JP2013229965A - Energization circuit protection device - Google Patents

Energization circuit protection device Download PDF

Info

Publication number
JP2013229965A
JP2013229965A JP2012098899A JP2012098899A JP2013229965A JP 2013229965 A JP2013229965 A JP 2013229965A JP 2012098899 A JP2012098899 A JP 2012098899A JP 2012098899 A JP2012098899 A JP 2012098899A JP 2013229965 A JP2013229965 A JP 2013229965A
Authority
JP
Japan
Prior art keywords
drive
temperature
circuit
current
energization circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012098899A
Other languages
Japanese (ja)
Other versions
JP5944729B2 (en
Inventor
Keisuke Ueda
圭祐 上田
Akinori Maruyama
晃則 丸山
Yoshihide Nakamura
吉秀 中村
Yoshinori Ikuta
宜範 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2012098899A priority Critical patent/JP5944729B2/en
Priority to US14/391,833 priority patent/US9413159B2/en
Priority to PCT/JP2013/002369 priority patent/WO2013161198A1/en
Priority to CN201380021551.XA priority patent/CN104247190A/en
Priority to EP13722855.7A priority patent/EP2842210B1/en
Publication of JP2013229965A publication Critical patent/JP2013229965A/en
Application granted granted Critical
Publication of JP5944729B2 publication Critical patent/JP5944729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/047Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using a temperature responsive switch
    • H02H5/048Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using a temperature responsive switch additionally responsive to excess current due to heating of the switch

Abstract

PROBLEM TO BE SOLVED: To provide an energization circuit protection device, capable of intercepting a conduction circuit by securely detecting heating in a circuit for controlling to drive a load by PWM driving a semiconductor switch.SOLUTION: When driving a load RL by PWM driving a semiconductor device 11 disposed in a circuit for connecting the load RL to a power supply VB, if a current flowing through the load RL exceeds a threshold temperature, the semiconductor device 11 is switched from PWM drive to DC drive. Thus, in the event of an overcurrent, an estimated temperature by temperature estimation means exceeds the threshold temperature and the semiconductor device 11 is intercepted, so that the energization circuit can surely be protected.

Description

本発明は、車両に搭載される負荷に電力を供給する通電回路に過電流が流れた際に、即時に回路を遮断して通電回路を保護する通電回路の保護装置に関する。   The present invention relates to a protection device for an energization circuit that immediately shuts off the circuit and protects the energization circuit when an overcurrent flows through an energization circuit that supplies power to a load mounted on a vehicle.

車両に搭載される負荷を制御する制御装置は、負荷に過電流が流れた際にいち早く回路を遮断するために保護回路が搭載されている。このような保護回路の従来例として、例えば、特開2009−130944号公報(特許文献1)に記載されたものが知られている。該特許文献1では、負荷に流れる電流値に基づいて通電回路(負荷と電源を接続する電線、及びスイッチ)の発熱量及び放熱量を算出し、更に、周囲温度を測定して通電回路の温度を推定し、推定温度が所定の閾値に達した場合に通電回路を遮断して、負荷に接続される回路を保護することが開示されている。   A control device that controls a load mounted on a vehicle is equipped with a protection circuit in order to quickly shut down the circuit when an overcurrent flows through the load. As a conventional example of such a protection circuit, for example, one described in JP 2009-130944 A (Patent Document 1) is known. In Patent Document 1, the amount of heat generated and the amount of heat released from an energization circuit (wires and switches connecting a load and a power source) are calculated based on the value of current flowing through the load, and the ambient temperature is measured to determine the temperature of the energization circuit. It is disclosed that when the estimated temperature reaches a predetermined threshold, the energization circuit is cut off to protect the circuit connected to the load.

しかし、このような従来の保護回路では、半導体スイッチをPWM制御して負荷を駆動する際に、推定温度に誤差が生じている場合には電線加熱時に適切に半導体スイッチを遮断できない場合がある。以下、これを図4に示すタイミングチャートを参照して説明する。   However, in such a conventional protection circuit, when the semiconductor switch is PWM-controlled to drive a load, if there is an error in the estimated temperature, the semiconductor switch may not be properly cut off when the wire is heated. This will be described below with reference to the timing chart shown in FIG.

図4において、(a)は温度を推定するサンプリング周期を示し、(b)はPWM駆動による半導体スイッチのオン、オフタイミングを示し、(c)は電線に流れる電流を示している。すると、電線温度は曲線P11に示すように、オンデューティ時には上昇し、オフデューティ時に下降することを繰り返す。つまり、半導体スイッチがオンとなると電線温度が上昇し、オフとなると電線温度が下降に転じ、これを繰り返すように電線温度が変化する。   In FIG. 4, (a) shows the sampling period for estimating the temperature, (b) shows the on / off timing of the semiconductor switch by PWM drive, and (c) shows the current flowing through the wire. Then, as shown by a curve P11, the wire temperature repeatedly rises during on-duty and falls during off-duty. That is, when the semiconductor switch is turned on, the wire temperature increases, and when the semiconductor switch is turned off, the wire temperature starts decreasing, and the wire temperature changes so as to repeat this.

ここで、電線温度の推定に誤差が生じると、図4の曲線P12に示すように、推定温度が実際の電線温度よりも低い数値を示す場合があり、実際の電線温度(曲線P11)が閾値温度Tthを上回っているにも拘わらず、推定温度(曲線P12)が閾値温度Tthを上回らないことがあり、この場合には半導体スイッチを遮断することができない。このため、電線の温度が閾値温度Tthを超えて上昇してしまうという問題が発生する。   Here, if an error occurs in the estimation of the wire temperature, the estimated temperature may show a numerical value lower than the actual wire temperature, as shown by a curve P12 in FIG. 4, and the actual wire temperature (curve P11) is a threshold value. Although the temperature is above the temperature Tth, the estimated temperature (curve P12) may not exceed the threshold temperature Tth. In this case, the semiconductor switch cannot be shut off. For this reason, the problem that the temperature of an electric wire will exceed the threshold temperature Tth will generate | occur | produce.

特開2009−130944号公報JP 2009-130944 A

上述したように、従来における通電回路の保護装置では、電線に流れる電流値と通電時間に基づいて上昇温度、及び下降温度を求め、この上昇温度、及び下降温度に基づいて、電線温度を推定するので、半導体スイッチをPWM制御して負荷を駆動する場合には、推定温度に誤差が生じている際に、電線温度が閾値温度Tthを上回っているにも拘わらず、半導体スイッチを遮断することができないという問題があった。   As described above, in the conventional protection device for the energization circuit, the rising temperature and the falling temperature are obtained based on the current value flowing through the electric wire and the energizing time, and the electric wire temperature is estimated based on the rising temperature and the falling temperature. Therefore, when the load is driven by PWM control of the semiconductor switch, when the estimated temperature has an error, the semiconductor switch may be cut off even though the wire temperature exceeds the threshold temperature Tth. There was a problem that I could not.

本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、半導体スイッチをPWM駆動して負荷の駆動を制御する回路の加熱を確実に検出して、通電回路を遮断することが可能な通電回路の保護装置を提供することにある。   The present invention has been made to solve such a conventional problem, and the object of the present invention is to reliably detect heating of a circuit that controls driving of a load by PWM driving of a semiconductor switch. An object of the present invention is to provide a protective device for an energization circuit capable of interrupting the energization circuit.

上記目的を達成するため、本願請求項1に記載の発明は、電源と負荷を接続する通電回路を発熱から保護する通電回路の保護装置において、前記通電回路に設けられ、前記負荷の駆動、停止を切り替える半導体スイッチと、前記通電回路に流れる電流を検出する電流検出手段と、駆動入力信号が与えられた際に、前記半導体スイッチをPWM駆動する駆動手段と、前記通電回路に流れる電流、及び通電時間に基づいて前記通電回路の電線温度を推定する温度推定手段と、前記温度推定手段にて前記通電回路の推定温度が予め設定した閾値温度を上回った際に、前記半導体スイッチにオフ指令を出力する異常判定手段と、前記電流検出手段で検出される電流値が、予め設定した閾値電流を上回ったか否かを判定する過電流判定手段と、を備え、前記駆動手段は、前記過電流判定手段にて電流値が閾値電流を上回ったと判定された際に、前記半導体スイッチをPWM駆動からDC駆動に変更することを特徴とする。   In order to achieve the above object, the invention according to claim 1 of the present application is an energization circuit protection device for protecting an energization circuit connecting a power source and a load from heat generation, and is provided in the energization circuit to drive and stop the load. A semiconductor switch for switching, a current detection means for detecting a current flowing in the energization circuit, a drive means for PWM driving the semiconductor switch when a drive input signal is given, a current flowing in the energization circuit, and an energization A temperature estimating means for estimating the electric wire temperature of the energizing circuit based on time, and outputting an off command to the semiconductor switch when the estimated temperature of the energizing circuit exceeds a preset threshold temperature by the temperature estimating means An abnormality determination unit that performs, and an overcurrent determination unit that determines whether or not a current value detected by the current detection unit exceeds a preset threshold current, Serial drive means, when the current value in the overcurrent determination means determines that exceeds the threshold current, and changes the semiconductor switch to the DC driven from PWM driving.

また、請求項2に記載の発明は、前記駆動手段は、前記過電流判定手段にて検出される電流値が閾値電流を上回り、その後、該閾値電流を下回った場合には、前記半導体スイッチを前記DC駆動からPWM駆動に戻すことを特徴とする。   According to a second aspect of the present invention, when the current value detected by the overcurrent determination unit exceeds a threshold current and then falls below the threshold current, the driving unit switches the semiconductor switch. The DC drive is returned to the PWM drive.

本発明に係る通電回路の保護装置では、電源と負荷を接続する回路に設けられる半導体スイッチをPWM駆動して負荷を駆動する際に、負荷に流れる電流が閾値温度を上回った際に、半導体スイッチをPWM駆動からDC駆動に切り替えるので、過電流が発生した場合には温度推定手段による推定温度が閾値温度を上回り、半導体スイッチを遮断するので、通電回路を確実に保護することができる。   In the protection device for the energization circuit according to the present invention, when the semiconductor switch provided in the circuit connecting the power source and the load is PWM driven to drive the load, when the current flowing through the load exceeds the threshold temperature, the semiconductor switch Is switched from PWM drive to DC drive. When an overcurrent occurs, the temperature estimated by the temperature estimating means exceeds the threshold temperature and the semiconductor switch is shut off, so that the energizing circuit can be reliably protected.

また、負荷に流れる電流値が閾値電流を下回った場合には、半導体スイッチがDC駆動からPWM駆動に切り替わるように制御されるので、スイッチ投入時の突入電流やノイズの影響を受けることを防止できる。   In addition, when the value of the current flowing through the load falls below the threshold current, the semiconductor switch is controlled to switch from DC driving to PWM driving, so that it can be prevented from being affected by inrush current and noise when the switch is turned on. .

本発明の一実施形態に係る通電回路の保護装置を含む負荷駆動回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the load drive circuit containing the protection apparatus of the electricity supply circuit which concerns on one Embodiment of this invention. 本発明の一実施形態に係る通電回路の保護装置の、処理動作を示すフローチャートである。It is a flowchart which shows processing operation | movement of the protection apparatus of the electricity supply circuit which concerns on one Embodiment of this invention. 本発明の一実施形態に係る通電回路の保護装置の、各信号の変化を示すタイミングチャートである。It is a timing chart which shows the change of each signal of the protection device of the energization circuit concerning one embodiment of the present invention. 従来における通電回路の保護装置の、各信号の変化を示すタイミングチャートである。It is a timing chart which shows the change of each signal of the protection device of the conventional energization circuit.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[構成説明]
図1は、本発明の一実施形態に係る通電回路の保護装置が採用された負荷駆動装置の構成を示すブロック図である。図1に示すように、この負荷駆動装置100は、電源VBと負荷RLとの間に設けられ、負荷の駆動、停止を切り替える半導体デバイス11と、該半導体デバイス11のオン、オフを制御する制御回路12から構成されている。
[Description of configuration]
FIG. 1 is a block diagram illustrating a configuration of a load driving device in which an energization circuit protection device according to an embodiment of the present invention is employed. As shown in FIG. 1, the load driving device 100 is provided between a power supply VB and a load RL, and controls a semiconductor device 11 that switches driving and stopping of the load, and controls on and off of the semiconductor device 11. The circuit 12 is configured.

半導体デバイス11は、例えば、MOSFET等の半導体スイッチを備えており、制御回路12より出力されるPWM信号により作動して負荷RLに電力を供給する。また、半導体デバイス11は、例えばシャント抵抗等の電流センサ11aを備えており、該電流センサ11aにて検出される電流信号を制御回路12に出力する。   The semiconductor device 11 includes a semiconductor switch such as a MOSFET, for example, and operates by a PWM signal output from the control circuit 12 to supply power to the load RL. The semiconductor device 11 includes a current sensor 11 a such as a shunt resistor, and outputs a current signal detected by the current sensor 11 a to the control circuit 12.

制御回路12は、外部機器と接続する3つの接続端子N1,N2,N3を備えており、更に、駆動信号生成部21と、電線温度推定部22と、異常判定部23と、過電流判定部24と、反転回路25と、アンド回路26を備えている。   The control circuit 12 includes three connection terminals N1, N2, and N3 that are connected to external devices, and further includes a drive signal generation unit 21, a wire temperature estimation unit 22, an abnormality determination unit 23, and an overcurrent determination unit. 24, an inverting circuit 25, and an AND circuit 26.

駆動信号生成部21は、外部スイッチ等により入力信号が与えられた際に、PWM信号を生成し、生成したPWM信号をアンド回路26に出力する。また、過電流判定部24よりDC駆動指令信号が供給された場合には、PWM信号をDC信号(直流信号)に変更し、このDC信号をアンド回路26に出力する。   The drive signal generation unit 21 generates a PWM signal when an input signal is given from an external switch or the like, and outputs the generated PWM signal to the AND circuit 26. When a DC drive command signal is supplied from the overcurrent determination unit 24, the PWM signal is changed to a DC signal (DC signal), and this DC signal is output to the AND circuit 26.

電線温度推定部22は、半導体デバイス11に設けられる電流センサ11aで検出される電流値、及び電流の通電時間に基づいて、後述する手法により通電回路の電線温度を推定する。   The electric wire temperature estimation unit 22 estimates the electric wire temperature of the energization circuit based on the current value detected by the current sensor 11a provided in the semiconductor device 11 and the energization time of the current by a method described later.

異常判定部23は、電線温度推定部22で推定される電線温度が予め設定した閾値温度を上回った場合に、温度異常信号を出力する。即ち、出力信号を「L」レベルから「H」レベルに変更する。反転回路25は、入力された信号を反転して出力する。即ち、異常判定部23より温度異常信号として「H」レベルの信号が出力された場合には、これを「L」レベルに反転して出力する。   The abnormality determination unit 23 outputs a temperature abnormality signal when the wire temperature estimated by the wire temperature estimation unit 22 exceeds a preset threshold temperature. That is, the output signal is changed from the “L” level to the “H” level. The inverting circuit 25 inverts the input signal and outputs it. That is, when the “H” level signal is output as the temperature abnormality signal from the abnormality determination unit 23, the signal is inverted to the “L” level and output.

過電流判定部24は、電流センサ11aで検出される電流値が予め設定された閾値電流を上回った場合に、駆動信号生成部21にDC駆動指令信号を出力する。   The overcurrent determination unit 24 outputs a DC drive command signal to the drive signal generation unit 21 when the current value detected by the current sensor 11a exceeds a preset threshold current.

アンド回路26は、駆動信号生成部21の出力信号、及び反転回路25の出力信号が共に「H」レベルの場合に「H」レベルの出力信号を出力する。   The AND circuit 26 outputs an “H” level output signal when both the output signal of the drive signal generator 21 and the output signal of the inverting circuit 25 are “H” level.

[電線温度の推定処理]
次に、上述した電線温度推定部22における電線温度の推定処理について説明する。初めに、温度の上昇の算出について説明する。負荷RLに接続される電線に電流が流れている場合には、下記の(1)式により電線で消費されるエネルギー(Pcin)を求めることができる。
[Estimation process of wire temperature]
Next, the wire temperature estimation process in the above-described wire temperature estimation unit 22 will be described. First, calculation of the temperature rise will be described. When a current is flowing through the electric wire connected to the load RL, the energy (Pcin) consumed by the electric wire can be obtained from the following equation (1).

Pcin=rc×I2 …(1)
但し、rcは電線W1の導体抵抗[Ω]、Iは通電電流[A]である。
Pcin = rc × I2 (1)
However, rc is the conductor resistance [Ω] of the electric wire W1, and I is the energization current [A].

また、下記の(2)式により電線より放出されるエネルギー(Pcout)を求めることができる。   Moreover, the energy (Pcout) discharged | emitted from an electric wire can be calculated | required by following (2) Formula.

Pcout=Qc(n-1)/(Cth×Rth) …(2)
ここで、Rthは電線の熱抵抗、Cthは電線の熱容量、Qc(n-1)は前回のサンプリング時における電線の熱量である。
Pcout = Qc (n-1) / (Cth × Rth) (2)
Here, Rth is the thermal resistance of the wire, Cth is the heat capacity of the wire, and Qc (n-1) is the amount of heat of the wire at the time of the previous sampling.

更に、上記(1)、(2)式に基づいてこれらの差分(Pcin−Pcout)を求め、サンプリング時間Δtを乗じることにより、このサンプリング時間における電線の発熱量、または放熱量を求めることができる。従って、下記の(3)式により、現時点での電線に蓄積されている熱量Qc(n)を求めることができる。   Furthermore, by calculating these differences (Pcin−Pcout) based on the above formulas (1) and (2) and multiplying by the sampling time Δt, the heat generation amount or the heat dissipation amount of the wire during this sampling time can be determined. . Therefore, the amount of heat Qc (n) accumulated in the electric wire at the present time can be obtained by the following equation (3).

Qc(n)=Qc(n-1)+(Pcin−Pcout)×Δt …(3)
また、(3)式で求められた熱量Qc(n)を電線の熱容量Cthで除することにより、電線の上昇温度ΔTを求めることができる。即ち、下記の(4)式で上昇温度ΔTが求められる。
Qc (n) = Qc (n−1) + (Pcin−Pcout) × Δt (3)
Further, the rising temperature ΔT of the electric wire can be obtained by dividing the amount of heat Qc (n) obtained by the equation (3) by the heat capacity Cth of the electric wire. That is, the rising temperature ΔT is obtained by the following equation (4).

ΔT=Qc(n)/Cth …(4)
そして、前回のサンプリング時間で求めた推定温度T1(初期的には周囲温度)に対して、(4)式で求めたΔTを加算することにより、今回の推定温度T2を求めることができる。
ΔT = Qc (n) / Cth (4)
The current estimated temperature T2 can be obtained by adding ΔT obtained by the equation (4) to the estimated temperature T1 (initially ambient temperature) obtained during the previous sampling time.

[動作説明]
次に、上述のように構成された本実施形態の作用を、図2に示すフローチャートを参照して説明する。初めに、図2に示すステップS11において、駆動信号生成部21は、入力信号がオンであるか否かを判定する。そして、入力信号がオフの場合には(ステップS11でNO)、ステップS15において、駆動信号をオフとする。即ち、駆動信号を出力しない(出力を「L」レベルとする)。
[Description of operation]
Next, the operation of the present embodiment configured as described above will be described with reference to the flowchart shown in FIG. First, in step S11 shown in FIG. 2, the drive signal generator 21 determines whether or not the input signal is on. If the input signal is off (NO in step S11), the drive signal is turned off in step S15. That is, the drive signal is not output (the output is set to “L” level).

また、入力信号がオンの場合には(ステップS11でYES)、過電流判定部24は、電流センサ11aで検出される電流値に基づき、電線に流れている電流が閾値電流を上回っているか否かを判定する。そして、過電流が流れていないと判断された場合には(ステップS12でNO)、ステップS13において、PWM信号の出力指令を駆動信号生成部21に出力する。即ち、負荷回路の電線に流れる電流が通常電流である場合には、半導体デバイス11をPWM制御して負荷RLを駆動する。   When the input signal is on (YES in step S11), the overcurrent determination unit 24 determines whether the current flowing in the electric wire exceeds the threshold current based on the current value detected by the current sensor 11a. Determine whether. If it is determined that no overcurrent is flowing (NO in step S12), an output command for the PWM signal is output to the drive signal generator 21 in step S13. That is, when the current flowing through the electric wire of the load circuit is a normal current, the semiconductor device 11 is PWM-controlled to drive the load RL.

負荷回路に過電流が流れていると判断された場合には(ステップS12でYES)、ステップS14において、過電流判定部24は、DC信号の出力指令を駆動信号生成部21に出力する。これにより、駆動信号生成部21より出力される駆動信号は、PWM信号からDC信号に切り替えられる。その結果、半導体デバイス11はDC駆動、即ち、常時オン状態となって、負荷RLに電力を供給する。   If it is determined that an overcurrent is flowing through the load circuit (YES in step S12), in step S14, the overcurrent determination unit 24 outputs a DC signal output command to the drive signal generation unit 21. As a result, the drive signal output from the drive signal generator 21 is switched from the PWM signal to the DC signal. As a result, the semiconductor device 11 is DC driven, that is, always turned on, and supplies power to the load RL.

次に、上述した動作を図3に示すタイミングチャートを参照して説明する。図3に示す(a)は制御回路12のサンプリング周期を示し、(b)は半導体デバイス11のオン、オフ信号を示し、(c)は負荷回路に流れる電流値を示し、(d)は電線温度推定部22で推定される電線温度を示している。   Next, the operation described above will be described with reference to the timing chart shown in FIG. 3A shows the sampling period of the control circuit 12, FIG. 3B shows the on / off signal of the semiconductor device 11, FIG. 3C shows the current value flowing through the load circuit, and FIG. The electric wire temperature estimated in the temperature estimation part 22 is shown.

いま、駆動信号生成部21よりPWM信号が出力され、半導体デバイスがPWM駆動されている場合には、時刻t1にて図3(b)に示すように、半導体デバイス11がオンとなる。これに伴い、図3(c)に示すように、負荷回路の電線に電流が流れる。この際、負荷回路に流れる電流値が予め設定された閾値電流Ithを上回ると、図1に示す過電流判定部24にて過電流が流れたことが検出され、駆動信号生成部21は、出力信号をPWM信号からDC信号に変更する。   Now, when the PWM signal is output from the drive signal generation unit 21 and the semiconductor device is PWM-driven, the semiconductor device 11 is turned on as shown in FIG. 3B at time t1. Along with this, as shown in FIG. 3C, a current flows through the electric wire of the load circuit. At this time, if the value of the current flowing through the load circuit exceeds a preset threshold current Ith, it is detected by the overcurrent determination unit 24 shown in FIG. 1 that the drive signal generation unit 21 outputs The signal is changed from a PWM signal to a DC signal.

これにより、半導体デバイス11は、DC駆動される。従って、PWM駆動が継続された場合には、時刻t3で半導体デバイス11はオフとなるところが、DC駆動に切り替えられたことにより、時刻t3でオン状態が継続されることになる。   Thereby, the semiconductor device 11 is DC-driven. Therefore, when the PWM drive is continued, the semiconductor device 11 is turned off at time t3, but is switched to DC drive, so that the on state is continued at time t3.

一方、電線温度推定部22では、時刻t1の後のサンプリング周期となる時刻t2で電線の温度推定が開始され、図3(d)に示すように、推定温度が徐々に上昇する。そして、時刻t3を経過しても更に推定温度が上昇し、時刻t4にて閾値温度Tthに達する。その結果、異常判定部23は、電線の温度異常を検出し、出力信号を「L」レベルから「H」レベルに変更する。   On the other hand, the wire temperature estimation unit 22 starts the temperature estimation of the wire at time t2, which is a sampling period after time t1, and gradually increases the estimated temperature as shown in FIG. And even if the time t3 passes, the estimated temperature further rises and reaches the threshold temperature Tth at the time t4. As a result, the abnormality determination unit 23 detects a temperature abnormality of the electric wire and changes the output signal from the “L” level to the “H” level.

その結果、アンド回路26の出力信号は「H」レベルから「L」レベルに切り替わり、半導体デバイス11はオフとなる。このように、負荷回路に流れる電流値が閾値電流Ithを上回ったことが過電流判定部24にて検出された際には、半導体デバイス11をPWM駆動からDC駆動に変更するので、電線温度推定部22で推定される電線温度が上昇を続け、閾値温度Tthに達して半導体デバイス11を遮断することができる。   As a result, the output signal of the AND circuit 26 is switched from the “H” level to the “L” level, and the semiconductor device 11 is turned off. As described above, when the overcurrent determination unit 24 detects that the value of the current flowing through the load circuit exceeds the threshold current Ith, the semiconductor device 11 is changed from PWM driving to DC driving. The electric wire temperature estimated by the part 22 continues to rise, reaches the threshold temperature Tth, and can shut off the semiconductor device 11.

また、電流センサ11aで検出される電流値が低下し、閾値電流Ithを下回った場合には、過電流判定部24は、駆動信号生成部21に出力する信号をDC駆動指令からPWM駆動指令に変更するので、半導体デバイス11は再度PWM駆動に切り替えられ、通常の動作で負荷RLを駆動することができる。   Further, when the current value detected by the current sensor 11a decreases and falls below the threshold current Ith, the overcurrent determination unit 24 changes the signal output to the drive signal generation unit 21 from the DC drive command to the PWM drive command. Since the change is made, the semiconductor device 11 is again switched to the PWM drive, and the load RL can be driven by a normal operation.

このようにして、本実施形態に係る通電回路の制御装置では、電流センサ11aにて通電回路に流れる電流を検出し、この電流値が閾値電流Ithを上回った場合には、半導体デバイス11をDC駆動させる。従って、従来のように、電線温度推定部22により推定される電線温度と実際の電線温度との間に誤差が生じている場合であっても、時間経過と共に電線の推定温度が上昇し、閾値温度Tthを上回るので、半導体デバイス11を確実に遮断することができ、通電回路、及び負荷RLを加熱から保護することができる。   In this manner, in the control device for the energization circuit according to the present embodiment, the current flowing through the energization circuit is detected by the current sensor 11a, and when the current value exceeds the threshold current Ith, the semiconductor device 11 is connected to the DC. Drive. Therefore, even when there is an error between the wire temperature estimated by the wire temperature estimation unit 22 and the actual wire temperature as in the conventional case, the estimated temperature of the wire increases with time, and the threshold value Since the temperature Tth is exceeded, the semiconductor device 11 can be reliably shut off, and the energization circuit and the load RL can be protected from heating.

このため、例えば通電回路にデッドショートが発生した場合には、電線の推定温度が算出されて半導体デバイス11を遮断するので、通電回路をデッドショートによる発熱から保護することが可能となる。   For this reason, for example, when a dead short occurs in the energization circuit, the estimated temperature of the electric wire is calculated and the semiconductor device 11 is shut off. Therefore, the energization circuit can be protected from heat generation due to the dead short.

また、過電流が流れた際にはDC駆動に切り替えるので、過電流状態での半導体デバイス11のスイッチング回数を低減することができ、デバイスへのダメージを軽減することができる。   Further, since switching to DC driving is performed when an overcurrent flows, the number of times of switching of the semiconductor device 11 in the overcurrent state can be reduced, and damage to the device can be reduced.

更に、半導体デバイス11をDC駆動に変更した後、電線の推定温度が閾値温度Tthを上回る前に、電流値が低下して閾値電流Ithを下回った場合には、半導体デバイス11を再度PWM駆動に変更するので、通常の駆動に戻すことができる。従って、半導体デバイス11をオンとする際に突入電流が発生する場合や、ノイズ等の、短時間の過電流では遮断されず、一旦はDC駆動になるものの、その後PWM駆動に戻るので誤遮断することなく半導体デバイス11を駆動させることができる。   Further, after the semiconductor device 11 is changed to DC drive, if the current value decreases and falls below the threshold current Ith before the estimated temperature of the electric wire exceeds the threshold temperature Tth, the semiconductor device 11 is again set to PWM drive. Since it changes, it can return to normal driving. Therefore, when the semiconductor device 11 is turned on, it is not cut off by a short-time overcurrent such as noise or a short-time overcurrent such as noise. The semiconductor device 11 can be driven without any problem.

以上、本発明の通電回路の保護装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。   The energization circuit protection device of the present invention has been described based on the illustrated embodiment, but the present invention is not limited to this, and the configuration of each part is an arbitrary configuration having the same function. Can be replaced.

本発明は、負荷を駆動する回路を加熱から保護することに利用することができる。   The present invention can be used to protect a circuit that drives a load from heating.

11 半導体デバイス
11a 電流センサ
12 制御回路
21 駆動信号生成部
22 電線温度推定部
23 異常判定部
24 過電流判定部
25 反転回路
26 アンド回路
100 負荷駆動装置
DESCRIPTION OF SYMBOLS 11 Semiconductor device 11a Current sensor 12 Control circuit 21 Drive signal generation part 22 Electric wire temperature estimation part 23 Abnormality determination part 24 Overcurrent determination part 25 Inversion circuit 26 AND circuit 100 Load drive device

Claims (2)

電源と負荷を接続する通電回路を発熱から保護する通電回路の保護装置において、
前記通電回路に設けられ、前記負荷の駆動、停止を切り替える半導体スイッチと、
前記通電回路に流れる電流を検出する電流検出手段と、
駆動入力信号が与えられた際に、前記半導体スイッチをPWM駆動する駆動手段と、
前記通電回路に流れる電流、及び通電時間に基づいて前記通電回路の電線温度を推定する温度推定手段と、
前記温度推定手段にて前記通電回路の推定温度が予め設定した閾値温度を上回った際に、前記半導体スイッチにオフ指令を出力する異常判定手段と、
前記電流検出手段で検出される電流値が、予め設定した閾値電流を上回ったか否かを判定する過電流判定手段と、を備え、
前記駆動手段は、前記過電流判定手段にて電流値が閾値電流を上回ったと判定された際に、前記半導体スイッチをPWM駆動からDC駆動に変更することを特徴とする通電回路の保護装置。
In the protection device for the energization circuit that protects the energization circuit that connects the power supply and the load from heat generation,
A semiconductor switch that is provided in the energization circuit and switches between driving and stopping of the load;
Current detecting means for detecting a current flowing in the energization circuit;
Drive means for PWM driving the semiconductor switch when a drive input signal is given;
A temperature estimating means for estimating the electric wire temperature of the energization circuit based on the current flowing through the energization circuit and the energization time;
An abnormality determining means for outputting an OFF command to the semiconductor switch when the estimated temperature of the energization circuit exceeds a preset threshold temperature by the temperature estimating means;
An overcurrent determination unit that determines whether or not a current value detected by the current detection unit exceeds a preset threshold current;
The energizing circuit protection device according to claim 1, wherein when the overcurrent determination unit determines that the current value exceeds a threshold current, the drive unit changes the semiconductor switch from PWM drive to DC drive.
前記駆動手段は、前記過電流判定手段にて検出される電流値が閾値電流上回り、その後、該閾値電流を下回った場合には、前記半導体スイッチを前記DC駆動からPWM駆動に戻すことを特徴とする請求項1に記載の通電回路の保護装置。   The drive means returns the semiconductor switch from the DC drive to the PWM drive when the current value detected by the overcurrent determination means exceeds a threshold current and then falls below the threshold current. The energization circuit protection device according to claim 1.
JP2012098899A 2012-04-24 2012-04-24 Protection device for energization circuit Active JP5944729B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012098899A JP5944729B2 (en) 2012-04-24 2012-04-24 Protection device for energization circuit
US14/391,833 US9413159B2 (en) 2012-04-24 2013-04-05 Switching circuit protector
PCT/JP2013/002369 WO2013161198A1 (en) 2012-04-24 2013-04-05 Switching circuit protector
CN201380021551.XA CN104247190A (en) 2012-04-24 2013-04-05 Switching circuit protector
EP13722855.7A EP2842210B1 (en) 2012-04-24 2013-04-05 Switching circuit protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098899A JP5944729B2 (en) 2012-04-24 2012-04-24 Protection device for energization circuit

Publications (2)

Publication Number Publication Date
JP2013229965A true JP2013229965A (en) 2013-11-07
JP5944729B2 JP5944729B2 (en) 2016-07-05

Family

ID=48444522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098899A Active JP5944729B2 (en) 2012-04-24 2012-04-24 Protection device for energization circuit

Country Status (5)

Country Link
US (1) US9413159B2 (en)
EP (1) EP2842210B1 (en)
JP (1) JP5944729B2 (en)
CN (1) CN104247190A (en)
WO (1) WO2013161198A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122781A1 (en) * 2016-01-15 2017-07-20 株式会社オートネットワーク技術研究所 Power supply control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947064B2 (en) * 2011-09-20 2015-02-03 Infineon Technologies Austria Ag System and method for driving an electronic switch dependent on temperature
US10141833B2 (en) * 2015-08-04 2018-11-27 Mediatek Inc. Power management method capable of preventing an over current event by performing a power control operation
JP6669097B2 (en) * 2017-02-14 2020-03-18 株式会社オートネットワーク技術研究所 Power supply control device
JP6846244B2 (en) * 2017-03-13 2021-03-24 矢崎総業株式会社 Wire protection device
JP6882023B2 (en) * 2017-03-13 2021-06-02 矢崎総業株式会社 Wire protection device
WO2021032293A1 (en) * 2019-08-21 2021-02-25 Volvo Truck Corporation A method for optimizing energy management of an electrical propulsion system of a vehicle
FR3101207B1 (en) * 2019-09-19 2022-06-17 Continental Automotive METHOD FOR MANAGING PROTECTION AGAINST OVERCURRENTS IN A SELF-PILOTED SYNCHRONOUS MACHINE WITH PERMANENT MAGNET OF A MOTOR VEHICLE
WO2021160285A1 (en) * 2020-02-14 2021-08-19 HELLA GmbH & Co. KGaA Method of protecting relays or electronic switches from overheating by creeping short circuit currents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226984A (en) * 2008-03-19 2009-10-08 Autonetworks Technologies Ltd Electric wire protection method and electric wire protection device
JP2010172191A (en) * 2006-04-27 2010-08-05 Yazaki Corp Protective device for load circuit
WO2010140474A1 (en) * 2009-06-04 2010-12-09 矢崎総業株式会社 Protection device for load circuits

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155847A (en) * 1997-07-29 1999-02-26 Yazaki Corp Load controller for vehicle
DE10257425A1 (en) * 2002-12-09 2004-06-24 Delphi Technologies, Inc., Troy Electrical voltage supply monitoring arrangement for protecting a system against overloading, e.g. in a motor vehicle, whereby thermodynamic models of cables or components are used to predict over-heating
US8270138B2 (en) * 2005-12-26 2012-09-18 Autonetworks Technologies, Limited Power supply controller and threshold adjustment method thereof
JP4624400B2 (en) 2007-11-19 2011-02-02 株式会社オートネットワーク技術研究所 Electric wire protection method and electric wire protection device for vehicle
EP2717403B1 (en) * 2008-04-15 2015-06-03 Yasaki Corporation Protection apparatus of load circuit
JP2009303394A (en) 2008-06-13 2009-12-24 Yazaki Corp Protection device for load circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172191A (en) * 2006-04-27 2010-08-05 Yazaki Corp Protective device for load circuit
JP2009226984A (en) * 2008-03-19 2009-10-08 Autonetworks Technologies Ltd Electric wire protection method and electric wire protection device
WO2010140474A1 (en) * 2009-06-04 2010-12-09 矢崎総業株式会社 Protection device for load circuits

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122781A1 (en) * 2016-01-15 2017-07-20 株式会社オートネットワーク技術研究所 Power supply control device
JPWO2017122781A1 (en) * 2016-01-15 2018-05-31 株式会社オートネットワーク技術研究所 Power supply control device
CN108475912A (en) * 2016-01-15 2018-08-31 株式会社自动网络技术研究所 Power supply control apparatus
CN108475912B (en) * 2016-01-15 2019-10-29 株式会社自动网络技术研究所 Power supply control apparatus

Also Published As

Publication number Publication date
CN104247190A (en) 2014-12-24
WO2013161198A1 (en) 2013-10-31
JP5944729B2 (en) 2016-07-05
EP2842210A1 (en) 2015-03-04
US20150138682A1 (en) 2015-05-21
EP2842210B1 (en) 2017-03-15
US9413159B2 (en) 2016-08-09

Similar Documents

Publication Publication Date Title
JP5944729B2 (en) Protection device for energization circuit
JP5955502B2 (en) Load circuit disconnection detection device
JP6280975B2 (en) Relay malfunction detection device
JP5639868B2 (en) Load circuit protection device
JP5648081B2 (en) Power converter
JP5055177B2 (en) Load circuit protection device
JP5520639B2 (en) Power converter and overload protection method
JPWO2010029780A1 (en) Inverter device, inverter control system, motor control system, and control method for inverter device
JP6262931B2 (en) Protection device for energization circuit
WO2013161364A1 (en) Protection device for electricity supply circuit
GB2510658A (en) A thermal controller for semiconductor power switching devices
TW201025784A (en) Error detecting and motor protecting apparatus and method thereof
JP2017152924A (en) Overheat protection device
JP5055182B2 (en) Load circuit protection device
KR20200007295A (en) Inverter apparatus of electric vehicle
JP5876367B2 (en) Protection device for energization circuit
JP5390837B2 (en) Load circuit protection device
JP2000228882A (en) Protective device for variable speed inverter
JP5776946B2 (en) Power supply control device
JP5097229B2 (en) Overheat protection device
KR102056156B1 (en) Inverter Protecting Method of Electric Vehicle
US11063542B2 (en) Motor drive apparatus and electric power steering apparatus
JP4119898B2 (en) Protection device and protection method for fixed output frequency inverter using high frequency power supply for concrete vibrator as input power supply
JP2009261088A (en) Device for protecting load circuit
JP2020129941A (en) Energization control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160526

R150 Certificate of patent or registration of utility model

Ref document number: 5944729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250