JP2013229326A - Method for processing electrolyte containing fluorine - Google Patents

Method for processing electrolyte containing fluorine Download PDF

Info

Publication number
JP2013229326A
JP2013229326A JP2013071367A JP2013071367A JP2013229326A JP 2013229326 A JP2013229326 A JP 2013229326A JP 2013071367 A JP2013071367 A JP 2013071367A JP 2013071367 A JP2013071367 A JP 2013071367A JP 2013229326 A JP2013229326 A JP 2013229326A
Authority
JP
Japan
Prior art keywords
fluorine
calcium
gas
electrolyte
vaporized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013071367A
Other languages
Japanese (ja)
Other versions
JP6124001B2 (en
Inventor
Hiroshi Hayashi
浩志 林
Koichiro Hirata
浩一郎 平田
Hidenori Tsurumaki
英範 鶴巻
Hisashi Hoshina
久史 星名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013071367A priority Critical patent/JP6124001B2/en
Priority to US14/778,701 priority patent/US9843077B2/en
Priority to KR1020157026328A priority patent/KR102041004B1/en
Priority to PCT/JP2013/076083 priority patent/WO2014155784A1/en
Priority to CN201380074377.5A priority patent/CN105144464B/en
Publication of JP2013229326A publication Critical patent/JP2013229326A/en
Application granted granted Critical
Publication of JP6124001B2 publication Critical patent/JP6124001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for safely processing an electrolyte containing a volatile fluorine compound (LiPF, or the like) and an organic solvent.SOLUTION: The method for processing an electrolyte containing a fluorine compound includes a vaporization step for vaporizing the volatile components of an electrolyte containing a fluorine compound by heating it under reduced pressure, a fluorine fixing step for fixing the fluorine component contained in the vaporized gas as calcium fluoride by causing reaction with calcium, and an organic solvent component recovery step for recovering the organic solvent component contained in the vaporized gas. Preferably, volatile components of electrolyte are vaporized by heating the electrolyte under reduced pressure after adding a small quantity of water thereto.

Description

本発明は、リチウムイオン電池などに使用されている非水系電解液の安全な処理方法に関する。 The present invention relates to a safe treatment method for non-aqueous electrolytes used in lithium ion batteries and the like.

電気自動車や電子機器には高容量の電気を供給するために大型のリチウムイオン電池が多く使用されており、電気自動車や電子機器の普及によって大量に生じる使用済み大型電池の処理が問題になりつつある。 Many large-sized lithium ion batteries are used in electric vehicles and electronic devices to supply high-capacity electricity, and the treatment of large-sized used batteries that are generated in large quantities due to the widespread use of electric vehicles and electronic devices is becoming a problem. is there.

リチウムイオン電池などに使用されている電解液には、電解質となるフッ素化合物(LiPF6、LiBF4等)および揮発性の有機溶媒が含まれており、有機溶媒は主に炭酸エステル類であって引火性の物質である。また、LiPF6は水と反応すると加水分解して有毒なフッ化水素を発生する。このため、安全な処理方法が求められている。 Electrolytic solutions used in lithium ion batteries and the like contain fluorine compounds (LiPF 6 , LiBF 4, etc.) that serve as electrolytes and volatile organic solvents, which are mainly carbonates. It is a flammable substance. Moreover, when LiPF 6 reacts with water, it hydrolyzes to generate toxic hydrogen fluoride. For this reason, a safe processing method is required.

リチウムイオン電池やその電解液の処理方法として、従来、以下のような処理方法が知られている。
1.リチウムイオン電池などを電解液の融点以下に冷凍して電池を解体破砕し、破砕体を有機溶媒中で電解液を分離し、抽出した電解液を蒸留して電解質と有機溶媒に分離する処理方法(特許文献1)。
2.使用済みリチウム電池を焙焼し、その焙焼物を破砕して磁性物と非磁性物に分別し、アルミニウムや銅などの有用金属量の多いものを回収する処理方法(特許文献2)。
3.リチウム電池を超高圧水で開口し、有機溶媒を用いて電解液を回収する処理方法(特許文献3)。
Conventionally, the following treatment methods are known as a treatment method for a lithium ion battery and its electrolytic solution.
1. A processing method in which a lithium ion battery or the like is frozen below the melting point of the electrolytic solution, the battery is disassembled and crushed, the electrolytic solution is separated from the crushed material in an organic solvent, and the extracted electrolytic solution is distilled to separate the electrolyte into an organic solvent (Patent Document 1).
2. A processing method for roasting a used lithium battery, crushing the roasted product, separating it into a magnetic material and a non-magnetic material, and recovering a large amount of useful metals such as aluminum and copper (Patent Document 2).
3. A treatment method in which a lithium battery is opened with ultra-high pressure water and an electrolytic solution is recovered using an organic solvent (Patent Document 3).

特許第3935594号公報Japanese Patent No. 3935594 特許第3079285号公報Japanese Patent No. 3079285 特許第2721467号公報Japanese Patent No. 2721467

従来の処理方法において、リチウム電池を冷凍下で解体破砕する処理方法は冷凍設備を必要とするので実施し難い。また、リチウム電池を焙焼処理する方法ではフッ素は燃焼ガスとして処理されるため純度の高いフッ素成分として回収できず再利用することができない。有機溶媒を用いて電解液を回収する処理方法では回収した電解液の処理が問題になる。先に指摘したように、電解液には引火性の有機溶媒が含まれており、また電解液中のフッ素化合物は水と反応して有毒なフッ化水素を発生させので、安全な処理が求められる。 In the conventional processing method, the processing method of dismantling and crushing the lithium battery under refrigeration requires refrigeration equipment and is difficult to implement. Further, in the method of roasting a lithium battery, fluorine is treated as a combustion gas, so that it cannot be recovered as a highly pure fluorine component and cannot be reused. In the processing method of recovering the electrolytic solution using an organic solvent, the processing of the recovered electrolytic solution becomes a problem. As pointed out earlier, the electrolyte contains a flammable organic solvent, and the fluorine compound in the electrolyte reacts with water to generate toxic hydrogen fluoride. It is done.

本発明は、従来の処理方法における上記問題を解決したものであり、揮発性のフッ素化合物(LiPF6等)および有機溶媒を含む電解液を安全に処理する方法を提供する。 The present invention has solved the above problems in the conventional processing method, a method for safely processing the electrolyte containing volatile fluorine compound (LiPF 6 or the like) and an organic solvent.

本発明は以下の構成からなるフッ素含有電解液の処理方法を提供する。
〔1〕フッ素化合物を含む電解液の揮発成分を減圧下で加熱して気化させる気化工程、気化したガスに含まれるフッ素成分をカルシウムと反応させてフッ化カルシウムとして固定するフッ素固定工程、気化ガスに含まれる有機溶媒成分を回収する有機溶媒回収工程を有することを特徴とするフッ素含有電解液の処理方法。
〔2〕気化工程において、電解液に少量の水または希薄な鉱酸を添加した後に減圧下で加熱して電解液の揮発成分を気化させる上記[1]に記載するフッ素含有電解液の処理方法。
〔3〕電解液の揮発成分が気化したガスを湿式処理工程に導き、該湿式処理工程において、ガスに含まれるフッ素成分と有機溶媒成分を水冷捕集し、捕集した液を油水分離し、有機溶媒成分を回収する一方、分離した水相にカルシウム化合物を添加して水相中のフッ素とカルシウムを反応させてフッ化カルシウムを生成させる上記[1]または上記[2]に記載するフッ素含有電解液の処理方法。
〔4〕電解液の揮発成分が気化したガスを湿式処理工程に導き、該湿式処理工程において、ガスに含まれるフッ素成分と有機溶媒成分を凝縮して捕集し、捕集した液にカルシウム化合物を添加してフッ素とカルシウムを反応させてフッ化カルシウムを生成させる上記[1]または上記[2]に記載するフッ素含有電解液の処理方法。
〔5〕電解液の揮発成分が気化したガスを湿式処理工程に導き、該湿式処理工程において、カルシウム化合物混合液と接触させてガス中のフッ素を該混合液に吸収させるとともにフッ素とカルシウムを反応させてフッ化カルシウムを生成させ、さらに該混合液を通過したガスを凝縮して有機溶媒成分を回収する上記[1]または上記[2]の何れかに記載するフッ素含有電解液の処理方法。
〔6〕電解液の揮発成分が気化したガスを乾式処理工程に導き、該乾式処理工程において、気化ガスをカルシウム化合物の充填層に通じてガス中のフッ素とカルシウムを反応させてフッ化カルシウムを生成させ、さらに該充填層を通過したガスを凝縮して有機溶媒成分を回収する上記[1]または上記[2]の何れかに記載するフッ素含有電解液の処理方法。
〔7〕5kPa〜常圧の減圧下、80〜150℃に加熱して電解液の揮発成分を気化させ、気化したガスを上記湿式処理工程または上記乾式処理工程に導く上記[3]〜上記[6]の何れかに記載するフッ素含有電解液の処理方法。
〔8〕1kPa以下の減圧下、80〜150℃に加熱して電解液の揮発成分を気化させ、気化したガスを上記乾式処理工程に導く上記[1]記載するフッ素含有電解液の処理方法。
〔9〕フッ化カルシウムを回収して再資源化し、また、回収した有機溶媒成分を燃料または代替燃料として利用する上記[1]〜上記[8]の何れかに記載するフッ素含有電解液の処理方法。
〔10〕フッ素化合物を含む電解液を含有する使用済み電池の開口部に管路を接続し、使用済み電池を減圧下で加熱して電解液の揮発成分を気化し、気化したガスを、上記管路を通じてフッ素固定工程および有機溶媒回収工程に導いて処理する上記[1]〜上記[9]の何れかに記載するフッ素含有電解液の処理方法。
〔11〕使用済みリチウムイオン電池の安全弁を開口し、該開口に管路を接続し、減圧下で加熱して電解液の揮発成分を気化する上記[1]〜上記[10]の何れかに記載するフッ素含有電解液の処理方法。
〔12〕複数個の使用済みリチウムイオン電池の安全弁を開口し、これらの電池を密閉容器に収納して該容器に管路を接続し、減圧下で加熱して電解液の揮発成分を気化する上記[1]〜上記[10]の何れかに記載するフッ素含有電解液の処理方法。
This invention provides the processing method of the fluorine-containing electrolyte solution which consists of the following structures.
[1] A vaporization step of heating and vaporizing a volatile component of an electrolytic solution containing a fluorine compound, a fluorine fixation step of reacting the fluorine component contained in the vaporized gas with calcium to fix it as calcium fluoride, a vaporized gas The processing method of the fluorine-containing electrolyte solution characterized by having the organic-solvent collection process which collect | recovers the organic-solvent component contained in this.
[2] The method for treating a fluorine-containing electrolytic solution according to the above [1], wherein in the vaporizing step, a small amount of water or dilute mineral acid is added to the electrolytic solution and then heated under reduced pressure to vaporize a volatile component of the electrolytic solution. .
[3] The gas in which the volatile component of the electrolytic solution is vaporized is guided to a wet treatment process, and in the wet treatment process, the fluorine component and the organic solvent component contained in the gas are collected in water, and the collected liquid is separated into oil and water. Fluorine-containing as described in [1] or [2] above, wherein the organic solvent component is recovered while a calcium compound is added to the separated aqueous phase to react fluorine and calcium in the aqueous phase to produce calcium fluoride Electrolyte treatment method.
[4] The gas in which the volatile component of the electrolytic solution is vaporized is introduced into a wet treatment step, and in the wet treatment step, the fluorine component and the organic solvent component contained in the gas are condensed and collected, and the calcium compound is collected in the collected solution. The method for treating a fluorine-containing electrolytic solution according to the above [1] or [2], wherein the fluorine is reacted with calcium to produce calcium fluoride.
[5] The gas in which the volatile component of the electrolyte is vaporized is introduced into a wet treatment process, and in the wet treatment process, fluorine in the gas is absorbed into the mixed liquid by contacting with the calcium compound mixed liquid and reacts with fluorine and calcium. The method for treating a fluorine-containing electrolytic solution according to any one of [1] or [2] above, wherein calcium fluoride is produced and the gas that has passed through the mixed solution is condensed to recover the organic solvent component.
[6] The gas in which the volatile component of the electrolytic solution is vaporized is introduced into a dry treatment process, and in the dry treatment process, the vaporized gas is passed through a packed bed of calcium compounds to react fluorine and calcium in the gas to produce calcium fluoride. The method for treating a fluorine-containing electrolytic solution according to any one of the above [1] or [2], wherein the organic solvent component is recovered by condensing the gas that has been generated and further passed through the packed bed.
[7] Under the reduced pressure of 5 kPa to normal pressure, heat to 80 to 150 ° C. to vaporize the volatile components of the electrolytic solution, and lead the vaporized gas to the wet processing step or the dry processing step. [6] The method for treating a fluorine-containing electrolytic solution according to any one of [6].
[8] The method for treating a fluorine-containing electrolytic solution according to the above [1], wherein the volatile component of the electrolytic solution is vaporized by heating to 80 to 150 ° C. under a reduced pressure of 1 kPa or less, and the vaporized gas is led to the dry treatment step.
[9] Treatment of the fluorine-containing electrolyte solution according to any one of [1] to [8] above, wherein calcium fluoride is recovered and recycled, and the recovered organic solvent component is used as a fuel or an alternative fuel. Method.
[10] A pipe line is connected to an opening of a used battery containing an electrolytic solution containing a fluorine compound, and the used battery is heated under reduced pressure to vaporize a volatile component of the electrolytic solution. The method for treating a fluorine-containing electrolytic solution according to any one of the above [1] to [9], wherein the treatment is conducted through a conduit to a fluorine fixing step and an organic solvent recovery step.
[11] A safety valve of a used lithium ion battery is opened, a pipe line is connected to the opening, and the volatile component of the electrolytic solution is vaporized by heating under reduced pressure. The processing method of the fluorine-containing electrolyte solution to describe.
[12] Open a safety valve of a plurality of used lithium ion batteries, store these batteries in a sealed container, connect a conduit to the container, and heat under reduced pressure to vaporize the volatile components of the electrolyte. The method for treating a fluorine-containing electrolyte solution according to any one of [1] to [10] above.

〔具体的な説明〕
以下、本発明を具体的に説明する。なお、%は質量%である。
本発明の処理方法は、フッ素化合物を含む電解液の揮発成分を減圧下で加熱して気化させる気化工程、気化したガスに含まれるフッ素成分をカルシウムと反応させてフッ化カルシウムとして固定するフッ素固定工程、気化ガスに含まれる有機溶媒成分を回収する有機溶媒回収工程を有することを特徴とするフッ素含有電解液の処理方法である。
[Specific description]
Hereinafter, the present invention will be specifically described. In addition,% is the mass%.
The treatment method of the present invention is a vaporization step in which a volatile component of an electrolyte solution containing a fluorine compound is heated and vaporized under reduced pressure, and a fluorine fixation in which the fluorine component contained in the vaporized gas is reacted with calcium and fixed as calcium fluoride. A process for treating a fluorine-containing electrolytic solution, comprising: an organic solvent recovery step of recovering an organic solvent component contained in the step and vaporized gas.

リチウムイオン電池などに使用されている電解液には、電解質のフッ素化合物と、有機溶媒が含まれている。フッ素化合物は主にヘキサフルオロリン酸リチウム(LiPF6)であり、有機溶媒はジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DEC)、プロピレンカーボネート(PC),エチレンカーボネート(EC)などの炭酸エステル類である。このうちDMCは消防法第四類第一石油類、EMC、DECは消防法第四類第二石油類に分類される引火性物質である。 Electrolytic solutions used in lithium ion batteries and the like contain an electrolyte fluorine compound and an organic solvent. The fluorine compound is mainly lithium hexafluorophosphate (LiPF 6 ), and the organic solvent is dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), dimethyl carbonate (DEC), propylene carbonate (PC), ethylene carbonate (EC). Such as carbonate esters. Of these, DMC is a flammable substance classified as Fire Class 4 Class 1 Petroleum, and EMC and DEC are Class 4 Class 2 Petroleum Law.

そこで、本発明の処理方法はリチウムイオン電池から安全に電解液を取り出すために、使用済みのリチウムイオン電池を放電した後に、包装シートを剥離し、安全弁を利用して電解液を減圧気化させる。リチウムイオン電池には電池の過剰な内部圧を下げるために安全弁が設けられている。この安全弁を開口し、図1に示すように、この開口11に管路12を接続し、電池を減圧下で加熱して電解液の揮発成分を気化し、発生したガスを管路12を通じて処理工程に導く。 Therefore, in order to safely remove the electrolyte from the lithium ion battery, the treatment method of the present invention discharges the used lithium ion battery, peels off the packaging sheet, and vaporizes the electrolyte under reduced pressure using a safety valve. A lithium ion battery is provided with a safety valve in order to reduce the excessive internal pressure of the battery. The safety valve is opened, and a pipe 12 is connected to the opening 11 as shown in FIG. 1, the battery is heated under reduced pressure to vaporize volatile components of the electrolyte, and the generated gas is treated through the pipe 12. Guide to the process.

〔気化工程〕
電解液に含まれる有機溶媒のうち、DMCの沸点は90℃、EMCの沸点は109℃、DECの沸点は127℃、PCの沸点は240℃であり、ECの沸点は244℃であり、電解液をこれらの沸点より高い温度状態にして上記揮発成分(DMC、EMC、DEC、PC、EC等)を気化させる。LiPF6は加熱あるいは加水分解することによってヘキサフルオロリン酸リチウムを分解し、フッ素成分を気化する。
[Vaporization process]
Among the organic solvents contained in the electrolytic solution, the boiling point of DMC is 90 ° C, the boiling point of EMC is 109 ° C, the boiling point of DEC is 127 ° C, the boiling point of PC is 240 ° C, and the boiling point of EC is 244 ° C. The liquid is heated to a temperature higher than these boiling points to vaporize the volatile components (DMC, EMC, DEC, PC, EC, etc.). LiPF 6 decomposes lithium hexafluorophosphate by heating or hydrolysis, and vaporizes the fluorine component.

具体的には、大気圧(101.3kPa)での0℃、10℃、20℃、80℃、150℃は、15kPa、10kPa、5kPa、1kPa、0.1kPaの減圧下ではおのおの表1に示す大気圧換算温度状態になるので、選択した減圧下で電解液の換算温度が、例えば、244℃以上になるように加熱することによって、DMC、EMC、DEC、PC、EC等を揮発させることができる。 Specifically, 0 ° C., 10 ° C., 20 ° C., 80 ° C., and 150 ° C. at atmospheric pressure (101.3 kPa) are shown in Table 1 under reduced pressures of 15 kPa, 10 kPa, 5 kPa, 1 kPa, and 0.1 kPa. Since it is in the atmospheric pressure conversion temperature state, DMC, EMC, DEC, PC, EC, etc. can be volatilized by heating so that the conversion temperature of the electrolyte is 244 ° C. or higher under the selected reduced pressure. .

例えば、電池内部を5kPaに減圧して、80℃〜150℃に加熱すると、電解液は170℃〜251℃の状態になるので、電解液に含まれるDMC、EMC、DEC、PC、EC、熱分解したフッ素化合物を揮発させることができる。なお、5kPaより低く、例えば1kPa〜0.1kPaに減圧して80℃〜120℃に加熱しても良い。 For example, if the inside of the battery is depressurized to 5 kPa and heated to 80 ° C. to 150 ° C., the electrolyte becomes 170 ° C. to 251 ° C. Therefore, DMC, EMC, DEC, PC, EC, heat contained in the electrolyte The decomposed fluorine compound can be volatilized. The pressure may be lower than 5 kPa, for example, reduced to 1 kPa to 0.1 kPa and heated to 80 ° C. to 120 ° C.

Figure 2013229326
Figure 2013229326

電解液に少量の水を添加した後に減圧下で加熱して電解液の揮発成分を気化させることによって、次式に示すように、LiPF6は水と逐次的に反応してリン酸とフッ化水素に加水分解するので、LiPF6の分解による気化を促進することができる。 By adding a small amount of water to the electrolytic solution and heating it under reduced pressure to vaporize the volatile components of the electrolytic solution, LiPF 6 reacts sequentially with water to give phosphoric acid and fluoride as shown in the following formula. because hydrolyzed to hydrogen, can be accelerated vaporization by decomposition of LiPF 6.

LiPF6+H2O → LiF+2HF(↑)+POF3
POF3+H2O → HPO22+HF(↑)
HPO22+H2O → H2PO3F+HF(↑)
2PO3F+H2O → H3PO4+HF(↑)
LiPF 6 + H 2 O → LiF + 2HF (↑) + POF 3
POF 3 + H 2 O → HPO 2 F 2 + HF (↑)
HPO 2 F 2 + H 2 O → H 2 PO 3 F + HF (↑)
H 2 PO 3 F + H 2 O → H 3 PO 4 + HF (↑)

水を添加して気化させる方法によれば、フッ素をHFとして大量に気化させることができる。また、上記式に示すように、フッ素はHFとして気化するがリンはH3PO4となって溶液として残留するため、フッ素とリンの分別効果が良い。水の添加量は電解液重量に対して5%〜20%が望ましい。添加する水の形態は液体または気体(水蒸気)のどちらでもよい。水の添加方法は、あらかじめ添加する方法、あるいは反応途中で逐次的に添加する方法、あるいは連続的に供給する方法、あるいはこれらを組み合わせた方法いずれでもよい。 According to the method of vaporizing by adding water, a large amount of fluorine can be vaporized as HF. Further, as shown in the above formula, fluorine vaporizes as HF, but phosphorus remains as a solution as H 3 PO 4 , so that the effect of separating fluorine and phosphorus is good. The amount of water added is desirably 5% to 20% with respect to the weight of the electrolyte. The form of water to be added may be either liquid or gas (water vapor). The method of adding water may be a method of adding in advance, a method of adding sequentially during the reaction, a method of supplying continuously, or a method combining these.

電解液に少量の希薄な鉱酸を添加することによっても同様にLiPF6の分解を促進できる。鉱酸には硫酸、塩酸、硝酸などを用いることができる。鉱酸の濃度は0.1M〜5Mが適しており、添加量は電解液重量に対して5%〜20%が望ましい。これよりも高い濃度だと減圧蒸留したときに硫酸や塩酸や硝酸も同時に揮発して回収されるため、フッ素をフッ化カルシウムとして回収するときに純度を低下させるなどの悪影響を及ぼす。 The decomposition of LiPF 6 can be similarly promoted by adding a small amount of dilute mineral acid to the electrolytic solution. As the mineral acid, sulfuric acid, hydrochloric acid, nitric acid and the like can be used. The concentration of the mineral acid is suitably 0.1M to 5M, and the addition amount is desirably 5% to 20% with respect to the weight of the electrolyte. If the concentration is higher than this, sulfuric acid, hydrochloric acid, and nitric acid are also volatilized and recovered at the same time when distilled under reduced pressure, and therefore, when fluorine is recovered as calcium fluoride, the purity is lowered.

気化した揮発成分のガスを湿式処理工程または乾式処理工程に導いてフッ素をフッ化カルシムとして固定し、有機溶媒(油相)を回収する。 The vaporized volatile component gas is introduced into a wet treatment process or a dry treatment process to fix fluorine as calcium fluoride, and an organic solvent (oil phase) is recovered.

〔湿式処理〕
湿式処理工程の一例(水冷捕集)を図1に示す。図示するように、電池10は、加温設備15に収納されており、電池10の開口11から延びる管路12は冷却器16および水冷トラップ14を経て真空ポンプ13に接続されている。図示する例では、二段の水冷トラップが設けられている。水冷トラップには水が入れられており、0℃〜10℃に保たれている。加温設備15によって電池10が加温され、さらに真空ポンプ13によって減圧された状態で電解液が気化し、この気化ガスは真空ポンプ13に吸引されて管路12を通じて冷却器16に導かれ、ここで冷却されて凝縮液になり、さらに水冷トラップ14に導かれる。このとき、管内の減圧条件は一定圧力で維持してもよく、または定速度で圧力を下げ、あるいは一定時間ごとに大気圧と減圧を交互に繰り返すなどの変化をさせてもよい。減圧度の調整は真空ポンプの稼動を制御することによって容易に行うことができる。水冷トラップ14でフッ素化合物(HF等)と有機溶媒成分(有機成分:DMC、EMC、DEC、PC、EC等)が水冷捕集される。
[Wet treatment]
An example of wet processing (water-cooled collection) is shown in FIG. As shown in the figure, the battery 10 is housed in a heating facility 15, and a conduit 12 extending from the opening 11 of the battery 10 is connected to a vacuum pump 13 via a cooler 16 and a water-cooled trap 14. In the illustrated example, a two-stage water-cooled trap is provided. The water-cooled trap is filled with water and is kept at 0 ° C to 10 ° C. The battery 10 is heated by the heating equipment 15 and further the electrolyte solution is vaporized in a state where the pressure is reduced by the vacuum pump 13, and this vaporized gas is sucked into the vacuum pump 13 and led to the cooler 16 through the conduit 12. It is cooled here to become a condensate, and further led to the water-cooled trap 14. At this time, the decompression condition in the pipe may be maintained at a constant pressure, or may be changed such that the pressure is decreased at a constant speed, or atmospheric pressure and decompression are alternately repeated at regular time intervals. The degree of decompression can be easily adjusted by controlling the operation of the vacuum pump. The water-cooled trap 14 collects the fluorine compound (HF or the like) and the organic solvent component (organic components: DMC, EMC, DEC, PC, EC, etc.) in a water-cooled manner.

このように水冷トラップ14では有機溶媒とフッ化水素が捕集され、これらは水相と有機相に分離する。分離した水相を回収する。この水相には気化ガス中のフッ素成分が含まれている。水冷トラップ14は複数段を直列あるいは並列またはその両方を組み合わせて設置してよい。 Thus, the water-cooled trap 14 collects the organic solvent and hydrogen fluoride, which are separated into an aqueous phase and an organic phase. The separated aqueous phase is recovered. This aqueous phase contains a fluorine component in the vaporized gas. The water-cooled trap 14 may be installed in a plurality of stages in series or in parallel or a combination of both.

水相(フッ素含有水)はpH2以下の酸性水である。このフッ素含有水にカルシウム化合物(炭酸カルシウム、消石灰、生石灰など)を添加してpH5.5〜7.0に中和し、液中のフッ素とカルシウムを反応させてフッ化カルシウムを沈澱させる。このフッ化カルシウムを固液分離して回収する。 The aqueous phase (fluorine-containing water) is acidic water having a pH of 2 or less. Calcium compounds (calcium carbonate, slaked lime, quicklime, etc.) are added to the fluorine-containing water to neutralize to pH 5.5 to 7.0, and the fluoride and calcium in the liquid are reacted to precipitate calcium fluoride. The calcium fluoride is recovered by solid-liquid separation.

〔湿式処理〕
湿式処理工程の他の例(凝縮捕集)を図2に示す。図示するように、電池10は、加温設備15に収納されており、電池10の開口11から延びる管路12は冷却器16およびトラップ14を経て真空ポンプ13に接続されている。加温設備15によって電池10が加温され、さらに真空ポンプ13によって減圧された状態で電解液が気化し、この気化ガスは真空ポンプ13に吸引されて管路12を通じて冷却器16に導かれ、ここで冷却されて凝縮液になり、この凝縮液はトラップ14に導かれる。このトラップ14でフッ素化合物(HF等)と有機溶媒成分(有機成分:DMC、EMC、DEC、PC、EC等)が捕集される。
[Wet treatment]
Another example (condensation collection) of the wet processing step is shown in FIG. As shown in the figure, the battery 10 is housed in a heating facility 15, and a conduit 12 extending from the opening 11 of the battery 10 is connected to a vacuum pump 13 through a cooler 16 and a trap 14. The battery 10 is heated by the heating equipment 15 and further the electrolyte solution is vaporized in a state where the pressure is reduced by the vacuum pump 13. It is cooled here to become a condensate, and this condensate is guided to the trap 14. The trap 14 collects a fluorine compound (HF, etc.) and an organic solvent component (organic component: DMC, EMC, DEC, PC, EC, etc.).

トラップ14で回収した液は有機溶媒成分が主体である。最初に水や希硫酸等を添加した場合には水分も含んでいるが、この有機溶媒成分は水の溶解性が高く、少量の水分は溶解するため液相は分離せず有機相のみである。トラップ14で回収した液はpH2以下のフッ素含有水である。このフッ素含有水にカルシウム化合物(消石灰、生石灰など)を添加してpH5.5〜7.0に中和し、液中のフッ素とカルシウムを反応させてフッ化カルシウムを沈澱させる。これを固液分離して液相の有機溶媒と固形分のフッ化カルシウムをおのおの回収する。 The liquid recovered by the trap 14 is mainly composed of organic solvent components. When water or dilute sulfuric acid is added first, it also contains water, but this organic solvent component is highly soluble in water, and a small amount of water dissolves, so the liquid phase is not separated and only the organic phase. . The liquid collected by the trap 14 is fluorine-containing water having a pH of 2 or less. A calcium compound (slaked lime, quicklime, etc.) is added to the fluorine-containing water to neutralize the pH to 5.5 to 7.0, and the fluoride and calcium in the liquid are reacted to precipitate calcium fluoride. This is subjected to solid-liquid separation to recover a liquid organic solvent and solid calcium fluoride.

湿式処理工程の他の例(カルシウム吸収捕集)を図3に示す。図示するように、電池10は、加温設備15に収納されており、電池10の開口11から延びる管路12はCa混合液の容器17および冷却器16およびトラップ14を経て真空ポンプ13に接続されている。加温設備15によって電池10が加温され、さらに真空ポンプ13によって減圧された状態で電解液が気化し、この気化ガスは真空ポンプ13に吸引されて管路12を通じてCa混合液の容器17に導かれ、ここでフッ素成分がCa混合液に吸収され、カルシウム化合物と反応してフッ化カルシウムに固定化される。容器17を通過した気化ガスは冷却器16に導かれ、冷却されて凝縮液になり、トラップ14に導かれる。このトラップ14で有機溶媒成分(有機成分:DMC、EMC、DEC、PC、EC等)が捕集される。 Another example of wet processing (calcium absorption collection) is shown in FIG. As shown in the figure, the battery 10 is housed in a heating facility 15, and a pipe line 12 extending from the opening 11 of the battery 10 is connected to a vacuum pump 13 via a Ca mixture container 17, a cooler 16 and a trap 14. Has been. The battery 10 is heated by the heating equipment 15 and further the electrolyte solution is vaporized in a state where the pressure is reduced by the vacuum pump 13, and this vaporized gas is sucked into the vacuum pump 13 and passed through the pipe 12 to the Ca mixed solution container 17. Here, the fluorine component is absorbed into the Ca mixed solution, reacts with the calcium compound, and is fixed to calcium fluoride. The vaporized gas that has passed through the container 17 is led to the cooler 16, cooled to become a condensed liquid, and led to the trap 14. The trap 14 collects organic solvent components (organic components: DMC, EMC, DEC, PC, EC, etc.).

このようにCa混合液の容器17ではフッ素成分がカルシウム化合物と反応してフッ化カルシウムを生成する。Ca混合液のカルシウム化合物としては炭酸カルシウム、水酸化カルシウム、酸化カルシウム、硫酸カルシウム、塩化カルシウム、硝酸カルシウムを使用することができるが、安価で回収するフッ化カルシウムの造粒ができる炭酸カルシウムが望ましい。Ca混合液の液体としては、水あるいは有機溶媒が使用できる。液体が有機溶媒のときには電解液成分(DMC、EMC、DEC、PC、EC等)を使用してもよい。電解液の有機溶媒を使用するときには、気化したガスの一部を冷却して凝縮させてCa混合液の容器17に捕集すればよい。 Thus, in the Ca mixed solution container 17, the fluorine component reacts with the calcium compound to generate calcium fluoride. Calcium carbonate, calcium hydroxide, calcium oxide, calcium sulfate, calcium chloride, and calcium nitrate can be used as the calcium compound in the Ca mixed solution, but calcium carbonate capable of granulating calcium fluoride to be recovered at low cost is desirable. . As the liquid of the Ca mixed solution, water or an organic solvent can be used. When the liquid is an organic solvent, an electrolyte component (DMC, EMC, DEC, PC, EC, etc.) may be used. When the organic solvent of the electrolytic solution is used, a part of the vaporized gas may be cooled and condensed and collected in the Ca mixed solution container 17.

Ca混合液の液温が低下すると、気化した有機溶媒が大量に凝縮して液量が増大してしまう。Ca混合液の液量を安定させるために、液を保温あるいは加温して気化させて液量を調整することが望ましい。なお、Ca混合液の容器17は複数段を直列または並列に設置し、あるいは直列と並列を組み合わせて設置してもよい。 When the liquid temperature of Ca liquid mixture falls, the vaporized organic solvent will condense in large quantities, and liquid amount will increase. In order to stabilize the amount of the Ca mixed solution, it is desirable to adjust the amount of the liquid by keeping it warm or vaporizing it. The Ca mixed solution container 17 may be installed in a plurality of stages in series or in parallel, or in combination of series and parallel.

Ca混合液の容器17において生成したフッ化カルシウムは、液分を揮発させて固形物を乾燥し、あるいは懸濁物を固液分離することで回収することができる。フッ素を除去した液分は、新しいカルシウム化合物を補充して、再びCa混合液として使用することができる。 The calcium fluoride produced in the Ca mixed solution container 17 can be recovered by volatilizing the liquid and drying the solid or by separating the suspension into solid and liquid. The liquid from which the fluorine has been removed can be replenished with a new calcium compound and used again as a Ca mixture.

トラップ14では有機溶媒が捕集される。トラップ14で回収した液は有機溶媒成分が主体である。最初に水や希硫酸等を添加した場合には水分も含んでいるが、この有機溶媒成分は水の溶解性が高く、少量の水分は溶解することができるため液相は分離せず有機相のみである。 The trap 14 collects the organic solvent. The liquid recovered by the trap 14 is mainly composed of organic solvent components. When water or dilute sulfuric acid is added first, it also contains water, but this organic solvent component is highly soluble in water and can dissolve a small amount of water, so the liquid phase does not separate and the organic phase Only.

〔乾式処理〕
乾式処理工程を図4に示す。図示するように、気化ガスをカルシウム化合物の充填層に通じてガス中のフッ素をカルシウムと反応させてフッ化カルシウムを生成させる。このフッ化カルシウムは充填層から抜き出し,新しいカルシウム化合物を充填層に補充して使用する。一方、該充填層を通過したガスを凝縮トラップに導いて有機溶媒成分を回収する。カルシウム化合物の充填層は複数段を直列あるいは並列またはその両方を組み合わせて設置してよい。
(Dry processing)
The dry treatment process is shown in FIG. As shown in the figure, vaporized gas is passed through a packed bed of calcium compounds to react fluorine in the gas with calcium to produce calcium fluoride. This calcium fluoride is extracted from the packed bed and used by replenishing the packed bed with a new calcium compound. On the other hand, the gas that has passed through the packed bed is led to a condensation trap to recover the organic solvent component. The packed bed of calcium compounds may be provided in a plurality of stages in series or in parallel or a combination of both.

乾式処理の凝集トラップでは、水は不要であり、捕集されたガスは凝縮して有機溶媒相のみとなるため、燃焼設備の燃料や助燃剤に利用できる。また、乾式処理は操作が簡単であり、排水処理を必要としない。 In the dry processing coagulation trap, water is not necessary, and the collected gas is condensed and becomes only an organic solvent phase, so that it can be used as a fuel or a combustion aid for combustion equipment. Also, the dry process is easy to operate and does not require waste water treatment.

気化工程において、水の蒸気圧よりも高い圧力で気化したときには、気化ガスを湿式処理工程または乾式処理工程に導いて処理することができる。一方、水の蒸気圧よりも低い圧力で気化したときには、水冷捕集は適さないので、気化ガスを乾式処理工程に導いて処理する。 In the vaporization step, when vaporization is performed at a pressure higher than the vapor pressure of water, the vaporized gas can be led to a wet treatment step or a dry treatment step for treatment. On the other hand, when vaporized at a pressure lower than the vapor pressure of water, water-cooled collection is not suitable, and the vaporized gas is introduced into the dry treatment process for treatment.

冷却器16で冷却されるのは5kPa程度の減圧までであり、気化ガスがこれより強い減圧状態、例えば、1kPa、0.1kPaの減圧状態で加熱して気化させた場合、冷却器16で10℃に冷却しても水の蒸気圧よりも低いので、水冷トラップは適さない。この場合には気化ガスを乾式処理工程に導いて処理する。 Cooling by the cooler 16 is performed until the pressure is reduced to about 5 kPa, and when the vaporized gas is heated and vaporized in a decompression state stronger than this, for example, 1 kPa and 0.1 kPa, the cooler 16 is 10%. A water-cooled trap is not suitable because it is lower than the vapor pressure of water even when cooled to ° C. In this case, the vaporized gas is introduced into the dry treatment process.

一方、5kPa〜常圧の減圧状態で加熱して気化させた場合、冷却器16で10℃以下に冷却すれば、水の蒸気圧よりも高いので、気化ガスを湿式処理工程に導いて処理することができる。なお、乾式工程に導入しても良い。 On the other hand, when heated and vaporized in a reduced pressure state of 5 kPa to normal pressure, if cooled to 10 ° C. or lower by the cooler 16, the vapor pressure is higher than the vapor pressure of water. be able to. In addition, you may introduce | transduce into a dry process.

本発明の処理方法によれば、電解液からフッ素を純度の高いフッ化カルシウムとして回収するので、フッ酸製造の原料またはセメント原料として再資源化することができる。本発明の処理方法によれば、純度80%以上のフッ化カルシウムを得ることができる。 According to the treatment method of the present invention, fluorine is recovered from the electrolytic solution as high-purity calcium fluoride, so that it can be recycled as a raw material for producing hydrofluoric acid or a raw material for cement. According to the treatment method of the present invention, calcium fluoride having a purity of 80% or more can be obtained.

さらに、本発明の処理方法によれば電解液の有機溶媒を回収して燃料または代替燃料として利用することができる。本発明の処理方法によって回収した有機溶媒成分はフッ素が分離されているので、燃料として使用したときにフッ化水素などの有害物質が発生せず、安全に使用することができる。 Furthermore, according to the treatment method of the present invention, the organic solvent of the electrolytic solution can be recovered and used as fuel or alternative fuel. Since the organic solvent component recovered by the treatment method of the present invention is separated from fluorine, no harmful substances such as hydrogen fluoride are generated when used as a fuel and can be used safely.

また、本発明の処理方法によれば、電池から電解液を気化させて取り出すので、電池を冷凍ないし高温で燃焼することなく無害化することができるため、後段の材料リサイクルを安全かつ効率よく行うことができる。 Further, according to the treatment method of the present invention, since the electrolyte is vaporized and taken out from the battery, the battery can be made harmless without being frozen or burned at a high temperature, so that material recycling in the subsequent stage is performed safely and efficiently. be able to.

湿式処理(水冷捕集)を示す概念図。The conceptual diagram which shows a wet process (water-cooled collection). 湿式処理(凝縮捕集)を示す概念図。The conceptual diagram which shows a wet process (condensation collection). 湿式処理(カルシウム吸収捕集)を示す概念図。The conceptual diagram which shows a wet process (calcium absorption collection). 乾式処理を示す概念図。The conceptual diagram which shows a dry process.

本発明の実施例を以下に示す。なお、有機相液の成分はガスクロマトグラフ質量分析計によって分析した。液のpHはガラス電極法によって分析した。フッ素濃度はフッ化物イオン電極法によって分析した。実施例2〜5の電解液は(1mol/L、LiPF6 [EC/DMC/MEC/DEC=30/30/30/30/10=(v/v/v/v)])である。 Examples of the present invention are shown below. In addition, the component of the organic phase liquid was analyzed with a gas chromatograph mass spectrometer. The pH of the liquid was analyzed by the glass electrode method. The fluorine concentration was analyzed by the fluoride ion electrode method. The electrolyte solutions of Examples 2 to 5 are (1 mol / L, LiPF 6 [EC / DMC / MEC / DEC = 30/30/30/30/10 = (v / v / v / v)]).

〔実施例1:水冷捕集〕
自動車用の大型電池セル(リチウムイオン電池、1.66kg)を放電して包装シートを剥離し、安全弁を開いて水を18g添加し、安全弁の開口に管路を接続し、真空ポンプによって5kPaに減圧して150℃に2時間オイルヒーターに浸漬して加熱した。発生したガスを冷却管(4℃)、水冷トラップ(液量300mL)の順に導いて捕集した。これを室温に静置して水相と有機相に分離した。分離した水相340mLを、有機相120mLを回収した。この水相のフッ素濃度は10g/L、pH2であった。これに消石灰6.0gを加えて沈澱を生成させた。回収した沈澱を粉末X線回折によって分析し、フッ化カルシウムであることを確認した。フッ化カルシウムの回収量は6.3gであり、純度80%であった。一方、分離した有機相を回収し、成分を分析したところ、溶液の成分はDMC、MEC、DEC、ECであった。
[Example 1: Water-cooled collection]
A large battery cell (lithium ion battery, 1.66 kg) for automobiles is discharged, the packaging sheet is peeled off, the safety valve is opened, 18 g of water is added, a pipe line is connected to the opening of the safety valve, and the pressure is reduced to 5 kPa by a vacuum pump. The pressure was reduced, and the mixture was heated by being immersed in an oil heater at 150 ° C. for 2 hours. The generated gas was collected in the order of a cooling pipe (4 ° C.) and a water-cooled trap (liquid amount: 300 mL). This was left at room temperature to separate into an aqueous phase and an organic phase. The separated aqueous phase (340 mL) and the organic phase (120 mL) were recovered. The fluorine concentration of this aqueous phase was 10 g / L and pH2. To this, 6.0 g of slaked lime was added to form a precipitate. The recovered precipitate was analyzed by powder X-ray diffraction and confirmed to be calcium fluoride. The recovered amount of calcium fluoride was 6.3 g and the purity was 80%. On the other hand, when the separated organic phase was recovered and the components were analyzed, the components of the solution were DMC, MEC, DEC, and EC.

〔実施例2:水冷捕集〕
100mLの電解液に1.5mol/Lの硫酸水溶液を21.5g添加し、管路を接続し、真空ポンプにより5kPaに減圧して120℃に2時間オイルヒーターに浸漬して加熱した。発生したガスを冷却管(4℃)、水冷トラップ(液量200mL)の順に導いて捕集した。これを室温に静置して水相と有機相に分離し、水相230mLを、有機相35mLを回収した。この水相のフッ素濃度は43g/L、pH2であった。水相を回収し、消石灰18gを加えて沈澱を生成させた。回収した沈澱を粉末X線回折によって分析し、フッ化カルシウムであることを確認した。フッ化カルシウムの回収量は20g、純度92%であり,フッ酸製造原料として活用できることがわかった。一方、分離した有機相を回収し、成分を分析したところ、溶液の成分はDMC、MEC、DEC、ECであった。
[Example 2: Water-cooled collection]
21.5 g of a 1.5 mol / L sulfuric acid aqueous solution was added to 100 mL of the electrolytic solution, a pipe line was connected, the pressure was reduced to 5 kPa with a vacuum pump, and the mixture was immersed in an oil heater for 2 hours and heated. The generated gas was collected in the order of a cooling pipe (4 ° C.) and a water-cooled trap (liquid amount: 200 mL). This was allowed to stand at room temperature to separate into an aqueous phase and an organic phase, and 230 mL of the aqueous phase and 35 mL of the organic phase were recovered. This aqueous phase had a fluorine concentration of 43 g / L and a pH of 2. The aqueous phase was recovered and 18 g of slaked lime was added to form a precipitate. The recovered precipitate was analyzed by powder X-ray diffraction and confirmed to be calcium fluoride. The recovered amount of calcium fluoride was 20 g and the purity was 92%, and it was found that it could be used as a raw material for producing hydrofluoric acid. On the other hand, when the separated organic phase was recovered and the components were analyzed, the components of the solution were DMC, MEC, DEC, and EC.

〔実施例3:凝集捕集〕
100mLの電解液に水を21.5g添加し、管路を接続し、真空ポンプにより5kPaに減圧して120℃に2時間オイルヒーターに浸漬して加熱した。発生したガスを冷却管(4℃)で凝縮させ、捕集瓶に捕集した。回収液は95mLであり、有機相のみ回収された。回収液のフッ素濃度は87g/L、pH2であった。これに消石灰15gを加えて沈澱を生成させた。回収した沈澱を粉末X線回折によって分析し、フッ化カルシウムであることを確認した。フッ化カルシウムの回収量は14gであり、純度93%であり、フッ酸製造原料として利用できるものであった。有機相を分析したところ、溶液の成分はDMC、MEC、DEC、ECであった。
[Example 3: Aggregation collection]
21.5 g of water was added to 100 mL of the electrolytic solution, a pipe line was connected, the pressure was reduced to 5 kPa with a vacuum pump, and the mixture was immersed in an oil heater at 120 ° C. for 2 hours and heated. The generated gas was condensed by a cooling pipe (4 ° C.) and collected in a collection bottle. The recovered liquid was 95 mL, and only the organic phase was recovered. The fluorine concentration of the recovered liquid was 87 g / L and pH2. To this, 15 g of slaked lime was added to form a precipitate. The recovered precipitate was analyzed by powder X-ray diffraction and confirmed to be calcium fluoride. The recovered amount of calcium fluoride was 14 g, the purity was 93%, and it could be used as a raw material for producing hydrofluoric acid. When the organic phase was analyzed, the components of the solution were DMC, MEC, DEC, and EC.

〔実施例4:凝集捕集〕
100mLの電解液に水を21.5g添加し、管路を接続し、120℃のオイルヒーターに浸漬した。真空ポンプにより20kPaに減圧して10分保持し、その後、真空ポンプを停止して管内を大気圧に戻した後に、再度、真空ポンプを作動して20kPaに減圧し、10分経過後に真空ポンプを停止して大気圧に戻す操作を2時間繰り返した。発生したガスを冷却管(4℃)で凝縮させ、捕集瓶に捕集した。回収液は101mLであり,有機相のみ回収された。この回収液のフッ素濃度は93g/L、pH1.9であった。これに消石灰17gを加えて沈澱を生成させた。回収した沈澱を粉末X線回折によって分析し、フッ化カルシウムであることを確認した。フッ化カルシウムの回収量は19g、純度88%であり、フッ酸製造原料として利用できるものであった。有機相を分析したところ、溶液の成分はDMC、MEC、DEC、ECであった。
[Example 4: Aggregation collection]
21.5 g of water was added to 100 mL of the electrolytic solution, a pipe line was connected, and it was immersed in an oil heater at 120 ° C. Reduce the pressure to 20 kPa with a vacuum pump and hold it for 10 minutes. After that, stop the vacuum pump and return the inside of the tube to atmospheric pressure. Then, operate the vacuum pump again to reduce the pressure to 20 kPa. The operation of stopping and returning to atmospheric pressure was repeated for 2 hours. The generated gas was condensed by a cooling pipe (4 ° C.) and collected in a collection bottle. The recovered liquid was 101 mL, and only the organic phase was recovered. The recovered solution had a fluorine concentration of 93 g / L and a pH of 1.9. To this, 17 g of slaked lime was added to form a precipitate. The recovered precipitate was analyzed by powder X-ray diffraction and confirmed to be calcium fluoride. The recovered amount of calcium fluoride was 19 g and the purity was 88%, which could be used as a raw material for producing hydrofluoric acid. When the organic phase was analyzed, the components of the solution were DMC, MEC, DEC, and EC.

〔実施例5:Ca吸収捕集〕
100mLの電解液に水を21.5g添加し、管路を接続し、真空ポンプにより15kPaに減圧して120℃に2時間オイルヒーターに浸漬して加熱した。発生したガスはカルシウム懸濁液(炭酸カルシウム30g、水100mL、30℃〜60℃で調整)に通し、気化したフッ素を吸収し、フッ化カルシウムとして固定化した。有機溶媒等は、その後の冷却器(4℃)で凝縮させ、捕集瓶に捕集した。カルシウム懸濁液で回収した沈殿は、粉末X線回折によって分析し、フッ化カルシウムと炭酸カルシウムの混合物であることを確認した。冷却器により凝縮された回収液は80mLであり,有機相のみであった。回収液のフッ素濃度は5mg/L、pH6.2であり、ほとんどフッ素を含まないものであった。有機相を分析したところ、溶液の成分はDMC、MEC、DEC、ECであった。
[Example 5: Ca absorption collection]
21.5 g of water was added to 100 mL of the electrolytic solution, a pipe line was connected, the pressure was reduced to 15 kPa by a vacuum pump, and the mixture was immersed in an oil heater for 2 hours and heated. The generated gas was passed through a calcium suspension (calcium carbonate 30 g, water 100 mL, adjusted at 30 ° C. to 60 ° C.), absorbed vaporized fluorine, and fixed as calcium fluoride. The organic solvent and the like were condensed by a subsequent cooler (4 ° C.) and collected in a collection bottle. The precipitate recovered in the calcium suspension was analyzed by powder X-ray diffraction and confirmed to be a mixture of calcium fluoride and calcium carbonate. The recovered liquid condensed by the cooler was 80 mL, and only the organic phase. The recovered solution had a fluorine concentration of 5 mg / L and a pH of 6.2, and contained almost no fluorine. When the organic phase was analyzed, the components of the solution were DMC, MEC, DEC, and EC.

〔実施例6:乾式処理〕
自動車用の大型電池セル(リチウムイオン電池、1.66kg)を放電して包装シートを剥離し、安全弁を開いて水を18g添加し、管路を接続し、真空ポンプにより5kPaに減圧して150℃に2時間オイルヒーターに浸漬して加熱した。発生したガスを炭酸カルシウムの充填層に導入した。
ガス通過後、炭酸カルシウムの充填層を取り出して成分を粉末X線回折によって分析したところ、未反応の炭酸カルシウムとフッ化カルシウムであった。一方、充填層を通過したガスを凝縮トラップ(0℃)に導いて貯留した。凝縮液の成分を分析したところ、回収液の成分はDMC、MEC、DEC、ECであり,フッ素濃度は30mg/Lであった。
[Example 6: Dry treatment]
A large battery cell (lithium ion battery, 1.66 kg) for automobiles is discharged, the packaging sheet is peeled off, a safety valve is opened, 18 g of water is added, a pipe is connected, and the pressure is reduced to 5 kPa by a vacuum pump. It was immersed in an oil heater at 2 ° C. for 2 hours and heated. The generated gas was introduced into the packed bed of calcium carbonate.
After passing through the gas, the packed layer of calcium carbonate was taken out and the components were analyzed by powder X-ray diffraction. As a result, they were unreacted calcium carbonate and calcium fluoride. On the other hand, the gas that passed through the packed bed was led to a condensation trap (0 ° C.) and stored. When the components of the condensate were analyzed, the components of the recovered liquid were DMC, MEC, DEC, and EC, and the fluorine concentration was 30 mg / L.

10−電池、11−開口、12−管路、13−真空ポンプ、14−水冷トラップ、15−加温設備、16−冷却器、17−Ca混合液の容器 10-battery, 11-opening, 12-line, 13-vacuum pump, 14-water cooling trap, 15-heating equipment, 16-cooler, 17-Ca mixed liquid container

Claims (12)

フッ素化合物を含む電解液の揮発成分を減圧下で加熱して気化させる気化工程、気化したガスに含まれるフッ素成分をカルシウムと反応させてフッ化カルシウムとして固定するフッ素固定工程、気化ガスに含まれる有機溶媒成分を回収する有機溶媒成分回収工程を有することを特徴とするフッ素含有電解液の処理方法。 Vaporization process for heating and vaporizing volatile components of electrolyte containing fluorine compounds under reduced pressure, fluorine fixing process for reacting calcium components in vaporized gas with calcium to fix them as calcium fluoride, included in vaporized gas A method for treating a fluorine-containing electrolytic solution comprising an organic solvent component recovery step of recovering an organic solvent component. 気化工程において、電解液に少量の水または希薄な鉱酸を添加した後に減圧下で加熱して電解液の揮発成分を気化させる請求項1に記載するフッ素含有電解液の処理方法。 The method for treating a fluorine-containing electrolytic solution according to claim 1, wherein, in the vaporizing step, a small amount of water or dilute mineral acid is added to the electrolytic solution and then heated under reduced pressure to vaporize a volatile component of the electrolytic solution. 電解液の揮発成分が気化したガスを湿式処理工程に導き、該湿式処理工程において、ガスに含まれるフッ素成分と有機溶媒成分を水冷捕集し、捕集した液を油水分離し、有機溶媒成分を回収する一方、分離した水相にカルシウム化合物を添加して水相中のフッ素とカルシウムを反応させてフッ化カルシウムを生成させる請求項1または請求項2に記載するフッ素含有電解液の処理方法。 The gas in which the volatile component of the electrolyte is vaporized is guided to a wet treatment process, in which the fluorine component and the organic solvent component contained in the gas are collected by water cooling, and the collected liquid is separated into oil and water, and the organic solvent component The method for treating a fluorine-containing electrolytic solution according to claim 1 or 2, wherein a calcium compound is added to the separated aqueous phase to react calcium and calcium in the aqueous phase to produce calcium fluoride. . 電解液の揮発成分が気化したガスを湿式処理工程に導き、該湿式処理工程において、ガスに含まれるフッ素成分と有機溶媒成分を凝縮して捕集し、捕集した液にカルシウム化合物を添加してフッ素とカルシウムを反応させてフッ化カルシウムを生成させる請求項1または請求項2に記載するフッ素含有電解液の処理方法。 The gas in which the volatile component of the electrolyte is vaporized is introduced into a wet treatment process, where the fluorine component and the organic solvent component contained in the gas are condensed and collected, and a calcium compound is added to the collected liquid. The method for treating a fluorine-containing electrolytic solution according to claim 1 or 2, wherein calcium fluoride is produced by reacting fluorine and calcium. 電解液の揮発成分が気化したガスを湿式処理工程に導き、該湿式処理工程において、カルシウム化合物混合液と接触させてガス中のフッ素を該混合液に吸収させるとともにフッ素とカルシウムを反応させてフッ化カルシウムを生成させ、さらに該混合液を通過したガスを凝縮して有機溶媒成分を回収する請求項1または請求項2の何れかに記載するフッ素含有電解液の処理方法。 The gas in which the volatile components of the electrolyte are vaporized is introduced into a wet treatment process, and in the wet treatment process, fluorine in the gas is absorbed into the mixed liquid by contacting with the calcium compound mixed liquid, and fluorine and calcium are reacted to form a fluorine. The processing method of the fluorine-containing electrolyte solution in any one of Claim 1 or Claim 2 which produces | generates calcium fluoride and also condenses the gas which passed this liquid mixture, and collect | recovers organic solvent components. 電解液の揮発成分が気化したガスを乾式処理工程に導き、該乾式処理工程において、気化ガスをカルシウム化合物の充填層に通じてガス中のフッ素とカルシウムを反応させてフッ化カルシウムを生成させ、さらに該充填層を通過したガスを凝縮して有機溶媒成分を回収する請求項1または請求項2の何れかに記載するフッ素含有電解液の処理方法。 The gas in which the volatile component of the electrolyte is vaporized is led to a dry treatment process, and in the dry treatment process, the vaporized gas is passed through a packed bed of calcium compounds to react fluorine and calcium in the gas to generate calcium fluoride, The method for treating a fluorine-containing electrolyte according to claim 1, further comprising condensing the gas that has passed through the packed bed to recover the organic solvent component. 5kPa〜常圧の減圧下、80〜150℃に加熱して電解液の揮発成分を気化させ、気化したガスを上記湿式処理工程または上記乾式処理工程に導く請求項3〜請求項6の何れかに記載するフッ素含有電解液の処理方法。 Any one of claims 3 to 6, which is heated to 80 to 150 ° C under a reduced pressure of 5 kPa to normal pressure to vaporize a volatile component of the electrolytic solution and guide the vaporized gas to the wet processing step or the dry processing step. The processing method of the fluorine-containing electrolyte solution described in 2. 1kPa以下の減圧下、80〜150℃に加熱して電解液の揮発成分を気化させ、気化したガスを上記乾式処理工程に導く請求項6に記載するフッ素含有電解液の処理方法。 The processing method of the fluorine-containing electrolyte solution of Claim 6 which heats to 80-150 degreeC under reduced pressure of 1 kPa or less, vaporizes the volatile component of electrolyte solution, and guides the vaporized gas to the said dry-type process process. フッ化カルシウムを回収して再資源化し、また、回収した有機溶媒成分を燃料または代替燃料として利用する請求項1〜請求項8の何れかに記載するフッ素含有電解液の処理方法。 The method for treating a fluorine-containing electrolyte solution according to any one of claims 1 to 8, wherein calcium fluoride is recovered and recycled, and the recovered organic solvent component is used as a fuel or an alternative fuel. フッ素化合物を含む電解液を含有する使用済み電池の開口部に管路を接続し、使用済み電池を減圧下で加熱して電解液の揮発成分を気化し、気化したガスを、上記管路を通じてフッ素固定工程および有機溶媒回収工程に導いて処理する請求項1〜請求項9の何れかに記載するフッ素含有電解液の処理方法。 Connect a pipe line to the opening of a used battery containing an electrolyte containing a fluorine compound, heat the used battery under reduced pressure to vaporize the volatile components of the electrolyte, and pass the vaporized gas through the pipe. The processing method of the fluorine-containing electrolyte solution in any one of Claims 1-9 which guide and process to a fluorine fixation process and an organic-solvent collection process. 使用済みリチウムイオン電池の安全弁を開口し、該開口に管路を接続し、減圧下で加熱して電解液の揮発成分を気化する請求項1〜請求項10の何れかに記載するフッ素含有電解液の処理方法。 The fluorine-containing electrolysis according to any one of claims 1 to 10, wherein a safety valve of a used lithium ion battery is opened, a pipe line is connected to the opening, and the volatile component of the electrolyte is vaporized by heating under reduced pressure. Liquid processing method. 複数個の使用済みリチウムイオン電池の安全弁を開口し、これらの電池を密閉容器に収納して該容器に管路を接続し、減圧下で加熱して電解液の揮発成分を気化する請求項1〜請求項10の何れかに記載するフッ素含有電解液の処理方法。 A safety valve for a plurality of used lithium ion batteries is opened, these batteries are housed in a sealed container, a pipe line is connected to the container, and the volatile components of the electrolyte are vaporized by heating under reduced pressure. The processing method of the fluorine-containing electrolyte solution in any one of Claims 10.
JP2013071367A 2012-03-30 2013-03-29 Treatment method for fluorine-containing electrolyte Active JP6124001B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013071367A JP6124001B2 (en) 2012-03-30 2013-03-29 Treatment method for fluorine-containing electrolyte
US14/778,701 US9843077B2 (en) 2013-03-29 2013-09-26 Method for processing fluorine-containing electrolyte solution
KR1020157026328A KR102041004B1 (en) 2013-03-29 2013-09-26 Method for processing fluorine-containing electrolyte solution
PCT/JP2013/076083 WO2014155784A1 (en) 2013-03-29 2013-09-26 Method for processing fluorine-containing electrolyte solution
CN201380074377.5A CN105144464B (en) 2013-03-29 2013-09-26 The processing method of fluorine-containing electrolyte

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012082174 2012-03-30
JP2012082174 2012-03-30
JP2013071367A JP6124001B2 (en) 2012-03-30 2013-03-29 Treatment method for fluorine-containing electrolyte

Publications (2)

Publication Number Publication Date
JP2013229326A true JP2013229326A (en) 2013-11-07
JP6124001B2 JP6124001B2 (en) 2017-05-10

Family

ID=49676713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071367A Active JP6124001B2 (en) 2012-03-30 2013-03-29 Treatment method for fluorine-containing electrolyte

Country Status (1)

Country Link
JP (1) JP6124001B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028928A (en) * 2013-06-28 2015-02-12 三菱マテリアル株式会社 Method for processing fluorine-containing electrolytic solution
CN107851860A (en) * 2015-07-03 2018-03-27 本田技研工业株式会社 The electrolyte of lithium ion battery removes method
CN109449525A (en) * 2018-12-21 2019-03-08 湖南锐异资环科技有限公司 The innoxious recovery and treatment method and device of waste lithium cell electrolyte
JP2019039028A (en) * 2017-08-23 2019-03-14 住友大阪セメント株式会社 Recovery method of valuables from used lithium ion batteries
WO2021131124A1 (en) 2019-12-26 2021-07-01 Jmエナジー株式会社 Method for manufacturing electrode, method for manufacturing power storage device, and electrode manufacturing device
CN113082967A (en) * 2021-03-25 2021-07-09 赣州步莱铽新资源有限公司 Treatment fluorination device for secondary fluorine removal of fluorine-containing molten salt electrolytic slag and implementation method thereof
CN114335784A (en) * 2015-04-28 2022-04-12 迪森费尔德有限责任公司 Method for treating used batteries, in particular rechargeable batteries, and battery treatment device
CN114534435A (en) * 2022-04-25 2022-05-27 广州天赐高新材料股份有限公司 Method and device for treating tail gas recovered from waste lithium ion batteries and recovering batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026089A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Lithium battery as well as manufacturing method and processing method of the same
JP2006004884A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Lithium battery treating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026089A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Lithium battery as well as manufacturing method and processing method of the same
JP2006004884A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Lithium battery treating method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
細見正明,大林宏至: "真空加熱分離(VTR)法による二次電池のリサイクル", 安全工学, vol. 第40巻,第6号, JPN6016042645, 15 December 2001 (2001-12-15), JP, pages 420 - 427, ISSN: 0003514270 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028928A (en) * 2013-06-28 2015-02-12 三菱マテリアル株式会社 Method for processing fluorine-containing electrolytic solution
CN114335784A (en) * 2015-04-28 2022-04-12 迪森费尔德有限责任公司 Method for treating used batteries, in particular rechargeable batteries, and battery treatment device
CN107851860A (en) * 2015-07-03 2018-03-27 本田技研工业株式会社 The electrolyte of lithium ion battery removes method
US20180198112A1 (en) * 2015-07-03 2018-07-12 Honda Motor Co., Ltd. Lithium ion battery electrolyte elimination method
US10581057B2 (en) 2015-07-03 2020-03-03 Honda Motor Co., Ltd. Lithium ion battery electrolyte elimination method
JP2019039028A (en) * 2017-08-23 2019-03-14 住友大阪セメント株式会社 Recovery method of valuables from used lithium ion batteries
CN109449525A (en) * 2018-12-21 2019-03-08 湖南锐异资环科技有限公司 The innoxious recovery and treatment method and device of waste lithium cell electrolyte
CN109449525B (en) * 2018-12-21 2023-09-26 中南大学 Harmless recovery treatment method and device for waste lithium battery electrolyte
WO2021131124A1 (en) 2019-12-26 2021-07-01 Jmエナジー株式会社 Method for manufacturing electrode, method for manufacturing power storage device, and electrode manufacturing device
CN114868218A (en) * 2019-12-26 2022-08-05 武藏能源解决方案有限公司 Method for manufacturing electrode, method for manufacturing power storage device, and electrode manufacturing device
CN113082967A (en) * 2021-03-25 2021-07-09 赣州步莱铽新资源有限公司 Treatment fluorination device for secondary fluorine removal of fluorine-containing molten salt electrolytic slag and implementation method thereof
CN114534435A (en) * 2022-04-25 2022-05-27 广州天赐高新材料股份有限公司 Method and device for treating tail gas recovered from waste lithium ion batteries and recovering batteries
CN114534435B (en) * 2022-04-25 2022-07-19 广州天赐高新材料股份有限公司 Method and device for treating tail gas recovered from waste lithium ion batteries and recovering batteries

Also Published As

Publication number Publication date
JP6124001B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
KR102041004B1 (en) Method for processing fluorine-containing electrolyte solution
JP6124001B2 (en) Treatment method for fluorine-containing electrolyte
JP6311877B2 (en) Treatment method for fluorine-containing electrolyte
JP6315198B2 (en) Treatment method for fluorine-containing electrolyte
WO2015046232A1 (en) Method for treating fluorine-containing liquid electrolyte
WO2010016471A1 (en) Processes for production of phosphorus pentafluoride and hexafluorophosphates
WO2010146710A1 (en) Method for producing tetrafluoroborate
CN101844754B (en) Preparation process of high-purity phosphorus pentafluoride
CN109449525A (en) The innoxious recovery and treatment method and device of waste lithium cell electrolyte
CN101787537B (en) Method for recovering waste nitric-hydrofluoric acid from stainless steel annealing-pickling by micro- and negative-pressure evaporation and crystallization processes
JP5032143B2 (en) How to recover hydrogen chloride
US9731968B2 (en) Process for producing fluoride gas
CN115207506A (en) Method for recovering electrolyte of waste lithium ion battery
WO2014097861A1 (en) Method and device for producing lithium salt for electrolyte for lithium cell and/or lithium ion cell
JP6311882B2 (en) Treatment method for fluorine-containing electrolyte
CN103466589B (en) A kind of preparation method of high purity lithium hexafluorophosphate
Bankole et al. Silicon exchange effects of glassware on the recovery of LiPF6: Alternative route to preparation of Li2SiF6
JP2009155129A (en) Method for producing hexafluorophosphate
Mao et al. Recycling of electrolyte from spent lithium-ion batteries
JP5252908B2 (en) Method for producing tetrafluoroborate
KR101266719B1 (en) Method for preparing phosphorus pentafluoride
JP5532181B1 (en) Method and apparatus for producing lithium salt for electrolyte of lithium battery and / or lithium ion battery
TW202349783A (en) A method of removing and safe disposal of electrolyte from spent lithium-ion batteries
TW201100329A (en) Method for producing tetrafluoroborate salt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6124001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150