JP2013231364A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2013231364A
JP2013231364A JP2012102434A JP2012102434A JP2013231364A JP 2013231364 A JP2013231364 A JP 2013231364A JP 2012102434 A JP2012102434 A JP 2012102434A JP 2012102434 A JP2012102434 A JP 2012102434A JP 2013231364 A JP2013231364 A JP 2013231364A
Authority
JP
Japan
Prior art keywords
exhaust
mixer
passage
valve plate
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012102434A
Other languages
Japanese (ja)
Inventor
Mikio Nakamura
己喜男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012102434A priority Critical patent/JP2013231364A/en
Publication of JP2013231364A publication Critical patent/JP2013231364A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain suitable purifying performance across a wide operation region by inhibiting a change of an additive concentration distribution in exhaust caused by a change of an engine operation state, when a mixer 4 for mixing an additive jetted in the exhaust with the exhaust is included on an upstream side of an exhaust emission control device (SCR catalyst 2, for example) located in an exhaust passage 1 of an internal combustion engine.SOLUTION: An exhaust emission control device includes a bypass passage 5 for bypassing a mixer 4 to provide communication between an upstream side of the bypass passage and a downstream side of an exhaust passage 1; and passage area variable means (valve plates 51, 52 and a valve plate motion mechanism 6) for varying a cross-sectional area of the bypass passage 5 so that the cross-sectional area gets larger as a flow rate of exhaust increases in the exhaust passage on the upstream side of the mixer 4 (an upstream-side exhaust pipe 10, for example).

Description

本発明は、自動車用のディーゼルエンジン等の内燃機関に装備される排気浄化装置に関し、特に排気通路に噴射した添加剤の排気との混合を促進するミキサーを備えたものに係る。   The present invention relates to an exhaust emission control device installed in an internal combustion engine such as a diesel engine for automobiles, and particularly relates to an apparatus equipped with a mixer that promotes mixing of additive injected into an exhaust passage with exhaust gas.

従来より、自動車等に搭載される内燃機関(以下、エンジンという場合もある)には、排気中の有害成分(例えばHC、CO、NOx等)を無害化するための排気浄化触媒が装備されている。特に、ディーゼルエンジンや直噴ガソリンエンジンのように希薄燃焼(リーンバーン)を行うものでは、酸素濃度の高い排気中においてNOxを還元するための触媒を備えるものがある。   Conventionally, an internal combustion engine (hereinafter sometimes referred to as an engine) mounted on an automobile or the like has been equipped with an exhaust purification catalyst for detoxifying harmful components (for example, HC, CO, NOx, etc.) in exhaust gas. Yes. In particular, those that perform lean burn, such as diesel engines and direct-injection gasoline engines, include a catalyst for reducing NOx in exhaust gas with a high oxygen concentration.

一例として選択還元型の触媒(Selective Catalytic Reduction:SCR触媒)は、アンモニア(NH3)等の還元剤とNOxを選択的に反応させて、窒素と水に還元することができるので、このSCR触媒よりも上流側の排気中に尿素水(添加剤)を噴射し、発生したアンモニアを供給するというシステムが実用化されている(所謂尿素SCRであり、例えば特許文献1を参照)。なお、排気中に添加された燃料を還元剤として、NOxを選択的に還元するSCR触媒もある。 As an example, a selective catalytic reduction (SCR catalyst) is a SCR catalyst that can be reduced to nitrogen and water by selectively reacting a reducing agent such as ammonia (NH 3 ) with NOx. A system has been put into practical use in which urea water (additive) is injected into the exhaust on the upstream side, and the generated ammonia is supplied (a so-called urea SCR, see, for example, Patent Document 1). Some SCR catalysts selectively reduce NOx using the fuel added to the exhaust as a reducing agent.

このようなSCR触媒によるNOxの浄化性能を高めるためには、前記のように排気中へ噴射する添加剤をできるだけ広くかつ均一に分散させることが望ましい。そこで、前記の従来例ではSCR触媒よりも上流側の排気通路に、噴射された添加剤の排気との混合を促進するためのミキサーを配設している。   In order to improve the NOx purification performance by such an SCR catalyst, it is desirable to disperse the additive injected into the exhaust gas as widely and uniformly as possible. Therefore, in the conventional example, a mixer for accelerating the mixing of the injected additive with the exhaust gas is arranged in the exhaust passage upstream of the SCR catalyst.

このミキサーは、放射状に延びる複数の旋回翼によって排気の流れに旋回成分を与えるものであり、その旋回翼に衝突するように添加剤を噴射して微粒化させるとともに、ミキサーの下流側に向かって螺旋状に旋回する排気の流れに乗せて分散させるようにしている。こうして微粒化させた添加剤を分散させることによって、SCR触媒に流入する排気中の添加剤成分の濃度の均一化が図られる。   This mixer gives a swirl component to the flow of exhaust by a plurality of swirling blades extending radially, and sprays the additive to atomize so as to collide with the swirling blade, and toward the downstream side of the mixer The exhaust is swirled in a spiral manner and dispersed. By dispersing the atomized additive in this way, the concentration of the additive component in the exhaust gas flowing into the SCR catalyst can be made uniform.

特開2011−111927号公報JP 2011-111927 A

ところが、一般的に自動車用のエンジンは、アイドルのような低負荷低回転域から高速走行時のような高負荷高回転域まで、広い運転領域にわたって使用されるものであり、この運転状態の変化に応じて排気の流量がかなり大きく変化する。このため、前記従来例のようにミキサーによって形成した排気の旋回流に乗せて添加剤を広く分散させるようにした場合、運転領域によってミキサーを流通する排気の流量が大きく変化する結果として、添加剤の分散状態も大きく変化してしまう。   However, in general, automobile engines are used over a wide driving range from a low load low rotation range such as idle to a high load high rotation range such as during high-speed driving. Accordingly, the flow rate of the exhaust gas changes considerably. For this reason, when the additive is widely dispersed on the swirling flow of the exhaust formed by the mixer as in the conventional example, the flow rate of the exhaust flowing through the mixer greatly varies depending on the operation region. The dispersion state of will also change greatly.

つまり、排気の流量の少ない低負荷低回転域と流量の多い高負荷高回転域とでは、SCR触媒に流入する排気中の添加剤成分(アンモニア等)の濃度分布が大きく変化してしまい、広い運転領域にわたって狙い通りの浄化性能を得ることは難しいのが実情である。   In other words, the concentration distribution of additive components (ammonia etc.) in the exhaust gas flowing into the SCR catalyst varies greatly between the low load low rotation region where the exhaust flow rate is small and the high load high rotation region where the flow rate is large. Actually, it is difficult to obtain the desired purification performance over the operating range.

かかる点に鑑みて本発明の目的は、排気中に噴射した添加剤を排気と混合させるミキサーを備えた排気浄化装置において、機関の運転状態が変化しても、排気中の添加剤成分の濃度分布の変化を抑制し、広い運転領域にわたって好適な浄化性能を得ることにある。   In view of such points, an object of the present invention is to provide an exhaust gas purification apparatus having a mixer that mixes an additive injected into exhaust gas with exhaust gas, even if the operating state of the engine changes, the concentration of additive components in the exhaust gas. It is to suppress a change in distribution and obtain a suitable purification performance over a wide operation region.

前記の目的を達成するために本発明は、排気通路にミキサーを迂回する通路を設け、その断面積を調整することによって、ミキサーを流通する排気の流量の変化を緩和するようにした。   In order to achieve the above object, according to the present invention, a passage that bypasses the mixer is provided in the exhaust passage, and the change in the flow rate of the exhaust flowing through the mixer is reduced by adjusting the cross-sectional area thereof.

−解決手段−
具体的に本発明は、内燃機関の排気通路に配設された排気浄化触媒と、この排気浄化触媒よりも排気の流れの上流側において排気通路に噴射された添加剤の排気との混合を促進するミキサーと、を備えた排気浄化装置が対象である。そして、前記ミキサーを迂回してその上流側および下流側の排気通路を連通させる迂回通路と、この迂回通路の断面積を、前記ミキサーの上流側の排気通路における排気の流量が多いときほど断面積が大きくなるように変更する通路面積可変手段と、を備えるものである。
-Solution-
Specifically, the present invention promotes mixing of the exhaust purification catalyst disposed in the exhaust passage of the internal combustion engine and the exhaust of the additive injected into the exhaust passage upstream of the exhaust purification catalyst. And an exhaust purification device including the mixer. A bypass passage that bypasses the mixer and connects the upstream and downstream exhaust passages, and a cross-sectional area of the bypass passage, the cross-sectional area increases as the exhaust gas flow rate in the exhaust passage upstream of the mixer increases. And a passage area variable means for changing so as to increase.

前記構成の排気浄化装置によれば、内燃機関の運転中に排気通路に噴射された添加剤がミキサーによって排気の流れと混合され、排気中に分散した状態で下流側の排気浄化触媒に供給される。そして、例えば機関の低負荷低回転で排気の流量が少ないときには、通路面積可変手段によって、ミキサーを迂回する通路の断面積が小さくされ、ミキサーを流通する排気の流量が確保される一方、排気の流量が多くなれば迂回通路の断面積が大きくされることによって、ミキサーを流通する排気の流量の増大が抑制される。   According to the exhaust purification apparatus having the above-described configuration, the additive injected into the exhaust passage during the operation of the internal combustion engine is mixed with the exhaust flow by the mixer and supplied to the downstream exhaust purification catalyst while being dispersed in the exhaust. The For example, when the flow rate of the exhaust gas is low due to low load and low rotation of the engine, the cross-sectional area of the passage that bypasses the mixer is reduced by the passage area variable means, and the flow rate of the exhaust gas flowing through the mixer is ensured. As the flow rate increases, the cross-sectional area of the bypass passage is increased, thereby suppressing an increase in the flow rate of the exhaust gas flowing through the mixer.

つまり、機関運転状態の変化によって排気の流量が大きく変化しても、ミキサーを流通する排気の流量の変化は緩和されることとなり、その下流側の排気浄化触媒に流入する排気中の添加剤成分の濃度分布の変化を抑制して、広い運転領域にわたって好適な浄化性能を安定的に得ることができる。   In other words, even if the flow rate of the exhaust gas changes greatly due to a change in the engine operating state, the change in the flow rate of the exhaust gas flowing through the mixer is alleviated, and the additive component in the exhaust gas flowing into the exhaust purification catalyst downstream thereof Therefore, it is possible to stably obtain a suitable purification performance over a wide operation region.

好ましい態様として前記通路面積可変手段は、前記迂回通路に設けた弁板と、前記ミキサーよりも上流側の排気の圧力を受けて動作し、この圧力の上昇に応じて前記迂回通路の断面積が増大するように前記弁板を変位させる弁板動作機構と、を備えることができる。こうすると、アクチュエータなどを用いることなく簡単な構造で、排気の流量の増大に応じて自動的に迂回通路の断面積を調整することができる。   As a preferred embodiment, the passage area varying means operates by receiving a pressure of the valve plate provided in the bypass passage and the exhaust gas upstream of the mixer, and the cross-sectional area of the bypass passage is increased according to the increase in pressure. And a valve plate operating mechanism for displacing the valve plate so as to increase. In this way, it is possible to automatically adjust the cross-sectional area of the bypass passage according to an increase in the flow rate of the exhaust gas with a simple structure without using an actuator or the like.

また、前記迂回通路は、前記ミキサーの外周部とこれを離間して取り囲む排気通路の周壁との間に形成し、前記ミキサーの外周部を前記排気通路の周壁に支持する支持部を、周方向に互いに間隔をあけて複数、設けて、この支持部に前記弁板動作機構を配設してもよい。   The bypass passage is formed between an outer peripheral portion of the mixer and a peripheral wall of the exhaust passage that surrounds and surrounds the mixer, and a support portion that supports the outer peripheral portion of the mixer on the peripheral wall of the exhaust passage is provided in a circumferential direction. A plurality of the valve plate operating mechanisms may be provided at intervals between the valve plate operating mechanisms.

このように迂回通路を排気通路の周壁とミキサーの外周部との間に形成した場合、排気通路の内周側に位置するミキサーに向けて添加剤を噴射し、この添加剤を衝突させて効率良く微粒化および分散させることができる。また、複数の支持部によってミキサーを周壁にしっかりと支持することができるとともに、その支持部に弁板動作機構を配設することで、迂回通路の断面積を確保しやすい。   In this way, when the bypass passage is formed between the peripheral wall of the exhaust passage and the outer peripheral portion of the mixer, the additive is injected toward the mixer located on the inner peripheral side of the exhaust passage, and the additive collides with the efficiency. It can be well atomized and dispersed. Further, the mixer can be firmly supported on the peripheral wall by the plurality of support portions, and the cross-sectional area of the bypass passage can be easily ensured by disposing the valve plate operating mechanism on the support portion.

前記弁板動作機構としては、前記ミキサーよりも上流側の排気の圧力を受けて下流側に向かい後退するピストン部材と、このピストン部材を上流側に向かって前進するように付勢するバネ部材と、当該ピストン部材の前進および後退動作を前記弁板に伝えて変位させる伝動部材と、を備えることが好ましい。   The valve plate operating mechanism includes a piston member that receives exhaust pressure upstream from the mixer and retreats toward the downstream side, and a spring member that urges the piston member to advance toward the upstream side. The transmission member preferably includes a transmission member that transmits and moves the piston member forward and backward to the valve plate.

この弁板動作機構では、排気の流量が多くなってミキサーの上流側の圧力が上昇するのに連れて、ピストン部材が後退し、バネ部材からの付勢力との均衡によって停止することになるので、簡単な構造でありながら排気の圧力の上昇に応じて弁板の変位量を調整し、迂回通路の断面積を排気流量に応じて好適に調整することができる。   In this valve plate operating mechanism, as the flow rate of the exhaust gas increases and the pressure on the upstream side of the mixer increases, the piston member retracts and stops due to balance with the biasing force from the spring member. In spite of the simple structure, the displacement amount of the valve plate can be adjusted according to the increase in the exhaust pressure, and the cross-sectional area of the bypass passage can be suitably adjusted according to the exhaust gas flow rate.

好ましくは、前記ミキサーの外周部および排気通路の周壁の少なくとも一方には、前記弁板を周方向に変位するようにガイドするガイド部を設けるとともに、前記伝動部材としては例えば薄い板バネやワイヤのように可撓性の大きなものを用いて、前記ピストン部材の前進および後退動作を前記弁板の周方向の変位に変換するように、前記伝動部材を湾曲させて配設してもよい。   Preferably, at least one of the outer peripheral portion of the mixer and the peripheral wall of the exhaust passage is provided with a guide portion that guides the valve plate so as to be displaced in the circumferential direction, and the transmission member is, for example, a thin leaf spring or a wire. As described above, the transmission member may be curved and disposed so as to convert the forward and backward movements of the piston member into displacements in the circumferential direction of the valve plate using a highly flexible member.

また、前記ピストン部材に一対の伝動部材を取り付けて、これにより一対の弁板を接続し、当該ピストン部材の前進および後退動作に応じて前記一対の弁板が周方向に互いに反対向きに変位するように構成してもよい。   Also, a pair of transmission members are attached to the piston member, thereby connecting the pair of valve plates, and the pair of valve plates are displaced in the circumferential direction in opposite directions in accordance with the forward and backward movement of the piston member. You may comprise as follows.

こうすれば、ピストン部材の前進および後退動作に応じて一対の弁板が、ミキサーの外周部に沿って互いに反対の向きに変位するようになるから、それぞれの弁板から伝動部材を介してピストン部材に加わる反力のうち、弁板の変位する周方向の成分は互いに打ち消し合うことになる。よって、ピストン部材には主にその前後方向の反力のみが作用するようになり、その動作を安定化させる上で有利になる。   If it carries out like this, since a pair of valve plate will be displaced to a mutually opposing direction along the outer peripheral part of a mixer according to advance and retraction operation | movement of a piston member, it is piston from each valve plate via a transmission member. Among the reaction forces applied to the members, the circumferential components of the valve plate that are displaced cancel each other. Therefore, only the reaction force in the front-rear direction acts mainly on the piston member, which is advantageous in stabilizing the operation.

また、前記一対の弁板を、前記ピストン部材の最後退位置において互いに少なくとも一部分が重なるように配置してもよく、こうすれば、迂回通路の断面積を最も大きくなるように調整する場合に、その断面積を十分に確保しやすい。   Further, the pair of valve plates may be arranged so that at least a part of them overlap each other at the last retracted position of the piston member, and in this way, when adjusting the cross-sectional area of the bypass passage to be the largest, It is easy to secure a sufficient cross-sectional area.

本発明に係る排気浄化装置によると、内燃機関の排気通路において添加剤の排気との混合を促進するミキサーを設ける場合に、このミキサーを迂回する通路を設け、その断面積を調整することによって、ミキサーを流通する排気流量の変化を緩和することができる。これにより、広い機関運転領域にわたって排気浄化触媒に流入する排気中の添加剤成分の濃度分布の変化を抑制し、好適な浄化性能を安定的に得ることができる。   According to the exhaust emission control device according to the present invention, when providing a mixer that promotes mixing of the additive with the exhaust gas in the exhaust passage of the internal combustion engine, by providing a passage that bypasses the mixer and adjusting its cross-sectional area, Changes in the exhaust flow rate flowing through the mixer can be mitigated. Thereby, the change of the concentration distribution of the additive component in the exhaust flowing into the exhaust purification catalyst over a wide engine operation region can be suppressed, and a suitable purification performance can be stably obtained.

本発明の実施形態に係る排気浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust emission control device according to an embodiment of the present invention. 同排気浄化装置のミキサーによる排気の旋回流の形成を示す説明図である。It is explanatory drawing which shows formation of the swirl | vortex flow of the exhaust_gas | exhaustion by the mixer of the same exhaust gas purification apparatus. 排気の流れ方向の上流側から見て、ミキサー、迂回通路、弁板等を示す正面図であり、同図(a)〜(c)はそれぞれ迂回通路の断面積が最小、中間、最大の状態を示す。It is a front view showing a mixer, a bypass passage, a valve plate, etc., as viewed from the upstream side in the exhaust flow direction. FIGS. (A) to (c) are states in which the cross-sectional area of the bypass passage is minimum, intermediate, and maximum, respectively. Indicates. 同ミキサーの支持部に配設された弁板動作機構の構造を拡大して示す正面図である。It is a front view which expands and shows the structure of the valve plate operating mechanism arrange | positioned at the support part of the mixer. 同弁板動作機構の上方から見た断面図である。It is sectional drawing seen from the upper direction of the valve-plate operation | movement mechanism. 同弁板動作機構の側方から見た断面図である。It is sectional drawing seen from the side of the valve plate operating mechanism. 同弁板動作機構の動作を示す図5相当図であり、同図(a)は、ピストン部材の後退によって弁板が開かれる途中の中間断面積の状態を、また、同図(b)は、ピストン部材が最後退位置にあって、弁板が全開となる最大断面積の状態をそれぞれ示す。FIG. 5 is an equivalent view of FIG. 5 showing the operation of the valve plate operating mechanism, in which FIG. 5 (a) shows the state of the intermediate cross-sectional area in the middle of the valve plate being opened by the retraction of the piston member, The state of the maximum cross-sectional area where the piston member is in the last retracted position and the valve plate is fully opened is shown.

以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は一例として、自動車に搭載されたディーゼルエンジン(内燃機関)に本発明を適用した場合について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, as an example, a case where the present invention is applied to a diesel engine (internal combustion engine) mounted on an automobile will be described.

図1は本発明の実施形態に係る排気浄化装置の概略構成を示し、この図1において排気通路1の途中には、酸素濃度の高い排気中においてNOxを選択的に還元剤と反応させる性質を備えた選択還元型触媒(Selective Catalytic Reduction:SCR触媒)2が配設されている。図の例ではSCR触媒2は、排気通路1の一部を構成する上流側排気管10の下流側(排気の流れの下流側)の端部に接続された略円筒形状の触媒ケース20と、その内部に同心状に収容された略円柱形状の触媒担体21とからなる。なお、図示はしないが、触媒ケース20の下流側の端部には、排気通路1の一部を構成する下流側排気管が接続されている。   FIG. 1 shows a schematic configuration of an exhaust emission control device according to an embodiment of the present invention. In FIG. 1, in the middle of an exhaust passage 1, there is a property of selectively reacting NOx with a reducing agent in exhaust gas having a high oxygen concentration. A selective catalytic reduction (SCR catalyst) 2 is provided. In the example of the figure, the SCR catalyst 2 includes a substantially cylindrical catalyst case 20 connected to an end portion on the downstream side (downstream side of the exhaust flow) of the upstream side exhaust pipe 10 constituting a part of the exhaust passage 1; It comprises a substantially cylindrical catalyst carrier 21 concentrically accommodated therein. Although not shown, a downstream exhaust pipe constituting a part of the exhaust passage 1 is connected to the downstream end of the catalyst case 20.

図1に示すSCR触媒2において触媒ケース20の上流側(排気の流れの上流側)の部分は、上流側排気管10の端部から下流側に向かって徐々に通路断面積が拡大するラッパ状の拡大部20aとされており、排気の流れをスムーズに広げて触媒担体21の前端面に導くことができる。また、触媒担体21の外周面と触媒ケース20の内周面との間には弾性体からなるマット22が介在されて、触媒担体21の熱膨張を吸収しながら触媒ケース20に保持している。   In the SCR catalyst 2 shown in FIG. 1, the upstream side of the catalyst case 20 (upstream side of the exhaust flow) has a trumpet shape in which the passage sectional area gradually increases from the end of the upstream side exhaust pipe 10 toward the downstream side. The expanded portion 20a can smoothly spread the exhaust flow and guide it to the front end surface of the catalyst carrier 21. Further, a mat 22 made of an elastic body is interposed between the outer peripheral surface of the catalyst carrier 21 and the inner peripheral surface of the catalyst case 20 and is held in the catalyst case 20 while absorbing the thermal expansion of the catalyst carrier 21. .

一例として触媒担体21は、排気の流通する方向に延びる多数の貫通孔(セル)が形成されたモノリシックタイプのもので、コージェライトやFe-Cr-Al系の耐熱鋼等によって形成されている。セルの壁面には触媒のコート層が形成されて、例えばゼオライト系の活性成分(触媒)が担持されている。その活性成分が還元剤の供給を受けて活性化し、排気中のNOxを選択的に還元する。   As an example, the catalyst carrier 21 is a monolithic type in which a large number of through holes (cells) extending in the direction in which the exhaust flows is formed, and is formed of cordierite, Fe—Cr—Al heat-resistant steel, or the like. A coating layer of a catalyst is formed on the wall surface of the cell, and for example, a zeolite-based active component (catalyst) is supported. The active component is activated by the supply of the reducing agent, and selectively reduces NOx in the exhaust.

このようなSCR触媒2を用いて排気中のNOxを処理する手法のうち、還元剤としてアンモニア(NH3)を使うものが所謂尿素SCRである。本実施形態ではSCR触媒2よりも上流側の排気管10に、添加剤として尿素水を噴射する噴射ノズル3が配設されており、ここから噴出した尿素水(噴霧を破線Nで示す)が排気熱により加水分解してアンモニアを生成させる。アンモニアはSCR触媒2において排気中のNOxと選択的に反応し、窒素および水が生成される。 Of the methods for treating NOx in the exhaust gas using such an SCR catalyst 2, a so-called urea SCR uses ammonia (NH 3 ) as a reducing agent. In the present embodiment, an injection nozzle 3 for injecting urea water as an additive is disposed in the exhaust pipe 10 upstream of the SCR catalyst 2, and urea water ejected therefrom (spray is indicated by a broken line N). Hydrolysis by exhaust heat generates ammonia. Ammonia selectively reacts with NOx in the exhaust gas in the SCR catalyst 2 to generate nitrogen and water.

なお、尿素水は、固体もしくは粉体の尿素の水溶液であり、図外の貯蔵タンクから供給管を通じて噴射ノズル3に供給される。好ましくは噴射ノズル3には、尿素水と共に圧縮空気を供給し、尿素水を霧化して噴射口31より噴射するようにしてもよい。また、噴射ノズル3による尿素水の噴射量や噴射タイミングは、エンジンの運転状態に応じて制御するようにしてもよい。   The urea water is an aqueous solution of solid or powdered urea and is supplied to the injection nozzle 3 through a supply pipe from a storage tank (not shown). Preferably, compressed air may be supplied to the injection nozzle 3 together with the urea water, and the urea water may be atomized and injected from the injection port 31. Moreover, you may make it control the injection amount and injection timing of the urea water by the injection nozzle 3 according to the driving | running state of an engine.

図の例では上流側排気管10は、図外のエンジンの排気マニホールド等から概ね下方に延びた後に、後方に向かい緩やかに湾曲して略水平に延びていて、その湾曲部分の外周側に噴射ノズル3が配設されている。すなわち、上流側排気管10の周壁11には、湾曲部分の外周側から分岐するノズル収容部12が形成されており、このノズル収容部12の外端に噴射ノズル3が取り付けられている。   In the illustrated example, the upstream side exhaust pipe 10 extends generally downward from an exhaust manifold or the like of the engine (not shown), then gently curves backward and extends substantially horizontally, and is injected to the outer peripheral side of the curved part. A nozzle 3 is provided. That is, a nozzle accommodating portion 12 that is branched from the outer peripheral side of the curved portion is formed on the peripheral wall 11 of the upstream side exhaust pipe 10, and the injection nozzle 3 is attached to the outer end of the nozzle accommodating portion 12.

前記ノズル収容部12は、湾曲部分よりも下流側における上流側排気管10の軸線mに沿うように、当該湾曲部分の外周側から略水平に前方に向かって延びていて、その外端には噴射ノズル3が、尿素水を概ね前記軸線mに沿って後方に噴射するよう、噴射口31を排気の流れ方向の下流側に向けて配置されている。なお、図1中における破線矢印は、微粒化されて分散される尿素水を含む排気の流れを示し、実線矢印は、尿素水が添加される前の排気の流れを示す。   The nozzle accommodating portion 12 extends substantially horizontally forward from the outer peripheral side of the curved portion so as to follow the axis m of the upstream exhaust pipe 10 on the downstream side of the curved portion, and at the outer end thereof The injection nozzle 3 is arranged with the injection port 31 facing the downstream side in the flow direction of the exhaust gas so as to inject the urea water backward substantially along the axis m. 1 indicates the flow of exhaust gas containing urea water that is atomized and dispersed, and the solid line arrow indicates the flow of exhaust gas before the urea water is added.

そうして尿素水を噴射する噴射ノズル3の直下流側(SCR触媒2よりも排気流れ方向の上流側)には、尿素水の噴霧Nを排気中に分散させるためのミキサー4が配設されている。このミキサー4は、図2に示すように、中心軸40から放射状に延びる複数(図の例では8個)の旋回翼41を備えており、その間を通過する排気の流れに旋回成分を与えて、下流側に向かい螺旋状に旋回する排気流を形成する。図2には仮想線で示すが、複数の旋回翼41の外周端はそれぞれ円筒状の外周部42に連繋している。   A mixer 4 for dispersing the spray N of urea water in the exhaust gas is disposed immediately downstream of the injection nozzle 3 for injecting urea water (upstream in the exhaust flow direction from the SCR catalyst 2). ing. As shown in FIG. 2, the mixer 4 is provided with a plurality of (eight in the illustrated example) swirl vanes 41 extending radially from the central axis 40, and imparts a swirl component to the flow of exhaust gas passing between them. Then, an exhaust flow swirling spirally toward the downstream side is formed. Although indicated by phantom lines in FIG. 2, the outer peripheral ends of the plurality of swirl vanes 41 are respectively connected to a cylindrical outer peripheral portion 42.

また、ミキサー4の中心軸40は、前記上流側排気管10の軸線m上に位置づけられ、複数の旋回翼41は、噴射ノズル3からの尿素水の噴射領域に含まれるように位置している。このため、噴射ノズル3からの尿素水の噴霧Nは旋回翼41に衝突してその微粒化が促進されるとともに、旋回翼41に付着した尿素水の液膜が蒸発して、前記のようにミキサー4から下流側に向かう排気の旋回流に乗って分散されるようになる。   Further, the central axis 40 of the mixer 4 is positioned on the axis m of the upstream exhaust pipe 10, and the plurality of swirl vanes 41 are positioned so as to be included in the urea water injection region from the injection nozzle 3. . For this reason, the spray N of urea water from the injection nozzle 3 collides with the swirl vane 41 and the atomization thereof is promoted, and the liquid film of urea water adhering to the swirl vane 41 evaporates as described above. Dispersed by the swirling flow of the exhaust from the mixer 4 toward the downstream side.

ところで、そのようにミキサー4によって排気の旋回流を形成し、上流側排気管10内に噴射した尿素水を分散させるようにした場合、ミキサー4を流通する排気の流量が大きく変化すると、これにより尿素水の分散状態も大きく変化してしまう。すなわち、一般的に自動車用のエンジンは、アイドルのような低負荷低回転域から高速走行時のような高負荷高回転域まで、広い運転領域にわたって使用されるものであり、この運転状態の変化に応じて排気の流量がかなり大きく変化する。   By the way, when the swirl flow of the exhaust gas is formed by the mixer 4 and the urea water injected into the upstream side exhaust pipe 10 is dispersed, the flow rate of the exhaust gas flowing through the mixer 4 changes greatly. The dispersion state of urea water also changes greatly. That is, in general, an automobile engine is used over a wide operation range from a low load low rotation region such as an idle to a high load high rotation region such as during high speed driving. Accordingly, the flow rate of the exhaust gas changes considerably.

そうすると、前記のようにミキサー4によって形成される排気の旋回流の強さや広がり度合いも大きく変化してしまう。例えば小流量で旋回流が弱いときには、尿素水を排気通路1の外周側まで分散させることが難しくなる一方、排気流量の増大によって旋回流が強くなり過ぎれば、今度は尿素水が外周側に偏ってしまう。この結果、エンジンの運転状態によって、SCR触媒2に流入する排気中のアンモニア濃度分布が大きく変化してしまい、広い運転領域にわたって高い浄化性能を得ることができないという実情があった。   As a result, the strength and extent of the swirling flow of the exhaust gas formed by the mixer 4 as described above also change greatly. For example, when the swirling flow is weak at a small flow rate, it becomes difficult to disperse the urea water to the outer peripheral side of the exhaust passage 1, while if the swirling flow becomes too strong due to an increase in the exhaust flow rate, the urea water is now biased toward the outer peripheral side. End up. As a result, the ammonia concentration distribution in the exhaust gas flowing into the SCR catalyst 2 varies greatly depending on the operating state of the engine, and there has been a situation that high purification performance cannot be obtained over a wide operating region.

この点について本実施形態では、ミキサー4の外周部42と上流側排気管10の周壁11との間に円環状の隙間を設けて、ミキサー4を迂回してその上流側および下流側の排気通路1を連通させる迂回通路5として機能させるとともに、この迂回通路5の断面積を調整することによって、ミキサー4を流通する排気の流量の変化を緩和するようにしたものである。   In this embodiment, in this embodiment, an annular gap is provided between the outer peripheral portion 42 of the mixer 4 and the peripheral wall 11 of the upstream exhaust pipe 10, and the upstream and downstream exhaust passages bypass the mixer 4. In addition to functioning as a bypass passage 5 for communicating 1, the cross-sectional area of the bypass passage 5 is adjusted to mitigate changes in the flow rate of the exhaust gas flowing through the mixer 4.

具体的には図3(a)〜(c)にそれぞれ示すように、本実施形態では、ミキサー4の外周部42を上流側排気管10の周壁11に支持する支持部43を、周方向に互いに等間隔をあけて複数(図の例では4個)、設けている。そして、それらの支持部43によって区分された迂回通路5の各開口部50(図3(a)には示さず)をそれぞれ開閉するように、各支持部43毎に一対の弁板51,52を設けて、これを支持部43から周方向の一側および他側に変位させるようにしている。   Specifically, as shown in FIGS. 3 (a) to 3 (c), in this embodiment, a support portion 43 that supports the outer peripheral portion 42 of the mixer 4 on the peripheral wall 11 of the upstream side exhaust pipe 10 is provided in the circumferential direction. A plurality (four in the illustrated example) are provided at equal intervals. Then, a pair of valve plates 51 and 52 is provided for each support portion 43 so as to open and close each opening 50 (not shown in FIG. 3A) of the bypass passage 5 divided by the support portions 43. Is provided, and is displaced from the support portion 43 to one side and the other side in the circumferential direction.

すなわち、図3(a)に示すように各支持部43毎の一対の弁板51,52が、それぞれ支持部43から最も大きく外側へ変位した状態では、隣り合う別の支持部43の弁板52,51と端縁を突き合わせて、開口部50を概ね閉じるようになり、このとき迂回通路5の断面積は最小になる。一方、図3(c)に示すように一対の弁板51,52が互いに前後に重なり合って、支持部43の後側(排気の流れの下流側)に隠れるような状態では、各開口部50が全開になって迂回通路5の断面積は最大になる。   That is, as shown in FIG. 3A, in the state where the pair of valve plates 51 and 52 for each support portion 43 is displaced most outward from the support portion 43, the valve plate of another adjacent support portion 43 is adjacent. The opening 50 is substantially closed by abutting the end edges with 52 and 51, and at this time, the cross-sectional area of the bypass passage 5 is minimized. On the other hand, as shown in FIG. 3C, in a state where the pair of valve plates 51 and 52 overlap each other in front and back and are hidden behind the support portion 43 (downstream side of the exhaust flow), each opening 50 Is fully opened, and the cross-sectional area of the bypass passage 5 is maximized.

そして、それら最小断面積および最大断面積の中間の状態として、各支持部43毎の一対の弁板51,52が、ミキサー4の外周部42および上流側排気管10の周壁11に沿って、互いに反対の向きに(即ち、周方向の一側および他側に)変位することにより、図3(b)に示すように迂回通路5の断面積が最小、最大の中間の大きさになる。すなわち、以下に説明するように各支持部43毎の弁板動作機構6によって、ミキサー4よりも上流側の排気の圧力に応じて弁板51,52の位置が、全閉から全開まで連続的に変化するようになっている。   And as a state in between these minimum cross-sectional area and maximum cross-sectional area, a pair of valve plates 51 and 52 for each support part 43, along the outer peripheral part 42 of the mixer 4 and the peripheral wall 11 of the upstream exhaust pipe 10, By displacing in directions opposite to each other (that is, toward one side and the other side in the circumferential direction), the cross-sectional area of the bypass passage 5 becomes the minimum and maximum intermediate size as shown in FIG. That is, as will be described below, the valve plate operation mechanism 6 for each support portion 43 causes the positions of the valve plates 51 and 52 to continuously open from fully closed to fully open according to the exhaust pressure upstream of the mixer 4. To change.

それぞれの支持部43に配設された弁板動作機構6は同じものなので、以下では図4〜6を参照し、ミキサー4の上部の支持部43に配設された弁板動作機構6について説明する。以下の説明では便宜上、排気通路1の軸線mを中心とする図4における半径方向の外方を上方、内方を下方と呼び、周方向の一側、例えば図3の反時計回りの側を左側と呼び、反対の周方向他側(図3の時計回りの側)を右側と呼ぶことにする。   Since the valve plate operating mechanism 6 disposed in each support portion 43 is the same, the valve plate operating mechanism 6 disposed in the support portion 43 at the top of the mixer 4 will be described below with reference to FIGS. To do. In the following description, for the sake of convenience, the outer side in the radial direction in FIG. 4 centering on the axis m of the exhaust passage 1 will be referred to as the upper side and the inner side will be referred to as the lower side. The other side in the opposite circumferential direction (the clockwise side in FIG. 3) is called the right side.

なお、図4は、ミキサー4の上部の支持部43に配設された弁板動作機構6の構造を拡大して示す正面図(前方から見た図)であり、図5、6はそれぞれ、上方および右側方から見た断面図である。これらの図4〜6に示すように弁板動作機構6は、ミキサー4の支持部43内に配設されて、排気の上流側および下流側(即ち前後方向に)進退動作するピストン部材60と、このピストン部材60を前進するように付勢するバネ部材61と、そのピストン部材60の前進および後退動作を弁板51,52に伝えて変位させる伝動部材62,63と、を備えている。   FIG. 4 is an enlarged front view (viewed from the front) showing the structure of the valve plate operating mechanism 6 disposed on the upper support portion 43 of the mixer 4, and FIGS. It is sectional drawing seen from upper direction and the right side. As shown in FIGS. 4 to 6, the valve plate operation mechanism 6 is disposed in the support portion 43 of the mixer 4, and moves forward and backward with respect to the exhaust upstream and downstream (that is, in the front-rear direction). A spring member 61 that urges the piston member 60 to move forward, and transmission members 62 and 63 that transmit the forward and backward movements of the piston member 60 to the valve plates 51 and 52 to displace them.

図5に示すように上方から見るとミキサー4の支持部43は、左右一対の側壁43aとその後端を繋ぐように一体に形成された後壁43bとを有し、平面視ではコ字状をなす。左右の側壁43aの上端はいずれも上流側排気管10の周壁11に固定され、下端はミキサー4の外周部42に固定されている。一方、支持部43の後壁43bの上下両端には、それぞれ排気管周壁11およびミキサー外周部42との間に隙間が形成されていて、後述するように伝動部材62、63の通過するスペースになる。   As shown in FIG. 5, when viewed from above, the support portion 43 of the mixer 4 has a pair of left and right side walls 43a and a rear wall 43b formed integrally so as to connect the rear ends thereof. Eggplant. The upper ends of the left and right side walls 43 a are all fixed to the peripheral wall 11 of the upstream side exhaust pipe 10, and the lower ends are fixed to the outer peripheral portion 42 of the mixer 4. On the other hand, gaps are formed between the exhaust pipe peripheral wall 11 and the mixer outer peripheral part 42 at the upper and lower ends of the rear wall 43b of the support part 43, respectively, so as to pass through the transmission members 62 and 63 as will be described later. Become.

そして、前記支持部43の左右一対の側壁43aの間に、矩形板状のピストン部材60が配置され、その左右両側縁からそれぞれ後方に延びる折曲部60aの外面が、前記側壁43aの内面に摺接している。このピストン部材60は、前面に上流側の排気の圧力を受けて後方に押圧される一方、後方に離間して対向する支持部43の後壁43bとの間には、バネ部材61(図の例ではコイルバネであるが、これには限らない)が配設されている。よって、ピストン部材60の位置は、排気の圧力による力とバネ力との均衡によって決まる。   A rectangular plate-shaped piston member 60 is disposed between the pair of left and right side walls 43a of the support portion 43, and the outer surfaces of the bent portions 60a extending rearward from the left and right side edges thereof are formed on the inner surface of the side wall 43a. It is in sliding contact. The piston member 60 receives the pressure of the upstream exhaust on the front surface and is pressed rearward. On the other hand, a spring member 61 (shown in the figure) is formed between the piston member 60 and the rear wall 43b of the support portion 43 which is spaced apart and opposed to the rear. In the example, it is a coil spring, but is not limited to this. Therefore, the position of the piston member 60 is determined by the balance between the force due to the exhaust pressure and the spring force.

一方、各支持部43毎の一対の弁板51,52は、いずれも上縁(外周縁)および下縁(内周縁)が緩やかな円弧を描く概略矩形板状とされ、図5,6に示すように支持部43の後壁43bの後方にて互いに前後にずれて配置されている。一例として支持部43から左側(周方向一側)に変位する一側の弁板51が前側に、また、右側(周方向他側)に変位する他側の弁板52が後側に配置されて、それぞれ、ミキサー4の外周部42および上流側排気管10の周壁11に形成された周方向のガイド溝42a,11a(ガイド部)に沿って変位するようになっている。   On the other hand, each of the pair of valve plates 51 and 52 for each support portion 43 has a substantially rectangular plate shape in which the upper edge (outer peripheral edge) and the lower edge (inner peripheral edge) draw a gentle arc. As shown in the figure, they are arranged behind each other behind the rear wall 43b of the support portion 43 so as to be displaced from each other. As an example, the valve plate 51 on one side displaced from the support 43 to the left side (one side in the circumferential direction) is disposed on the front side, and the valve plate 52 on the other side displaced to the right side (the other circumferential direction) is disposed on the rear side. Thus, they are displaced along circumferential guide grooves 42a and 11a (guide portions) formed in the outer peripheral portion 42 of the mixer 4 and the peripheral wall 11 of the upstream side exhaust pipe 10, respectively.

そして、前記したピストン部材60の前後方向への動作を弁板51,52の左右方向(周方向)の変位に変換して、当該弁板51,52を動作させるように、両者が伝動部材62,63によって連結されている。一例として伝動部材62,63は、大きな可撓性を有するとともに、力の伝達に必要な程度の曲げ剛性を有するワイヤである(薄い板バネであってもよい)。図5のように上方から見ると、左右一対の伝動部材62,63の前端部がそれぞれピストン部材60の左右両側に固定され、そこから後方に延びた伝動部材62,63の後端部がそれぞれ内向きに湾曲して、弁板51の前面に固定されている。   Then, both of the transmission members 62 are configured such that the movement of the piston member 60 in the front-rear direction is converted into the displacement in the left-right direction (circumferential direction) of the valve plates 51, 52 to operate the valve plates 51, 52. , 63. As an example, the transmission members 62 and 63 are wires having a large flexibility and a bending rigidity necessary for transmitting force (may be thin leaf springs). When viewed from above as shown in FIG. 5, the front end portions of the pair of left and right transmission members 62, 63 are fixed to the left and right sides of the piston member 60, respectively, and the rear end portions of the transmission members 62, 63 extending rearward therefrom are respectively shown. It curves inward and is fixed to the front surface of the valve plate 51.

詳しくは、図5には仮想線で、また図6には実線で示す左側の伝動部材62は、その前端部をピストン部材60の左側上部に溶接等により固定され、ミキサー4の支持部43の左側の側壁43aに沿って後方に延びた後に、支持部43の後壁43bの上端と排気管周壁11との隙間を通過して右側に湾曲し、左側に位置する一側の弁板51の前面の右側上部に溶接等により固定されている。   Specifically, the transmission member 62 on the left side indicated by the phantom line in FIG. 5 and the solid line in FIG. 6 is fixed to the upper left side of the piston member 60 by welding or the like. After extending rearward along the left side wall 43a, it passes through the gap between the upper end of the rear wall 43b of the support portion 43 and the exhaust pipe peripheral wall 11, curves to the right side, and the one side valve plate 51 located on the left side It is fixed to the upper right part of the front by welding or the like.

一方、図5には実線で、また図6には仮想線で示す右側の伝動部材63は、その前端部をピストン部材60の右側下部に溶接等により固定され、ミキサー4の支持部43の右側の側壁43aに沿って後方に延びた後に、支持部43の後壁43bの下端とミキサー4の外周部42との隙間を通過して左側に湾曲し、右側に位置する弁板52の前面の左側下部に溶接等により固定されている。なお、図4にのみ示すが、右側の伝動部材63が通過するよう、弁板51の右側下部には切り欠き51aが形成されている。   On the other hand, the right transmission member 63 indicated by the solid line in FIG. 5 and the phantom line in FIG. 6 has its front end fixed to the lower right side of the piston member 60 by welding or the like. After extending rearward along the side wall 43a of the support plate 43, it passes through a gap between the lower end of the rear wall 43b of the support portion 43 and the outer peripheral portion 42 of the mixer 4 and curves to the left side. It is fixed to the lower left part by welding or the like. Although only shown in FIG. 4, a notch 51 a is formed in the lower right portion of the valve plate 51 so that the right transmission member 63 passes.

かかる構造の弁板動作機構6においては、図5に示すように最前進位置にあるピストン部材60の後退動作が、左右一対の伝動部材62,63によってそれぞれ左右の弁板51,52に伝達され、それらを互いに反対向きに変位させる。すなわち、図7(a)に示すようにピストン部材60の後退に伴い左側の伝動部材62は、その湾曲部位よりも前側の部分が短くなり、湾曲部位よりも右側の部分が長くなるので、この右側の部分が湾曲部位から右側に送り出されることになり、その右端部が固定されている左側の弁板51を右側に変位させる。   In the valve plate operating mechanism 6 having such a structure, as shown in FIG. 5, the backward movement of the piston member 60 at the most advanced position is transmitted to the left and right valve plates 51 and 52 by the pair of left and right transmission members 62 and 63, respectively. , Displace them in opposite directions. That is, as shown in FIG. 7 (a), as the piston member 60 moves backward, the left transmission member 62 has a shorter front part than the curved part and a right part longer than the curved part. The right part is fed from the curved part to the right side, and the left valve plate 51 to which the right end is fixed is displaced to the right.

同様に右側の伝動部材63においても湾曲部位よりも前側の部分が短くなり、左側の部分が長くなって湾曲部位から左側に送り出されることで、その左端部が固定されている右側の弁板52を左側に変位させる。こうして、左右一対の弁板51,52が左右両側から支持部43の裏側に引き込まれてゆき、図7(b)に示すようにピストン部材60が最後退位置に至ると、左右の弁板51,52は、互いに前後に重なり合って支持部43の裏側に隠れる(後側に位置する)ようになる。   Similarly, also in the right transmission member 63, the front portion of the curved portion is shortened, the left portion is lengthened and the left portion is sent out to the left side, whereby the right valve plate 52 to which the left end portion is fixed is fixed. Is displaced to the left. In this manner, the pair of left and right valve plates 51, 52 are drawn into the back side of the support portion 43 from both the left and right sides, and when the piston member 60 reaches the last retracted position as shown in FIG. , 52 overlap each other in the front and rear and are hidden behind the support portion 43 (located on the rear side).

そのようにピストン部材60の前進および後退動作に応じて左右一対の伝動部材62,63が弁板51,52を変位させる際に、それら伝動部材62,63を介してピストン部材60には、前後方向のみならず左右方向への反力も作用することになるが、本実施形態では左右一対の伝動部材62を介して作用する反対向きの反力が互いに打ち消し合うことになるので、結局、ピストン部材60には主にその前後方向の反力のみが作用するようになり、その動作の安定化に有利になる。   Thus, when the pair of left and right transmission members 62 and 63 displace the valve plates 51 and 52 according to the forward and backward movements of the piston member 60, the piston member 60 is moved back and forth via the transmission members 62 and 63. In this embodiment, the opposite reaction forces acting via the pair of left and right transmission members 62 cancel each other, so that the piston member eventually becomes a force. Only the reaction force in the front-rear direction acts mainly on 60, which is advantageous for stabilizing the operation.

したがって、本実施形態の排気浄化装置によると、まず、図示しないエンジンの運転中に排気通路1の上流側排気管10に噴射ノズル3から尿素水(添加剤)が噴射されてミキサー4の旋回翼41に衝突する。これにより微小な液滴になった尿素水が、旋回翼41から下流側への排気の旋回流に乗って搬送され、広く分散されながらその蒸発が促進される。よって、ミキサー4の下流側のSCR触媒2に流入する排気中において還元剤成分であるアンモニアの濃度分布の均一化が図られる。   Therefore, according to the exhaust gas purification apparatus of the present embodiment, first, urea water (additive) is injected from the injection nozzle 3 into the upstream exhaust pipe 10 of the exhaust passage 1 during the operation of the engine (not shown), and the swirl vane of the mixer 4 Collide with 41. As a result, the urea water in the form of minute droplets is carried on the swirling flow of the exhaust from the swirl vane 41 to the downstream side, and its evaporation is promoted while being widely dispersed. Therefore, the concentration distribution of ammonia, which is a reducing agent component, in the exhaust gas flowing into the SCR catalyst 2 on the downstream side of the mixer 4 can be made uniform.

その際、エンジンの負荷や回転数が低くて排気の流量が比較的少ないときには、ミキサー4の上流側の排気の圧力が相対的に低くなるので、当該ミキサー4の支持部43に配設されている弁板動作機構6のピストン部材60は前寄りの位置にある。よって、弁板51,52が支持部43から大きく左右に張り出した状態になり、迂回通路5の断面積が小さくなるので、ミキサー4を流通する排気の流量を確保することができ、前記のように旋回流によって尿素水を分散させ蒸発を促進する効果が担保される。   At that time, when the engine load and the rotational speed are low and the flow rate of the exhaust gas is relatively small, the pressure of the exhaust gas upstream of the mixer 4 is relatively low. The piston member 60 of the valve plate operating mechanism 6 is in a forward position. Therefore, the valve plates 51 and 52 project from the support portion 43 to the left and right, and the cross-sectional area of the bypass passage 5 is reduced, so that the flow rate of the exhaust gas flowing through the mixer 4 can be secured. Thus, the effect of promoting the evaporation by dispersing the urea water by the swirling flow is secured.

一方、エンジンの負荷や回転数が上昇して排気の流量が多くなれば、これに伴いミキサー4の上流側の排気の圧力が高くなるので、前記ピストン部材60が後退する。この後退動作は伝動部材62,63によって弁板51,52に伝えられ、左右の弁板51,52が支持部43の裏側に引き込まれてゆく。これにより迂回通路5の断面積が徐々に大きくなって、ミキサー4を迂回する排気の流量が多くなり、ミキサー4を流通する排気の流量の増大が緩和される。よって、排気の旋回流が強くなり過ぎることはない。   On the other hand, if the engine load or rotation speed increases and the flow rate of the exhaust gas increases, the pressure of the exhaust gas upstream of the mixer 4 increases accordingly, and the piston member 60 moves backward. This backward movement is transmitted to the valve plates 51 and 52 by the transmission members 62 and 63, and the left and right valve plates 51 and 52 are drawn into the back side of the support portion 43. As a result, the cross-sectional area of the bypass passage 5 gradually increases, the flow rate of the exhaust gas that bypasses the mixer 4 increases, and the increase in the flow rate of the exhaust gas that flows through the mixer 4 is alleviated. Therefore, the swirl flow of exhaust does not become too strong.

つまり、エンジンの運転状態の変化によって排気の流量が大きく変化しても、排気通路1のミキサー4を流通する排気の流量の変化を緩和して、尿素水の分散状態を常時、好適なものとすることができる。これにより、SCR触媒2に流入する排気中のアンモニアの濃度分布の変化を抑制し、広い運転領域にわたって好適な浄化性能を安定的に得ることができる。   That is, even if the flow rate of the exhaust gas changes greatly due to a change in the operating state of the engine, the change in the flow rate of the exhaust gas flowing through the mixer 4 in the exhaust passage 1 is alleviated, and the dispersed state of urea water is always suitable. can do. Thereby, a change in the concentration distribution of ammonia in the exhaust gas flowing into the SCR catalyst 2 can be suppressed, and a suitable purification performance can be stably obtained over a wide operation region.

本実施形態では、弁板動作機構6において排気圧力の力とバネ力との均衡によりピストン部材60を前進および後退させて、機械的に弁板51,52を変位させるようにしているので、簡単な構造でありながら排気流量の増大に応じて自動的に迂回通路5の断面積を調整することができる。よって、センサやアクチュエータなどを用いるものに比べて低コスト化が図られる。   In the present embodiment, in the valve plate operating mechanism 6, the piston member 60 is moved forward and backward by the balance between the exhaust pressure force and the spring force, and the valve plates 51 and 52 are mechanically displaced. Although the structure is simple, the cross-sectional area of the bypass passage 5 can be automatically adjusted according to an increase in the exhaust gas flow rate. Therefore, the cost can be reduced as compared with a sensor or an actuator.

また、本実施形態では、ミキサー4の外周部42と上流側排気管10の周壁11との間に迂回通路5を形成しているので、排気通路1の中央付近に向けて噴射した尿素水を効率良くミキサー4(旋回翼41)に衝突させて、その微粒化を促進することができる。しかも、ミキサー4の外周の迂回通路5を閉じれば、排気の流れが排気通路1の内周寄りに偏るので、外周側からノズル収容部12への吹き返しが少なくなり、噴射ノズル3への悪影響を軽減できる効果もある。   Further, in the present embodiment, since the bypass passage 5 is formed between the outer peripheral portion 42 of the mixer 4 and the peripheral wall 11 of the upstream side exhaust pipe 10, the urea water injected toward the vicinity of the center of the exhaust passage 1 is It can be made to collide with the mixer 4 (swivel blade 41) efficiently and the atomization can be promoted. In addition, if the bypass passage 5 on the outer periphery of the mixer 4 is closed, the flow of the exhaust gas is biased toward the inner periphery of the exhaust passage 1, so that the blowback from the outer periphery to the nozzle housing portion 12 is reduced and the injection nozzle 3 is adversely affected. There is also an effect that can be reduced.

さらに、本実施形態では、迂回通路5の開口部50を開閉するための弁板51,52や弁板動作機構6をミキサー4の支持部43に配設し、図3(c)や図7(b)に示すように迂回通路5の断面積を最大にするときには、弁板51,52が互いに重なり合った状態で支持部43の裏側に隠れるようにしているので、迂回通路5の断面積を十分に大きくして、排気の流量が多いときでも排気圧力損失の増大を抑えることができる。   Furthermore, in this embodiment, valve plates 51 and 52 for opening and closing the opening 50 of the bypass passage 5 and the valve plate operating mechanism 6 are disposed on the support portion 43 of the mixer 4, and FIG. When the cross-sectional area of the bypass passage 5 is maximized as shown in (b), the valve plates 51 and 52 are hidden behind the support portion 43 in a state where they overlap each other. It can be made sufficiently large to suppress an increase in exhaust pressure loss even when the flow rate of exhaust is large.

−他の実施形態−
本発明の構成は、上述した実施形態に限定されるものではなく、その他の種々の形態を包含している。例えば弁板動作機構6のピストン部材60の動作を可撓性の伝動部材62,63ではなく、リンク機構やプッシュプルケーブルなどによって弁板51,52に伝えることも可能である。
-Other embodiments-
The configuration of the present invention is not limited to the above-described embodiment, and includes other various forms. For example, the operation of the piston member 60 of the valve plate operating mechanism 6 can be transmitted to the valve plates 51 and 52 not by the flexible transmission members 62 and 63 but by a link mechanism, a push-pull cable, or the like.

また、通路面積可変手段を前記弁板51,52および機械的な弁板動作機構6によって構成する必要もなく、例えば排気の圧力や流量をセンサにより検出し、アクチュエータによって弁板を動作させる構成としてもよい。   Further, it is not necessary to configure the passage area variable means by the valve plates 51 and 52 and the mechanical valve plate operating mechanism 6. For example, the pressure and flow rate of the exhaust gas is detected by a sensor and the valve plate is operated by an actuator. Also good.

また、迂回通路6をミキサー4の外周に形成する必要もなく、例えば排気通路1と並行して延びるバイパス排気管によってミキサー4を迂回するとともに、そのバイパス排気管を蝶弁等によって開閉する構造としてもよい。   Further, there is no need to form the bypass passage 6 on the outer periphery of the mixer 4. For example, a bypass exhaust pipe extending in parallel with the exhaust passage 1 bypasses the mixer 4 and the bypass exhaust pipe is opened and closed by a butterfly valve or the like. Also good.

さらに、上述の実施形態では排気浄化触媒としてSCR触媒2を用い、尿素水を添加する場合について説明したが、還元剤(添加剤)としては尿素水に限らず、アンモニア水溶液や炭化水素水溶液などが適用されていてもよい。例えばNSR触媒に添加剤として未燃燃料を供給するものにも、本発明は適用可能である。   Further, in the above-described embodiment, the case where the SCR catalyst 2 is used as the exhaust purification catalyst and urea water is added has been described. However, the reducing agent (additive) is not limited to urea water, and an ammonia aqueous solution, a hydrocarbon aqueous solution, or the like. It may be applied. For example, the present invention can be applied to an NSR catalyst that supplies unburned fuel as an additive.

また、上述の実施形態は、自動車に搭載されたディーゼルエンジンに本発明を適用した場合について説明したが、本発明はこれに限らず、自動車以外に搭載されるディーゼルエンジンにも適用可能である。また、ディーゼルエンジンに限らず、ガソリンエンジンに対しても本発明は適用可能である。   Moreover, although the above-mentioned embodiment demonstrated the case where this invention was applied to the diesel engine mounted in the motor vehicle, this invention is applicable not only to this but the diesel engine mounted other than a motor vehicle. Further, the present invention is applicable not only to diesel engines but also to gasoline engines.

本発明は、排気浄化触媒よりも上流側の排気通路に噴射した添加剤の排気との混合を、ミキサーによって十分に促進することができるものであり、特に自動車に搭載されるディーゼルエンジン等に適用して優れた効果を奏する。   INDUSTRIAL APPLICABILITY The present invention can sufficiently promote the mixing of the additive injected into the exhaust passage upstream of the exhaust purification catalyst with the mixer, and is particularly applicable to a diesel engine or the like mounted on an automobile. And has an excellent effect.

1 排気通路
10 上流側排気管(排気浄化触媒よりも排気の流れの上流側の排気通路)
11 周壁
11a ガイド溝(ガイド部)
2 SCR触媒(排気浄化触媒)
4 ミキサー
42 ミキサーの外周部
42a ガイド溝(ガイド部)
43 ミキサーの支持部
5 迂回通路
50 迂回通路の開口部
51,52 弁板(通路面積可変手段)
6 弁板動作機構
60 ピストン部材(弁板動作機構、通路面積可変手段)
61 バネ部材(弁板動作機構、通路面積可変手段)
62,63 伝動部材(弁板動作機構、通路面積可変手段)
1 Exhaust passage 10 Upstream exhaust pipe (exhaust passage upstream of exhaust flow from exhaust purification catalyst)
11 peripheral wall 11a guide groove (guide part)
2 SCR catalyst (exhaust gas purification catalyst)
4 Mixer 42 Outer peripheral part of mixer 42a Guide groove (guide part)
43 Mixer Supporting Section 5 Detour Path 50 Detour Path Opening 51, 52 Valve Plate (Path Area Variable Means)
6 Valve plate operation mechanism 60 Piston member (valve plate operation mechanism, passage area variable means)
61 Spring member (valve plate operating mechanism, passage area variable means)
62, 63 Transmission member (valve plate operating mechanism, passage area variable means)

Claims (7)

内燃機関の排気通路に配設された排気浄化触媒と、この排気浄化触媒よりも排気の流れの上流側において排気通路に噴射された添加剤の排気との混合を促進するミキサーと、を備えた排気浄化装置であって、
前記ミキサーを迂回してその上流側および下流側の排気通路を連通させる迂回通路と、
前記迂回通路の断面積を、前記ミキサーの上流側の排気通路における排気の流量が多いときほど断面積が大きくなるように変更する通路面積可変手段と、を備えることを特徴とする排気浄化装置。
An exhaust purification catalyst disposed in the exhaust passage of the internal combustion engine, and a mixer that promotes mixing of the additive exhaust injected into the exhaust passage upstream of the exhaust purification catalyst in the exhaust flow. An exhaust purification device,
A bypass passage that bypasses the mixer and connects the upstream and downstream exhaust passages;
An exhaust emission control device comprising: a passage area variable means for changing the cross-sectional area of the bypass passage so that the cross-sectional area increases as the flow rate of the exhaust gas in the exhaust passage on the upstream side of the mixer increases.
請求項1に記載の排気浄化装置において、
前記通路面積可変手段は、前記迂回通路に設けられた弁板と、前記ミキサーよりも上流側の排気の圧力を受けて動作し、この圧力の上昇に応じて前記迂回通路の断面積が増大するように前記弁板を変位させる弁板動作機構と、を備えている、排気浄化装置。
The exhaust emission control device according to claim 1,
The passage area varying means operates in response to a valve plate provided in the bypass passage and an exhaust pressure upstream of the mixer, and a cross-sectional area of the bypass passage increases as the pressure increases. An exhaust purification device comprising a valve plate operating mechanism for displacing the valve plate as described above.
請求項2に記載の排気浄化装置において、
前記迂回通路が、前記ミキサーの外周部とこれを離間して取り囲む排気通路の周壁との間に形成され、
前記ミキサーの外周部を前記排気通路の周壁に支持する支持部が、周方向に互いに間隔をあけて複数、設けられていて、この支持部に前記弁板動作機構が配設されている、排気浄化装置。
The exhaust emission control device according to claim 2,
The bypass passage is formed between an outer peripheral portion of the mixer and a peripheral wall of an exhaust passage that surrounds and surrounds the mixer,
A plurality of support portions for supporting the outer peripheral portion of the mixer on the peripheral wall of the exhaust passage are provided at intervals in the circumferential direction, and the valve plate operating mechanism is disposed on the support portion. Purification equipment.
請求項3に記載の排気浄化装置において、
前記弁板動作機構は、
前記ミキサーよりも上流側の排気の圧力を受けて下流側に向かい後退するピストン部材と、
当該ピストン部材を上流側に向かって前進するように付勢するバネ部材と、
前記ピストン部材の前進および後退動作を前記弁板に伝えて変位させる伝動部材と、を備えている、排気浄化装置。
The exhaust emission control device according to claim 3,
The valve plate operating mechanism is
A piston member that receives the pressure of the exhaust gas upstream of the mixer and moves backward toward the downstream side;
A spring member that urges the piston member to advance toward the upstream side;
An exhaust purification device comprising: a transmission member that transmits and moves forward and backward movements of the piston member to the valve plate.
請求項4に記載の排気浄化装置において、
前記ミキサーの外周部および排気通路の周壁の少なくとも一方に、前記弁板を周方向に変位するようにガイドするガイド部が設けられ、
前記伝動部材は可撓性を有し、前記ピストン部材の前進および後退動作を前記弁板の周方向の変位に変換するように湾曲して配設されている、排気浄化装置。
The exhaust emission control device according to claim 4,
At least one of the outer peripheral portion of the mixer and the peripheral wall of the exhaust passage is provided with a guide portion that guides the valve plate so as to be displaced in the circumferential direction,
The exhaust gas purification device, wherein the transmission member is flexible and is disposed so as to be curved so as to convert forward and backward movements of the piston member into a displacement in a circumferential direction of the valve plate.
請求項5に記載の排気浄化装置において、
前記ピストン部材には一対の伝動部材によって一対の弁板が接続され、当該ピストン部材の前進および後退動作に応じて前記一対の弁板が周方向に互いに反対向きに変位するように構成されている、排気浄化装置。
The exhaust emission control device according to claim 5,
A pair of valve plates are connected to the piston member by a pair of transmission members, and the pair of valve plates are configured to displace in the opposite directions in the circumferential direction in accordance with the forward and backward movement of the piston member. , Exhaust purification device.
請求項6に記載の排気浄化装置において、
前記一対の弁板は、前記ピストン部材の最後退位置において互いに少なくとも一部分が重なるように配置されている、排気浄化装置。
The exhaust emission control device according to claim 6,
The exhaust purification apparatus, wherein the pair of valve plates are arranged so that at least a part of the pair of valve plates overlap each other at the last retracted position of the piston member.
JP2012102434A 2012-04-27 2012-04-27 Exhaust emission control device Pending JP2013231364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012102434A JP2013231364A (en) 2012-04-27 2012-04-27 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012102434A JP2013231364A (en) 2012-04-27 2012-04-27 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2013231364A true JP2013231364A (en) 2013-11-14

Family

ID=49678029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012102434A Pending JP2013231364A (en) 2012-04-27 2012-04-27 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2013231364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053256A1 (en) * 2013-10-09 2015-04-16 ヤンマー株式会社 Exhaust-gas purification device
US9932871B2 (en) * 2015-10-20 2018-04-03 Cummins Emission Solutions Inc. Variable geometry exhaust conduit
KR102125283B1 (en) * 2018-12-28 2020-06-23 주식회사 현대케피코 Exhaust structure for diesel engine
US20210388745A1 (en) * 2020-06-11 2021-12-16 Cnh Industrial America Llc Aftertreatment system with a variable size scroll for a work vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053256A1 (en) * 2013-10-09 2015-04-16 ヤンマー株式会社 Exhaust-gas purification device
US9732652B2 (en) 2013-10-09 2017-08-15 Yanmar Co., Ltd. Exhaust-gas purification device
US9932871B2 (en) * 2015-10-20 2018-04-03 Cummins Emission Solutions Inc. Variable geometry exhaust conduit
KR102125283B1 (en) * 2018-12-28 2020-06-23 주식회사 현대케피코 Exhaust structure for diesel engine
US20210388745A1 (en) * 2020-06-11 2021-12-16 Cnh Industrial America Llc Aftertreatment system with a variable size scroll for a work vehicle
US11624306B2 (en) 2020-06-11 2023-04-11 Cnh Industrial America Llc Aftertreatment system with a variable size scroll for a work vehicle

Similar Documents

Publication Publication Date Title
US8209965B2 (en) Additive-agent diffusion plate structure in exhaust passage, and additive-agent diffusion plate in exhaust passage
CN204113400U (en) Reducing agent injector mounting assembly
KR101251518B1 (en) Dosing module for exhaust after-treatment system of vehicle
EP2058481B1 (en) Fluid dosing device
US9057312B2 (en) System and apparatus for reducing reductant deposit formation in exhaust aftertreatment systems
EP2075428B1 (en) Emission control system
EP2386738B1 (en) Compact reduction agent doser for use in an SCR system of an internal combustion engine
US20100139258A1 (en) Exhaust mixer with backward flow
US20100186382A1 (en) Emissions system mounting device with reductant mixing
CN101627190A (en) Exhaust gas purification apparatus for internal combustion engine
JP4600457B2 (en) Additive dispersion plate structure in exhaust passage
WO2015018971A1 (en) Method, apparatus and system for aftertreatment of exhaust gas
US20180326372A1 (en) Method, apparatus and system for aftertreatment of exhaust gas comprising inline housing
JP2017198097A (en) Exhaust emission control device for internal combustion engine
US8443595B2 (en) Additive-agent diffusion plate in exhaust passage, structure of additive-agent diffusion plate, and exhaust system including additive-agent diffusion plate
WO2005073530A1 (en) Engine exhaust emission control system
JP2018044528A (en) Engine exhaust emission control device
US8850801B2 (en) Catalytic converter and muffler
JP2013231364A (en) Exhaust emission control device
GB2500059A (en) Mixer for an exhaust gas after-treatment system
CN103998736B (en) There is the Fluid sprayer of the assignment of traffic of equilibrium
EP3489480B1 (en) Scr mixer and scr device comprising same
WO2019055922A1 (en) Exhaust aftertreatment apparatus
CN218407577U (en) Mixer, exhaust system and internal combustion engine equipment thereof
US10273854B1 (en) Exhaust system for a work vehicle