JP2013230117A - Heating and cooling device and heating and cooling method using same - Google Patents

Heating and cooling device and heating and cooling method using same Download PDF

Info

Publication number
JP2013230117A
JP2013230117A JP2012103983A JP2012103983A JP2013230117A JP 2013230117 A JP2013230117 A JP 2013230117A JP 2012103983 A JP2012103983 A JP 2012103983A JP 2012103983 A JP2012103983 A JP 2012103983A JP 2013230117 A JP2013230117 A JP 2013230117A
Authority
JP
Japan
Prior art keywords
temperature
heating
low
air flow
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012103983A
Other languages
Japanese (ja)
Inventor
Kunito Okuyama
邦人 奥山
Susumu Harada
享 原田
Yasuaki Kuwata
靖章 桑田
Akika Tsurumaru
明香 鶴丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Iki Co Ltd
Yokohama National University NUC
Original Assignee
Daiken Iki Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Iki Co Ltd, Yokohama National University NUC filed Critical Daiken Iki Co Ltd
Priority to JP2012103983A priority Critical patent/JP2013230117A/en
Priority to PCT/JP2013/057068 priority patent/WO2013161419A1/en
Publication of JP2013230117A publication Critical patent/JP2013230117A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a heating and cooling device that can be operated at low cost, high speed, and low power consumption regardless of the accuracy of the thermal contact surface; and a heating and cooling method using the same.SOLUTION: A heating and cooling device 20 is provided with a support 2 for placing an object to be treated 1, a hot air flow source 9 for blowing a hot air flow on the surface of the object to be treated 1 placed on the support 2, and a low-temperature air flow source 14 for blowing a low-temperature air flow on the surface of the object to be treated 1 placed on the support 2.

Description

本発明は、加熱冷却装置及びそれを用いた加熱冷却方法に関する。   The present invention relates to a heating / cooling apparatus and a heating / cooling method using the same.

処理対象物に対して加熱と冷却とを交互に行うことで、所定の熱履歴を与え、当該処理対象物の特性の変化を観察する方法が知られている。このような方法を用いた加熱冷却試験として、例えば、微量液体が含有された医療検査用マイクロチップの加熱冷却試験がある。   There is known a method of giving a predetermined heat history by alternately performing heating and cooling on a processing object and observing a change in characteristics of the processing object. As a heating / cooling test using such a method, for example, there is a heating / cooling test of a microchip for medical examination containing a trace amount of liquid.

図1に、当該加熱冷却試験に用いられる、従来の医療検査用マイクロチップの加熱冷却装置の模式図を示す。従来の加熱冷却装置は、数μL程度の微量反応液入りマイクロチップを載せた温度サイクルステージに、高温水を含む恒温容器及び低温水を含む恒温容器から、交互に切り替えスイッチで高温水及び低温水を供給することで、熱履歴を与えている。このような技術は、例えば特許文献1に開示されている。   FIG. 1 shows a schematic diagram of a conventional heating / cooling device for a medical examination microchip used in the heating / cooling test. The conventional heating / cooling device is configured so that high temperature water and low temperature water are alternately switched from a constant temperature container containing high temperature water and a constant temperature container containing low temperature water to a temperature cycle stage on which a microchip containing a small amount of reaction liquid of about several μL is placed. The heat history is given by supplying. Such a technique is disclosed in Patent Document 1, for example.

特開2011−250800号公報JP 2011-250800 A

しかしながら、このような構成では、高温水と低温水とを切り替える時間を短縮することが難しく、目標加熱温度や目標冷却温度に達するまでに時間がかかり、全体として温度サイクル時間の短縮が困難となっている。ここで、図1に示すような従来の加熱冷却装置では、加熱時間及び冷却時間は、それぞれ10秒程度であり、繰り返し加熱に要する時間は合計で最短で4分が限界である。
さらに、処理対象物表面を均一に加熱、冷却するためには、温度サイクルステージと処理対象物との熱的な接触を確保する必要があり、温度サイクルステージと処理対象物との接触面を精度良く加工する必要があるため、量産時のコスト低減の障壁となっている。
However, with such a configuration, it is difficult to shorten the time for switching between high-temperature water and low-temperature water, and it takes time to reach the target heating temperature and target cooling temperature, making it difficult to shorten the temperature cycle time as a whole. ing. Here, in the conventional heating and cooling apparatus as shown in FIG. 1, the heating time and the cooling time are each about 10 seconds, and the total time required for repeated heating is a minimum of 4 minutes in total.
Furthermore, in order to uniformly heat and cool the surface of the object to be processed, it is necessary to ensure thermal contact between the temperature cycle stage and the object to be processed, and the contact surface between the temperature cycle stage and the object to be processed is accurate. Since it needs to be processed well, it is a barrier to cost reduction during mass production.

また、加熱を電気ヒータで行う場合は、温度のオーバーシュートを無くすために指定温度付近で電流を徐々に下げる制御が必要となり、それだけ時間を要している。また、比較的大きな電力が加熱及び冷却に必要であり、外部電源或いは大容量の畜電池が必要となっている。さらに、プログラムを含め、手間のかかる機構設計が必要であり、例えば、熱サイクル機構のみで数十万円以上の原価がかかる等、コストの面でも問題がある。   In addition, when heating is performed with an electric heater, it is necessary to control the current gradually to be reduced in the vicinity of the specified temperature in order to eliminate the temperature overshoot, which requires much time. Moreover, relatively large electric power is required for heating and cooling, and an external power source or a large-capacity livestock battery is required. Furthermore, it takes time and effort to design a mechanism including a program. For example, the thermal cycle mechanism alone costs several hundred thousand yen or more.

そこで、本発明は、熱接触面の精度に関係無く、低コスト、高速且つ低消費電力で実施可能な加熱冷却装置及びそれを用いた加熱冷却方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a heating / cooling apparatus and a heating / cooling method using the same that can be implemented at low cost, high speed, and low power consumption regardless of the accuracy of the thermal contact surface.

上記目的を達成するため、本発明者らは鋭意研究を重ねたところ、加熱冷却に高温水及び低温水を用いる代わりに、高温気流源からの高温気流と低温気流源からの低温気流とを交互に切り替えて吹きつけることで、複雑な機構設計が不要となり、高速且つ低消費電力で処理対象物の加熱冷却を行うことが可能となることを見いだした。   In order to achieve the above object, the present inventors have conducted extensive research. Instead of using high-temperature water and low-temperature water for heating and cooling, the high-temperature airflow from the high-temperature airflow source and the low-temperature airflow from the low-temperature airflow source are alternately used. It has been found that a complicated mechanism design is not required by switching to, and heating and cooling of the object to be processed can be performed at high speed and with low power consumption.

以上の知見を基礎として完成した本発明は、一側面において、処理対象物に対して加熱と冷却とを交互に行う加熱冷却装置であって、処理対象物を設けるための支持部と、前記支持部上に設けられた処理対象物の表面に高温気流を吹きつける高温気流源と、前記支持部上に設けられた処理対象物の表面に低温気流を吹きつける低温気流源とを備えた加熱冷却装置である。   The present invention completed on the basis of the above knowledge is, in one aspect, a heating and cooling device that alternately heats and cools a processing object, and a support unit for providing the processing object, and the support Heating and cooling provided with a high-temperature air flow source that blows a high-temperature air flow onto the surface of the processing object provided on the part and a low-temperature air source that blows a low-temperature air current onto the surface of the processing object provided on the support part Device.

本発明に係る加熱冷却装置は一実施形態において、前記高温気流を吹き付ける高温気流源が、蒸気を吹きつける蒸気発生器である。   In one embodiment, the heating and cooling device according to the present invention is a steam generator in which the high-temperature air flow source that blows the high-temperature air stream blows steam.

本発明に係る加熱冷却装置は別の一実施形態において、前記低温気流を吹き付ける低温気流源が、空気を吹きつけるブロアである。   In another embodiment of the heating and cooling device according to the present invention, the low temperature air flow source for blowing the low temperature air flow is a blower for blowing air.

本発明に係る加熱冷却装置は更に別の一実施形態において、前記高温気流源からの高温気流の吹きつけと、前記低温気流源からの低温気流の吹きつけとを所定の時間間隔で交互に切り替える制御部を備える。   In still another embodiment, the heating / cooling device according to the present invention alternately switches the blowing of the high temperature airflow from the high temperature airflow source and the blowing of the low temperature airflow from the low temperature airflow source at a predetermined time interval. A control unit is provided.

本発明に係る加熱冷却装置は更に別の一実施形態において、前記支持部と、前記高温気流源及び冷温気流源との間に、高温気流及び低温気流の切り替え時に、高温気流及び低温気流の処理対象物への吹きつけを遮断するためのシャッタを備える。   In still another embodiment of the heating / cooling device according to the present invention, when the high-temperature airflow and the low-temperature airflow are switched between the support portion and the high-temperature airflow source and the cold-airflow air source, the high-temperature airflow and the low-temperature airflow are processed. A shutter is provided for blocking the spraying on the object.

本発明に係る加熱冷却装置は更に別の一実施形態において、前記処理対象物が医療用の微量液体入り小型チップである。   In still another embodiment of the heating / cooling device according to the present invention, the object to be processed is a small chip containing medical trace liquid.

本発明は別の一側面において、処理対象物を設けた支持部を準備し、前記支持部上の処理対象物に、高温気流源からの高温気流と低温気流源からの低温気流とを交互に切り替えて吹きつける加熱冷却方法である。   In another aspect of the present invention, a support portion provided with a processing object is prepared, and a high temperature airflow from a high temperature airflow source and a low temperature airflow from a low temperature airflow source are alternately applied to the processing object on the support portion. This is a heating / cooling method of switching and spraying.

本発明に係る加熱冷却方法は一実施形態において、前記高温気流を吹き付ける高温気流源が、蒸気を吹きつける蒸気発生器である。   In one embodiment of the heating and cooling method according to the present invention, the high-temperature air flow source that blows the high-temperature air flow is a steam generator that blows steam.

本発明に係る加熱冷却方法は別の一実施形態において、前記低温気流を吹き付ける低温気流源が、空気を吹きつけるブロアである。   In another embodiment of the heating and cooling method according to the present invention, the low-temperature air flow source that blows the low-temperature air flow is a blower that blows air.

本発明に係る加熱冷却方法は更に別の一実施形態において、前記支持部を水平に設け、前記高温気流源からの高温気流と低温気流源からの低温気流とを前記支持部の表面へ吹き付ける。   In still another embodiment of the heating and cooling method according to the present invention, the support portion is provided horizontally, and a high-temperature airflow from the high-temperature airflow source and a low-temperature airflow from the low-temperature airflow source are blown onto the surface of the support portion.

本発明に係る加熱冷却方法は更に別の一実施形態において、前記支持部を垂直に設け、前記高温気流源からの高温気流と低温気流源からの低温気流とを前記支持部の表面へ吹き付ける。   In still another embodiment of the heating and cooling method according to the present invention, the support portion is provided vertically, and a high-temperature airflow from the high-temperature airflow source and a low-temperature airflow from the low-temperature airflow source are blown onto the surface of the support portion.

本発明に係る加熱冷却方法は更に別の一実施形態において、前記支持部と、前記高温気流源及び冷温気流源との間にシャッタを設け、前記シャッタによって、高温気流及び低温気流の切り替え時に、高温気流及び低温気流の処理対象物への吹きつけを遮断する。   In still another embodiment of the heating and cooling method according to the present invention, a shutter is provided between the support portion and the high temperature air flow source and the cold air flow source, and when the high temperature air flow and the low temperature air flow are switched by the shutter, Block the blowing of high-temperature and low-temperature airflow onto the object to be processed.

本発明に係る加熱冷却方法は更に別の一実施形態において、前記処理対象物が医療用の微量液体入り小型チップである。   In still another embodiment of the heating and cooling method according to the present invention, the object to be processed is a small chip containing a medical trace amount liquid.

本発明によれば、熱接触面の精度に関係無く、低コスト、高速且つ低消費電力で実施可能な加熱冷却装置及びそれを用いた加熱冷却方法を提供することができる。   According to the present invention, it is possible to provide a heating / cooling apparatus and a heating / cooling method using the same that can be implemented at low cost, high speed, and low power consumption regardless of the accuracy of the thermal contact surface.

従来の加熱冷却装置の模式図である。It is a schematic diagram of the conventional heating and cooling apparatus. 本発明の実施形態に係る加熱冷却装置の模式図である。It is a mimetic diagram of a heating cooling device concerning an embodiment of the present invention. 本実施形態の加熱冷却方法の熱履歴の例である。It is an example of the heat history of the heating-cooling method of this embodiment. 実施例1の飽和水蒸気を石英チップに約15秒間当てた際のチップ背面温度(中央部)の過渡変化を示すグラフである。It is a graph which shows the transient change of chip | tip back surface temperature (center part) at the time of applying the saturated water vapor | steam of Example 1 to a quartz chip | tip for about 15 seconds. 図4の加熱開始時の時間幅を拡大したグラフである。It is the graph which expanded the time width at the time of the heating start of FIG. 図4の冷却時の時間幅を拡大したグラフである。It is the graph which expanded the time width at the time of cooling of FIG. 実施例1の加熱(飽和蒸気)と冷却(ファン)を1秒間隔で繰り返した際のチップ背面温度の時間変化を示すグラフである。It is a graph which shows the time change of chip back surface temperature at the time of repeating heating (saturated steam) and cooling (fan) of Example 1 at intervals of 1 second. 実施例1の加熱(飽和蒸気)と冷却(ファン)を3秒間隔で繰り返した際のチップ背面温度の時間変化を示すグラフである。It is a graph which shows the time change of chip back surface temperature at the time of repeating heating (saturated steam) and cooling (fan) of Example 1 at intervals of 3 seconds. 実施例1の加熱(飽和蒸気)と冷却(ファン)を5秒間隔で繰り返した際のチップ背面温度の時間変化を示すグラフである。It is a graph which shows the time change of chip back surface temperature at the time of repeating heating (saturated steam) and cooling (fan) of Example 1 at intervals of 5 seconds. 実施例2のノズルから蒸気を水平に噴出させてマイクロチップ表面に吹き付けた場合における、チップ半径方向の温度分布の時間変化(ノズルからの距離10mm)を示すグラフである。It is a graph which shows the time change (distance 10mm from a nozzle) of the temperature distribution of a chip | tip radial direction at the time of spraying a vapor | steam horizontally from the nozzle of Example 2, and spraying it on the microchip surface. 実施例2のノズルから蒸気を水平に噴出させてマイクロチップ表面に吹き付けた場合における、チップ半径方向の温度分布の時間変化(ノズルからの距離20mm)を示すグラフである。It is a graph which shows the time change (distance 20mm from a nozzle) of the temperature distribution of a chip | tip radial direction at the time of spraying a vapor | steam horizontally from the nozzle of Example 2, and spraying it on the microchip surface. 実施例2のノズルから蒸気を水平に噴出させてマイクロチップ表面に吹き付けた場合における、チップ半径方向の温度分布の時間変化(ノズルからの距離30mm)を示すグラフである。It is a graph which shows the time change (distance 30mm from a nozzle) of the temperature distribution of a chip | tip radial direction at the time of spraying a vapor | steam horizontally from the nozzle of Example 2, and spraying it on the microchip surface. 実施例2のノズルから蒸気を上向きに噴出させてマイクロチップ表面に吹き付けた場合における、チップ中心を通る半径方向の温度分布の時間変化(ノズルからの距離10mm)を示すグラフである。It is a graph which shows the time change (distance 10mm from a nozzle) of the temperature distribution of the radial direction which passes along the chip | tip center when vapor | steam is jetted upward from the nozzle of Example 2 and it sprayed on the microchip surface. 実施例2のノズルから蒸気を上向きに噴出させてマイクロチップ表面に吹き付けた場合における、チップ中心を通る半径方向の温度分布の時間変化(ノズルからの距離20mm)を示すグラフである。It is a graph which shows the time change (distance 20mm from a nozzle) of the temperature distribution of the radial direction which passes along the chip | tip center when vapor | steam is jetted upward from the nozzle of Example 2 and it sprayed on the microchip surface. 実施例2のノズルから蒸気を上向きに噴出させてマイクロチップ表面に吹き付けた場合における、チップ中心を通る半径方向の温度分布の時間変化(ノズルからの距離30mm)を示すグラフである。It is a graph which shows the time change (distance 30mm from a nozzle) of the temperature distribution of the radial direction which passes along the chip | tip center when vapor | steam is jetted upward from the nozzle of Example 2 and it sprayed on the microchip surface.

(加熱冷却装置の構成)
図2に、本発明の実施形態に係る加熱冷却装置20の模式図を示す。加熱冷却装置20は、処理対象物に対して加熱と冷却とを交互に行う装置であり、処理対象物としては特に限定しない。本実施形態では、処理対象物として、医療用検査用の微量液体入り小型チップ(マイクロチップ1)を採用する。マイクロチップ1は、医療用検査用の液体と反応せず、熱伝導性が良い等の点から、石英製のものが好ましい。また、形状についても特に限定されない。本実施形態では、マイクロチップ1は、直径10mm程度、厚さ0.3mm程度の円板状に形成され、さらに断面が100μm四方であるマイクロ流路が複数形成してある。このような形状にすることで、被験溶液の容積を複数の流路合計で数マイクロリットルとして、熱容量を大幅に削減している。
(Configuration of heating and cooling device)
In FIG. 2, the schematic diagram of the heating-cooling apparatus 20 which concerns on embodiment of this invention is shown. The heating / cooling device 20 is a device that alternately performs heating and cooling on the processing object, and is not particularly limited as the processing object. In the present embodiment, a small chip (microchip 1) containing a trace amount liquid for medical examination is employed as the processing object. The microchip 1 is preferably made of quartz because it does not react with a liquid for medical examination and has good thermal conductivity. Further, the shape is not particularly limited. In this embodiment, the microchip 1 is formed in a disk shape having a diameter of about 10 mm and a thickness of about 0.3 mm, and a plurality of microchannels having a cross section of 100 μm square are formed. By adopting such a shape, the heat capacity is greatly reduced by setting the volume of the test solution to several microliters in total for the plurality of flow paths.

加熱冷却装置20は、マイクロチップ1を設けるための支持板2(支持部)と、支持板2上に設けられたマイクロチップ1の表面に蒸気流8(高温気流)を吹きつける蒸気発生器9(高温気流源)と、支持板2上に設けられたマイクロチップ1の表面にエア流13(低温気流)を吹きつけるブロア14(低温気流源)とを備えている。加熱冷却装置20は、蒸気発生器9に蒸気流8用の水を供給する不図示の水供給容器を備えている。蒸気発生器9には蒸気流8が吹き出される蒸気ノズル3が支持板2に対向するように設けられている。ブロア14にはエア流13が吹き出されるエアノズル4が支持板2に対向するように設けられている。蒸気ノズル3及びエアノズル4は、それぞれ例えば支持板2から10〜30mm程度(距離X1、距離X2)離間した位置に設ける。本実施形態では、高温気流として蒸気流を、低温気流として乾燥したエア(空気)を用いているが、所定の高温及び低温状態の気流であれば特にこれらに限定されない。また、本発明で「高温」及び「低温」とは、それぞれ互いに相対的な温度を意味しており、処理対象物に与えたい熱履歴によるが、典型的には、「高温」は85〜96℃を、「低温」は57〜65℃を示す。本発明の実施形態では、蒸気流8としては100℃の飽和水蒸気を用いており、エア流13としては常温の空気を用いている。   The heating / cooling device 20 includes a support plate 2 (support portion) for providing the microchip 1, and a steam generator 9 that blows a steam flow 8 (high-temperature airflow) onto the surface of the microchip 1 provided on the support plate 2. (A high-temperature air flow source) and a blower 14 (a low-temperature air flow source) that blows an air flow 13 (low-temperature air flow) onto the surface of the microchip 1 provided on the support plate 2. The heating / cooling device 20 includes a water supply container (not shown) that supplies water for the steam flow 8 to the steam generator 9. The steam generator 9 is provided with a steam nozzle 3 through which the steam flow 8 is blown out so as to face the support plate 2. An air nozzle 4 through which an air flow 13 is blown out is provided in the blower 14 so as to face the support plate 2. The steam nozzle 3 and the air nozzle 4 are provided at positions separated from the support plate 2 by about 10 to 30 mm (distance X1, distance X2), for example. In the present embodiment, a steam flow is used as the high-temperature air flow and air (air) dried as the low-temperature air flow is used. However, the air flow is not particularly limited as long as it is a predetermined high-temperature and low-temperature air flow. In the present invention, “high temperature” and “low temperature” mean temperatures that are relative to each other, and depend on the thermal history desired to be given to the object to be processed, but typically “high temperature” is 85 to 96. "Cold" indicates 57-65 ° C. In the embodiment of the present invention, saturated steam at 100 ° C. is used as the vapor flow 8, and air at normal temperature is used as the air flow 13.

加熱冷却装置20は、蒸気発生器9からの蒸気流8の吹きつけと、ブロア14からのエア流13の吹きつけとを所定の時間間隔で交互に切り替える制御盤10(制御部)を備えている。制御盤10は、乾電池、可搬畜電池、又は、交流外部電源等の電源12から電力が供給されている。蒸気発生器9及びブロア14は、それぞれ電線と通信線11、11’で制御盤10に接続されており、これによって電力が与えられ且つ制御されている。   The heating / cooling device 20 includes a control panel 10 (control unit) that alternately switches the blowing of the steam flow 8 from the steam generator 9 and the blowing of the air flow 13 from the blower 14 at predetermined time intervals. Yes. The control panel 10 is supplied with power from a power source 12 such as a dry battery, a portable live battery, or an AC external power source. The steam generator 9 and the blower 14 are connected to the control panel 10 by electric wires and communication lines 11 and 11 ′, respectively, so that electric power is supplied and controlled.

加熱冷却装置20は、支持板2と、蒸気発生器9に設けられた蒸気ノズル3及びブロア14に設けられたエアノズル4との間に、蒸気流8及びエア流13の切り替え時に、蒸気流8及びエア流13のマイクロチップ1への吹きつけを遮断するためのシャッタ5,5’を備えている。シャッタ5は、支持板2と、蒸気発生器9に設けられた蒸気ノズル3との間に設けられ、蒸気流8のマイクロチップ1への吹きつけを遮断する。シャッタ5’は、支持板2と、ブロア14に設けられたエアノズル4との間に設けられ、エア流13のマイクロチップ1への吹きつけを遮断する。シャッタ5,5’は、不図示の電線と通信線によって制御盤10と接続に接続されており、これによって電力が与えられ且つ制御されている。シャッタ5,5’は、その開閉により、蒸気流8及びエア流13のマイクロチップ1への吹きつけを瞬時に開始又は遮断することができる。特にブロア14を止めるとき、「ダル」状態になって瞬時にエア流13が止まらない場合等、シャッタ5,5’を用いることが好ましい。シャッタ5,5’の形成材料は、特に限定されないが、例えば低熱伝導性の材料が好ましく、テフロン(登録商標)板等で形成することができる。   The heating / cooling device 20 is configured so that the steam flow 8 and the air flow 13 are switched between the support plate 2 and the steam nozzle 3 provided in the steam generator 9 and the air nozzle 4 provided in the blower 14. And shutters 5, 5 ′ for blocking the air flow 13 from being blown onto the microchip 1. The shutter 5 is provided between the support plate 2 and the steam nozzle 3 provided in the steam generator 9 and blocks the spraying of the steam flow 8 to the microchip 1. The shutter 5 ′ is provided between the support plate 2 and the air nozzle 4 provided in the blower 14 and blocks the blowing of the air flow 13 to the microchip 1. The shutters 5, 5 ′ are connected to the control panel 10 by electric wires and communication lines (not shown), so that electric power is supplied and controlled. By opening and closing the shutters 5 and 5 ′, the blowing of the vapor flow 8 and the air flow 13 to the microchip 1 can be started or blocked instantaneously. In particular, when the blower 14 is stopped, it is preferable to use the shutters 5 and 5 ′ when the air flow 13 does not stop instantaneously due to a “dull” state. The material for forming the shutters 5 and 5 ′ is not particularly limited, but for example, a low thermal conductivity material is preferable, and it can be formed with a Teflon (registered trademark) plate or the like.

支持板2上には、マイクロチップ1を囲むように短いパイプ状のフード6が設けられており、フード6の内側には熱電対7が取り付けられている。熱電対7は、マイクロチップ1に直接取り付けると、当該取り付け箇所の温度が低下して正確な温度測定が困難となるため、このようにフード6の内側のように、マイクロチップ1と離間した位置に取り付けるのが好ましい。   A short pipe-shaped hood 6 is provided on the support plate 2 so as to surround the microchip 1, and a thermocouple 7 is attached to the inside of the hood 6. When the thermocouple 7 is directly attached to the microchip 1, the temperature at the attachment location is lowered and accurate temperature measurement becomes difficult. Thus, as in the inside of the hood 6, the position separated from the microchip 1. It is preferable to attach to.

加熱冷却装置20は、図2に示すように、支持板2を垂直に設け、蒸気発生器9からの蒸気流8とブロア14からのエア流13とを支持板2上のマイクロチップ1の表面へ吹き付ける構成とされているが、これに限らない。すなわち、支持板2を水平に設け、蒸気発生器9からの蒸気流8とブロア14からのエア流13とを支持板2上のマイクロチップ1の表面へ吹き付ける構成としてもよい。このとき、蒸気流8とエア流13とを支持板2上のマイクロチップ1の表面へ、上側から吹き付ける構成としても良く、下側から吹き付ける構成としても良い。このような構成によれば、支持板2を垂直に設けた場合と比べて、蒸気流8及びエア流13と、支持板2との距離が大きくなってもマイクロチップ1の温度の降下が起こり難くなるため好ましい。   As shown in FIG. 2, the heating / cooling device 20 is provided with the support plate 2 vertically, and the steam flow 8 from the steam generator 9 and the air flow 13 from the blower 14 are provided on the surface of the microchip 1 on the support plate 2. However, the present invention is not limited to this. That is, the support plate 2 may be provided horizontally, and the steam flow 8 from the steam generator 9 and the air flow 13 from the blower 14 may be sprayed onto the surface of the microchip 1 on the support plate 2. At this time, the vapor flow 8 and the air flow 13 may be blown from the upper side to the surface of the microchip 1 on the support plate 2 or may be blown from the lower side. According to such a configuration, the temperature of the microchip 1 drops even when the distances between the vapor flow 8 and the air flow 13 and the support plate 2 are larger than when the support plate 2 is provided vertically. It is preferable because it becomes difficult.

(加熱冷却方法)
次に、本発明の実施形態に係る加熱冷却装置20を用いた、医療用検査用の微量液体入り小型チップ(マイクロチップ1)の加熱冷却方法について説明する。図3は、本実施形態の加熱冷却方法の熱履歴の例を示す。
(Heating / cooling method)
Next, a method for heating and cooling a small chip (microchip 1) containing a trace amount liquid for medical examination using the heating and cooling apparatus 20 according to the embodiment of the present invention will be described. FIG. 3 shows an example of the heat history of the heating and cooling method of the present embodiment.

(1)まず、マイクロチップ1を支持板2のフード6に囲まれた部位に設置する。また、蒸気ノズル3とマイクロチップ1との間に設けられたシャッタ5を閉じた状態にし、エアノズル4とマイクロチップ1との間に設けられたシャッタ5’を開いた状態にしておく。
(2)次に、蒸気発生器9を起動し、シャッタ5’を閉じ、シャッタ5を開いて、所定時間(t1)だけ蒸気流8をマイクロチップ1へ吹き付ける。このときの蒸気流温度(T2)を熱電対7で測定する。
(3)所定時間(t1)経過後、シャッタ5を閉じ、シャッタ5’を開いて、所定時間(t2)だけエア流13をマイクロチップ1へ吹き付ける。このときのマイクロチップ温度(T1)を熱電対7で測定する。ここで、マイクロチップは、熱容量が小さいため直接熱電対7でその温度を測定すると、熱が逃げてしまい正確な温度測定が困難となる。このため、マイクロチップ背面に黒体スプレー等を薄く塗布し、表面に蒸気を吹き付けて加熱した際の背面温度を赤外線サーモグラフィー等を用いて非接触で測定し、熱電対7の温度との相関をとった値をマイクロチップ温度(T1)とする。
(4)このパルス状の動作をN回繰り返した後、マイクロチップ1を交換する。このとき、マイクロチップ交換装置により交換しても良い。
これら(1)〜(4)の操作を、順に各マイクロチップ1に対して次々に行う。
(1) First, the microchip 1 is installed in a portion of the support plate 2 surrounded by the hood 6. Further, the shutter 5 provided between the vapor nozzle 3 and the microchip 1 is closed, and the shutter 5 ′ provided between the air nozzle 4 and the microchip 1 is opened.
(2) Next, the steam generator 9 is started, the shutter 5 ′ is closed, the shutter 5 is opened, and the steam flow 8 is sprayed onto the microchip 1 for a predetermined time (t1). The steam flow temperature (T2) at this time is measured with the thermocouple 7.
(3) After a predetermined time (t1) has elapsed, the shutter 5 is closed, the shutter 5 ′ is opened, and the air flow 13 is blown onto the microchip 1 for a predetermined time (t2). The microchip temperature (T1) at this time is measured with the thermocouple 7. Here, since the microchip has a small heat capacity, when the temperature is directly measured by the thermocouple 7, heat escapes and accurate temperature measurement becomes difficult. For this reason, a black body spray or the like is applied thinly on the back surface of the microchip, and the back surface temperature when heated by spraying steam on the surface is measured in a non-contact manner using infrared thermography or the like, and correlated with the temperature of the thermocouple 7. The obtained value is defined as the microchip temperature (T1).
(4) After repeating this pulse-like operation N times, the microchip 1 is replaced. At this time, it may be exchanged by a microchip exchange device.
These operations (1) to (4) are sequentially performed on each microchip 1 in order.

蒸気流8は、マイクロチップ1の表面に到達すると、直ちに凝縮して微細な水滴となり、熱容量の小さいマイクロチップ1を温度T2まで急速に加熱昇温し、維持する。なお、マイクロチップ1を蒸気発生器9から距離X1だけ離間した位置に設けると、随伴流15により100℃以下の任意の蒸気温度で加熱でき、湿り空気として微細な液滴を多量に吹き付けることができる。   When the vapor flow 8 reaches the surface of the microchip 1, it immediately condenses and becomes fine water droplets, and the microchip 1 having a small heat capacity is rapidly heated to the temperature T2 and maintained. If the microchip 1 is provided at a position separated from the steam generator 9 by the distance X1, it can be heated by the accompanying flow 15 at an arbitrary steam temperature of 100 ° C. or less, and a large amount of fine droplets can be blown as humid air. it can.

所定時間(t1)後に、乾燥したエア流13を吹き付けると、凝縮した微細な水滴が蒸発してマイクロチップ1を温度T1まで冷却し、維持する。乾燥空気による冷却過程では、マイクロチップ1の表面の微細な液滴を急速に蒸発させることができるため、瞬時に冷却でき、距離X2、冷却時間t2を調整することで、任意の目標温度まで冷却できる。また、冷却するべき温度に応じて、乾燥空気を加熱することでも任意の目標温度まで冷却できる。このように、温度T1、T2に対して、時間t1、t2と距離X1、X2を事前に調整することで、加熱冷却条件を任意に調整することができる。例えば、距離X1を調整することで、随伴流15の量が変化し、マイクロチップ1に到達する蒸気流8の温度T2を変更することができる。また、距離X2を調整することで、エア流13の流速を変えることができ、これによって温度T1を変更することができる。冷却温度T1を変更するために冷却時間t2を変更してもよい。   When a dry air stream 13 is sprayed after a predetermined time (t1), the condensed fine water droplets evaporate to cool and maintain the microchip 1 to the temperature T1. In the cooling process with dry air, fine droplets on the surface of the microchip 1 can be rapidly evaporated, so that the liquid can be instantaneously cooled and adjusted to an arbitrary target temperature by adjusting the distance X2 and the cooling time t2. it can. Moreover, it can cool to arbitrary target temperature also by heating dry air according to the temperature which should be cooled. Thus, the heating and cooling conditions can be arbitrarily adjusted by adjusting the times t1 and t2 and the distances X1 and X2 in advance with respect to the temperatures T1 and T2. For example, by adjusting the distance X1, the amount of the accompanying flow 15 changes, and the temperature T2 of the vapor flow 8 reaching the microchip 1 can be changed. Further, by adjusting the distance X2, the flow velocity of the air flow 13 can be changed, and thereby the temperature T1 can be changed. The cooling time t2 may be changed in order to change the cooling temperature T1.

ブロア14や蒸気発生器9は、短時間で噴出、停止が可能であるが、決められたタイミングで瞬時に加熱及び冷却を開始及び停止する手段として、シャッタ5,5’が有効である。   The blower 14 and the steam generator 9 can be ejected and stopped in a short time, but the shutters 5 and 5 'are effective as means for starting and stopping heating and cooling instantaneously at a determined timing.

制御盤10では設定温度と設定時間を制御するが、熱電対7の温度はフィードバックさせて時間t1、t2を制御することで、温度T1、T2のパターンが崩れるのを防ぐことができる。   The control panel 10 controls the set temperature and the set time. By controlling the times t1 and t2 by feeding back the temperature of the thermocouple 7, it is possible to prevent the patterns of the temperatures T1 and T2 from collapsing.

加熱温度T2に対して冷却温度T1がかなり低い場合には、エア流13の湿度を低くするのが有効であるため、乾燥材をブロア14のエア吸入側に取り付けることができる。   When the cooling temperature T1 is considerably lower than the heating temperature T2, it is effective to reduce the humidity of the air flow 13, so that the desiccant can be attached to the air suction side of the blower 14.

マイクロチップ1と蒸気ノズル3とエアノズル4とを閉空間に収める構成とすると、外部から乾燥空気をブロア14で導入して閉空間を低湿度で保つことができる。このため、蒸気流8を冷却する随伴流15の効果の減少が抑制されるため好ましい。   If the microchip 1, the steam nozzle 3, and the air nozzle 4 are configured to be contained in a closed space, dry air can be introduced from the outside by the blower 14 to keep the closed space at a low humidity. For this reason, since the reduction of the effect of the accompanying flow 15 which cools the steam flow 8 is suppressed, it is preferable.

従来の加熱冷却装置は大電力が必要であり、外部電源に接続することが一般的であるが、本発明によれば加熱時間が短くなり、乾電池或いは可搬型畜電池を電源12とすることができる。これにより、装置を可搬可能にすることができ、試験室以外や特に屋外での使用が可能となる。処理対象物を本実施形態のように、石英製のマイクロチップとすることで、熱容量を小さくすると、このような効果がさらに高まる。また、本発明によれば、加熱冷却装置の構成が簡易となり、小型で安価となる。   Conventional heating and cooling devices require a large amount of power and are generally connected to an external power source. However, according to the present invention, the heating time is shortened, and a dry battery or a portable live battery can be used as the power source 12. it can. Thereby, the apparatus can be made portable and can be used outside the test room or particularly outdoors. Such an effect is further enhanced when the heat capacity is reduced by using a quartz microchip as the object to be processed as in this embodiment. Further, according to the present invention, the configuration of the heating / cooling device is simplified, and it is small and inexpensive.

(最終製品の仕様例)
限定されるものではないが、本発明の加熱冷却装置20及びそれを用いた加熱冷却方法の最終製品における一仕様例を以下に示す。
(a)厚さ0.3mm、直径10.4mmの円板状石英マイクロチップに熱サイクルを与える機構とする。
(b)熱サイクルは、94℃×1秒間、65℃×1秒間の2温度のサイクルとし、94℃から65℃への冷却時間と65℃から94℃への加熱時間もそれぞれ1秒以内とする。
(c)熱サイクルは、オーバーシュートすること無く、35サイクル行い、全サイクルを140秒以内で終了する。
(d)熱サイクル中のマイクロチップ内の温度精度及び温度分布は、いずれも0.5℃以内に制御されている。
(e)熱サイクル機構は1.5Vの乾電池で駆動できる。
(f)熱サイクル機構の製造原価が2012年時点において5000円以下となる構成とする。
(Example of final product specifications)
Although it is not limited, one specification example in the final product of the heating / cooling device 20 and the heating / cooling method using the same according to the present invention is shown below.
(A) A mechanism for applying a thermal cycle to a disk-shaped quartz microchip having a thickness of 0.3 mm and a diameter of 10.4 mm.
(B) The thermal cycle is a cycle of 94 ° C. × 1 second and 65 ° C. × 1 second, and the cooling time from 94 ° C. to 65 ° C. and the heating time from 65 ° C. to 94 ° C. are each within 1 second. To do.
(C) The thermal cycle is performed 35 times without overshooting, and the entire cycle is completed within 140 seconds.
(D) The temperature accuracy and temperature distribution in the microchip during the thermal cycle are both controlled within 0.5 ° C.
(E) The thermal cycle mechanism can be driven by a 1.5V battery.
(F) The manufacturing cost of the thermal cycle mechanism is set to be 5000 yen or less as of 2012.

次に、本発明に係る実施例を以下に説明するが、本発明はこれらに限定されるものではない。   Next, examples according to the present invention will be described below, but the present invention is not limited thereto.

(実施例1)
図2に示す構成の加熱冷却装置を用いて、円板状の石英チップ(厚さ0.3mm、直径10.4mm)の加熱冷却試験を行い、以下の項目を評価した。
(A)室温の石英チップに飽和蒸気を当てた際のチップ背面温度の過渡変化
(B)加熱を停止した際の自然空冷におけるチップ背面温度の過渡変化
(C)加熱を停止すると同時に加熱面をファン(ブロア)で冷却した際のチップ背面温度の過渡変化
(D)加熱と冷却(ファン有り)を1秒、3秒、5秒間隔で繰り返し行った際の温度の過渡変化
Example 1
A heating / cooling test of a disk-shaped quartz chip (thickness 0.3 mm, diameter 10.4 mm) was performed using the heating / cooling apparatus having the configuration shown in FIG. 2, and the following items were evaluated.
(A) Transient change of chip back surface temperature when saturated vapor is applied to quartz chip at room temperature (B) Transient change of chip back surface temperature in natural air cooling when heating is stopped (C) Heating surface is changed simultaneously with stopping heating Transient change of chip back surface temperature when cooled by fan (blower) (D) Transient change of temperature when heating and cooling (with fan) are repeated at intervals of 1 second, 3 seconds and 5 seconds

石英チップ背面には黒体スプレー(放射率0.94)を厚さ0.057mmとなるように薄く塗布し、表面に蒸気を吹き付けて加熱した際の背面温度を、赤外線サーモグラフィー(FLIR T250、フレームタイム:9Hz)を用いて測定した。
中央に直径9.8mmの孔を設けた厚さ1mmのテフロン(登録商標)シート2枚で石英チップの縁を挟み、垂直に固定し、チップから15mm離れた位置に本蒸気発生器のノズル(内径4mm)を配置して水平方向に蒸気を噴射し、石英チップを加熱した。
本蒸気発生器は加熱量を抑えても過熱度をもった蒸気が発生する傾向にあるため、飽和蒸気を噴出させる場合には、水を含んだガーゼをノズルに巻いて出口温度を下げ、直径0.1mmの極細熱電対を用いて、ノズル出口より流出する蒸気が飽和温度になっていることを確認した上で試験を行った。
蒸気による加熱とファンからのエアによる冷却を交互に繰り返すとき、加熱の際はエアの吹き出し口を石英チップと別方向に向け、冷却のときは蒸気ノズルの前方にテフロン(登録商標)板(80mm×50mm×10mm)をシャッタとして設け、蒸気が石英チップに当たらないようにしながら、石英チップから50mm離間した位置から送風して冷却した。
Black body spray (emissivity 0.94) is thinly applied to the back of the quartz chip to a thickness of 0.057 mm, and the back surface temperature when heated by spraying steam on the surface is infrared thermography (FLIR T250, frame Time: 9 Hz).
The edge of the quartz chip is sandwiched between two 1 mm thick Teflon (registered trademark) sheets with a 9.8 mm diameter hole in the center, fixed vertically, and the steam generator nozzle (15 mm away from the chip) A quartz chip was heated by spraying steam in the horizontal direction with an inner diameter of 4 mm.
Since this steam generator tends to generate superheated steam even if the amount of heating is suppressed, when saturating steam, the gauze containing water is wound around the nozzle, the outlet temperature is lowered, and the diameter is reduced. Using a 0.1 mm ultrafine thermocouple, the test was conducted after confirming that the steam flowing out from the nozzle outlet was at the saturation temperature.
When heating with steam and cooling with air from the fan are repeated alternately, the air outlet is directed in a different direction from the quartz chip for heating, and a Teflon (registered trademark) plate (80 mm in front of the steam nozzle for cooling). X50 mm x 10 mm) was provided as a shutter, and cooled by blowing air from a position 50 mm away from the quartz chip while preventing vapor from hitting the quartz chip.

図4に飽和水蒸気を石英チップに約15秒間当てた際のチップ背面温度(中央部)の過渡変化を示す。図5は加熱開始時の時間幅を拡大したグラフである。図6は冷却時の時間幅を拡大したグラフである。
加熱開始後(蒸気噴出後)約0.3秒でチップ背面は80℃以上まで昇温されていること、加熱中は90〜92℃(ファン有り)を保ち、加熱停止後は65℃まで約2秒で降下していることがわかる。迅速な昇温は蒸気の凝縮による加熱、迅速な降温は凝縮液滴の蒸発によるものと考えられる。なお、加熱中の温度が飽和温度より10℃程度低いのは、チップ背面からの放熱によるものと考えられる。
FIG. 4 shows a transient change in the chip back surface temperature (center part) when saturated water vapor is applied to the quartz chip for about 15 seconds. FIG. 5 is a graph in which the time width at the start of heating is enlarged. FIG. 6 is a graph in which the time width during cooling is enlarged.
The temperature of the back of the chip is raised to 80 ° C or higher in about 0.3 seconds after the start of heating (after steam ejection), keeps 90-92 ° C (with fan) during heating, and reaches about 65 ° C after stopping heating. You can see that it descends in 2 seconds. Rapid temperature rise is considered to be due to heating by condensation of steam, and rapid temperature drop is due to evaporation of condensed droplets. The reason why the temperature during heating is about 10 ° C. lower than the saturation temperature is considered to be due to heat radiation from the chip back surface.

図7は加熱(飽和蒸気)と冷却(ファン)を1秒間隔で、図8は3秒間隔、図9は5秒間隔で繰り返した際のチップ背面温度の時間変化の試験結果を示す。
いずれも温度幅約40℃で上下を繰り返していることがわかる。試験結果では、高温部及び低温部でそれぞれ安定した時間が少ないが、これは高温及び低温の蒸気又はエアを所定時間適切に吹き付けること、その吹きつけ速度を調整すること等により調整することが可能である。
FIG. 7 shows the test results of the time change of the chip back surface temperature when heating (saturated steam) and cooling (fan) are repeated at intervals of 1 second, FIG. 8 is repeated at intervals of 3 seconds, and FIG. 9 is repeated at intervals of 5 seconds.
It can be seen that both of them are repeated up and down at a temperature range of about 40 ° C. The test results show that there are few stable times in the high-temperature part and the low-temperature part respectively, but this can be adjusted by appropriately blowing high-temperature and low-temperature steam or air for a predetermined time, adjusting the blowing speed, etc. It is.

(実施例2)
ノズルから石英チップまでの距離と、ノズルからの蒸気の噴出方向は、蒸気を当てた際のチップ面内の温度の均一性に影響を与えることが予想される。そこで、図2に示す構成の加熱冷却装置を用いて、円板状の石英チップ(厚さ0.3mm、直径10.4mm)の加熱冷却試験を行い、以下の項目を放射温度計(サーモグラフィ)を用いて評価した。
(E)ノズルから蒸気を水平に吹き付け、チップまでの距離を変化させたときのチップ背面温度分布の時間変化
(F)ノズルから蒸気を上向きに吹き付け、チップまでの距離を変化させたときのチップ背面温度分布の時間変化
(Example 2)
It is expected that the distance from the nozzle to the quartz chip and the jet direction of the vapor from the nozzle will affect the temperature uniformity in the chip surface when the vapor is applied. Therefore, a heating / cooling test of a disk-shaped quartz chip (thickness 0.3 mm, diameter 10.4 mm) was performed using the heating / cooling apparatus having the configuration shown in FIG. 2, and the following items were applied to a radiation thermometer (thermography). Was used to evaluate.
(E) Temporal change in chip back surface temperature distribution when steam is sprayed horizontally from nozzle and the distance to the chip is changed (F) Chip when steam is sprayed upward from nozzle and the distance to the chip is changed Temporal change of back surface temperature distribution

〔ノズルから蒸気を水平に噴出させてマイクロチップ表面に吹き付けた場合〕
マイクロチップに対して、ノズルを、上下方向ではなく、側方に設けた構成の加熱冷却装置を準備した。この場合、飽和蒸気がノズルから水平に噴出され、マイクロチップ表面に吹き付けられる。
蒸気発生器を用いて、飽和蒸気をノズル(内径3.5mm)から水平に噴出させ(加熱量200W)、ノズルからチップまでの距離を10mm、20mm、30mmとし、チップ面(直径10mm)に垂直に衝突させた際の、チップ半径方向の温度分布の時間変化(測定間隔Δt=約0.165秒(6Hz))を、それぞれ図10〜12に示す。ここで、xはチップ上端から中心を通り、下向きにとった座標を表す。また、各図において、温度変化を示す複数の曲線は、それぞれ下側から上側へと順に、約0.165秒毎の変化を表している。
図10より、距離10mmでは、チップ温度は加熱開始後、約0.5秒で最終到達温度に近づき、半径4mm以内の範囲では到達温度は比較的一様になっていることがわかる。なお、x=5mm付近の温度の凹凸はチップ中央に貫通孔があるため(直径約0.3mm、黒体スプレー塗料が付着していない)と考えられ、チップの端部(x<1mmとx>9mm)で温度が顕著に低下しているのは、チップ固定用テフロン(登録商標)板(全周を挟んで固定する治具)に熱が逃げたためと考えられる。チップの上方(x<5mm)と下方(x>5mm)における温度の非対称性は到達温度においては比較的小さいことがわかる。図11及び12より、ノズルからの距離が20mm、30mmと離れるにつれて、温度上昇速度、最終到達温度とも顕著に低下し、また周縁部の温度降下が顕著になってチップ面内に大きな温度分布が生じた。チップの下端の方が上端より温度が低いのは、蒸気流がチップに衝突する前に浮力により上昇しようとするためと考えられる。
(When steam is sprayed horizontally from the nozzle and sprayed onto the surface of the microchip)
A heating / cooling device having a configuration in which nozzles are provided on the side rather than in the vertical direction with respect to the microchip was prepared. In this case, saturated steam is ejected horizontally from the nozzle and sprayed onto the microchip surface.
Using a steam generator, saturated steam is ejected horizontally from the nozzle (inner diameter 3.5 mm) (heating amount 200 W), the distance from the nozzle to the tip is 10 mm, 20 mm, and 30 mm, and perpendicular to the tip surface (diameter 10 mm). FIGS. 10 to 12 show temporal changes in the temperature distribution in the radial direction of the chip (measurement interval Δt = about 0.165 seconds (6 Hz)), respectively. Here, x represents coordinates taken downward from the upper end of the chip through the center. Moreover, in each figure, the several curve which shows a temperature change represents the change about every 0.165 second in an order from the lower side to the upper side, respectively.
From FIG. 10, it can be seen that at a distance of 10 mm, the chip temperature approaches the final temperature in about 0.5 seconds after the start of heating, and the temperature reached is relatively uniform within a radius of 4 mm. Note that the unevenness of temperature near x = 5 mm is considered to be due to a through hole in the center of the chip (diameter of about 0.3 mm, no blackbody spray paint adhered), and the end of the chip (x <1 mm and x > 9 mm), the temperature is remarkably decreased because the heat escapes to the Teflon (registered trademark) plate for fixing chips (a jig for fixing the entire circumference). It can be seen that the temperature asymmetry above (x <5 mm) and below (x> 5 mm) the chip is relatively small at the ultimate temperature. 11 and 12, as the distance from the nozzle is increased to 20 mm and 30 mm, both the rate of temperature rise and the final temperature decrease remarkably, and the temperature drop at the peripheral part becomes remarkable, resulting in a large temperature distribution in the chip surface. occured. The reason why the temperature at the lower end of the chip is lower than that at the upper end is considered to be that the vapor flow tends to rise by buoyancy before colliding with the chip.

〔ノズルから蒸気を上向きに噴出させてマイクロチップ表面に吹き付けた場合〕
マイクロチップに対して、ノズルを下方に設けた構成の加熱冷却装置を準備した。この場合、飽和蒸気がノズルから上向きに噴出され、マイクロチップ表面に吹き付けられる。
飽和蒸気をノズルから上向きに噴出させ(加熱量200W)、ノズルから10mm、20mm、30mmの位置に水平に固定したチップ面に蒸気を衝突させた際の、チップ中心を通る半径方向の温度分布の時間変化(測定間隔Δt=約0.165秒(6Hz))を、それぞれ図13〜15に示す。また、各図において、温度変化を示す複数の曲線は、それぞれ下側から上側へと順に、約0.165秒毎の変化を表している。鉛直上向きに蒸気を噴出してチップに当てた方が、水平噴出の場合に比べてノズルからの距離が大きくなっても温度の降下が起こり難かった。なお、端部の温度降下が著しいが、これは、ノズルとチップとの中心軸がずれていたか、或いは僅かなチップの傾斜のために蒸気の衝突後の流れが軸対象からずれたことも原因として考えられる。また、テフロン(登録商標)治具で囲まれたチップ下面付近に蒸気(空気との混合気)が衝突し、蒸気の凝縮後に残った空気が溜まり、新鮮な蒸気がチップに当たることが妨げられることも影響している可能性がある。
(When steam is blown upward from the nozzle and sprayed onto the surface of the microchip)
A heating / cooling device having a nozzle provided below the microchip was prepared. In this case, saturated vapor is ejected upward from the nozzle and sprayed onto the microchip surface.
When the saturated steam is ejected upward from the nozzle (heating amount 200 W), and the steam collides with the chip surface horizontally fixed at a position of 10 mm, 20 mm, and 30 mm from the nozzle, the temperature distribution in the radial direction passing through the center of the chip Changes with time (measurement interval Δt = about 0.165 seconds (6 Hz)) are shown in FIGS. Moreover, in each figure, the several curve which shows a temperature change represents the change about every 0.165 second in an order from the lower side to the upper side, respectively. When the steam was jetted vertically upward and applied to the tip, the temperature did not drop easily even when the distance from the nozzle was larger compared to the horizontal jet. Note that the temperature drop at the end is significant, but this is also because the center axis of the nozzle and the tip is misaligned, or the flow after the collision of the steam deviates from the axis target due to a slight tilt of the tip. Is considered. Also, steam (air mixture with air) collides with the lower surface of the chip surrounded by the Teflon (registered trademark) jig, and the air remaining after the condensation of the steam accumulates, preventing fresh steam from hitting the chip. May also have an effect.

1 マイクロチップ
2 支持板
3 蒸気ノズル
4 エアノズル
5,5’ シャッタ
6 フード
7 熱電対
8 蒸気流
9 蒸気発生器
10 制御盤
11,11’ 電線と通信線
12 電源
13 エア流
14 ブロア
15 随伴流
DESCRIPTION OF SYMBOLS 1 Microchip 2 Support plate 3 Steam nozzle 4 Air nozzle 5, 5 'Shutter 6 Hood 7 Thermocouple 8 Steam flow 9 Steam generator 10 Control board 11, 11' Electric wire and communication line 12 Power supply 13 Air flow 14 Blower 15 Associated flow

Claims (13)

処理対象物に対して加熱と冷却とを交互に行う加熱冷却装置であって、
処理対象物を設けるための支持部と、
前記支持部上に設けられた処理対象物の表面に高温気流を吹きつける高温気流源と、
前記支持部上に設けられた処理対象物の表面に低温気流を吹きつける低温気流源と、
を備えた加熱冷却装置。
A heating and cooling device that alternately performs heating and cooling on a processing object,
A support for providing a processing object;
A high-temperature air flow source that blows a high-temperature air flow on the surface of the processing object provided on the support;
A low-temperature air source that blows a low-temperature air stream on the surface of the object to be processed provided on the support;
Heating and cooling device with
前記高温気流を吹き付ける高温気流源が、蒸気を吹きつける蒸気発生器である請求項1に記載の加熱冷却装置。   The heating and cooling device according to claim 1, wherein the high-temperature air flow source for blowing the high-temperature air flow is a steam generator for blowing steam. 前記低温気流を吹き付ける低温気流源が、空気を吹きつけるブロアである請求項1又は2に記載の加熱冷却装置。   The heating / cooling device according to claim 1 or 2, wherein the low-temperature air flow source for blowing the low-temperature air flow is a blower for blowing air. 前記高温気流源からの高温気流の吹きつけと、前記低温気流源からの低温気流の吹きつけとを所定の時間間隔で交互に切り替える制御部を備えた請求項1〜3のいずれかに記載の加熱冷却装置。   The control part according to any one of claims 1 to 3, further comprising: a control unit that alternately switches the blowing of the high temperature airflow from the high temperature airflow source and the blowing of the low temperature airflow from the low temperature airflow source at a predetermined time interval. Heating and cooling device. 前記支持部と、前記高温気流源及び冷温気流源との間に、高温気流及び低温気流の切り替え時に、高温気流及び低温気流の処理対象物への吹きつけを遮断するためのシャッタを備えた請求項1〜4のいずれかに記載の加熱冷却装置。   A shutter for blocking blowing of the high-temperature airflow and the low-temperature airflow onto the object to be processed when switching between the high-temperature airflow and the low-temperature airflow between the support portion and the high-temperature airflow source and the cold-airflow air source. Item 5. The heating / cooling device according to any one of Items 1 to 4. 前記処理対象物が医療用の微量液体入り小型チップである請求項1〜5のいずれかに記載の加熱冷却装置。   The heating / cooling device according to any one of claims 1 to 5, wherein the object to be treated is a small chip containing a medical trace amount liquid. 処理対象物を設けた支持部を準備し、前記支持部上の処理対象物に、高温気流源からの高温気流と低温気流源からの低温気流とを交互に切り替えて吹きつける加熱冷却方法。   A heating / cooling method in which a support portion provided with a processing object is prepared, and a high-temperature airflow from a high-temperature airflow source and a low-temperature airflow from a low-temperature airflow source are alternately switched and sprayed onto the processing object on the support portion. 前記高温気流を吹き付ける高温気流源が、蒸気を吹きつける蒸気発生器である請求項7に記載の加熱冷却方法。   The heating and cooling method according to claim 7, wherein the high-temperature air flow source that blows the high-temperature air flow is a steam generator that blows steam. 前記低温気流を吹き付ける低温気流源が、空気を吹きつけるブロアである請求項7又は8に記載の加熱冷却方法。   The heating and cooling method according to claim 7 or 8, wherein the low-temperature air flow source that blows the low-temperature air flow is a blower that blows air. 前記支持部を水平に設け、前記高温気流源からの高温気流と低温気流源からの低温気流とを前記支持部の表面へ吹き付ける請求項7〜9のいずれかに記載の加熱冷却方法。   The heating and cooling method according to any one of claims 7 to 9, wherein the support portion is provided horizontally, and a high-temperature airflow from the high-temperature airflow source and a low-temperature airflow from a low-temperature airflow source are blown onto the surface of the support portion. 前記支持部を垂直に設け、前記高温気流源からの高温気流と低温気流源からの低温気流とを前記支持部の表面へ吹き付ける請求項7〜9のいずれかに記載の加熱冷却方法。   The heating and cooling method according to any one of claims 7 to 9, wherein the support portion is provided vertically, and a high-temperature airflow from the high-temperature airflow source and a low-temperature airflow from a low-temperature airflow source are blown onto the surface of the support portion. 前記支持部と、前記高温気流源及び冷温気流源との間にシャッタを設け、前記シャッタによって、高温気流及び低温気流の切り替え時に、高温気流及び低温気流の処理対象物への吹きつけを遮断する請求項7〜11のいずれかに記載の加熱冷却方法。   A shutter is provided between the support portion and the high temperature air flow source and the cold air flow source, and the shutter blocks the blowing of the high temperature air flow and the low temperature air flow to the processing object when switching between the high temperature air flow and the low temperature air flow. The heating and cooling method according to claim 7. 前記処理対象物が医療用の微量液体入り小型チップである請求項7〜12のいずれかに記載の加熱冷却方法。   The heating and cooling method according to any one of claims 7 to 12, wherein the object to be processed is a small chip containing a medical trace amount liquid.
JP2012103983A 2012-04-27 2012-04-27 Heating and cooling device and heating and cooling method using same Pending JP2013230117A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012103983A JP2013230117A (en) 2012-04-27 2012-04-27 Heating and cooling device and heating and cooling method using same
PCT/JP2013/057068 WO2013161419A1 (en) 2012-04-27 2013-03-13 Heating and cooling device and heating and cooling method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012103983A JP2013230117A (en) 2012-04-27 2012-04-27 Heating and cooling device and heating and cooling method using same

Publications (1)

Publication Number Publication Date
JP2013230117A true JP2013230117A (en) 2013-11-14

Family

ID=49482759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103983A Pending JP2013230117A (en) 2012-04-27 2012-04-27 Heating and cooling device and heating and cooling method using same

Country Status (2)

Country Link
JP (1) JP2013230117A (en)
WO (1) WO2013161419A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU699986B2 (en) * 1994-02-01 1998-12-17 Igene Inc. Molecular analyzer and method of use
US5942432A (en) * 1997-10-07 1999-08-24 The Perkin-Elmer Corporation Apparatus for a fluid impingement thermal cycler
JP2008199901A (en) * 2007-02-16 2008-09-04 Toyobo Co Ltd Thermal cycle application apparatus and thermal cycle application method
US8828712B2 (en) * 2007-06-29 2014-09-09 Toppan Printing Co., Ltd. Genetic detection and determination apparatus and method, gene reactor, and incubator
JP2011217659A (en) * 2010-04-08 2011-11-04 Toppan Printing Co Ltd Biochip and temperature controller

Also Published As

Publication number Publication date
WO2013161419A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP6163473B2 (en) Environmental test method and environmental test apparatus
CN101275764B (en) Air conditioner
US10842176B2 (en) Facility for thawing or tempering frozen food products
JP6183719B2 (en) Spray corrosion tester and combined cycle tester
CN110323161A (en) Organic membrane formation device and organic film manufacturing method
JP2020100934A5 (en)
US11137208B2 (en) Heating device and heating method, each of which uses superheated steam
US10994452B2 (en) Powder slush molding machine and powder slush molding method
JP2019181544A (en) Vapor phase heating method and vapor phase heating device
US10717143B2 (en) Vapor-phase type heating method and vapor-phase type heating apparatus
CA2582019A1 (en) Method for avoiding frost damage in crops and/or for improving the fructification at low temperatures and device applied with such a method
WO2013161419A1 (en) Heating and cooling device and heating and cooling method using same
CN110463354A (en) Plasma production system
EP2771668B1 (en) Environmental test system and method with in-situ temperature sensing of device under test (dut)
JP6037381B2 (en) Drying system, drying system control method, and control apparatus therefor
KR100924733B1 (en) A cooling device and a control method thereof
KR20140113812A (en) Apparatus for annealing coils
JP3189319U (en) Frozen product thawing device
KR20130018396A (en) A rapid and precise temperature controlling equipment in the manufacturing process of glass base side for liquid crystal display and other products
DK2848180T3 (en) Dishwasher with the cooled vessel wall
KR20060026872A (en) Method for observing a glass and controlling heating effect in a hardening oven for a glass sheet
US10443943B2 (en) Apparatus and method to control properties of fluid discharge via refrigerative exhaust
KR20140036079A (en) Apparatus for preventing dew condensation of coil
CN203893594U (en) Constant-temperature drying box
KR20110102085A (en) A high frequency heat treatment device using robot