular velocity calculation unit 103. The multiplying unit 125 multiplies the amplitude component of the harmonic current determined by the harmonic current amplitude determining unit 121 by the amplitude weighting factor determined by the amplitude weighting factor determining unit 123.

高調波電流位相決定部127は、トルク指令値Tr_cに基づいて、高調波電流の位相成分を決定する。高調波電流決定部129は、乗算部125の乗算結果と、高調波電流位相決定部127が決定した高調波電流の位相成分とに基づいて、電動機50における回転磁界の磁束ベクトル回転角度位置θmfに応じた高調波電流を決定する。dq変換部131は、高調波電流決定部129が決定した高調波電流をdq軸上での各成分に変換する。dq変換部131によって変換された高調波電流のd軸成分を示す値Id_hは重畳部109dに入力され、q軸成分を示す値Iq_hは重畳部109qに入力される。   The harmonic current phase determination unit 127 determines the phase component of the harmonic current based on the torque command value Tr_c. Based on the multiplication result of the multiplier 125 and the phase component of the harmonic current determined by the harmonic current phase determination unit 127, the harmonic current determination unit 129 sets the magnetic flux vector rotation angle position θmf of the rotating magnetic field in the electric motor 50. Determine the corresponding harmonic current. The dq conversion unit 131 converts the harmonic current determined by the harmonic current determination unit 129 into each component on the dq axis. A value Id_h indicating the d-axis component of the harmonic current converted by the dq converter 131 is input to the superimposing unit 109d, and a value Iq_h indicating the q-axis component is input to the superimposing unit 109q.

次に、本実施形態の電動機システムにおける高調波電流の詳細について説明する。   Next, the detail of the harmonic current in the electric motor system of this embodiment is demonstrated.

上述したように、電動機50の回転子53には、同心円状に複数の永久磁石が配置されている。また、電動機50の固定子57には、PDU11を介して3相電流が供給され、回転磁界が発生する。回転子53の永久磁石がこの回転磁界による吸引力及び反発力の作用を受けることにより、回転子53が回転軸59を中心に回転する。このとき、永久磁石の特に角部には減磁が発生する。但し、減磁の程度は、永久磁石の角部毎に異なり、固定子57を構成する電機子と永久磁石の位置関係によっても異なる。このため、回転子53の回転中に、永久磁石において減磁が強く発生する箇所、すなわちパーミアンスが低下する箇所は刻々と変化する。   As described above, a plurality of permanent magnets are concentrically arranged on the rotor 53 of the electric motor 50. In addition, a three-phase current is supplied to the stator 57 of the electric motor 50 via the PDU 11, and a rotating magnetic field is generated. When the permanent magnet of the rotor 53 receives the action of the attractive force and the repulsive force by the rotating magnetic field, the rotor 53 rotates around the rotation shaft 59. At this time, demagnetization occurs particularly in the corners of the permanent magnet. However, the degree of demagnetization differs for each corner of the permanent magnet, and also differs depending on the positional relationship between the armature and the permanent magnet constituting the stator 57. For this reason, during the rotation of the rotor 53, the location where the demagnetization occurs strongly in the permanent magnet, that is, the location where the permeance decreases, changes every moment.

図3は、30度進角した正弦波の3相電流が固定子57に供給されているとき、回転子53の永久磁石に作用する磁力とパーミアンスが特に低下する箇所を30度の電気角度毎に示す図である。図3に示すように、3相電流の電気角度が変化するに従い回転子53が回転すると、電機子に対する回転子53の位置に応じて、永久磁石のパーミアンスが低下する箇所は変化する。なお、図3に示した例では、パーミアンスの変化の周期は120度である。   FIG. 3 shows a portion where the magnetic force and permeance acting on the permanent magnet of the rotor 53 are particularly lowered at every 30 electrical degrees when a three-phase current of a sine wave advanced by 30 degrees is supplied to the stator 57. FIG. As shown in FIG. 3, when the rotor 53 rotates as the electrical angle of the three-phase current changes, the location where the permeance of the permanent magnet decreases changes according to the position of the rotor 53 with respect to the armature. In the example shown in FIG. 3, the permeance change cycle is 120 degrees.

図4は、回転子53が回転したときの、一対の永久磁石の各角部のパーミアンスの変化の一例を示すグラフである。図4に示すように、一対の永久磁石の側面を構成する8つの角部1〜8の各パーミアンスは電気角度の変化に従って変化する。図4の例では、8つの角部1〜8の内、約45度〜約75度の領域及び約85度〜約130度(約10度)の領域で、パーミアンスがしきい値未満である角部の数が所定数(例えば4つ)以上となる。このように、電動機50に3相電流を供給した際には、上記電気角度の領域毎に永久磁石が固定子57の回転磁界による反磁界の影響を受けやすくなる。   FIG. 4 is a graph showing an example of a change in permeance of each corner portion of the pair of permanent magnets when the rotor 53 rotates. As shown in FIG. 4, the permeances of the eight corner portions 1 to 8 constituting the side surfaces of the pair of permanent magnets change according to the change of the electrical angle. In the example of FIG. 4, the permeance is less than the threshold value in an area of about 45 degrees to about 75 degrees and an area of about 85 degrees to about 130 degrees (about 10 degrees) among the eight corners 1 to 8. The number of corners is a predetermined number (for example, four) or more. Thus, when a three-phase current is supplied to the electric motor 50, the permanent magnet is easily affected by the demagnetizing field due to the rotating magnetic field of the stator 57 for each region of the electric angle.

なお、減磁の発生の抑制は、電動機の固定子57に供給する電流のレベルを低減することで実現可能である。図5は、永久磁石の一角部におけるB−H曲線(減磁曲線)の一例を示すグラフである。回転子53が回転して、回転子53と固定子57との位置関係(すなわち、回転子53の電気角度)が変化することにより永久磁石の所定の箇所(例えば、角部)でパーミアンスが低下すると、該所定の箇所では図5に直線で示すパーミアンス直線が点線の矢印で示すように倒れ、実線の丸印で示される動作点Aが点線の丸印で示される動作点Bに移る。減磁は図5に示すB−H曲線の屈曲点を越えた場合に発生するため、動作点Bでは減磁が発生する。しかし、実線の矢印で示すように、反磁界が低減されることにより動作点Bから動作点Cまで動作点が移動すれば、パーミアンスが低下した場合にも減磁の発生を抑制することができる。   In addition, suppression of generation | occurrence | production of a demagnetization is realizable by reducing the level of the electric current supplied to the stator 57 of an electric motor. FIG. 5 is a graph showing an example of a BH curve (demagnetization curve) at one corner of the permanent magnet. As the rotor 53 rotates and the positional relationship between the rotor 53 and the stator 57 (that is, the electrical angle of the rotor 53) changes, the permeance decreases at a predetermined location (for example, a corner) of the permanent magnet. Then, at the predetermined location, the permeance straight line indicated by the straight line in FIG. 5 falls as indicated by the dotted arrow, and the operating point A indicated by the solid line circle moves to the operating point B indicated by the dotted circle. Since demagnetization occurs when the bending point of the BH curve shown in FIG. 5 is exceeded, demagnetization occurs at the operating point B. However, if the operating point moves from the operating point B to the operating point C by reducing the demagnetizing field as shown by the solid arrows, it is possible to suppress the occurrence of demagnetization even when the permeance is lowered. .

本実施形態では、電動機50の固定子57に供給する3相電流をdq軸座標系に変換した基本成分に対して、dq軸座標系において当該基本成分よりも高次の高調波電流成分を重畳することによって、減磁の発生を抑制する。この際、dq軸座標系における高調波電流成分の高調波次数nは、電気角度上での電動機50の極数Pと相数Sを乗算した値(=P×S)である。ここで、dq軸座標系において高調波次数がnの高調波電流成分とは、dq軸座標系において、3相座標系における3相電流の周波数のn倍の周波数で振動することを意味する。また、dq軸座標系における基本成分の次数は0(すなわち、dq軸座標系における基本成分は一定値)である。尚、dq軸座標系においてn次の電流は、3相座標系に逆変換した際にはn+1次の電流波形となる。また、高調波電流の位相は、永久磁石が反磁界の影響を受けやすい電気角度領域に高調波電流の振幅のボトム部分が一致するよう設定される。例えば、図4に示した例では、電気角度で約45度〜約75度の範囲及び約85度〜約130度(約10度)の範囲で永久磁石が反磁界の影響を受けやすくなるため、一周期が60度で、振幅のボトム部分が約60度に合わせて位相をずらした高調波電流が3相電流に重畳される。   In the present embodiment, a higher-order harmonic current component than the basic component is superimposed on the basic component obtained by converting the three-phase current supplied to the stator 57 of the electric motor 50 into the dq axis coordinate system. This suppresses the occurrence of demagnetization. At this time, the harmonic order n of the harmonic current component in the dq axis coordinate system is a value (= P × S) obtained by multiplying the number of poles P and the number of phases S of the electric motor 50 on the electrical angle. Here, the harmonic current component whose harmonic order is n in the dq-axis coordinate system means that it vibrates at a frequency n times the frequency of the three-phase current in the three-phase coordinate system in the dq-axis coordinate system. The order of the basic component in the dq axis coordinate system is 0 (that is, the basic component in the dq axis coordinate system is a constant value). Note that the nth-order current in the dq-axis coordinate system becomes an n + 1-order current waveform when inversely transformed into the three-phase coordinate system. The phase of the harmonic current is set so that the bottom portion of the amplitude of the harmonic current coincides with the electrical angle region in which the permanent magnet is easily affected by the demagnetizing field. For example, in the example shown in FIG. 4, the permanent magnet is easily affected by the demagnetizing field in the range of about 45 degrees to about 75 degrees in electrical angle and in the range of about 85 degrees to about 130 degrees (about 10 degrees). A harmonic current whose phase is 60 degrees and whose phase is shifted to about 60 degrees in the bottom portion of the amplitude is superimposed on the three-phase current.

なお、永久磁石が反磁界の影響を受けやすい電気角度領域は、一対の永久磁石の8つの角部1〜8の内、パーミアンスがしきい値未満である角部の数が所定数(例えば4つ)以上であるとの条件を満たす電気角度の範囲である。本実施形態の電動機システムでは、電動機50に対してシミュレーションを行い、どの電気角度領域で永久磁石が反磁界の影響を受けやすいかが予め認識されている。   In addition, the electrical angle region in which the permanent magnet is easily affected by the demagnetizing field has a predetermined number (for example, 4) of the corners whose permeance is less than the threshold value among the eight corners 1 to 8 of the pair of permanent magnets. The range of electrical angles that satisfies the above condition. In the electric motor system of the present embodiment, simulation is performed on the electric motor 50, and it is recognized in advance in which electric angle region the permanent magnet is easily affected by the demagnetizing field.

図6は、2極3相の電動機の固定子に供給する基本波としての3相電流にdq軸上で6次の高調波電流を重畳する際の各電流の波形を示すグラフである。図7は、dq軸上の基本波と重畳波のベクトルを示す図である。図8は、基本波としてのd軸電流Id_c及びq軸電流Iq_cとそのベクトルIcとの関係を示す図である。以下、図6〜図8を参照して、dq軸上での高調波電流の重畳について説明する。   FIG. 6 is a graph showing waveforms of currents when a sixth-order harmonic current is superimposed on the dq axis on a three-phase current as a fundamental wave supplied to the stator of a two-pole three-phase motor. FIG. 7 is a diagram showing the vectors of the fundamental wave and the superimposed wave on the dq axis. FIG. 8 is a diagram showing the relationship between the d-axis current Id_c and the q-axis current Iq_c as the fundamental wave and the vector Ic. Hereinafter, the superposition of the harmonic current on the dq axis will be described with reference to FIGS.

図8に示すように、基本波としてのd軸電流Id_c及びq軸電流Iq_cとそのベクトルIcは、下記式(1)によって表される。γは基本波の電流位相を示す。   As shown in FIG. 8, the d-axis current Id_c and the q-axis current Iq_c as the fundamental wave and the vector Ic thereof are expressed by the following equation (1). γ represents the current phase of the fundamental wave.

Figure 2013233055
Figure 2013233055

図6の(C)に示す6次の高調波Id_h,Iq_hは、下記式(2)によって表される。なお、αは高調波電流の次数、βは高調波の電流位相、θは電気角度である。高調波電流の次数が6次の場合、α=6である。図6の(C)に示すように、高調波は電動機の電気角度の変数となっているため、電動機の回転に応じて変動する。   Sixth-order harmonics Id_h and Iq_h shown in (C) of FIG. 6 are expressed by the following equation (2). Α is the order of the harmonic current, β is the current phase of the harmonic, and θ is the electrical angle. When the order of the harmonic current is sixth, α = 6. As shown in FIG. 6C, the harmonic is a variable of the electric angle of the electric motor, and thus fluctuates according to the rotation of the electric motor.

Figure 2013233055
Figure 2013233055

式(2)の関係は図7に示される。当該高調波電流をdq軸上の基本波に重畳すると、その重畳波Id_m,Iq_mは、下記式(3)によって表される。また、図7に示されるように、重畳波Id_m,Iq_mのベクトルImは、基本波のベクトルIcと高調波Ihのベクトルの合成である。   The relationship of equation (2) is shown in FIG. When the harmonic current is superimposed on the fundamental wave on the dq axis, the superimposed waves Id_m and Iq_m are expressed by the following equation (3). As shown in FIG. 7, the vector Im of the superimposed waves Id_m and Iq_m is a combination of the fundamental wave vector Ic and the harmonic Ih vector.

Figure 2013233055
Figure 2013233055

重畳波Id_m,Iq_mのベクトルの大きさImは、下記式(4)によって表される。   The vector magnitude Im of the superimposed waves Id_m and Iq_m is expressed by the following equation (4).

Figure 2013233055
Figure 2013233055

式(4)の右辺の下線で示した値が最小となるとき、式(4)に示したベクトルImの大きさも最小となる。したがって、下線で示した値のボトムがパーミアンスの低い領域(例えば50度)に一致するよう、高調波電流位相決定部127は、高調波の位相βを決定する。   When the value indicated by the underline on the right side of Expression (4) is minimum, the size of the vector Im shown in Expression (4) is also minimum. Therefore, the harmonic current phase determination unit 127 determines the phase β of the harmonic so that the bottom of the value indicated by the underline coincides with a low-permeance region (for example, 50 degrees).

なお,上記説明した高周波の重畳は、図9に示す電動機50の動作点領域の内、I及びIIで示す領域でのみ行っても良い。また、(領域IでのIa)>(領域IIでのIa)として、高調波の振幅を変えても良い。また、例えば、冷却用ATFの温度から測定される雰囲気温度Tがしきい値Thを超えた場合に高調波を重畳しても良い。   Note that the superposition of the high frequency described above may be performed only in the regions indicated by I and II in the operating point region of the electric motor 50 shown in FIG. Further, the harmonic amplitude may be changed as (Ia in region I)> (Ia in region II). Further, for example, harmonics may be superimposed when the ambient temperature T measured from the temperature of the cooling ATF exceeds the threshold Th.

上記説明した高調波電流の周波数、位相及び振幅の決定は、ECU100の高調波電流制御部117が行う。すなわち、高調波電流制御部117の高調波電流振幅決定部121、振幅重み係数決定部123及び乗算部125によって高調波電流の振幅が決定され、高調波電流位相決定部127によって高調波電流の位相が決定される。なお、高調波電流の基本周波数は、レゾルバ等の回転位置センサ61によって検出される基本波電流の周波数と同じである。   The harmonic current control unit 117 of the ECU 100 determines the frequency, phase, and amplitude of the harmonic current described above. That is, the harmonic current amplitude is determined by the harmonic current amplitude determining unit 121, the amplitude weighting coefficient determining unit 123, and the multiplying unit 125 of the harmonic current control unit 117, and the harmonic current phase determining unit 127 determines the phase of the harmonic current. Is determined. The fundamental frequency of the harmonic current is the same as the frequency of the fundamental current detected by the rotational position sensor 61 such as a resolver.

以上説明したように、本実施形態の電動機システムによれば、電動機50の固定子57に供給する3相電流に、当該3相電流よりも周波数の高い正弦波の高調波電流が重畳される。この高調波電流の位相は、電動機50の回転子53内の永久磁石が固定子57の回転磁界による反磁界の影響を受けて減磁しやすい電気角度領域(すなわち、回転子の回転時の電気角度領域において、永久磁石の角部の回転磁界に対するパーミアンスが相対的に小さな電気角度領域)に同高調波電流の振幅のボトム部分が一致するよう決定される。その結果、永久磁石が反磁界の影響を受けて減磁しやすい電気角度領域では、固定子57に供給される高調波電流が重畳された電流のレベルが上記3相電流よりも小さくなる。このため、当該電気角度領域での反磁界が低下して、減磁の発生を抑制できる。   As described above, according to the electric motor system of the present embodiment, a sinusoidal harmonic current having a frequency higher than that of the three-phase current is superimposed on the three-phase current supplied to the stator 57 of the electric motor 50. The phase of the harmonic current is such that the permanent magnet in the rotor 53 of the electric motor 50 is easily demagnetized due to the influence of the demagnetizing field due to the rotating magnetic field of the stator 57 (that is, the electric current during rotation of the rotor). In the angle region, the bottom portion of the amplitude of the same harmonic current is determined to coincide with an electrical angle region in which the permeance with respect to the rotating magnetic field at the corner of the permanent magnet is relatively small. As a result, in the electrical angle region in which the permanent magnet is easily demagnetized due to the influence of the demagnetizing field, the current level on which the harmonic current supplied to the stator 57 is superimposed is smaller than the three-phase current. For this reason, the demagnetizing field in the electrical angle region is reduced, and the occurrence of demagnetization can be suppressed.

本実施形態の電動機システムは、上記説明した高調波電流の振幅のボトム部を永久磁石が反磁界の影響を受けやすい電気角度領域に合わせる制御に加え、永久磁石が反磁界の影響を受けても減磁しにくい電気角度領域(すなわち、回転子の回転時の電気角度領域において、永久磁石の角部の回転磁界に対するパーミアンスが相対的に大きな電気角度領域)に高調波電流の振幅のピーク部分が一致するよう、高調波電流の周波数を調整しても良い。なお、永久磁石が反磁界の影響を受けても減磁しにくい電気角度領域は、図4に示したように、一対の永久磁石の8つの角部1〜8の内、パーミアンスがしきい値以上である角部の数が所定数(例えば4つ)以上であるとの条件を満たす電気角度の範囲である。永久磁石が反磁界の影響を受けにくい電気角度領域では、固定子57に供給される高調波電流が重畳された電流のレベルが上記3相電流よりも大きくなる。このため、当該電気角度領域でのトルクが増大して、電動機50は所望のトルクを出力できる。   The motor system according to the present embodiment has the above-described control for adjusting the bottom of the amplitude of the harmonic current to the electrical angle region in which the permanent magnet is easily affected by the demagnetizing field, and even if the permanent magnet is affected by the demagnetizing field. In the electrical angle region where demagnetization is difficult (that is, the electrical angle region where the permeance of the corner of the permanent magnet is relatively large in the electrical angle region during rotation of the rotor), the peak portion of the harmonic current amplitude is You may adjust the frequency of a harmonic current so that it may correspond. In addition, as shown in FIG. 4, the electrical angle region in which the permanent magnet is difficult to demagnetize even if it is affected by the demagnetizing field has a permeance threshold value among the eight corners 1 to 8 of the pair of permanent magnets. This is a range of electrical angles that satisfies the condition that the number of corners is a predetermined number (for example, four) or more. In the electrical angle region where the permanent magnet is not easily affected by the demagnetizing field, the level of the current on which the harmonic current supplied to the stator 57 is superimposed is greater than the three-phase current. For this reason, the torque in the said electrical angle area | region increases and the electric motor 50 can output desired torque.

なお、本実施形態の電動機システムでは、一対の永久磁石の8つの角部1〜8の内、パーミアンスがしきい値未満である角部の数が所定数以上であるとの条件に基づいて、永久磁石が反磁界の影響を受けやすい電気角度領域を決定する。このとき、一対の永久磁石の8つの角部1〜8を内径側の角部1,2,7,8と外径側の角部3,4,5,6とに分けて、同電気角度領域を決定しても良い。図10は、永久磁石の角部の外径側と内径側におけるB−H曲線(減磁曲線)の一例を示すグラフである。図10に示すように、永久磁石の外径側の角部は内径側と比較して大きな反磁界を受ける。すなわち、永久磁石の外径側の角部は、内径側の角部と比べ固定子57に近接しているため反磁界の影響を受けやすく、減磁しやすい。一方、内径側の角部は、外径側の角部よりも反磁界の影響を受けにくい。このように、回転子53の電気角度が変化することにより、外径側の角部では屈曲点を超えて減磁が発生しやすく、内径側の角部では減磁が発生しにくい。このため、内径側の角部における減磁の方がその発生を抑制しやすく、外径側の角部における減磁の発生を抑制する場合と比較して高調波電流の振幅を小さくできる。このため、他の実施形態の電動機システムでは、図11に示すように、一対の永久磁石の内径側の角部1,2,7,8の内、パーミアンスがしきい値未満である角部の数が所定数(例えば3つ)以上であるとの条件に基づいて、永久磁石が反磁界の影響を受けやすい電気角度領域を決定しても良い。この実施形態では、高調波電流を重畳する際の電力消費量の増加を抑制できる。   In addition, in the electric motor system of this embodiment, based on the condition that the number of corners whose permeance is less than the threshold value among the eight corners 1 to 8 of the pair of permanent magnets is a predetermined number or more, The electrical angle region in which the permanent magnet is susceptible to the demagnetizing field is determined. At this time, the eight corners 1 to 8 of the pair of permanent magnets are divided into inner corners 1, 2, 7, and 8 and outer corners 3, 4, 5, and 6, and the same electrical angle. An area may be determined. FIG. 10 is a graph showing an example of a BH curve (demagnetization curve) on the outer diameter side and inner diameter side of the corner portion of the permanent magnet. As shown in FIG. 10, the corner portion on the outer diameter side of the permanent magnet receives a larger demagnetizing field than the inner diameter side. That is, since the corner portion on the outer diameter side of the permanent magnet is closer to the stator 57 than the corner portion on the inner diameter side, it is easily affected by the demagnetizing field and is easily demagnetized. On the other hand, the corner on the inner diameter side is less affected by the demagnetizing field than the corner on the outer diameter side. Thus, by changing the electrical angle of the rotor 53, demagnetization is likely to occur beyond the bending point at the corner on the outer diameter side, and demagnetization is less likely to occur at the corner on the inner diameter side. For this reason, the demagnetization at the corner portion on the inner diameter side is easier to suppress, and the amplitude of the harmonic current can be reduced as compared with the case where the occurrence of demagnetization at the corner portion on the outer diameter side is suppressed. For this reason, in the electric motor system of another embodiment, as shown in FIG. 11, of the corners 1, 2, 7, and 8 on the inner diameter side of the pair of permanent magnets, the permeance is less than the threshold. Based on the condition that the number is a predetermined number (for example, three) or more, an electrical angle region in which the permanent magnet is easily affected by the demagnetizing field may be determined. In this embodiment, an increase in power consumption when the harmonic current is superimposed can be suppressed.

50 電動機
51 永久磁石
53 回転子
55 電機子
57 固定子
59 回転軸
100 ECU
11 PDU
13 バッテリ
101 電気角度変換部
103 電気角速度算出部
105 3相/dq変換部
107 電流指令決定部
109d,109q 重畳部
111d,111q 減算部
113 電流制御部
115 dq/3相変換部
117 高調波電流制御部
61 回転位置センサ
63u,63w 相電流センサ
121 高調波電流振幅決定部
123 振幅重み係数決定部
125 乗算部
127 高調波電流位相決定部
129 高調波電流決定部
131 dq変換部
50 Electric motor 51 Permanent magnet 53 Rotor 55 Armature 57 Stator 59 Rotating shaft 100 ECU
11 PDU
13 Battery 101 Electrical angle conversion unit 103 Electrical angular velocity calculation unit 105 Three-phase / dq conversion unit 107 Current command determination unit 109d, 109q Superimposition unit 111d, 111q Subtraction unit 113 Current control unit 115 dq / 3-phase conversion unit 117 Harmonic current control Unit 61 rotational position sensor 63u, 63w phase current sensor 121 harmonic current amplitude determining unit 123 amplitude weighting factor determining unit 125 multiplying unit 127 harmonic current phase determining unit 129 harmonic current determining unit 131 dq converting unit

Claims (6)

円周方向に所定間隔で並んだ複数の永久磁石から構成された磁極列を有する回転子と、
前記円周方向に所定間隔で並んだ複数の電機子が前記磁極列に対向して配置され、電力の供給に応じて前記複数の電機子に発生する電機子磁極により、前記円周方向に移動する回転磁界を前記磁極列との間に発生させる電機子列を有する固定子と、を備えた電動機の制御装置であって、
前記電動機の動作状態及び前記電動機に対する要求出力に応じて、前記電動機に供給する電流の基本成分を決定する電流成分決定部と、
前記電動機に供給する電流よりも周波数の高い高調波電流の成分を決定する高調波電流制御部と、
前記電動機に供給する電流の基本成分に前記高調波電流制御部が決定した前記高調波電流の成分を重畳する重畳部と、を備え、
前記高調波電流制御部は、前記回転子の回転時の電気角度領域において、前記永久磁石の角部の前記回転磁界に対するパーミアンスが相対的に小さな電気角度の領域に前記高調波電流の振幅のボトム部分が一致するよう、前記高調波電流の成分を決定することを特徴とする電動機の制御装置。
A rotor having a magnetic pole array composed of a plurality of permanent magnets arranged at predetermined intervals in the circumferential direction;
A plurality of armatures arranged at predetermined intervals in the circumferential direction are arranged to face the magnetic pole row, and are moved in the circumferential direction by armature magnetic poles generated in the plurality of armatures in response to power supply. And a stator having an armature row that generates a rotating magnetic field between the magnetic pole row and a motor control device,
A current component determining unit that determines a basic component of a current to be supplied to the motor in accordance with an operation state of the motor and a required output for the motor;
A harmonic current control unit for determining a harmonic current component having a frequency higher than the current supplied to the electric motor;
A superimposing unit that superimposes the harmonic current component determined by the harmonic current control unit on a basic component of current supplied to the electric motor,
The harmonic current control unit has a bottom of the amplitude of the harmonic current in an electrical angle region where the permeance of the corner portion of the permanent magnet with respect to the rotating magnetic field is relatively small in the electrical angle region during rotation of the rotor. A control device for an electric motor, wherein a component of the harmonic current is determined so that the portions coincide with each other.
請求項1に記載の電動機の制御装置であって、
前記パーミアンスが相対的に小さな電気角度領域は、前記永久磁石の角部の内、パーミアンスがしきい値未満である角部の数が所定数以上であるとの条件を満たす電気角度の範囲であることを特徴とする電動機の制御装置。
The motor control device according to claim 1,
The electrical angle region having a relatively small permeance is a range of electrical angles that satisfies a condition that the number of corners having a permeance less than a threshold value is not less than a predetermined number among corners of the permanent magnet. An electric motor control device.
請求項1又は2に記載の電動機の制御装置であって、
前記高調波電流制御部は、前記回転子の回転時の電気角度領域において、前記永久磁石の角部の前記回転磁界に対するパーミアンスが相対的に大きな電気角度の領域に前記高調波電流の振幅のピーク部分が一致するよう、前記高調波電流の成分を決定することを特徴とする電動機の制御装置。
The motor control device according to claim 1 or 2,
The harmonic current control unit has an amplitude peak of the harmonic current in an electrical angle region where the permeance of the corner portion of the permanent magnet with respect to the rotating magnetic field is relatively large in the electrical angle region during rotation of the rotor. A control device for an electric motor, wherein a component of the harmonic current is determined so that the portions coincide with each other.
請求項3に記載の電動機の制御装置であって、
前記パーミアンスが相対的に大きな電気角度領域は、前記永久磁石の角部の内、パーミアンスがしきい値以上である角部の数が所定数以上であるとの条件を満たす電気角度の範囲であることを特徴とする電動機の制御装置。
The motor control device according to claim 3,
The electrical angle region where the permeance is relatively large is a range of electrical angles satisfying a condition that the number of corners whose permeance is equal to or greater than a threshold value among the corners of the permanent magnet is equal to or greater than a predetermined number An electric motor control device.
請求項1、3又は4に記載の電動機の制御装置であって、
前記複数の永久磁石を構成する隣接した2つの永久磁石は、前記電動機の回転軸方向から見たときに、前記回転子の外周面に向かって開くV字状に配置され、
前記反磁界の影響を受けやすい電気角度領域は、前記V字状に配置された2つの永久磁石の内径側の角部の内、パーミアンスがしきい値未満である角部の数が所定数以上であるとの条件を満たす電気角度の範囲であることを特徴とする電動機の制御装置。
The motor control device according to claim 1, 3 or 4,
Two adjacent permanent magnets constituting the plurality of permanent magnets are arranged in a V shape that opens toward the outer peripheral surface of the rotor when viewed from the rotation axis direction of the electric motor,
The electrical angle region susceptible to the influence of the demagnetizing field has a predetermined number or more of corners whose permeance is less than a threshold value among corners on the inner diameter side of the two permanent magnets arranged in the V shape. An electric motor control device having a range of electrical angles that satisfies the condition of.
請求項1〜5のいずれか一項に記載の電動機の制御装置であって、
前記電動機に供給する前記高調波電流の成分のdq軸座標系における高調波次数は、前記電動機の極数と相数を乗算した値であることを特徴とする電動機の制御装置。
A control device for an electric motor according to any one of claims 1 to 5,
The harmonic motor order in the dq axis coordinate system of the harmonic current component supplied to the motor is a value obtained by multiplying the number of poles and the number of phases of the motor.
JP2012104846A 2012-05-01 2012-05-01 Motor controller Pending JP2013233055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012104846A JP2013233055A (en) 2012-05-01 2012-05-01 Motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104846A JP2013233055A (en) 2012-05-01 2012-05-01 Motor controller

Publications (1)

Publication Number Publication Date
JP2013233055A true JP2013233055A (en) 2013-11-14

Family

ID=49679022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104846A Pending JP2013233055A (en) 2012-05-01 2012-05-01 Motor controller

Country Status (1)

Country Link
JP (1) JP2013233055A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752330B1 (en) * 2014-02-28 2015-07-22 三菱電機株式会社 Control device for permanent magnet type rotary motor
JP2015159666A (en) * 2014-02-24 2015-09-03 株式会社豊田中央研究所 Motor controller and motor system including the same
JP2016025810A (en) * 2014-07-24 2016-02-08 日産自動車株式会社 Motor control apparatus and motor control method
JP2020010456A (en) * 2018-07-05 2020-01-16 株式会社デンソー Motor control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159666A (en) * 2014-02-24 2015-09-03 株式会社豊田中央研究所 Motor controller and motor system including the same
JP5752330B1 (en) * 2014-02-28 2015-07-22 三菱電機株式会社 Control device for permanent magnet type rotary motor
WO2015129042A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Permanent magnet rotating electric machine control device
CN106031023A (en) * 2014-02-28 2016-10-12 三菱电机株式会社 Permanent magnet rotating electric machine control device
US20170019041A1 (en) * 2014-02-28 2017-01-19 Mitsubishi Electric Corporation Control device for permanent-magnet rotary motor
CN106031023B (en) * 2014-02-28 2018-06-22 三菱电机株式会社 The control device of permanent magnet type electric rotating motivation
JP2016025810A (en) * 2014-07-24 2016-02-08 日産自動車株式会社 Motor control apparatus and motor control method
JP2020010456A (en) * 2018-07-05 2020-01-16 株式会社デンソー Motor control device
JP7147296B2 (en) 2018-07-05 2022-10-05 株式会社デンソー motor controller

Similar Documents

Publication Publication Date Title
JP4205157B1 (en) Electric motor control device
JP4985956B2 (en) Electric motor control device
US8278865B2 (en) Control device
US20130334937A1 (en) Rotary electric machine driving system
JP4715576B2 (en) Electric drive control device and electric drive control method
US9935568B2 (en) Control apparatus of rotary electric machine
JP2014150604A (en) Synchronous motor controller for electric vehicle
WO2014050283A1 (en) Drive control device for rotary electric machine and electric vehicle drive system
JP2008043135A (en) Controller of motor for vehicle
JP5330652B2 (en) Permanent magnet motor control device
JP2007274779A (en) Electromotive drive control device, and electromotive drive control method
JP4372775B2 (en) Motor control device
JP4163226B2 (en) Motor control device
Kano et al. Rotor geometry design of saliency-based sensorless controlled distributed-winding IPMSM for hybrid electric vehicles
JP2008271641A (en) Axial gap motor
JP2013233055A (en) Motor controller
JP2011062000A (en) Controller of ac motor
CN108432120B (en) Control device for rotating electric machine
US11784595B2 (en) Controller for AC rotary electric machine and electric power steering apparatus
Qiu et al. Torque-angle-based direct torque control for interior permanent-magnet synchronous motor drivers in electric vehicles
JP6838469B2 (en) Drive device
JP6950409B2 (en) Drive device
JP2015159666A (en) Motor controller and motor system including the same
JP6305603B1 (en) Control device for rotating electrical machine
JP2018046615A (en) Temperature estimation device, interlinkage magnetic flux estimation device and motor controller