JP2013229248A - Method for manufacturing battery - Google Patents

Method for manufacturing battery Download PDF

Info

Publication number
JP2013229248A
JP2013229248A JP2012101693A JP2012101693A JP2013229248A JP 2013229248 A JP2013229248 A JP 2013229248A JP 2012101693 A JP2012101693 A JP 2012101693A JP 2012101693 A JP2012101693 A JP 2012101693A JP 2013229248 A JP2013229248 A JP 2013229248A
Authority
JP
Japan
Prior art keywords
active material
particles
positive electrode
granulation
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012101693A
Other languages
Japanese (ja)
Inventor
Masahiro Morita
昌宏 森田
Yuji Yokoyama
友嗣 横山
Keisuke Ohara
敬介 大原
Yusuke Fukumoto
友祐 福本
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012101693A priority Critical patent/JP2013229248A/en
Publication of JP2013229248A publication Critical patent/JP2013229248A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a battery capable of improving filter permeability of an electrode paste and battery productivity.SOLUTION: A method for manufacturing a battery 100 comprises: a step S1 of granulating an active material particle 125 including a 1.0 to 15.0 wt% fine particle having a grain diameter of 0.1 to 3.0 μm; a step S2 of creating a paste; a step S3 of making a filter permeable; and a step S4 of forming an active material layer. A ratio of fine particles after granulation having a grain diameter of 0.1 to 3.0 μm in the granulation particle formed in the step S1 is lower than a ratio of fine particles in the active material particle 125. The ratio of fine particles after granulation in the granulation particle is not more than 10.0 wt%, and an occupation ratio of granulation particles having a grain diameter of 90 μm or lower is not less than 99.8 wt%.

Description

本発明は、電極箔上に活物質層が形成された電極板を備える電池の製造方法に関する。   The present invention relates to a method for manufacturing a battery including an electrode plate having an active material layer formed on an electrode foil.

従来より、電極箔上に活物質層が形成された電極板を備える電池が知られている。この活物質層は、活物質粒子等を用いて作成した電極ペーストを、電極箔上に塗工し乾燥させることによって形成する。電極ペーストに大きな異物等が含まれていると、電極箔に塗工する際にスジ引き等の不具合が生じ得る。このため、電極箔への塗工に先立ち、電極ペーストについてフィルタを透過させて、大きな異物等を除去しておくのが好ましい。なお、関連する従来技術として、特許文献1が挙げられる。   Conventionally, a battery including an electrode plate in which an active material layer is formed on an electrode foil is known. This active material layer is formed by applying an electrode paste prepared using active material particles or the like on an electrode foil and drying it. If the electrode paste contains large foreign matter or the like, problems such as streaking may occur when it is applied to the electrode foil. For this reason, prior to coating on the electrode foil, it is preferable to pass a filter through the electrode paste to remove large foreign matters. In addition, patent document 1 is mentioned as a related prior art.

特開2010−113874号公報JP 2010-111384 A

しかしながら、フィルタの目詰まりに関し、フィルタの目開きよりも大きな粒子が問題となる場合のほか、微細な粒子によっても目詰まりを生じさせることがある。即ち、電極ペーストがフィルタを透過する際、活物質粒子に粒径0.1〜3.0μmの微細粒子を多く含む場合には、多数の微細粒子がフィルタの繊維部に付着したり、先に付着した微細粒子に更に活物質粒子が付着して、フィルタ(繊維部)上にブリッジ状に貯まり、フィルタの目開きが小さくなるために、フィルタの目詰まりが生じ易くなる場合ある。   However, regarding clogging of the filter, in addition to the case where particles larger than the opening of the filter become a problem, clogging may be caused by fine particles. That is, when the electrode paste passes through the filter, if the active material particles contain many fine particles having a particle size of 0.1 to 3.0 μm, a large number of fine particles adhere to the fiber portion of the filter. In some cases, the active material particles further adhere to the attached fine particles and accumulate in a bridge shape on the filter (fiber portion), and the filter opening is reduced, so that the filter is easily clogged.

本発明は、かかる現状に鑑みてなされたものであって、電極ペーストのフィルタ透過性を良好とした電池の製造方法を提供するものである。   The present invention has been made in view of the current situation, and provides a battery manufacturing method in which the filter permeability of an electrode paste is good.

上記課題を解決するための本発明の一態様は、電極箔上に活物質層が形成された電極板を備える電池の製造方法であって、粒径0.1〜3.0μmの微細粒子を1.0〜15.0wt%含む活物質粒子を造粒して、造粒粒子を形成する造粒工程であって、前記造粒粒子は、この造粒粒子における粒径0.1〜3.0μmの造粒後微細粒子の割合が、前記活物質粒子における前記微細粒子の割合よりも低く、前記造粒粒子における前記造粒後微細粒子の割合が10.0wt%以下で、かつ、粒径90μm以下の前記造粒粒子の占める割合が99.8wt%以上である造粒工程と、前記造粒粒子を用いて、電極ペーストを作成するペースト作成工程と、前記電極ペーストについて、目開き90〜110μmのフィルタを透過させるフィルタ透過工程と、前記フィルタ透過工程後の前記電極ペーストを、前記電極箔上に塗工し乾燥させて、前記活物質層を形成する活物質層形成工程と、を備える電池の製造方法である。   One embodiment of the present invention for solving the above-described problem is a method for manufacturing a battery including an electrode plate having an active material layer formed on an electrode foil, wherein fine particles having a particle diameter of 0.1 to 3.0 μm are formed. A granulation step of granulating active material particles containing 1.0 to 15.0 wt% to form granulated particles, wherein the granulated particles have a particle size of 0.1 to 3. The proportion of fine particles after granulation of 0 μm is lower than the proportion of fine particles in the active material particles, the proportion of fine particles after granulation in the granulated particles is 10.0 wt% or less, and the particle size The granulation step in which the proportion of the granulated particles of 90 μm or less is 99.8 wt% or more, the paste creation step of creating an electrode paste using the granulated particles, and the electrode paste with an opening of 90 to A filter transmission process for transmitting a 110 μm filter , The electrode paste after the filter transmission step, coating was dried on the electrode foil, and the active material layer forming step of forming the active material layer, a method for producing a battery comprising a.

この電池の製造方法では、活物質粒子を造粒して上記の要件を満たす造粒粒子を形成し、この造粒粒子を用いて電極ペーストを作成する。これにより、電極ペースト中には、見かけ上、造粒前に比して、粒径0.1〜3.0μmの微細な粒子(造粒後微細粒子)が少なくなっているので、フィルタ透過工程においてフィルタ透過性を良好にすることができる。また、電極ペースト中には、粒径90μmを越える大きな造粒粒子も殆ど存在しないので、大きな粒子によるフィルタの目詰まりを生じることもなく、電極ペーストから大きな異物等を容易に除去できる。   In this battery manufacturing method, active material particles are granulated to form granulated particles satisfying the above requirements, and an electrode paste is prepared using the granulated particles. As a result, the electrode paste apparently has fewer fine particles with a particle size of 0.1 to 3.0 μm (fine particles after granulation) than before granulation. The filter permeability can be improved. In addition, since there are almost no large granulated particles having a particle size of more than 90 μm in the electrode paste, large foreign matters can be easily removed from the electrode paste without causing clogging of the filter by the large particles.

更に、上記の電池の製造方法であって、前記活物質層形成工程の後、前記活物質層をプレスして、前記造粒粒子を解砕すると共に前記活物質層を圧縮するプレス工程を備える電池の製造方法とすると良い。   Furthermore, it is a manufacturing method of said battery, Comprising: After the said active material layer formation process, the said active material layer is pressed, The pressing process which compresses the said active material layer while crushing the said granulated particle is provided. A battery manufacturing method is preferable.

電池に用いる電極板においては、活物質層の密度を高めるために、電極ペーストを塗布し乾燥させた活物質層をプレスして圧縮する場合がある。その際、プレス圧力を高くし過ぎると、プレス後の電極板に反りなどの変形が生じ易い。電極箔のうち、活物質層が形成された部分と形成されていない部分とで、圧縮の際に掛かる圧力が大きく異なるために、電極箔の圧延状態が部分的に異なることに起因すると考えられる。
これに対し、前述の造粒粒子を用いた電極ペーストにより形成した活物質層は、活物質層を高密度化するために必要なプレス圧力が小さくて済む。従って、プレス後の電極板に反りなどの変形が生じるのを抑制できる。
In an electrode plate used in a battery, in order to increase the density of the active material layer, the active material layer coated with electrode paste and dried may be pressed and compressed. At that time, if the pressing pressure is too high, the electrode plate after pressing is likely to be deformed such as warpage. Among electrode foils, the pressure applied during compression differs greatly between the part where the active material layer is formed and the part where it is not formed. .
On the other hand, the active material layer formed by the electrode paste using the granulated particles described above requires a small pressing pressure for increasing the density of the active material layer. Accordingly, it is possible to suppress deformation such as warpage in the electrode plate after pressing.

その理由は、以下であると考えられる。例えば、粒径が0.1〜3.0μmの微細な粒子を有さず、比較的大きな粒子のみからなる活物質粒子を用いて、造粒することなく電極ペーストを作成し、これを塗布し乾燥させて活物質層を形成した場合には、活物質層中の大きな粒子同士の隙間に入り込むことができる微細な粒子が存在しない。このため、プレス圧力を高くしなければ、活物質層を高密度化できない。
一方、微細粒子をも含む活物質粒子を用いるが、造粒することなく電極ペーストを作成し、これを塗布し乾燥させて活物質層を形成した場合には、活物質粒子自体は造粒粒子に比して硬度が高いため、プレス時に電極箔に掛かる圧力が大きくなりがちである。このため、プレス後の電極板に反りなどの変形が生じ易い。
The reason is considered as follows. For example, an active material particle having only a relatively large particle does not have fine particles having a particle size of 0.1 to 3.0 μm, and an electrode paste is prepared without granulation and applied. When the active material layer is formed by drying, there are no fine particles that can enter the gaps between the large particles in the active material layer. For this reason, unless the press pressure is increased, the active material layer cannot be densified.
On the other hand, active material particles that also contain fine particles are used, but when an electrode paste is prepared without granulation, and this is applied and dried to form an active material layer, the active material particles themselves are granulated particles. Since the hardness is higher than the pressure, the pressure applied to the electrode foil during pressing tends to increase. For this reason, the electrode plate after pressing is likely to be deformed such as warpage.

これに対し、本件の製造方法では、造粒前の活物質粒子は、粒径0.1〜3.0μmの微細粒子を1.0〜15.0wt%含むので、プレスにより造粒粒子が解砕されると、これをなしていた微細粒子が大きな粒子同士の隙間に入り込むため、密度を容易に高くできる。また、造粒粒子は活物質粒子に比して硬度が低いため、プレス時にクッションのように働いて電極箔に掛かる圧力が低くなる。このため、プレス圧力を高くしなくても、活物質層を高密度化でき、高いプレス圧力に起因した電極板の変形を抑制できる。   In contrast, in the present manufacturing method, the active material particles before granulation contain 1.0 to 15.0 wt% of fine particles having a particle size of 0.1 to 3.0 μm. When crushed, the fine particles that have formed this enter the gaps between the large particles, so that the density can be easily increased. Moreover, since the granulated particles have a lower hardness than the active material particles, the pressure applied to the electrode foil is reduced by acting like a cushion during pressing. For this reason, even if it does not make press pressure high, an active material layer can be densified and the deformation | transformation of the electrode plate resulting from high press pressure can be suppressed.

更に、上記の電池の製造方法であって、前記造粒工程は、前記活物質粒子を外力を加えずに凝集させて造粒する自立造粒により、前記造粒粒子を形成する自立造粒工程である電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method, the granulation step is a self-supporting granulation step in which the active material particles are aggregated and granulated without applying external force to form the granulated particles. It is good to use the manufacturing method of the battery which is.

活物質粒子に外力を加えて造粒する強制造粒(圧縮造粒、押出造粒など)によって形成された造粒粒子は、解砕するのに大きな力を要する場合がある。このため、プレス工程におけるプレス圧力を高くしなければならない場合がある。
これに対し、上述の電池の製造方法では、活物質粒子を外力を加えずに凝集させて造粒する自立造粒によって造粒粒子を形成する。自立造粒により形成された造粒粒子は、小さな力で容易に解砕できるので、プレス工程におけるプレス圧力を特に低くできる。従って、プレス後の電極板に変形が生じるのを特に効果的に抑制できる。
なお、「自立造粒」の具体的な手法としては、例えば、転動造粒、流動層造粒(噴流層造粒)、撹拌混合造粒などが挙げられる。
The granulated particles formed by forced granulation (compression granulation, extrusion granulation, etc.) that granulate by applying an external force to the active material particles may require a large force to crush. For this reason, it may be necessary to increase the press pressure in the press process.
In contrast, in the battery manufacturing method described above, the granulated particles are formed by self-supporting granulation in which active material particles are aggregated and granulated without applying external force. Since the granulated particles formed by self-supporting granulation can be easily crushed with a small force, the pressing pressure in the pressing process can be particularly lowered. Therefore, deformation of the electrode plate after pressing can be particularly effectively suppressed.
Specific examples of the “self-supporting granulation” include rolling granulation, fluidized bed granulation (spouted bed granulation), stirring and mixing granulation, and the like.

実施形態に係るリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to an embodiment. 実施形態に係るリチウムイオン二次電池の縦断面図である。It is a longitudinal cross-sectional view of the lithium ion secondary battery which concerns on embodiment. 実施形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の展開図である。It is an expanded view of an electrode body which concerns on embodiment and shows the state which mutually accumulated the positive electrode plate and the negative electrode plate through the separator. 実施形態に係り、正極板の製造過程を示す説明図である。It is explanatory drawing which concerns on embodiment and shows the manufacturing process of a positive electrode plate.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池100(以下、単に電池100とも言う)を示す。また、図3に、この電池100を構成する捲回型の電極体120を展開した状態を示す。なお、以下では、電池100の厚み方向BH、幅方向CH、高さ方向DHを、図1及び図2に示す方向と定めて説明する。また、図1及び図2における上方を電池100の上側、下方を電池100の下側として説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a lithium ion secondary battery 100 (hereinafter also simply referred to as a battery 100) according to the present embodiment. FIG. 3 shows a state where the wound electrode body 120 constituting the battery 100 is developed. In the following description, the thickness direction BH, the width direction CH, and the height direction DH of the battery 100 are defined as the directions shown in FIGS. 1 and 2 will be described as the upper side of the battery 100, and the lower side will be described as the lower side of the battery 100.

この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型の密閉型電池である。この電池100は、直方体形状の電池ケース110と、この電池ケース110内に収容された扁平状捲回型の電極体120と、電池ケース110に支持された正極端子150及び負極端子160等から構成されている(図1及び図2参照)。また、電池ケース110内には、非水系の電解液117が保持されている。   The battery 100 is a rectangular sealed battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill. The battery 100 includes a rectangular parallelepiped battery case 110, a flat wound electrode body 120 accommodated in the battery case 110, a positive terminal 150 and a negative terminal 160 supported by the battery case 110, and the like. (See FIGS. 1 and 2). In addition, a non-aqueous electrolyte solution 117 is held in the battery case 110.

電池ケース110は、金属(具体的にはアルミニウム)により形成されている。この電池ケース110は、上側のみが開口した箱状のケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接されたケース蓋部材113とから構成されている(図1及び図2参照)。ケース蓋部材113のうち、その長手方向(電池100の幅方向CH)の中央付近には、非復帰型の安全弁113vが設けられている。また、この安全弁113vの近傍には、電解液117を電池ケース110内に注入する際に用いられる注液孔113hが設けられている。この注液孔113hは、封止部材115で気密に封止されている。   The battery case 110 is made of metal (specifically, aluminum). The battery case 110 includes a box-shaped case main body member 111 that is open only on the upper side, and a case lid member 113 that is welded so as to close the opening 111h of the case main body member 111 (see FIG. 1 and FIG. 1). (See FIG. 2). A non-returnable safety valve 113v is provided in the case lid member 113 in the vicinity of the center in the longitudinal direction (the width direction CH of the battery 100). Further, in the vicinity of the safety valve 113v, a liquid injection hole 113h used for injecting the electrolytic solution 117 into the battery case 110 is provided. The liquid injection hole 113h is hermetically sealed with a sealing member 115.

また、ケース蓋部材113のうち、その長手方向(電池100の幅方向CH)の両端近傍には、電池ケース110の内部から外部に延出する形態の正極端子(正極端子部材)150及び負極端子(負極端子部材)160がそれぞれ固設されている。具体的には、これらの端子150,160は、これらにバスバや圧着端子など電池外の接続端子を締結するためのボルト153,163と共に、樹脂からなる絶縁部材155,165を介して、ケース蓋部材113に固設されている。   Further, in the case lid member 113, in the vicinity of both ends in the longitudinal direction (the width direction CH of the battery 100), a positive terminal (positive terminal member) 150 and a negative terminal that extend from the inside of the battery case 110 to the outside. (Negative electrode terminal member) 160 is fixed. Specifically, these terminals 150 and 160 are connected to the case lid via insulating members 155 and 165 made of resin together with bolts 153 and 163 for fastening connection terminals outside the battery, such as bus bars and crimp terminals. It is fixed to the member 113.

次に、電極体120について説明する(図2及び図3参照)。この電極体120は、その軸線(捲回軸)が電池100の幅方向CHと平行となるように横倒しにした状態で、電池ケース110内に収容されている(図2参照)。この電極体120は、帯状の正極板121と帯状の負極板131とを、樹脂製の多孔質膜からなる帯状の2枚のセパレータ141,141を介して互いに重ねて(図3参照)、軸線周りに捲回し、扁平状に圧縮したものである。正極板121の後述する露出部122mの一部は、セパレータ141,141から軸線方向の一方側AC(図3中、上方、図2中、左方)に渦巻き状をなして突出しており、前述した正極端子(正極端子部材)150と接続(溶接)している。また、負極板131の後述する露出部132mの一部は、セパレータ141,141から軸線方向の他方側AD(図3中、下方、図2中、右方)に渦巻き状をなして突出しており、前述した負極端子(負極端子部材)160と接続(溶接)している。   Next, the electrode body 120 will be described (see FIGS. 2 and 3). The electrode body 120 is housed in the battery case 110 in a state where the electrode body 120 is laid down so that its axis (winding axis) is parallel to the width direction CH of the battery 100 (see FIG. 2). In this electrode body 120, a belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 are overlapped with each other via two belt-like separators 141 and 141 made of a resin porous film (see FIG. 3). It is wound around and compressed into a flat shape. A part of an exposed portion 122m, which will be described later, of the positive electrode plate 121 protrudes from the separators 141 and 141 in a spiral shape to one side AC in the axial direction (upward in FIG. 3, left in FIG. 2). The positive electrode terminal (positive electrode terminal member) 150 is connected (welded). In addition, a part of an exposed portion 132m, which will be described later, of the negative electrode plate 131 protrudes in a spiral shape from the separators 141 and 141 to the other side AD in the axial direction (downward in FIG. 3, rightward in FIG. 2). The negative electrode terminal (negative electrode terminal member) 160 described above is connected (welded).

正極板121は、芯材として、アルミニウムからなる帯状の正極電極箔(電極箔)122を有する。この正極電極箔122の幅方向FHの一方側FCの一部(図3中、上方)は、長手方向EH(図3中、左右方向)に帯状に延びる露出部122mとなっている。一方、この露出部122m以外の他方側FDの部分(図3中、下方)の両主面には、それぞれ長手方向ETに帯状に延びる正極活物質層(正極合剤層,活物質層)123,123が形成されている。   The positive electrode plate 121 has a strip-shaped positive electrode foil (electrode foil) 122 made of aluminum as a core material. A part (upward in FIG. 3) of one side FC in the width direction FH of the positive electrode foil 122 is an exposed portion 122m extending in a strip shape in the longitudinal direction EH (left-right direction in FIG. 3). On the other hand, positive electrode active material layers (positive electrode mixture layer, active material layer) 123 extending in a strip shape in the longitudinal direction ET are formed on both main surfaces of the other side FD portion (lower side in FIG. 3) other than the exposed portion 122m. , 123 are formed.

これらの正極活物質層123,123は、正極活物質粒子(活物質粒子)125と導電材126と結着剤127とから形成されている。本実施形態では、正極活物質粒子125は、リチウム・コバルト・ニッケル・マンガン複合酸化物(具体的にはLiCo1/3Ni1/3Mn1/32 )の粒子である。この正極活物質粒子125は、平均粒径が5.0〜10.0μmであり、粒径0.1〜3.0μmの微細粒子を1.0〜15.0wt%(具体的には15.0wt%)含んでいる。また、本実施形態では、導電材126としてカーボンブラック(具体的にはアセチレンブラック)を、結着剤127としてポリフッ化ビニリデン(PVDF)を用いている。正極活物質粒子125と導電材126と結着剤127との混合割合は、重量比で90:5:5である。 These positive electrode active material layers 123 and 123 are formed of positive electrode active material particles (active material particles) 125, a conductive material 126, and a binder 127. In the present embodiment, the positive electrode active material particles 125 are particles of a lithium / cobalt / nickel / manganese composite oxide (specifically, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 ). The positive electrode active material particles 125 have an average particle diameter of 5.0 to 10.0 μm, and 1.0 to 15.0 wt% of fine particles having a particle diameter of 0.1 to 3.0 μm (specifically, 15. 0 wt%). In this embodiment, carbon black (specifically acetylene black) is used as the conductive material 126, and polyvinylidene fluoride (PVDF) is used as the binder 127. The mixing ratio of the positive electrode active material particles 125, the conductive material 126, and the binder 127 is 90: 5: 5 by weight.

負極板131は、芯材として、銅からなる帯状の負極電極箔132を有する。この負極電極箔132の幅方向の一部(図3中、下方)は、長手方向(図3中、左右方向)に帯状に延びる露出部132mとなっている。一方、この露出部132m以外の部分(図3中、上方)の両主面には、それぞれ長手方向に帯状に延びる負極活物質層(負極合剤層)133,133が形成されている。これらの負極活物質層133,133は、負極活物質粒子と結着剤とからなる。本実施形態では、負極活物質として黒鉛を、結着剤としてPVDFを用いている。負極活物質粒子と結着剤との混合割合は、重量比で100:7である。   The negative electrode plate 131 has a strip-shaped negative electrode foil 132 made of copper as a core material. A part of the negative electrode foil 132 in the width direction (downward in FIG. 3) is an exposed portion 132m extending in a strip shape in the longitudinal direction (left-right direction in FIG. 3). On the other hand, negative electrode active material layers (negative electrode mixture layers) 133 and 133 are formed on both main surfaces of the portions other than the exposed portion 132m (upper in FIG. 3) extending in a band shape in the longitudinal direction. These negative electrode active material layers 133 and 133 are made of negative electrode active material particles and a binder. In this embodiment, graphite is used as the negative electrode active material, and PVDF is used as the binder. The mixing ratio of the negative electrode active material particles and the binder is 100: 7 by weight.

次いで、上記電池100の製造方法について説明する。
まず、正極板121の製造について説明する(図4参照)。即ち、まず、正極活物質粒子125を用意する。本実施形態では、正極活物質粒子125は、前述のように、リチウム・コバルト・ニッケル・マンガン複合酸化物粒子であり、平均粒径が5.0〜10.0μmで、粒径0.1〜3.0μmの微細粒子を1.0〜15.0wt%(具体的には15.0wt%)含んでいる。
Next, a method for manufacturing the battery 100 will be described.
First, manufacture of the positive electrode plate 121 will be described (see FIG. 4). That is, first, positive electrode active material particles 125 are prepared. In the present embodiment, the positive electrode active material particles 125 are lithium / cobalt / nickel / manganese composite oxide particles as described above, and have an average particle diameter of 5.0 to 10.0 μm and a particle diameter of 0.1 to 0.1 μm. It contains 1.0 to 15.0 wt% (specifically 15.0 wt%) of 3.0 μm fine particles.

なお、正極活物質粒子125における微細粒子の割合は、以下の方法により求める。即ち、正極活物質粒子125の1.0gを水に投入し、ゆっくり撹拌する。その後、これをフィルタ(Pall Corporation社製:PTFEメンブレン・ゼフロア3μm)で濾過する。透過物及び残留物をそれぞれ乾燥させた後、乾燥後の重量をそれぞれ測定し、正極活物質粒子125における透過物の重量割合を求め、これを微細粒子の割合とする。   In addition, the ratio of the fine particles in the positive electrode active material particles 125 is obtained by the following method. That is, 1.0 g of the positive electrode active material particles 125 is put into water and slowly stirred. Then, this is filtered with a filter (Pall Corporation, PTFE membrane Zeflo 3 μm). After each of the permeate and the residue is dried, the weight after drying is measured, the weight ratio of the permeate in the positive electrode active material particles 125 is determined, and this is used as the ratio of fine particles.

次に、造粒工程(自立造粒工程)S1において、この正極活物質粒子125を造粒して、造粒粒子を形成する。具体的には、造粒粒子における粒径0.1〜3.0μmの造粒後微細粒子の割合が、正極活物質粒子125における微細粒子の割合(具体的には15.0wt%)よりも低く、造粒粒子における造粒後微細粒子の割合が10.0wt%以下(具体的には10.0wt%)で、かつ、粒径90μm以下の造粒粒子の占める割合が99.8wt%以上(具体的には99.9wt%)の造粒粒子を形成する。   Next, in the granulation step (self-supporting granulation step) S1, the positive electrode active material particles 125 are granulated to form granulated particles. Specifically, the proportion of fine particles after granulation having a particle size of 0.1 to 3.0 μm in the granulated particles is more than the proportion of fine particles in the positive electrode active material particles 125 (specifically, 15.0 wt%). Low, the proportion of fine particles after granulation in the granulated particles is 10.0 wt% or less (specifically 10.0 wt%), and the proportion of granulated particles having a particle size of 90 μm or less is 99.8 wt% or more. (Specifically, 99.9 wt%) granulated particles are formed.

この造粒粒子は、正極活物質粒子125を外力を加えずに凝集させて造粒する自立造粒、更に具体的には転動造粒によって形成する。即ち、正極活物質粒子125を回転板上に一定の供給速度で供給すると共に、この回転板上に結着剤(具体的にはPVDF)を10.0wt%含むN−メチル−2−ピロリドン(NMP)の懸濁液を一定の供給速度で供給(噴霧)する。これにより、回転板上で遠心力により正極活物質粒子125が径方向外側に移動すると共に正極活物質粒子125同士が雪だるま式に相互に結着し造粒されて、造粒粒子が形成される。造粒粒子の大きさ・分布等は、造粒時間或いは回転速度を変更することにより調整する。   The granulated particles are formed by self-supporting granulation in which the positive electrode active material particles 125 are aggregated and granulated without applying an external force, more specifically, rolling granulation. That is, the positive electrode active material particles 125 are supplied onto the rotating plate at a constant supply speed, and N-methyl-2-pyrrolidone containing 10.0 wt% of a binder (specifically PVDF) on the rotating plate ( NMP) suspension is fed (sprayed) at a constant feed rate. As a result, the positive electrode active material particles 125 move radially outward on the rotating plate by the centrifugal force, and the positive electrode active material particles 125 are bonded to each other in a snowball manner and granulated to form granulated particles. . The size / distribution of the granulated particles is adjusted by changing the granulation time or the rotation speed.

なお、造粒粒子における粒径0.1〜3.0μmの造粒後微細粒子の割合は、前述の正極活物質粒子125における微細粒子の割合と同様に求める。但し、結着剤(PVDF)の重量を除いた値とする。
また、粒径90μm以下の造粒粒子の占める割合は、前述の目開き3μmのフィルタの代わりに、目開き90μmのフィルタを用いて求める。或いは、造粒粒子の粒度分布を測定することにより求めることもできる。
The proportion of fine particles after granulation having a particle size of 0.1 to 3.0 μm in the granulated particles is obtained in the same manner as the proportion of fine particles in the positive electrode active material particles 125 described above. However, the value excluding the weight of the binder (PVDF).
The proportion of granulated particles having a particle size of 90 μm or less is obtained using a filter having a mesh size of 90 μm instead of the filter having a mesh size of 3 μm. Alternatively, it can be determined by measuring the particle size distribution of the granulated particles.

次に、正極ペースト作成工程(ペースト作成工程)S2において、上述の正極活物質125の造粒粒子と導電材126と結着剤127とを溶媒に分散させて、正極ペースト(電極ペースト)を作成する。具体的には、正極活物質粒子125の造粒粒子とアセチレンブラック(導電材)126とPVDF(結着剤)127とを90:5:5の重量比で混合し、NMP(溶媒)で粘度を調整しながらスラリ(正極ペースト)を作成する。本実施形態では、正極ペーストの粘度を3000〜20000mPa・sとする。   Next, in the positive electrode paste preparation step (paste preparation step) S2, the above-described granulated particles of the positive electrode active material 125, the conductive material 126, and the binder 127 are dispersed in a solvent to prepare a positive electrode paste (electrode paste). To do. Specifically, the granulated particles of the positive electrode active material particles 125, acetylene black (conductive material) 126, and PVDF (binder) 127 are mixed at a weight ratio of 90: 5: 5, and the viscosity is increased with NMP (solvent). A slurry (positive electrode paste) is prepared while adjusting the above. In this embodiment, the viscosity of the positive electrode paste is set to 3000 to 20000 mPa · s.

次に、フィルタ透過工程S3において、この正極ペーストについて、ステンレス(具体的にはSUS316)製のメッシュからなり、目開きが90μmのフィルタを自然透過させ、異物等を除去する。本実施形態では、その際の正極ペーストのフィルタ透過性が良好であった。前述の造粒粒子を用いて作成した正極ペースト中には、見かけ上、微細な粒子(造粒後微細粒子)が少なくなっているため、微細粒子がフィルタの繊維部(鋼線)に付着してフィルタの目開きが小さくなるのが抑制され、各造粒粒子が容易にフィルタを通過できるからである。   Next, in the filter permeation step S3, the positive electrode paste is made of stainless steel (specifically, SUS316) mesh and has a mesh opening of 90 μm to allow natural permeation, thereby removing foreign matters and the like. In this embodiment, the filter permeability of the positive electrode paste at that time was good. In the positive electrode paste prepared using the above-mentioned granulated particles, the number of fine particles (fine particles after granulation) apparently decreases, so the fine particles adhere to the fiber part (steel wire) of the filter. This is because it is possible to suppress the opening of the filter from being reduced and each granulated particle can easily pass through the filter.

また別途、アルミニウムからなる帯状の正極電極箔122を用意する。そして、正極活物質層形成工程(活物質層形成工程)S4のうちの塗工工程において、この正極電極箔122の一方の主面に、ダイコート法により前述の正極ペーストを塗布して、帯状の正極ペースト層を形成する。その後、正極活物質層形成工程S4のうちの加熱乾燥工程において、乾燥炉内を通過させながら熱風で正極ペースト層を加熱乾燥させて、正極活物質層123を形成する。次に、正極電極箔122の反対側の主面にも、同様に、正極ペーストを塗布して正極ペースト層を形成し、これを加熱乾燥させて、正極電極板122の両面に(圧縮前の)正極活物質層123,123を形成する(正極活物質層形成工程S4)。   Separately, a strip-like positive electrode foil 122 made of aluminum is prepared. In the coating step in the positive electrode active material layer forming step (active material layer forming step) S4, the positive electrode paste is applied to one main surface of the positive electrode foil 122 by a die coating method, A positive electrode paste layer is formed. Thereafter, in the heating and drying step of the positive electrode active material layer forming step S4, the positive electrode paste layer is heated and dried with hot air while passing through the drying furnace to form the positive electrode active material layer 123. Next, the positive electrode paste is similarly applied to the main surface on the opposite side of the positive electrode foil 122 to form a positive electrode paste layer, which is heated and dried, and is applied to both surfaces of the positive electrode plate 122 (before compression). ) The positive electrode active material layers 123 and 123 are formed (positive electrode active material layer forming step S4).

次に、プレス工程S5において、加圧ロールにより正極活物質層123,123をプレスして、正極活物質層123内の造粒粒子を解砕すると共に、正極活物質層123を圧縮して、その密度を所定密度に高める(所定厚みにする)。具体的には、正極活物質層123,123の厚みをそれぞれ170μmとした。この際、造粒粒子、特に前述した手法などの自立造粒によって形成した造粒粒子は、小さな力で容易に解砕され、解砕によって生じた微細粒子が比較的大きな正極活物質粒子同士の隙間に入り込むので、小さなプレス圧力で正極活物質層123を高密度化することができる。また、造粒粒子は正極活物質粒子125に比して硬度が低いため、プレス時にクッションのように働いて正極電極箔122に掛かる圧力が低くなる。従って、高密度の(圧縮された)正極活物質層123,123を有しながらも、プレス後の正極板121に反り等の変形が生じるのを抑制できる。これにより、正極板121が形成される(図3参照)。   Next, in the pressing step S5, the positive electrode active material layers 123 and 123 are pressed with a pressure roll to crush the granulated particles in the positive electrode active material layer 123, and the positive electrode active material layer 123 is compressed. The density is increased to a predetermined density (set to a predetermined thickness). Specifically, the thickness of each of the positive electrode active material layers 123 and 123 was 170 μm. At this time, the granulated particles, particularly the granulated particles formed by self-supporting granulation such as the above-described method, are easily crushed with a small force, and the fine particles generated by the pulverization are relatively large between the positive electrode active material particles. Since it enters the gap, the positive electrode active material layer 123 can be densified with a small pressing pressure. In addition, since the granulated particles have a lower hardness than the positive electrode active material particles 125, the pressure applied to the positive electrode foil 122 is reduced by acting like a cushion during pressing. Therefore, it is possible to suppress deformation such as warping in the positive electrode plate 121 after pressing while having the high-density (compressed) positive electrode active material layers 123 and 123. Thereby, the positive electrode plate 121 is formed (see FIG. 3).

また別途、負極板131を製造する。即ち、銅からなる帯状の負極電極箔132を用意する。そして、この負極電極箔132の一方の主面に、黒鉛(負極活物質)及びPVDF(結着剤)を含む負極ペーストを塗布し乾燥させて、負極活物質層133を形成する。同様に、負極電極箔132の反対側の主面にも、上記の負極ペーストを塗布し乾燥させて、負極活物質層133を形成する。その後、加圧ロールにより負極活物質層133,133を圧縮して、その密度を高める。これにより、負極板131が形成される(図3参照)。   Separately, the negative electrode plate 131 is manufactured. That is, a strip-shaped negative electrode foil 132 made of copper is prepared. Then, a negative electrode paste containing graphite (negative electrode active material) and PVDF (binder) is applied to one main surface of the negative electrode foil 132 and dried to form a negative electrode active material layer 133. Similarly, the negative electrode paste is applied to the main surface opposite to the negative electrode foil 132 and dried to form the negative electrode active material layer 133. Thereafter, the negative electrode active material layers 133 and 133 are compressed by a pressure roll to increase the density. Thereby, the negative electrode plate 131 is formed (see FIG. 3).

次に、帯状のセパレータ141,141を2枚用意し、前述の正極板121と負極板131とをセパレータ141,141を介して互いに重ね(図3参照)、巻き芯を用いて軸線周りに捲回する。その後、これを扁平状に圧縮して電極体120を形成する。
また別途、ケース蓋部材113と正極端子部材150と負極端子部材160とボルト153,163とを用意し、これらを射出成形用の金型にセットする。そして、射出成形により絶縁部材155,165を一体的に成形して、ケース蓋部材113に正極端子部材(正極端子)150及び負極端子部材(負極端子)160を固設しておく。
Next, two strip-shaped separators 141 and 141 are prepared, and the above-described positive electrode plate 121 and negative electrode plate 131 are overlapped with each other through the separators 141 and 141 (see FIG. 3). Turn. Thereafter, the electrode body 120 is formed by compressing it into a flat shape.
Separately, a case lid member 113, a positive electrode terminal member 150, a negative electrode terminal member 160, and bolts 153 and 163 are prepared, and these are set in a mold for injection molding. Then, the insulating members 155 and 165 are integrally formed by injection molding, and the positive terminal member (positive terminal) 150 and the negative terminal member (negative terminal) 160 are fixed to the case lid member 113.

次に、正極端子150及び負極端子160を電極体120にそれぞれ接続(溶接)する。その後、ケース本体部材111を用意し、ケース本体部材111内に電極体120を収容すると共に、ケース本体部材111の開口111hをケース蓋部材113で塞ぐ。そして、ケース本体部材111とケース蓋部材113とをレーザ溶接する(図1及び図2参照)。
次に、電解液117を注液孔113hから電池ケース110内に注液し、封止部材115で注液孔113hを気密に封止する。その後は、この電池100について、初充電やエージング、各種検査を行う。かくして、電池100が完成する。
Next, the positive electrode terminal 150 and the negative electrode terminal 160 are connected (welded) to the electrode body 120, respectively. Thereafter, the case body member 111 is prepared, the electrode body 120 is accommodated in the case body member 111, and the opening 111 h of the case body member 111 is closed with the case lid member 113. Then, the case main body member 111 and the case lid member 113 are laser-welded (see FIGS. 1 and 2).
Next, the electrolytic solution 117 is injected into the battery case 110 through the injection hole 113h, and the injection hole 113h is hermetically sealed with the sealing member 115. Thereafter, the battery 100 is subjected to initial charging, aging, and various inspections. Thus, the battery 100 is completed.

(実施例及び比較例)
次いで、実施形態に係る正極板121及び電池100の製造方法の効果を検証するために行った試験の結果について説明する。実施例1として、実施形態に係る製造方法により正極板121を製造した。この製造方法では、前述したように、造粒前の正極活物質粒子125における微細粒子(粒径0.1〜3.0μm)の割合が15.0wt%であり、造粒後の正極活物質粒子(造粒粒子)における造粒後微細粒子(粒径0.1〜3.0μm)の割合が10.0wt%である。また、造粒粒子における粒径90μm以下の粒子の割合が99.8wt%以上である。
(Examples and Comparative Examples)
Next, the results of tests performed to verify the effects of the positive electrode plate 121 and the battery 100 manufacturing method according to the embodiment will be described. As Example 1, the positive electrode plate 121 was manufactured by the manufacturing method according to the embodiment. In this manufacturing method, as described above, the proportion of fine particles (particle size 0.1 to 3.0 μm) in the positive electrode active material particles 125 before granulation is 15.0 wt%, and the positive electrode active material after granulation The ratio of the fine particles after granulation (particle size 0.1 to 3.0 μm) in the particles (granulated particles) is 10.0 wt%. Further, the ratio of particles having a particle size of 90 μm or less in the granulated particles is 99.8 wt% or more.

実施例2では、造粒工程において造粒時間を調整することにより、造粒後微細粒子の割合が0.01wt%で、粒径90μm以下の粒子の割合が99.8wt%以上の造粒粒子を形成した(表1参照)。それ以外は実施例1(実施形態)と同様とした。
実施例3では、正極活物質として、微細粒子の割合が1.0wt%の正極活物質粒子を用いた。そして、造粒後微細粒子の割合が0.01wt%で、粒径90μm以下の粒子の割合が99.8wt%以上の造粒粒子を形成した。それ以外は実施例1と同様とした。
In Example 2, by adjusting the granulation time in the granulation step, the proportion of fine particles after granulation is 0.01 wt%, and the proportion of particles having a particle size of 90 μm or less is 99.8 wt% or more. (See Table 1). Other than that was the same as Example 1 (embodiment).
In Example 3, positive electrode active material particles having a fine particle ratio of 1.0 wt% were used as the positive electrode active material. Then, granulated particles having a proportion of fine particles after granulation of 0.01 wt% and a proportion of particles having a particle size of 90 μm or less were formed to 99.8 wt% or more. Other than that was the same as Example 1.

一方、比較例1では、正極活物質として、微細粒子の割合が20.0wt%の正極活物質粒子を用いた。そして、造粒後微細粒子の割合が10.0wt%で、粒径90μm以下の粒子の割合が99.8wt%以上の造粒粒子を形成した。それ以外は実施例1と同様とした。
比較例2では、正極活物質として、微細粒子の割合が0.5wt%の正極活物質粒子を用いた。そして、造粒後微細粒子の割合が0.01wt%で、粒径90μm以下の粒子の占める割合が99.8wt%以上の造粒粒子を形成した。それ以外は実施例1と同様とした。
比較例3では、造粒時間を調整することにより、造粒後微細粒子の割合が11.0wt%で、粒径90μm以下の粒子の割合が99.8wt%以上の造粒粒子を形成した。それ以外は実施例1と同様とした。
On the other hand, in Comparative Example 1, positive electrode active material particles having a fine particle ratio of 20.0 wt% were used as the positive electrode active material. Then, granulated particles having a proportion of fine particles after granulation of 10.0 wt% and a proportion of particles having a particle size of 90 μm or less were 99.8 wt% or more. Other than that was the same as Example 1.
In Comparative Example 2, positive electrode active material particles having a fine particle ratio of 0.5 wt% were used as the positive electrode active material. Then, granulated particles having a proportion of fine particles after granulation of 0.01 wt% and a proportion of particles having a particle size of 90 μm or less being 99.8 wt% or more were formed. Other than that was the same as Example 1.
In Comparative Example 3, by adjusting the granulation time, granulated particles having a ratio of fine particles after granulation of 11.0 wt% and a ratio of particles having a particle size of 90 μm or less of 99.8 wt% or more were formed. Other than that was the same as Example 1.

比較例5では、実施例1と同様の正極活物質粒子125を用い、造粒工程を行う代わりに分級処理を行って正極活物質粒子から微細粒子を減少させ、分級処理後の微細粒子の割合を0.01wt%とした。具体的には、上記の分級装置を用いて、一般空調下で、分級時の装置設定を密度4.9g/cc、分級条件を3μm以下として、分級処理を行った。それ以外は実施例1と同様とした。
比較例4では、比較例5の分級処理を行って得た3μm以上の正極活物質粒子に、分級処理で得られた3μm以下の微細粒子の一部を混ぜ合わせて、微細粒子の割合を0.01wt%から10.0wt%まで増やした。それ以外は実施例1と同様とした。
In Comparative Example 5, the positive electrode active material particles 125 similar to those in Example 1 were used, and instead of performing the granulation step, classification treatment was performed to reduce fine particles from the positive electrode active material particles, and the proportion of fine particles after classification treatment Was 0.01 wt%. Specifically, using the above-described classifier, classification was performed under general air conditioning, with the apparatus setting at the time of classification set to a density of 4.9 g / cc, and the classification conditions to 3 μm or less. Other than that was the same as Example 1.
In Comparative Example 4, a part of fine particles of 3 μm or less obtained by classification treatment was mixed with positive active material particles of 3 μm or more obtained by performing the classification treatment of Comparative Example 5, and the proportion of fine particles was reduced to 0. Increased from 0.01 wt% to 10.0 wt%. Other than that was the same as Example 1.

比較例6では、実施例1と同様の正極活物質粒子125を用いたが、造粒も分級も行わずに、正極ペーストを作成した。それ以外は実施例1と同様とした。
比較例7では、実施例3と同様の正極活物質粒子を用いたが、造粒も分級も行わずに、正極ペーストを作成した。それ以外は実施例3と同様とした。
In Comparative Example 6, the same positive electrode active material particles 125 as in Example 1 were used, but a positive electrode paste was prepared without performing granulation and classification. Other than that was the same as Example 1.
In Comparative Example 7, positive electrode active material particles similar to those in Example 3 were used, but a positive electrode paste was prepared without performing granulation and classification. Otherwise, it was the same as Example 3.

なお、実施例2,3及び比較例1〜7に係る各正極ペーストの粘度は、実施例1に係る正極ペーストの粘度と同じ値(具体的には3000mPa・s)となるようにそれぞれ調整した。また、実施例2,3及び比較例1〜7に係る各プレス工程では、実施例1に係るプレス工程と同様に、正極活物質層を所定密度(具体的には厚み170μm)となるまで圧縮した。   In addition, the viscosity of each positive electrode paste according to Examples 2 and 3 and Comparative Examples 1 to 7 was adjusted to be the same value as the viscosity of the positive electrode paste according to Example 1 (specifically, 3000 mPa · s). . Further, in each pressing step according to Examples 2 and 3 and Comparative Examples 1 to 7, as in the pressing step according to Example 1, the positive electrode active material layer was compressed to a predetermined density (specifically, a thickness of 170 μm). did.

Figure 2013229248
Figure 2013229248

これら実施例1〜3及び比較例1〜7に係る各正極ペーストについて、フィルタ透過性試験を行って、フィルタ透過性(L/h)をそれぞれ測定した。具体的には、直径200mm、深さ45mmで目開き90μmのステンレス(SUS316)製のメッシュを有するフィルタ(ふるい,アズワン社製)を用意し、このフィルタに正極ペーストをほぼ一杯に(1.4L)に投入して、1分間静止させた。その間にメッシュを通過した正極ペーストの体積(L)を測定し、単位時間(h)当たりのフィルタ透過量(L/h)をそれぞれ算出した。その結果を表1に示す。   About each positive electrode paste which concerns on these Examples 1-3 and Comparative Examples 1-7, the filter permeability test was done and filter permeability (L / h) was measured, respectively. Specifically, a filter having a diameter of 200 mm, a depth of 45 mm, and an opening of 90 μm and having a mesh made of stainless steel (SUS316) (sieve, manufactured by ASONE Co., Ltd.) is prepared. ) And allowed to rest for 1 minute. During this time, the volume (L) of the positive electrode paste that passed through the mesh was measured, and the filter permeation amount (L / h) per unit time (h) was calculated. The results are shown in Table 1.

また、実施例1〜3及び比較例1〜7に係るプレス工程後の各正極板(長手方向EHに帯状に延びる露出部122mを有する正極板)について、反り量(mm/m)をそれぞれ測定した。具体的には、プレス工程後の正極板を長手方向ETの寸法が1.0mとなるように切断し、これを平坦は台の上に置いた。そして、幅方向FHの反り量(湾曲量)(mm)をそれぞれ測定した。   Further, the amount of warpage (mm / m) was measured for each positive electrode plate after the pressing step according to Examples 1 to 3 and Comparative Examples 1 to 7 (positive electrode plate having an exposed portion 122m extending in a strip shape in the longitudinal direction EH). did. Specifically, the positive electrode plate after the pressing step was cut so that the dimension in the longitudinal direction ET was 1.0 m, and the flat plate was placed on a table. And the curvature amount (bending amount) (mm) of the width direction FH was measured, respectively.

また、実施例1〜3及び比較例1〜7に係る正極板及び前述の負極板等を用いて評価用の電池(18650型円筒電池)をそれぞれ作製し、各電池について、以下の(1)〜(5)で説明する手法により、電池抵抗(Ω)をそれぞれ測定した。
(1)まず各電池を25℃の環境下に置いて、定電流−定電圧方式により、1Cの定電流で電池電圧値4.1Vまで充電し、更にこの電池電圧値を維持しつつ、充電電流値が0.1Cに低下するまで充電を行った。その後、1Cの定電流で電池電圧値3.0Vまで放電させた。この充放電を3回繰り返した後、1Cの定電流で12分間充電して、SOC20%の状態とした。
(2)各電池をSOC20%の状態で30分間放置してから、この時点での電池電圧V1をそれぞれ測定した。その後、各電池について4Cの定電流で10秒間放電させて、そのときの到達電池電圧V2をそれぞれ測定した。そして、電圧変化ΔV(4C)=V2−V1をそれぞれ求めた。
Moreover, the battery for evaluation (18650 type cylindrical battery) was each produced using the positive electrode plate which concerns on Examples 1-3 and Comparative Examples 1-7, the above-mentioned negative electrode plate, etc., About each battery, the following (1) Battery resistance (Ω) was measured by the method described in (5).
(1) First, each battery is placed in an environment of 25 ° C. and charged to a battery voltage value of 4.1 V with a constant current of 1 C by a constant current-constant voltage method, and further charged while maintaining this battery voltage value. Charging was performed until the current value decreased to 0.1C. Thereafter, the battery was discharged to a battery voltage value of 3.0 V with a constant current of 1C. This charge / discharge was repeated three times, and then charged with a constant current of 1 C for 12 minutes to obtain a SOC of 20%.
(2) Each battery was allowed to stand for 30 minutes in an SOC of 20%, and then the battery voltage V1 at this point was measured. Thereafter, each battery was discharged at a constant current of 4 C for 10 seconds, and the reached battery voltage V2 at that time was measured. And voltage change (DELTA) V (4C) = V2-V1 was calculated | required, respectively.

(3)次に、再度(1)を行い、各電池をSOC20%の状態で30分間放置してから、この時点での電池電圧V3をそれぞれ測定した。その後、各電池について3Cの定電流で10秒間放電させて、そのときの到達電池電圧V4をそれぞれ測定した。そして、電圧変化ΔV(3C)=V4−V3をそれぞれ求めた。
(4)次に、再度(1)を行い、各電池をSOC20%の状態で30分間放置してから、この時点での電池電圧V5をそれぞれ測定した。その後、各電池について2Cの定電流で10秒間放電させて、そのときの到達電池電圧V6をそれぞれ測定した。そして、電圧変化ΔV(2C)=V6−V5をそれぞれ求めた。
(5)次に、(2)〜(4)の結果を元に、横軸を放電時の電流値I、縦軸を電圧変化ΔVとしたグラフを描き、そのグラフの傾きを電池抵抗R(Ω)とした。
(3) Next, (1) was performed again, and each battery was allowed to stand for 30 minutes in an SOC of 20%, and then the battery voltage V3 at this point was measured. Thereafter, each battery was discharged at a constant current of 3 C for 10 seconds, and the reached battery voltage V4 at that time was measured. And voltage change (DELTA) V (3C) = V4-V3 was calculated | required, respectively.
(4) Next, (1) was performed again, and each battery was allowed to stand for 30 minutes in an SOC of 20%, and then the battery voltage V5 at this point was measured. Thereafter, each battery was discharged at a constant current of 2 C for 10 seconds, and the reached battery voltage V6 at that time was measured. And voltage change (DELTA) V (2C) = V6-V5 was calculated | required, respectively.
(5) Next, based on the results of (2) to (4), a graph is drawn with the horizontal axis representing the current value I during discharge and the vertical axis representing the voltage change ΔV. The slope of the graph is the battery resistance R ( Ω).

まず、正極ペーストのフィルタ透過性について見ると、表1から判るように、比較例1,3,4,6,7は、フィルタ透過性が低かった(0.7〜2.3L/h)。比較例6の正極ペーストでフィルタ透過性が低かった理由は、正極活物質粒子について造粒も分級も行っていないため、正極活物質粒子に微細粒子が非常に多く含まれ(15.0wt%)、正極ペースト中に微細粒子が非常に多く含まれている。このため、フィルタ透過の際に、この微細粒子がフィルタの繊維部に付着し目詰まりを引き起こして、フィルタの透過性が低くなったと考えられる。   First, as for filter permeability of the positive electrode paste, as can be seen from Table 1, Comparative Examples 1, 3, 4, 6, and 7 had low filter permeability (0.7 to 2.3 L / h). The reason why the filter permeability of the positive electrode paste of Comparative Example 6 was low was that the positive electrode active material particles were neither granulated nor classified, so the positive electrode active material particles contained a large amount of fine particles (15.0 wt%). The positive electrode paste contains a very large amount of fine particles. For this reason, it is considered that the fine particles adhere to the fiber portion of the filter during filter permeation, causing clogging, and the permeability of the filter is lowered.

また、比較例7の正極ペーストでフィルタ透過性が低かった理由は、処理前の正極活物質粒子に0.1〜3.0μmの微細粒子はそれほど多く含まれていないものの(1.0wt%)、正極活物質粒子について造粒も分級も行っていないため、正極活物質粒子及び正極ペースト中に粒径の特に小さい(0.1μmに近い)粒子が多数存在する。このため、フィルタ透過の際に、この粒径の特に小さい粒子がフィルタの繊維部に付着し目詰まりを引き起こして、フィルタの透過性が低くなったと考えられる。   Further, the reason why the filter permeability was low in the positive electrode paste of Comparative Example 7 was that the positive electrode active material particles before treatment did not contain so much fine particles of 0.1 to 3.0 μm (1.0 wt%) Since the positive electrode active material particles are not granulated or classified, a large number of particles having a particularly small particle size (close to 0.1 μm) are present in the positive electrode active material particles and the positive electrode paste. For this reason, it is considered that when the filter permeates, particles having a particularly small particle size adhere to the fiber portion of the filter, causing clogging, and the permeability of the filter is lowered.

また、比較例1の正極ペーストでフィルタ透過性が低かった理由は、処理前の正極活物質粒子に15.0wt%を越える非常に多く(20.0wt%)の微細粒子が含まれている。このため、造粒を行って微細粒子の割合を10.0wt%まで減らしたが、それでも粒径の特に小さい(0.1μmに近い)粒子が造粒後も多数存在した。その結果、この粒径の特に小さい粒子がフィルタの繊維部に付着し目詰まりを引き起こして、フィルタの透過性が低くなったと考えられる。   Further, the reason why the filter permeability was low in the positive electrode paste of Comparative Example 1 was that the positive electrode active material particles before the treatment contained very many (20.0 wt%) fine particles exceeding 15.0 wt%. For this reason, granulation was carried out to reduce the proportion of fine particles to 10.0 wt%, but there were still many particles with a particularly small particle size (close to 0.1 μm) after granulation. As a result, it is considered that the particles having a particularly small particle size adhere to the fiber portion of the filter and cause clogging, and the permeability of the filter is lowered.

また、比較例3の正極ペーストでフィルタ透過性が低くなった理由は、造粒粒子に10.0wt%を越える非常に多く(11.0wt%)の造粒後微細粒子が含まれている。このため、この造粒後微細粒子がフィルタの繊維部に付着し目詰まりを引き起こして、フィルタの透過性が低くなったと考えられる。   Further, the reason why the filter permeability of the positive electrode paste of Comparative Example 3 was lowered is that the granulated particles contain very many (11.0 wt%) fine particles after granulation exceeding 10.0 wt%. For this reason, it is considered that the fine particles after granulation adhere to the fiber part of the filter and cause clogging, and the permeability of the filter is lowered.

また、比較例4の正極ペーストでフィルタ透過性が低かった理由は、分級処理によって微細粒子の割合を10.0wt%まで減らしたが、造粒工程を行った場合に比べると、粒径の特に小さい(0.1μmに近い)粒子が多数残っている。その結果、この粒径の特に小さい粒子がフィルタの繊維部に付着し目詰まりを引き起こして、フィルタの透過性が低くなったと考えられる。   Moreover, the reason why the filter permeability was low in the positive electrode paste of Comparative Example 4 was that the proportion of fine particles was reduced to 10.0 wt% by the classification treatment, but the particle size was particularly large compared to the case where the granulation step was performed. Many small particles (close to 0.1 μm) remain. As a result, it is considered that the particles having a particularly small particle size adhere to the fiber portion of the filter and cause clogging, and the permeability of the filter is lowered.

これらに対し、実施例1〜3及び比較例2,5の各正極ペーストは、フィルタ透過性が高く良好であった(3.0〜3.4L/h)。実施例1〜3及び比較例2の正極ペーストのフィルタ透過性が良好であった理由は、造粒前の正極活物質粒子に含まれる微細粒子の割合が15.0wt%以下で、かつ、造粒によって微細粒子を減らし、造粒後微細粒子の割合を10.0wt%以下としている。このため、正極ペースト中に含まれる造粒後微細粒子が少ないので、造粒後微細粒子がフィルタの繊維部に付着し目詰まりを引き起こすことが防止された。また、造粒後の粒径90μm以下の粒子の割合を99.8wt%以上としている。このため、造粒粒子の殆どがフィルタの目開き(90μm)よりも小さいので、大きな粒子に起因するフィルタ透過性の低下も防止された。その結果、フィルタ透過性が良好になったと考えられる。   In contrast, each of the positive electrode pastes of Examples 1 to 3 and Comparative Examples 2 and 5 had good filter permeability and was good (3.0 to 3.4 L / h). The reason why the filter properties of the positive electrode pastes of Examples 1 to 3 and Comparative Example 2 were good was that the proportion of fine particles contained in the positive electrode active material particles before granulation was 15.0 wt% or less, and Fine particles are reduced by granules, and the proportion of fine particles after granulation is 10.0 wt% or less. For this reason, since there are few post-granulation fine particles contained in a positive electrode paste, it was prevented that the fine particles after granulation adhere to the fiber part of a filter and cause clogging. Further, the ratio of particles having a particle size of 90 μm or less after granulation is set to 99.8 wt% or more. For this reason, since most of the granulated particles are smaller than the opening of the filter (90 μm), a decrease in filter permeability due to large particles was also prevented. As a result, it is considered that the filter permeability is improved.

また、比較例5の正極ペーストのフィルタ透過性が良好であった理由は、分級処理によって正極活物質粒子に含まれる微細粒子を殆ど除去し、0.01wt%としている。このように、正極ペースト中に含まれる微細粒子が少ないので、微細粒子がフィルタの繊維部に付着し目詰まりを引き起こすことが防止され、フィルタの透過性が良好になったと考えられる。   Moreover, the reason why the filter permeability of the positive electrode paste of Comparative Example 5 was good was that the fine particles contained in the positive electrode active material particles were almost removed by the classification treatment, and was 0.01 wt%. As described above, since the fine particles contained in the positive electrode paste are few, it is considered that the fine particles are prevented from adhering to the fiber portion of the filter and causing clogging, and the filter has improved permeability.

次に、プレス工程後の正極板の反り量について検討する。表1から判るように、比較例2,4〜7の各正極板は、反り量が大きかった(1.6〜2.4mm/m)。このうち比較例2の正極板で反り量が大きかった理由は、もともとの正極活物質粒子に含まれる微細粒子が1.0wt%よりも少ない(0.5wt%)。このため、正極活物質層において、大きな粒子同士の隙間に入り込むことができる微細粒子が少ない。従って、プレス圧力を高くしなければ、正極活物質層を所定密度まで圧縮できない。その結果、正極電極箔122のうち正極活物質層が形成された部分が露出部122mよりも強く圧延され、正極板の反り量が大きくなったと考えられる。   Next, the amount of warpage of the positive electrode plate after the pressing process will be examined. As can be seen from Table 1, each positive electrode plate of Comparative Examples 2 and 4 to 7 had a large amount of warpage (1.6 to 2.4 mm / m). Among these, the reason for the large amount of warpage in the positive electrode plate of Comparative Example 2 is that the fine particles contained in the original positive electrode active material particles are less than 1.0 wt% (0.5 wt%). For this reason, in a positive electrode active material layer, there are few fine particles which can enter in the clearance gap between large particles. Therefore, unless the press pressure is increased, the positive electrode active material layer cannot be compressed to a predetermined density. As a result, it is considered that the portion of the positive electrode foil 122 where the positive electrode active material layer was formed was rolled stronger than the exposed portion 122m, and the amount of warpage of the positive electrode plate was increased.

また、比較例5の正極板で反り量が大きくなった理由は、分級により正極活物質粒子に含まれる微細粒子の割合が著しく減ったため(0.01wt%)、正極活物質層において、大きな粒子同士の隙間に入り込むことができる微細粒子が少なくなった。このため、正極活物質層を所定密度まで圧縮するためのプレス圧力が高くなり、正極板の反り量が大きくなったと考えられる。   Further, the reason why the amount of warpage was increased in the positive electrode plate of Comparative Example 5 was that the proportion of fine particles contained in the positive electrode active material particles was significantly reduced by classification (0.01 wt%). The number of fine particles that can enter the gaps between them has decreased. For this reason, it is considered that the press pressure for compressing the positive electrode active material layer to a predetermined density has increased, and the amount of warpage of the positive electrode plate has increased.

また、比較例4,6,7で正極板の反り量が大きくなった理由は、正極活物質粒子自体は造粒粒子に比して硬度が高いため、造粒粒子が存在しないと、プレス時に正極電極箔122(その正極活物質層が形成された部分)に掛かる圧力が大きくなる。このため、プレス後の正極板の反り量が大きくなったと考えられる。   In addition, the reason why the amount of warpage of the positive electrode plate in Comparative Examples 4, 6, and 7 is large is that the positive electrode active material particles themselves have higher hardness than the granulated particles. The pressure applied to the positive electrode foil 122 (the portion where the positive electrode active material layer is formed) increases. For this reason, it is considered that the amount of warping of the positive electrode plate after pressing has increased.

これらに対し、実施例1〜3及び比較例1,3の各正極板は、反り量が小さかった(0.15〜0.3mm/m)。その理由は、処理前の正極活物質粒子に含まれる微細粒子が1.0wt%よりも多いので、プレスにより造粒粒子が解砕された後に、この微細粒子が大きな粒子同士の隙間に入り込むため密度を容易に高くできる。また、造粒粒子は正極活物質粒子に比して硬度が低いため、プレス時にクッションのように働いて正極電極箔122(その正極活物質層が形成された部分)に掛かる圧力が低くなる。このため、プレス圧力を高くしなくても、正極活物質層を所定密度に圧縮でき、正極板の反り量が小さかったと考えられる。   In contrast, each of the positive plates of Examples 1 to 3 and Comparative Examples 1 and 3 had a small amount of warpage (0.15 to 0.3 mm / m). The reason is that the amount of fine particles contained in the positive electrode active material particles before treatment is larger than 1.0 wt%, and after the granulated particles are crushed by the press, the fine particles enter the gaps between the large particles. The density can be easily increased. In addition, since the granulated particles have a lower hardness than the positive electrode active material particles, the pressure applied to the positive electrode foil 122 (the portion where the positive electrode active material layer is formed) is reduced by acting like a cushion during pressing. For this reason, it is considered that the positive electrode active material layer could be compressed to a predetermined density without increasing the press pressure, and the amount of warpage of the positive electrode plate was small.

次に、電池抵抗について検討する。表1から判るように、プレス後の正極板の反り量が大きかった比較例2,4〜7に係る電池は、電池抵抗も大きかった(150〜176Ω)。その理由は、プレス圧力が高かったために、プレスにより正極活物質粒子自体が割れて、電池抵抗が大きくなったと考えられる。
これに対し、プレス後の正極板の反り量が小さかった実施例1〜3及び比較例1,3に係る電池は、電池抵抗も小さかった(120〜124Ω)。その理由は、プレス圧力が低かったために、プレスにより造粒粒子が解砕されても、正極活物質粒子自体が割れることは少ない。このため、電池抵抗が小さかったと考えられる。
Next, battery resistance will be examined. As can be seen from Table 1, the batteries according to Comparative Examples 2 and 4 to 7 in which the amount of warpage of the positive electrode plate after pressing was large also had a large battery resistance (150 to 176Ω). The reason is considered to be that the positive electrode active material particles themselves were cracked by the press due to the high press pressure, and the battery resistance was increased.
In contrast, the batteries according to Examples 1 to 3 and Comparative Examples 1 and 3 in which the amount of warpage of the positive electrode plate after pressing was small also had a small battery resistance (120 to 124Ω). The reason for this is that since the pressing pressure was low, even if the granulated particles were crushed by the press, the positive electrode active material particles themselves were rarely cracked. For this reason, it is thought that battery resistance was small.

以上で説明したように、正極活物質として、粒径0.1〜3.0μmの微細粒子を1.0〜15.0wt%含む正極活物質粒子125を用いる。そして、造粒工程において、造粒粒子における粒径0.1〜3.0μmの造粒後微細粒子の割合が、正極活物質粒子125における微細粒子の割合よりも低く、造粒粒子における造粒後微細粒子の割合が10.0wt%以下で、かつ、粒径90μm以下の造粒粒子の占める割合が99.8wt%以上である造粒粒子を形成する。この造粒粒子を用いて作成した正極ペーストでは、見かけ上、造粒前に比して、微細な粒子(造粒後微細粒子)が少なくなっているので、フィルタ透過工程S3においてフィルタ透過性を良好にすることができる。また、電極ペースト中には、粒径90μmを越える大きな造粒粒子も殆ど存在しないので、大きな粒子によるフィルタの目詰まりを生じることもなく、電極ペーストから大きな異物等を容易に除去できる。   As described above, the positive electrode active material particles 125 containing 1.0 to 15.0 wt% of fine particles having a particle size of 0.1 to 3.0 μm are used as the positive electrode active material. In the granulation step, the proportion of fine particles after granulation having a particle size of 0.1 to 3.0 μm in the granulated particles is lower than the proportion of fine particles in the positive electrode active material particles 125, and granulation in the granulated particles. A granulated particle is formed in which the proportion of the post-fine particles is 10.0 wt% or less and the proportion of the granulated particles having a particle size of 90 μm or less is 99.8 wt% or more. In the positive electrode paste prepared using the granulated particles, there are apparently fewer fine particles (fine particles after granulation) than before granulation. Can be good. In addition, since there are almost no large granulated particles having a particle size of more than 90 μm in the electrode paste, large foreign matters can be easily removed from the electrode paste without causing clogging of the filter by the large particles.

また、上述の造粒粒子を用いた正極ペーストで形成した正極活物質層123は、プレス工程において正極活物質層123を高密度化するために必要なプレス圧力が小さくて済み、正極電極箔122に掛かる圧力を小さくできる。従って、プレス後の正極板121に反りなどの変形が生じるのを抑制できる。また、プレス圧力を小さくすることで、プレス時に正極活物質粒子125自体が割れ難くなるので、正極活物質粒子125の割れに起因した電池抵抗の増加を防止できる。特に本実施形態では、正極活物質粒子125を外力を加えずに凝集させて造粒する自立造粒によって造粒粒子を形成する。このため、造粒粒子は、小さな力で容易に解砕できるので、プレス工程におけるプレス圧力を特に低くできる。   Further, the positive electrode active material layer 123 formed of the positive electrode paste using the granulated particles described above requires a small pressing pressure to increase the density of the positive electrode active material layer 123 in the pressing step, and the positive electrode foil 122 The pressure applied to can be reduced. Therefore, it is possible to suppress deformation such as warpage in the positive electrode plate 121 after pressing. In addition, by reducing the pressing pressure, the positive electrode active material particles 125 themselves are difficult to break during pressing, and thus an increase in battery resistance due to cracking of the positive electrode active material particles 125 can be prevented. In particular, in this embodiment, the granulated particles are formed by self-supporting granulation in which the positive electrode active material particles 125 are aggregated and granulated without applying external force. For this reason, since the granulated particles can be easily crushed with a small force, the pressing pressure in the pressing step can be particularly lowered.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、正極板121の形成に本発明を適用したが、負極板131の形成に本発明を適用してもよい。
また、実施形態では、フィルタ工程で用いるフィルタとして、金属メッシュからなるフィルタを用いたが、これに限られない。例えば、ナイロン等の樹脂メッシュや不織布からなるフィルタを用いてもよい。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the present invention is applied to the formation of the positive electrode plate 121, but the present invention may be applied to the formation of the negative electrode plate 131.
In the embodiment, a filter made of a metal mesh is used as a filter used in the filter process, but the present invention is not limited to this. For example, a filter made of a resin mesh such as nylon or a nonwoven fabric may be used.

100 リチウムイオン二次電池(電池)
120 電極体
121 正極板(電極板)
122 正極電極箔(電極箔)
123 正極活物質層(正極合剤層,活物質層)
125 正極活物質粒子(活物質粒子)
126 導電材
127 結着剤
131 負極板
141 セパレータ
100 Lithium ion secondary battery (battery)
120 Electrode body 121 Positive electrode plate (electrode plate)
122 Positive electrode foil (electrode foil)
123 Positive electrode active material layer (positive electrode mixture layer, active material layer)
125 Positive electrode active material particles (active material particles)
126 Conductive Material 127 Binder 131 Negative Electrode Plate 141 Separator

Claims (3)

電極箔上に活物質層が形成された電極板を備える電池の製造方法であって、
粒径0.1〜3.0μmの微細粒子を1.0〜15.0wt%含む活物質粒子を造粒して、造粒粒子を形成する造粒工程であって、
前記造粒粒子は、
この造粒粒子における粒径0.1〜3.0μmの造粒後微細粒子の割合が、前記活物質粒子における前記微細粒子の割合よりも低く、
前記造粒粒子における前記造粒後微細粒子の割合が10.0wt%以下で、かつ、
粒径90μm以下の前記造粒粒子の占める割合が99.8wt%以上である
造粒工程と、
前記造粒粒子を用いて、電極ペーストを作成するペースト作成工程と、
前記電極ペーストについて、目開き90〜110μmのフィルタを透過させるフィルタ透過工程と、
前記フィルタ透過工程後の前記電極ペーストを、前記電極箔上に塗工し乾燥させて、前記活物質層を形成する活物質層形成工程と、を備える
電池の製造方法。
A method for producing a battery comprising an electrode plate having an active material layer formed on an electrode foil,
A granulation step of granulating active material particles containing 1.0 to 15.0 wt% of fine particles having a particle size of 0.1 to 3.0 μm to form granulated particles,
The granulated particles are
The proportion of fine particles after granulation having a particle size of 0.1 to 3.0 μm in the granulated particles is lower than the proportion of the fine particles in the active material particles,
The proportion of fine particles after granulation in the granulated particles is 10.0 wt% or less, and
A proportion of the granulated particles having a particle size of 90 μm or less is 99.8 wt% or more;
Using the granulated particles, a paste creating step for creating an electrode paste,
About the electrode paste, a filter permeation step for allowing a filter having an opening of 90 to 110 μm to pass through,
An active material layer forming step of forming the active material layer by applying the electrode paste after the filter permeation step onto the electrode foil and drying it.
請求項1に記載の電池の製造方法であって、
前記活物質層形成工程の後、前記活物質層をプレスして、前記造粒粒子を解砕すると共に前記活物質層を圧縮するプレス工程を備える
電池の製造方法。
A battery manufacturing method according to claim 1, comprising:
After the said active material layer formation process, the said active material layer is pressed, The manufacturing method of a battery provided with the press process of compressing the said active material layer while crushing the said granulated particle.
請求項2に記載の電池の製造方法であって、
前記造粒工程は、
前記活物質粒子を外力を加えずに凝集させて造粒する自立造粒により、前記造粒粒子を形成する自立造粒工程である
電池の製造方法。
A method of manufacturing a battery according to claim 2,
The granulation step includes
A battery manufacturing method, which is a self-supporting granulation step of forming the granulated particles by self-supporting granulation in which the active material particles are aggregated and granulated without applying external force.
JP2012101693A 2012-04-26 2012-04-26 Method for manufacturing battery Pending JP2013229248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101693A JP2013229248A (en) 2012-04-26 2012-04-26 Method for manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101693A JP2013229248A (en) 2012-04-26 2012-04-26 Method for manufacturing battery

Publications (1)

Publication Number Publication Date
JP2013229248A true JP2013229248A (en) 2013-11-07

Family

ID=49676679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101693A Pending JP2013229248A (en) 2012-04-26 2012-04-26 Method for manufacturing battery

Country Status (1)

Country Link
JP (1) JP2013229248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115311A (en) * 2013-12-16 2015-06-22 株式会社豊田自動織機 Electricity storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115311A (en) * 2013-12-16 2015-06-22 株式会社豊田自動織機 Electricity storage device

Similar Documents

Publication Publication Date Title
CN107546379B (en) Lithium iron manganese phosphate-ternary material composite cathode material and preparation method thereof
KR102324577B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
US10431807B2 (en) Method of manufacturing lithium-ion secondary battery electrode
EP2383224B1 (en) Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
EP2685535A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP5888418B2 (en) Negative electrode active material, method for producing negative electrode active material, negative electrode and secondary battery
EP2554515A1 (en) Modified natural graphite particle and method for producing same
JP2016054113A (en) Method of manufacturing composite body for secondary battery electrode, composite body for secondary battery electrode, electrode for secondary battery, and secondary battery
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
DE112012004702T5 (en) Negative electrode material and negative electrode for use in a lithium-ion secondary battery and a lithium-ion secondary battery
JP5614592B2 (en) Method for manufacturing electrode for secondary battery
CN109962221B (en) Composite positive electrode material, positive plate, preparation method of positive plate and lithium ion battery
DE102011004564A1 (en) Electrode material with high capacity
JP6451071B2 (en) Carbon silicon negative electrode active material for lithium ion secondary battery and method for producing the same
KR20160129856A (en) Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
JP5334506B2 (en) Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery
JP2006278265A (en) Positive electrode plate for lithium secondary battery and manufacturing method thereof
US20110033748A1 (en) Hydrogen-absorbing alloy powder, method for treating the surface thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP2013229248A (en) Method for manufacturing battery
US20220359874A1 (en) Mixed positive electrode material, positive electrode plate and preparation method thereof, battery, and apparatus
JP2016091904A (en) Method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5317544B2 (en) Method for manufacturing lithium secondary battery
JP6170804B2 (en) Conductive carbon
JP2017224419A (en) Carbonous material for nonaqueous electrolyte secondary battery negative electrode and method for manufacturing the same
CN105990581A (en) Method for preparing composite graphite negative electrode material