JP2013227555A - Polyamide resin composition for automobile engine room interior part - Google Patents

Polyamide resin composition for automobile engine room interior part Download PDF

Info

Publication number
JP2013227555A
JP2013227555A JP2013068794A JP2013068794A JP2013227555A JP 2013227555 A JP2013227555 A JP 2013227555A JP 2013068794 A JP2013068794 A JP 2013068794A JP 2013068794 A JP2013068794 A JP 2013068794A JP 2013227555 A JP2013227555 A JP 2013227555A
Authority
JP
Japan
Prior art keywords
polyamide resin
acid
resin composition
parts
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013068794A
Other languages
Japanese (ja)
Inventor
Takuro Okubo
拓郎 大久保
Atsushi Masunaga
淳史 増永
Kimiya Kato
公哉 加藤
Hideyuki Umetsu
秀之 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013068794A priority Critical patent/JP2013227555A/en
Publication of JP2013227555A publication Critical patent/JP2013227555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyamide resin composition that has low water absorptivity, and that is extremely suitable for an automobile engine room interior part excellent in dimensional stability between under a room temperature and high temperature environment.SOLUTION: A polyamide resin composition includes at least 0.01 pt.wt. and at most 200 pts.wt. of an inorganic filler based on 100 pts.wt. of a polyamide resin obtained by performing polycondensation of a monomer containing an aliphatic dicarboxylic acid of at least 7 of a carbon number as a major component with tetramethylenediamine. The polyamide resin composition for an automobile engine room interior part is such that a ratio of a storage modulus at 110°C measured by a bending mode to a storage modulus at 30°C measured by a bending mode (storage modulus 110°C/storage modulus at 30°C) is at least 0.30, and a value of a peak top of tanδ that corresponds to a glass transition temperature of the polyamide resin is at most 0.098.

Description

本発明は、テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする単量体を重縮合して得られるポリアミド樹脂に無機充填材を配合してなる自動車エンジンルーム内部品用ポリアミド樹脂組成物に関する。   The present invention relates to a polyamide for parts in an automobile engine room, in which an inorganic filler is blended with a polyamide resin obtained by polycondensation of monomers mainly composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms. The present invention relates to a resin composition.

ナイロン66に代表されるポリアミド樹脂は、耐熱性、耐油性、強靭性に優れた特徴を有し、自動車エンジンルーム内部品など種々の機能部品において使用実績がある。世界規模で環境への意識が高まる中、自動車メーカーへの環境負荷低減要求は厳しいものとなっており、燃費向上対策、騒音対策、排出ガス対策と言ったあらゆる環境負荷低減の取り組みが行われている。燃費向上対策においては、ハイブリッドシステムなどの新システム採用により熱源が多様化している。また、騒音対策においては、大型アンダーカバーの装着によりエンジンルームが密閉化している。さらに、排出ガス対策においては、触媒追加により排気管温度が上昇する。このように、エンジンルーム内の高温環境下(100℃以上)で使用されるポリアミド樹脂の要求特性は益々厳しくなっている。ポリアミド樹脂は、親水性のアミド基の存在により吸水しやすい特性を有する。しかしながら、特に高温環境下で使用する場合においては、成形片に吸収された水の蒸発により成形品にふくれが生じる懸念があることから、自動車エンジンルーム内部品用樹脂組成物には、吸水性が低いことが求められていた。また、自動車エンジンルーム内部品用樹脂組成物には、高温環境下においても変形しにくい性質が求められていた。   Polyamide resins represented by nylon 66 have excellent heat resistance, oil resistance, and toughness, and have been used in various functional parts such as automobile engine compartment parts. As environmental awareness is increasing on a global scale, demands for reducing the environmental impact of automobile manufacturers are becoming strict, and various efforts to reduce the environmental impact, such as measures to improve fuel consumption, noise, and exhaust gas, are being carried out. Yes. In measures to improve fuel efficiency, heat sources are diversified by adopting new systems such as hybrid systems. As a countermeasure against noise, the engine room is hermetically sealed by installing a large under cover. Furthermore, in the exhaust gas countermeasure, the exhaust pipe temperature rises due to the addition of the catalyst. Thus, the required characteristics of the polyamide resin used in a high temperature environment (100 ° C. or higher) in the engine room are becoming increasingly severe. The polyamide resin has a characteristic of easily absorbing water due to the presence of a hydrophilic amide group. However, particularly when used in a high temperature environment, there is a concern that the molded product may bulge due to evaporation of water absorbed in the molded piece. It was required to be low. Moreover, the resin composition for parts in an automobile engine room has been required to have a property of not easily deforming even in a high temperature environment.

ナイロン66以外の脂肪族ポリアミド樹脂として、ナイロン610(例えば、特許文献1参照)やナイロン46(例えば、特許文献2参照)が知られている。ナイロン610は、ナイロン66よりも吸水率が低く、室温での寸法安定性に優れる反面、室温〜高温環境下間の寸法安定性が不十分であり、前述のような高温環境下で使用されるエンジンルーム内部品としては、なお改善の余地があった。また、ナイロン46は機械特性および室温〜高温環境下間の寸法安定性に優れるものの、吸水性が高いために、100℃以上の高温環境下では、水の蒸発によりふくれが生じる懸念があり、耐ブリスター性に劣ることが課題となっていた。   As aliphatic polyamide resins other than nylon 66, nylon 610 (for example, see Patent Document 1) and nylon 46 (for example, see Patent Document 2) are known. Nylon 610 has a lower water absorption than nylon 66 and is superior in dimensional stability at room temperature, but has insufficient dimensional stability between room temperature and high temperature environment, and is used in the high temperature environment as described above. There was still room for improvement in the engine compartment. Nylon 46 is excellent in mechanical properties and dimensional stability between room temperature and high temperature environment, but because of its high water absorption, there is a concern that blistering may occur due to water evaporation in a high temperature environment of 100 ° C. or higher. Inferior blister properties has been a problem.

一方、テトラメチレンジアミンと炭素数8〜14の脂肪族ジカルボン酸からなる単量体から構成されるポリアミド樹脂も知られており(例えば、特許文献3〜4参照)、かかるポリアミド樹脂が低吸水性および機械特性に優れることが示されている。   On the other hand, a polyamide resin composed of a monomer composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 8 to 14 carbon atoms is also known (see, for example, Patent Documents 3 to 4). And excellent mechanical properties.

特開2010−31210号公報JP 2010-31210 A 特開昭56−149431号公報JP-A-56-149431 国際公開第2000/09586号International Publication No. 2000/09586 国際公開第2010/098335号International Publication No. 2010/098335

しかしながら、テトラメチレンジアミンと炭素数8〜14の脂肪族ジカルボン酸からなる単量体から構成されるポリアミド樹脂の高温環境下における特性は知られていなかった。また、無機充填材を配合した場合に、著しく寸法安定性が向上することは知られていなかった。本発明は、低吸水性を有し、かつ室温〜高温環境下間の寸法安定性に優れる自動車エンジンルーム内部品に極めて適したポリアミド樹脂組成物を提供することを課題とする。   However, the properties in a high temperature environment of a polyamide resin composed of a monomer composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 8 to 14 carbon atoms have not been known. Further, it has not been known that the dimensional stability is remarkably improved when an inorganic filler is blended. An object of the present invention is to provide a polyamide resin composition that has low water absorption and is extremely suitable for parts in an automobile engine room that is excellent in dimensional stability between room temperature and high temperature.

本発明者らは、テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする単量体を重縮合して得られるポリアミド樹脂に無機充填材を配合してなるポリアミド樹脂組成物が、低吸水性および高温剛性に優れるために、室温〜高温環境下間の寸法安定性に優れること、そのため、かかる樹脂組成物が特に高温環境下で使用される自動車エンジンルーム内部品に好適であることを見出し、本発明を完成させた。   The present inventors provide a polyamide resin composition obtained by blending an inorganic filler with a polyamide resin obtained by polycondensation of monomers mainly composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms. In addition, because of its excellent low water absorption and high temperature rigidity, it has excellent dimensional stability between room temperature and high temperature environment. Therefore, such a resin composition is particularly suitable for automobile engine room parts used under high temperature environment. As a result, the present invention has been completed.

すなわち、本発明は、
(1)テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする単量体を重縮合して得られるポリアミド樹脂100重量部に対して、無機充填材を0.01重量部以上200重量部以下配合してなるポリアミド樹脂組成物であって、曲げモードで測定した110℃における貯蔵弾性率と、曲げモードで測定した30℃における貯蔵弾性率との比(110℃における貯蔵弾性率/30℃における貯蔵弾性率)が0.30以上であり、ポリアミド樹脂のガラス転移温度に相当するtanδのピークトップの値が0.098以下である、自動車エンジンルーム内部品用ポリアミド樹脂組成物、
(2)前記無機充填材が、非繊維状無機充填材を含む(1)に記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物、
(3)前記非繊維状無機充填材が、タルク、ワラステナイト、マイカおよびカオリンからなる群より選ばれる少なくとも1種である(2)に記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物、
(4)前記無機充填材が、さらに繊維状無機充填材を含む(2)または(3)に記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物、
(5)前記繊維状無機充填材が、ガラス繊維および/または炭素繊維である(4)に記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物、
(6)飽和吸水率が6.0重量%以下である、(1)〜(5)のいずれかに記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物、
(7)前記炭素数7以上の脂肪族ジカルボン酸が、アゼライン酸、セバシン酸、ウンデカン二酸およびドデカン二酸からなる群より選ばれる少なくとも1種である(1)〜(6)のいずれかに記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物、
(8)(1)〜(7)のいずれかに記載のポリアミド樹脂組成物を成形してなる自動車エンジンルーム内部品、である。
That is, the present invention
(1) 0.01 parts by weight or more of an inorganic filler with respect to 100 parts by weight of a polyamide resin obtained by polycondensation of monomers mainly composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms 200 parts by weight or less of a polyamide resin composition, which is a ratio of storage elastic modulus at 110 ° C. measured in bending mode to storage elastic modulus at 30 ° C. measured in bending mode (storage elastic modulus at 110 ° C. / Polyamide resin composition for automotive engine compartment parts, wherein the storage elastic modulus at 30 ° C.) is 0.30 or more, and the peak top value of tan δ corresponding to the glass transition temperature of the polyamide resin is 0.098 or less,
(2) The polyamide resin composition for automotive engine compartment components according to (1), wherein the inorganic filler includes a non-fibrous inorganic filler,
(3) The non-fibrous inorganic filler is at least one selected from the group consisting of talc, wollastonite, mica and kaolin, and the polyamide resin composition for automotive engine room components according to (2),
(4) The polyamide resin composition for automotive engine compartment components according to (2) or (3), wherein the inorganic filler further contains a fibrous inorganic filler,
(5) The polyamide resin composition for automotive engine compartment components according to (4), wherein the fibrous inorganic filler is glass fiber and / or carbon fiber,
(6) The polyamide resin composition for automotive engine compartment parts according to any one of (1) to (5), wherein the saturated water absorption is 6.0% by weight or less,
(7) The aliphatic dicarboxylic acid having 7 or more carbon atoms is at least one selected from the group consisting of azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid, according to any one of (1) to (6) The polyamide resin composition for automotive engine compartment parts as described,
(8) An automotive engine compartment part formed by molding the polyamide resin composition according to any one of (1) to (7).

本発明の自動車エンジンルーム内部品用ポリアミド樹脂組成物によれば、低吸水性を有し、室温〜高温環境下間の寸法安定性に優れる自動車エンジンルーム内部品を提供することができる。   According to the polyamide resin composition for automobile engine compartment parts of the present invention, it is possible to provide an automobile engine compartment part having low water absorption and excellent dimensional stability between room temperature and high temperature.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の自動車エンジンルーム内部品用ポリアミド樹脂組成物は、テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする単量体を重縮合して得られるポリアミド樹脂を構成成分とする。ここで、「テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする」とは、テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸の総重量が、原料となる単量体の70重量%以上であることを指す。より好ましくは80重量%以上、さらに好ましくは90重量%以上である。   The polyamide resin composition for automotive engine compartment parts according to the present invention comprises a polyamide resin obtained by polycondensation of monomers mainly composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms. . Here, “the main component is tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms” means that the total weight of tetramethylenediamine and the aliphatic dicarboxylic acid having 7 or more carbon atoms is a raw material. Of 70% by weight or more. More preferably, it is 80 weight% or more, More preferably, it is 90 weight% or more.

本発明で用いる炭素数7以上のジカルボン酸としては、例えば、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などが挙げられ、これらは2種以上を併用してもよい。特に、低吸水性と高温剛性のバランスに優れるアゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸が好ましく、セバシン酸が最も好ましい。   Examples of the dicarboxylic acid having 7 or more carbon atoms used in the present invention include pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, and hexadecanedioic acid. Examples include acid, heptadecanedioic acid, octadecanedioic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and the like. In particular, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid, which are excellent in the balance between low water absorption and high-temperature rigidity, are preferred, and sebacic acid is most preferred.

本発明で用いるポリアミド樹脂は、テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸以外の成分の少なくとも1種を、原料となる全成分の30重量%未満の範囲で共重合することが可能である。より好ましくは20重量%未満、さらに好ましくは10重量%未満である。共重合する成分としては、例えば、エチレンジアミン、1,3−ジアミノプロパン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン、1,13−ジアミノトリデカン、1,14−ジアミノテトラデカン、1,15−ジアミノペンタデカン、1,16−ジアミノヘキサデカン、1,17−ジアミノヘプタデカン、1,18−ジアミノオクタデカン、1,19−ジアミノノナデカン、1,20−ジアミノエイコサン、2−メチル−1,5−ジアミノペンタン、2−メチル−1,8−ジアミノオクタンなどの脂肪族ジアミン、シクロヘキサンジアミン、ビス−(4−アミノシクロヘキシル)メタンなどの脂環式ジアミン、キシリレンジアミンなどの芳香族ジアミン、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε−カプロラクタム、ω−ラウロラクタムなどのラクタムなどが挙げられる。   The polyamide resin used in the present invention can copolymerize at least one component other than tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms in a range of less than 30% by weight of the total components. is there. More preferably, it is less than 20 weight%, More preferably, it is less than 10 weight%. Examples of the component to be copolymerized include ethylenediamine, 1,3-diaminopropane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9- Diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, 1,15-diaminopentadecane, 1,16-diamino Hexadecane, 1,17-diaminoheptadecane, 1,18-diaminooctadecane, 1,19-diaminononadecane, 1,20-diaminoeicosane, 2-methyl-1,5-diaminopentane, 2-methyl-1, Aliphatic diamines such as 8-diaminooctane, cyclohexanediamine, bis- ( -Aminocyclohexyl) alicyclic diamines such as methane, aromatic diamines such as xylylenediamine, alicyclics such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and the like, and cyclohexanedicarboxylic acid. Aromatic dicarboxylic acids such as dicarboxylic acid, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, paraaminomethylbenzoic acid, ε-caprolactam, ω- Examples include lactam such as laurolactam.

本発明に用いるポリアミド樹脂の製造方法としては、例えば、テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸、またはその塩、および必要によりその他共重合成分を、加熱して低次縮合物を合成する工程を経て、固相重合または溶融高重合度化する方法などが挙げられる。低次縮合物を一旦取り出して、固相重合または押出機等で溶融高重合度化する2段重合、低次縮合物の製造工程に続いて、同一反応容器内で固相重合または溶融重合する1段重合のどちらを用いてもよい。溶融重合により得られたポリアミド樹脂は、固相重合により得られたポリアミド樹脂と比較して分子量分布が狭く、相対的に低分子量成分の含有量が少なくなるため、引張強度や引張破断歪み等の機械的性質が向上するため、より好ましい。なお、低次縮合物とは、後述する硫酸相対粘度が1.05〜1.90のポリアミド樹脂と定義する。また、加熱重縮合とは、製造時のポリアミド樹脂の最高到達温度を180℃以上に上昇させる製造プロセスと定義する。固相重合とは、100℃〜融点の温度範囲で、減圧下、あるいは不活性ガス中で加熱する工程、溶融高重合度化とは、常圧、または減圧下で融点以上に加熱する工程を示す。   As a method for producing the polyamide resin used in the present invention, for example, tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms, or a salt thereof, and if necessary, other copolymer components are heated to synthesize a low-order condensate. Examples of the method include solid phase polymerization or a method for increasing the degree of melt polymerization through the step of performing the step. Take out the low-order condensate once, then perform solid-phase polymerization or melt polymerization in the same reaction vessel, followed by solid-phase polymerization or two-stage polymerization to increase the degree of melt polymerization with an extruder, etc. Either one-stage polymerization may be used. The polyamide resin obtained by melt polymerization has a narrow molecular weight distribution compared to the polyamide resin obtained by solid phase polymerization, and the content of relatively low molecular weight components is relatively small. It is more preferable because mechanical properties are improved. The low-order condensate is defined as a polyamide resin having a sulfuric acid relative viscosity described later of 1.05-1.90. Heat polycondensation is defined as a production process in which the maximum temperature of the polyamide resin during production is increased to 180 ° C. or higher. Solid-phase polymerization is a step of heating in a temperature range of 100 ° C. to a melting point under reduced pressure or in an inert gas, and melting high polymerization degree is a step of heating to a melting point or higher under normal pressure or reduced pressure. Show.

ポリアミド樹脂を製造する際には、テトラメチレンジアミン、およびその環化反応により生成するピロリジンが揮発することや、ピロリジンが末端封鎖剤となるなどの理由で、重合の進行に伴い、重合系内では全カルボキシル基量に対する全アミノ基量が少なくなり、重合速度が遅延する傾向がある。テトラメチレンジアミンの揮発を抑制するためには、重合系内の圧力が高い方が好ましいが、反面、縮合水の揮発が抑制されると、テトラメチレンジアミンの環化反応が促進される傾向にあるため、本発明においては、重合系内の最高圧力を0.1〜2.5MPaとすることが好ましい。より好ましくは0.2〜2.0MPa、さらに好ましくは0.2〜1.5MPa、最も好ましくは0.25〜1.0MPaである。圧力を0.1MPa以上、2.5MPa以下にすることで、テトラメチレンジアミンの揮発を十分に抑制しつつ、縮合反応を効率的に進行させることができる。縮合反応の進行により、縮合水が生成し、系内の圧力は上昇するので、重合開始時の圧力はゼロでもよいが、テトラメチレンジアミンの揮発を最小限に抑制する場合には、原料にあらかじめ水を添加する方法、重合開始時にあらかじめ不活性ガスで加圧する方法などにより、系内の圧力が高くなるよう調整することができる。   When producing a polyamide resin, tetramethylene diamine and pyrrolidine produced by the cyclization reaction are volatilized or pyrrolidine becomes a terminal blocking agent. The total amino group amount with respect to the total carboxyl group amount decreases, and the polymerization rate tends to be delayed. In order to suppress the volatilization of tetramethylenediamine, it is preferable that the pressure in the polymerization system is high. However, when the volatilization of condensed water is suppressed, the cyclization reaction of tetramethylenediamine tends to be promoted. Therefore, in the present invention, it is preferable that the maximum pressure in the polymerization system is 0.1 to 2.5 MPa. More preferably, it is 0.2-2.0 MPa, More preferably, it is 0.2-1.5 MPa, Most preferably, it is 0.25-1.0 MPa. By setting the pressure to 0.1 MPa or more and 2.5 MPa or less, the condensation reaction can be efficiently advanced while sufficiently suppressing the volatilization of tetramethylenediamine. As the condensation reaction proceeds, condensed water is generated and the pressure in the system rises, so the pressure at the start of polymerization may be zero, but in order to minimize the volatilization of tetramethylenediamine, The pressure in the system can be adjusted to be high by a method of adding water or a method of pressurizing with an inert gas in advance at the start of polymerization.

また、原料を仕込む段階で、あらかじめ特定量のテトラメチレンジアミンを過剰に添加して、重合系内のアミノ基量を調整することが、高分子量のポリアミド樹脂を得るためには好ましい。原料として使用するテトラメチレンジアミンのモル数をA、炭素数7以上のジカルボン酸のモル数をBとしたとき、その比A/Bが1.005〜1.07となるように原料組成比を調整することが好ましく、1.01〜1.06となるように原料組成比を調整することがより好ましい。A/Bを1.005以上、1.07未満とすることで、重合系内におけるテトラメチレンジアミンとジカルボン酸の等モル性が適度に保たれ、容易に高重合度化することができる。   In order to obtain a high-molecular weight polyamide resin, it is preferable to add a specific amount of tetramethylenediamine in advance at the stage of charging the raw material to adjust the amount of amino groups in the polymerization system. When the number of moles of tetramethylenediamine used as a raw material is A and the number of moles of a dicarboxylic acid having 7 or more carbon atoms is B, the raw material composition ratio is set so that the ratio A / B is 1.005 to 1.07. It is preferable to adjust, and it is more preferable to adjust a raw material composition ratio so that it may become 1.01-1.06. By setting A / B to 1.005 or more and less than 1.07, the equimolarity of tetramethylenediamine and dicarboxylic acid in the polymerization system can be appropriately maintained, and the degree of polymerization can be easily increased.

ポリアミド樹脂の加熱重縮合においては、テトラメチレンジアミンの揮発や、脱アンモニア反応による環化の抑制に加え、着色を防止するためには、重合工程全体でポリマーが受ける熱履歴を極力小さくすることが好ましく、その手段として、重合系内の最高到達温度を低くすることが有効である。本発明で、低次縮合物を溶融高重合度化する場合には、重合系内の最高到達温度は、ポリアミド樹脂の融点以上、300℃以下にすることが好ましく、より好ましくは融点以上、融点+40℃以下である。最高到達温度を融点以上、300℃以下とすることで、テトラメチレンジアミンの揮発や環化が効率的に抑制され、白色度の高いポリアミド樹脂を得ることができる。なお、固相で高重合度化する場合には、減圧下、または不活性ガス雰囲気下で融点−40℃以上、融点未満で固相重合することが好ましい。   In the heat polycondensation of polyamide resin, in addition to suppressing the volatilization of tetramethylenediamine and the suppression of cyclization due to deammonia reaction, in order to prevent coloring, it is necessary to minimize the thermal history received by the polymer throughout the polymerization process. Preferably, it is effective to lower the maximum temperature reached in the polymerization system as the means. In the present invention, when the low-order condensate is melted and highly polymerized, the highest temperature reached in the polymerization system is preferably not less than the melting point of the polyamide resin and not more than 300 ° C., more preferably not less than the melting point and the melting point. + 40 ° C. or lower. By setting the maximum temperature to be at least the melting point and not more than 300 ° C., the volatilization and cyclization of tetramethylenediamine can be efficiently suppressed, and a polyamide resin with high whiteness can be obtained. In the case of increasing the degree of polymerization in the solid phase, it is preferable to perform solid phase polymerization at a melting point of −40 ° C. or higher and lower than the melting point under reduced pressure or in an inert gas atmosphere.

ポリアミド樹脂の重合度は、0.01g/mlとした98%硫酸溶液の25℃における相対粘度が、2.0〜5.0であることが好ましい。より好ましくは、2.2〜4.5、さらに好ましくは2.3〜4.0である。相対粘度を2.0〜5.0とすることで、靭性、成形加工性を兼ね備えたポリアミド樹脂を得ることができる。   The degree of polymerization of the polyamide resin is preferably such that the relative viscosity at 25 ° C. of a 98% sulfuric acid solution of 0.01 g / ml is 2.0 to 5.0. More preferably, it is 2.2-4.5, More preferably, it is 2.3-4.0. By setting the relative viscosity to 2.0 to 5.0, a polyamide resin having both toughness and moldability can be obtained.

ポリアミド樹脂の加熱重縮合に際し、必要に応じて、重合促進剤を添加することができる。重合促進剤としては、例えば、リン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸およびこれらのアルカリ金属塩、アルカリ土類金属塩などの無機系リン化合物などが好ましく、特に亜リン酸ナトリウム、次亜リン酸ナトリウムが好適に用いられる。重合促進剤は、原料100重量部に対して、0.001〜1重量部の範囲で使用することが好ましい。重合促進剤の添加量を0.001〜1重量部とすることで、短い重合時間で、溶融加工性に優れる重合度を有するポリアミド樹脂を得ることができる。   In the heat polycondensation of the polyamide resin, a polymerization accelerator can be added as necessary. As the polymerization accelerator, for example, phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid and inorganic phosphorus compounds such as alkali metal salts and alkaline earth metal salts thereof are preferable. Sodium acid and sodium hypophosphite are preferably used. The polymerization accelerator is preferably used in the range of 0.001 to 1 part by weight with respect to 100 parts by weight of the raw material. By setting the addition amount of the polymerization accelerator to 0.001 to 1 part by weight, a polyamide resin having a polymerization degree excellent in melt processability can be obtained in a short polymerization time.

本発明においてポリアミド樹脂組成物が使用される自動車エンジンルームは、エンジンからの輻射、伝道、滞留による熱、フードを通じて伝わる外気の熱などにより、100℃以上の高温下に晒されることがある。分子構造内に親水性アミド基を有するポリアミド樹脂は、大気雰囲気下で吸収した水分が高温環境下で蒸発し、成形品にふくれが生じる懸念があることから、吸水性をより低減することが求められていた。また、高温環境下においては、脂肪族ポリアミド樹脂のガラス転移温度以上の温度に達するため、変形する懸念があることから、高温環境下においても変形しにくい性質が要求されていた。そこで、本発明においては、高温環境下における変形の抑制について検討し、樹脂組成物の高温剛性に着目し、さらに、高温剛性の指標として、曲げモードで測定した110℃における貯蔵弾性率と、曲げモードで測定した30℃における貯蔵弾性率との比(以下、「110℃における貯蔵弾性率/30℃における貯蔵弾性率」と記載する。)に着目する。ここで、定常条件を想定して30℃の貯蔵弾性率を、エンジンルーム内温度を想定して110℃の貯蔵弾性率を指標とした。本発明の自動車エンジンルーム内部品用ポリアミド樹脂組成物は、110℃における貯蔵弾性率/30℃における貯蔵弾性率が0.30以上であることが必要である。110℃における貯蔵弾性率/30℃における貯蔵弾性率が0.30未満であると、30〜110℃での貯蔵弾性率の変化が大きくなるとともに、30〜110℃の寸法変化も大きくなる。0.40以上が好ましく、0.51以上がより好ましい。なお、110℃における貯蔵弾性率/30℃における貯蔵弾性率の上限の規定はないが、無機充填材の配合量を成形加工に適した範囲にする場合、0.80以下となる傾向がある。ここで、貯蔵弾性率は、幅13mm、厚み3mmのIzod試験片を成形して、周波数1Hz、20℃〜200℃の温度範囲で動的粘弾性を測定することにより求めることができる。本発明の自動車エンジンルーム内部品用ポリアミド樹脂組成物は、30℃の貯蔵弾性率に対する110℃での貯蔵弾性率の相対値が大きいため、このポリアミド樹脂またはそれを配合してなるポリアミド樹脂組成物を成形してなる自動車エンジルーム内部品は、30〜110℃の寸法変化が小さい特長を有する。このような弾性率比を有するポリアミド樹脂組成物は、例えば、前記テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする単量体を重縮合して得られるポリアミド樹脂に無機充填材を配合することにより得ることができる。   The automobile engine room in which the polyamide resin composition is used in the present invention may be exposed to a high temperature of 100 ° C. or higher due to radiation from the engine, transmission, heat due to stagnation, heat of outside air transmitted through the hood, and the like. Polyamide resins having a hydrophilic amide group in the molecular structure are required to further reduce water absorption because the moisture absorbed in the air atmosphere may evaporate in a high temperature environment and the molded product may swell. It was done. Further, since the temperature reaches a temperature higher than the glass transition temperature of the aliphatic polyamide resin in a high temperature environment, there is a concern of deformation, and thus a property that is difficult to deform in a high temperature environment has been required. Therefore, in the present invention, the suppression of deformation under a high temperature environment is examined, the high temperature rigidity of the resin composition is focused, and the storage elastic modulus at 110 ° C. measured in the bending mode as an index of the high temperature rigidity, the bending The ratio with the storage elastic modulus at 30 ° C. measured in the mode (hereinafter referred to as “storage elastic modulus at 110 ° C./storage elastic modulus at 30 ° C.”) will be noted. Here, the storage elastic modulus at 30 ° C. was assumed assuming steady conditions, and the storage elastic modulus at 110 ° C. was assumed as an index assuming the temperature in the engine room. The polyamide resin composition for automobile engine compartment parts of the present invention needs to have a storage elastic modulus at 110 ° C./a storage elastic modulus at 30 ° C. of 0.30 or more. When the storage elastic modulus at 110 ° C./the storage elastic modulus at 30 ° C. is less than 0.30, the change in the storage elastic modulus at 30 to 110 ° C. increases and the dimensional change at 30 to 110 ° C. also increases. 0.40 or more is preferable and 0.51 or more is more preferable. In addition, although there is no prescription | regulation of the storage elastic modulus in 110 degreeC / the storage elastic modulus in 30 degreeC, when making the compounding quantity of an inorganic filler into the range suitable for a shaping | molding process, it tends to become 0.80 or less. Here, a storage elastic modulus can be calculated | required by shape | molding an Izod test piece of width 13mm and thickness 3mm, and measuring dynamic viscoelasticity in the temperature range of frequency 1Hz and 20 to 200 degreeC. The polyamide resin composition for automobile engine compartment parts according to the present invention has a large storage elastic modulus at 110 ° C. relative to a storage elastic modulus at 30 ° C. Therefore, this polyamide resin or a polyamide resin composition formed by blending this polyamide resin The parts in the automobile engine room formed by molding have a feature that the dimensional change at 30 to 110 ° C. is small. A polyamide resin composition having such an elastic modulus ratio is, for example, an inorganic filler in a polyamide resin obtained by polycondensation of a monomer mainly composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms. It can be obtained by blending materials.

ここで、30℃における貯蔵弾性率は2.5GPa以上、110℃における貯蔵弾性率は0.78GPa以上であることが好ましい。貯蔵弾性率をこの範囲とすることにより、より優れた高温剛性を有し、室温〜高温環境下間の寸法安定性がより向上した自動車エンジンルーム内部品を得ることができる。より好ましい30℃の貯蔵弾性率は3.0GPa以上、さらに好ましくは4.0GPa以上、最も好ましくは5.0GPa以上である。一方、より好ましい110℃での貯蔵弾性率は0.90GPa以上、さらに好ましくは2.0GPa以上、最も好ましくは3.0GPa以上である。このような弾性率を有するポリアミド樹脂組成物は、例えば、前記テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする単量体を重縮合して得られるポリアミド樹脂に無機充填材を配合することにより得ることができる。   Here, the storage elastic modulus at 30 ° C. is preferably 2.5 GPa or more, and the storage elastic modulus at 110 ° C. is preferably 0.78 GPa or more. By setting the storage elastic modulus within this range, it is possible to obtain a part in an automobile engine room having higher temperature rigidity and improved dimensional stability between room temperature and high temperature environment. More preferably, the storage elastic modulus at 30 ° C. is 3.0 GPa or more, more preferably 4.0 GPa or more, and most preferably 5.0 GPa or more. On the other hand, the storage elastic modulus at 110 ° C. is more preferably 0.90 GPa or more, further preferably 2.0 GPa or more, and most preferably 3.0 GPa or more. The polyamide resin composition having such an elastic modulus is, for example, an inorganic filler added to a polyamide resin obtained by polycondensation of a monomer mainly composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms. It can obtain by mix | blending.

また、本発明においては、非晶部の運動性の指標となる、上記動的粘弾性測定により観測されるポリアミド樹脂のガラス転移温度に相当するtanδのピークトップの値が0.098以下であることが必要である。tanδのピークトップの値が0.098を超える場合、非晶部の運動により高温環境下における弾性率が低下し、室温〜高温環境下間の寸法安定性が低下する。好ましくは、0.095以下、さらに好ましくは、0.050以下、最も好ましくは0.040以下である。tanδのピークトップの値を0.098以下とする手段としては、例えば、前記テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする単量体を重縮合して得られる、高温剛性に優れるポリアミド樹脂に無機充填材を配合する方法などが挙げられる。ここで、tanδのピークトップの値は、幅13mm、厚み3mmのIzod試験片を成形して、周波数1Hz、20℃〜200℃の温度範囲で動的粘弾性を測定することにより求めることができる。   In the present invention, the peak top value of tan δ corresponding to the glass transition temperature of the polyamide resin observed by the dynamic viscoelasticity measurement, which is an index of the mobility of the amorphous part, is 0.098 or less. It is necessary. When the peak top value of tan δ exceeds 0.098, the elastic modulus in a high temperature environment decreases due to the movement of the amorphous part, and the dimensional stability between room temperature and high temperature environment decreases. Preferably, it is 0.095 or less, more preferably 0.050 or less, and most preferably 0.040 or less. As a means for setting the peak top value of tan δ to 0.098 or less, for example, a high temperature obtained by polycondensation of a monomer mainly composed of tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms is used. Examples thereof include a method of blending an inorganic filler with a polyamide resin having excellent rigidity. Here, the value of the peak top of tan δ can be obtained by molding an Izod test piece having a width of 13 mm and a thickness of 3 mm, and measuring the dynamic viscoelasticity in a temperature range of 1 Hz and 20 ° C. to 200 ° C. .

本発明に用いられるポリアミド樹脂組成物は、飽和吸水率が6.0重量%以下であることが好ましい。より好ましくは5.0重量%以下、さらに好ましくは4.0重量%以下、最も好ましくは3.0重量%以下である。飽和吸水率は、100mm×150mm×3mm厚みの角板を、60℃、相対湿度95%の雰囲気中に500時間静置した前後の重量変化から算出することができる。ポリアミド樹脂は、親水性のアミド基の存在により実使用時には吸水しているが、飽和吸水率を6.0重量%以下とすることで、高温環境下での水の蒸発による部品の変形をより抑制することができる。飽和吸水率を6.0重量%以下とする手段としては、例えば、ポリアミド樹脂の原料として、炭素数7以上のジカルボン酸を用いることなどが挙げられる。   The polyamide resin composition used in the present invention preferably has a saturated water absorption of 6.0% by weight or less. More preferably, it is 5.0 weight% or less, More preferably, it is 4.0 weight% or less, Most preferably, it is 3.0 weight% or less. The saturated water absorption can be calculated from the change in weight before and after a 100 mm × 150 mm × 3 mm thick square plate was left in an atmosphere of 60 ° C. and 95% relative humidity for 500 hours. Polyamide resins absorb water during actual use due to the presence of hydrophilic amide groups, but by making the saturated water absorption not more than 6.0% by weight, the deformation of parts due to water evaporation in a high temperature environment can be further improved. Can be suppressed. Examples of means for setting the saturated water absorption to 6.0% by weight or less include using a dicarboxylic acid having 7 or more carbon atoms as a raw material for the polyamide resin.

本発明の自動車エンジンルーム内部品用ポリアミド樹脂組成物は、前記ポリアミド樹脂100重量部に対して、無機充填材0.01〜200重量部を配合してなる。無機充填材を配合することで、その核剤効果、非晶部拘束効果、高温環境下でも変形量が小さい効果などにより、110℃における貯蔵弾性率/30℃における貯蔵弾性率を増大させ、ポリアミド樹脂組成物から得られる成形品の室温〜高温環境下間の寸法安定性を向上させることができる。   The polyamide resin composition for automotive engine compartment components according to the present invention is formed by blending 0.01 to 200 parts by weight of an inorganic filler with respect to 100 parts by weight of the polyamide resin. By blending an inorganic filler, the storage elastic modulus at 110 ° C./storage elastic modulus at 30 ° C. is increased due to its nucleating agent effect, amorphous part restraining effect, small deformation amount even under high temperature environment, etc. The dimensional stability between a room temperature and a high temperature environment of a molded product obtained from the resin composition can be improved.

無機充填材の配合量は、ポリアミド樹脂100重量部に対して、0.01〜200重量部であることが必要である。無機充填材の配合量が0.01重量部未満であると、その核剤効果および非晶部拘束効果、高温環境下での変形が小さい効果が十分に奏されず、高温剛性の改善効果が小さくなり、室温〜高温環境下間の寸法安定性に劣る。1.0重量部以上が好ましく、10重量部以上がより好ましく、25重量部がさらに好ましく、40重量部以上が最も好ましい。一方、無機充填材の配合量が200重量部を超えると、成形加工が困難となる。150重量部以下が好ましく、120重量部以下がより好ましい。   The compounding quantity of an inorganic filler needs to be 0.01-200 weight part with respect to 100 weight part of polyamide resins. If the blending amount of the inorganic filler is less than 0.01 parts by weight, the nucleating agent effect, the amorphous part constraining effect, and the effect of small deformation under a high temperature environment are not sufficiently achieved, and the effect of improving the high temperature rigidity is obtained. It becomes small and inferior in dimensional stability between room temperature and high temperature environment. 1.0 part by weight or more is preferable, 10 parts by weight or more is more preferable, 25 parts by weight is further preferable, and 40 parts by weight or more is most preferable. On the other hand, when the blending amount of the inorganic filler exceeds 200 parts by weight, the molding process becomes difficult. 150 parts by weight or less is preferable, and 120 parts by weight or less is more preferable.

無機充填材としては、例えば、繊維状無機充填材、非繊維状無機充填材などが挙げられる。これらを2種以上配合してもよい。   Examples of inorganic fillers include fibrous inorganic fillers and non-fibrous inorganic fillers. Two or more of these may be blended.

無機充填材として繊維状無機充填材を配合する場合、その配合量は190重量部以下が好ましい。繊維状無機充填材の配合量を190重量部以下とすることにより、ポリアミド樹脂組成物の成形加工性をより向上させることができる。150重量部以下がより好ましく、100重量部以下がさらに好ましい。   When a fibrous inorganic filler is blended as the inorganic filler, the blending amount is preferably 190 parts by weight or less. By setting the blending amount of the fibrous inorganic filler to 190 parts by weight or less, the moldability of the polyamide resin composition can be further improved. 150 parts by weight or less is more preferable, and 100 parts by weight or less is more preferable.

無機充填材として非繊維状無機充填材を配合する場合、その配合量は10重量部以下が好ましい。非繊維状無機充填材の配合量を10重量部以下とすることにより、ポリアミド樹脂組成物から得られる成形品の靭性を向上させることができる。5重量部以下がより好ましい。   When a non-fibrous inorganic filler is blended as the inorganic filler, the blending amount is preferably 10 parts by weight or less. By setting the blending amount of the non-fibrous inorganic filler to 10 parts by weight or less, the toughness of a molded product obtained from the polyamide resin composition can be improved. 5 parts by weight or less is more preferable.

繊維状無機充填材としては、例えば、ガラス繊維、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカ、ワラステナイトウィスカ、硼酸アルミウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石膏繊維、金属繊維などが挙げられる。これらは中空であってもよい。これらを2種以上配合してもよい。繊維状無機充填材を配合することにより、ポリアミド樹脂組成物から得られる成形品の弾性率および剛性を向上させることができる。   Examples of the fibrous inorganic filler include glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, calcium carbonate whisker, wollastonite whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos Examples thereof include fiber, gypsum fiber, and metal fiber. These may be hollow. Two or more of these may be blended. By blending the fibrous inorganic filler, the elastic modulus and rigidity of the molded product obtained from the polyamide resin composition can be improved.

自動車エンジンルーム内部品の機械強度を向上させるためには、前記繊維状無機充填材の中でも、特にガラス繊維、炭素繊維が好ましく、特に110℃における貯蔵弾性率をより向上させることができる。ガラス繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はなく、例えば長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。さらに、ガラス繊維の断面は、円形、扁平状のひょうたん型、まゆ型、長円型、楕円型、矩形またはこれらの類似品など限定されるものではないが、ガラス繊維配合ポリアミドに特有の反りを低減させるには、扁平状の繊維が長径/短径の比が1.5〜10のものが好ましく、2.0〜6.0のものがさらに好ましい。長径/短径の比を1.5〜10とすることで、反りを低減し、優れた成形加工性を付与することができる。また、ガラス繊維はエチレン/酢酸ビニル共重合体などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂で被膜あるいは集束されていてもよい。   In order to improve the mechanical strength of the components in the automobile engine room, glass fibers and carbon fibers are particularly preferable among the fibrous inorganic fillers, and the storage elastic modulus at 110 ° C. can be further improved. The type of glass fiber is not particularly limited as long as it is generally used for reinforcing a resin, and can be selected from, for example, a long fiber type, a short fiber type chopped strand, a milled fiber, or the like. Further, the cross section of the glass fiber is not limited to a circular, flat gourd, eyebrows, oval, ellipse, rectangle or the like, but the warp peculiar to glass fiber compounded polyamide is not limited. In order to reduce it, the flat fiber preferably has a major axis / minor axis ratio of 1.5 to 10, more preferably 2.0 to 6.0. By setting the ratio of major axis / minor axis to 1.5 to 10, warpage can be reduced and excellent moldability can be imparted. The glass fiber may be coated or bundled with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin.

また、炭素繊維の種類においても特に制限がなく、公知の各種炭素繊維、例えば、ポリアクリロニトリル(PAN)、ピッチ、レーヨン、リグニン、炭化水素ガス等を用いて製造される炭素質繊維や黒鉛質繊維や、これらの繊維を金属でコートした繊維が使用できる。中でも機械特性向上が可能なPAN系炭素繊維が好ましく使用できる。炭素繊維は通常、所定長さにカットしたチョップドストランド、ロービングストランド、ミルドファイバーなどの形状があり、一般的には直径15μm以下、好ましくは5〜10μmである。チョップドストランドを使用する場合、繊維長に特に制限はないが、押出混練作業性の高いストランド長のものを使用することが好ましい。ロービングストランドを使用する場合、押出機にロービングストランドを直接投入する公知の技術により複合することができる。本発明ではチョップドストランドを用いることが好ましく、チョップド炭素繊維の前駆体である炭素繊維ストランドのフィラメント数は、製造コストおよび生産工程における安定性の観点から、1,000〜150,000本が好ましい。   Also, the type of carbon fiber is not particularly limited, and carbon fibers and graphite fibers produced using various known carbon fibers such as polyacrylonitrile (PAN), pitch, rayon, lignin, hydrocarbon gas, etc. Alternatively, fibers obtained by coating these fibers with metal can be used. Of these, PAN-based carbon fibers capable of improving mechanical properties can be preferably used. The carbon fiber usually has a shape such as a chopped strand, a roving strand, or a milled fiber cut to a predetermined length, and generally has a diameter of 15 μm or less, preferably 5 to 10 μm. When using chopped strands, the fiber length is not particularly limited, but it is preferable to use a strand having a high extrusion kneading workability. When using a roving strand, it can be combined by a known technique in which the roving strand is directly fed into an extruder. In the present invention, it is preferable to use chopped strands, and the number of filaments of carbon fiber strands, which are precursors of chopped carbon fibers, is preferably 1,000 to 150,000 from the viewpoint of manufacturing cost and stability in the production process.

非繊維状無機充填材としては、例えば、タルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケート、珪酸カルシウムなどの非膨潤性珪酸塩、Li型フッ素テニオライト、Na型フッ素テニオライト、Na型四珪素フッ素雲母、Li型型四珪素フッ素雲母の膨潤性雲母に代表される膨潤性層状珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、シリカ、珪藻土、酸化ジルコニウム、酸化チタン、酸化鉄、酸化亜鉛、酸化カルシウム、酸化スズ、酸化アンチモンなどの金属酸化物、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドロマイト、ハイドロタルサイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、塩基性炭酸マグネシウムなどの水酸化物、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイトなどのスメクタイト系粘土鉱物やバーミキュライト、ハロイサイト、カネマイト、ケニヤイト、燐酸ジルコニウム、燐酸チタニウムなどの各種粘土鉱物、ガラスビーズ、ガラスフレーク、セラミックビーズ、窒化ホウ素、窒化アルミニウム、炭化珪素、燐酸カルシウム、カーボンブラック、黒鉛などが挙げられる。上記の膨潤性層状珪酸塩は層間に存在する交換性陽イオンが有機オニウムイオンで交換された膨潤性層状珪酸塩であってもよく、有機オニウムイオンとしてはアンモニウムイオンやホスホニウムイオン、スルホニウムイオンなどが挙げられる。また、これら非繊維状無機充填材は2種以上を併用することも可能である。   Non-fibrous inorganic fillers include, for example, talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, bentonite, asbestos, alumina silicate, non-swelling silicates such as calcium silicate, Li type Fluorine teniolite, Na-type fluorine teniolite, Na-type tetrasilicon fluorine mica, swellable layered silicate represented by the swellable mica of Li-type tetrasilicon fluorine mica, silicon oxide, magnesium oxide, alumina, silica, diatomaceous earth, zirconium oxide , Metal oxides such as titanium oxide, iron oxide, zinc oxide, calcium oxide, tin oxide, antimony oxide, carbonates such as calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dolomite, hydrotalcite, calcium sulfate, sulfuric acid Sulfate such as barium, hydroxide mug Smectite clay minerals such as hydroxides such as sium, calcium hydroxide, aluminum hydroxide and basic magnesium carbonate, montmorillonite, beidellite, nontronite, saponite, hectorite, and soconite, vermiculite, halloysite, kanemite, kenyanite, phosphoric acid Examples include various clay minerals such as zirconium and titanium phosphate, glass beads, glass flakes, ceramic beads, boron nitride, aluminum nitride, silicon carbide, calcium phosphate, carbon black, and graphite. The swellable layered silicate may be a swellable layered silicate in which exchangeable cations existing between layers are exchanged with organic onium ions, and examples of organic onium ions include ammonium ions, phosphonium ions, sulfonium ions, and the like. Can be mentioned. These non-fibrous inorganic fillers can be used in combination of two or more.

エンジンルーム内部品の表面外観を優れたものとし、結晶化速度を向上させるためには、非繊維状無機充填材の平均粒子径を0.001〜10μmとすることが好ましい。平均粒子径を0.001〜10μmとすることで、成形加工性、成形品表面外観に優れるポリアミド樹脂組成物を得ることができる。平均粒子径は好ましくは0.01〜5μm、さらに好ましくは0.05〜3μmである。なお、これらの平均粒子径は、レーザー回折法によって測定された累積粒度分布曲線により求められるD50と定義する。ポリアミド樹脂の補強と良表面外観を両立するためには、非繊維状無機充填材として、タルク、カオリン、ワラステナイト、膨潤性層状珪酸塩を用いることが好ましい。   In order to improve the surface appearance of the engine room components and improve the crystallization speed, the average particle diameter of the non-fibrous inorganic filler is preferably 0.001 to 10 μm. By setting the average particle size to 0.001 to 10 μm, it is possible to obtain a polyamide resin composition having excellent molding processability and a molded product surface appearance. The average particle diameter is preferably 0.01 to 5 μm, more preferably 0.05 to 3 μm. In addition, these average particle diameters are defined as D50 calculated | required by the cumulative particle size distribution curve measured by the laser diffraction method. In order to achieve both the reinforcement of the polyamide resin and the good surface appearance, it is preferable to use talc, kaolin, wollastonite, or swellable layered silicate as the non-fibrous inorganic filler.

さらに、本発明では、繊維状無機充填材と非繊維状無機充填材を併用することが好ましく、繊維状無機充填材が有する補強効果と、非繊維状無機充填材が有する非晶部拘束効果が相乗的に発現するため、機械特性と寸法安定性をさらに向上させることができる。   Furthermore, in the present invention, it is preferable to use a fibrous inorganic filler and a non-fibrous inorganic filler in combination, and the reinforcing effect that the fibrous inorganic filler has and the amorphous part restraining effect that the non-fibrous inorganic filler has. Due to synergistic expression, the mechanical properties and dimensional stability can be further improved.

また、無機充填材は、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で予備処理されていることが好ましく、より優れた機械強度を得ることができる。カップリング剤としては、有機シラン系化合物が好ましく、その具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシシラン、γ−(2−ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物、γ−イソシアナトプロピルトリエトキシシラン、γ−イソシアナトプロピルトリメトキシシラン、γ−イソシアナトプロピルメチルジメトキシシラン、γ−イソシアナトプロピルメチルジエトキシシラン、γ−イソシアナトプロピルエチルジメトキシシラン、γ−イソシアナトプロピルエチルジエトキシシラン、γ−イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物、γ−ヒドロキシプロピルトリメトキシシラン、γ−ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン・塩酸塩等の炭素炭素不飽和基含有アルコキシシラン化合物、3−トリメトキシシリルプロピルコハク酸無水物などの酸無水物基含有アルコキシシラン化合物などが挙げられる。特に、γ−メタクリロキシプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、3−トリメトキシシリルプロピルコハク酸無水物が好ましく用いられる。これらのシランカップリング剤は、常法に従って、予め無機充填材を表面処理し、ついでポリアミド樹脂と溶融混練する方法が好ましく用いられるが、予め無機充填材の表面処理を行わずに、無機充填材とポリアミド樹脂を溶融混練する際にこれらカップリング剤を添加する、いわゆるインテグラルブレンド法を用いてもよい。   In addition, the inorganic filler is preferably pretreated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound, thereby obtaining better mechanical strength. be able to. As the coupling agent, an organosilane compound is preferable, and specific examples thereof include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyl. Epoxy group-containing alkoxysilane compounds such as trimethoxysilane, γ-mercaptopropyltrimethoxysilane, mercapto group-containing alkoxysilane compounds such as γ-mercaptopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxy Silane, γ- (2-ureidoethyl) aminopropyltrimethoxysilane and other ureido group-containing alkoxysilane compounds, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-i Isocyanato group-containing alkoxysilanes such as socyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ-isocyanatopropylethyldiethoxysilane, and γ-isocyanatopropyltrichlorosilane Compounds, amino group-containing alkoxysilane compounds such as γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-hydroxypropyl Hydroxyl group-containing alkoxysilane compounds such as trimethoxysilane and γ-hydroxypropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane / hydrocarbon-containing alkoxysilane compound such as hydrochloride, and acid anhydride group-containing alkoxysilane such as 3-trimethoxysilylpropylsuccinic anhydride Compound etc. are mentioned. In particular, γ-methacryloxypropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, 3-tri Methoxysilylpropyl succinic anhydride is preferably used. For these silane coupling agents, a method in which an inorganic filler is surface-treated in advance according to a conventional method and then melt-kneaded with a polyamide resin is preferably used. However, the inorganic filler is not subjected to surface treatment of the inorganic filler in advance. A so-called integral blend method may be used in which these coupling agents are added when melt-kneading the polyamide resin.

これらカップリング剤の処理量は、無機充填材100重量部に対して、0.05〜10重量部が好ましい。より好ましくは0.1〜5重量部、最も好ましくは0.5〜3重量部である。0.05〜10重量部とすることで、ポリアミド樹脂への分散性に優れ、高い靭性改良効果を付与することができる。   The treatment amount of these coupling agents is preferably 0.05 to 10 parts by weight with respect to 100 parts by weight of the inorganic filler. More preferably, it is 0.1-5 weight part, Most preferably, it is 0.5-3 weight part. By setting it as 0.05-10 weight part, it is excellent in the dispersibility to a polyamide resin, and can provide the high toughness improvement effect.

ポリアミド樹脂と無機充填材の界面を強化するために、カップリング剤による無機充填材の処理に加え、さらに、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、またはポリ無水マレイン酸から選ばれる無水物の少なくとも1種を配合することが好ましい。これらの中で、無水マレイン酸、ポリ無水マレイン酸が延性、剛性のバランスに優れるため好ましく用いられる。ポリ無水マレイン酸としては、例えば、J. Macromol. Sci.-Revs. Macromol. Chem.,C13(2), 235(1975)等に記載のものを用いることができる。   In order to strengthen the interface between the polyamide resin and the inorganic filler, in addition to the treatment of the inorganic filler with a coupling agent, maleic anhydride, itaconic anhydride, glutaconic anhydride, citraconic anhydride, aconitic anhydride, or poly It is preferable to blend at least one anhydride selected from maleic anhydride. Among these, maleic anhydride and polymaleic anhydride are preferably used because of excellent balance between ductility and rigidity. As polymaleic anhydride, for example, those described in J. Macromol. Sci.-Revs. Macromol. Chem., C13 (2), 235 (1975) and the like can be used.

これら無水物の配合量は、ポリアミド樹脂100重量部に対して0.05〜10重量部が延性の向上効果、得られる組成物の流動性の点から好ましく、さらに0.1〜5重量部の範囲であることが好ましく、さらに好ましくは0.1〜3重量部であり、さらに好ましくは0.1〜1重量部である。   The blending amount of these anhydrides is preferably 0.05 to 10 parts by weight with respect to 100 parts by weight of the polyamide resin from the viewpoint of improving ductility and the fluidity of the resulting composition, and further 0.1 to 5 parts by weight. The range is preferably 0.1 to 3 parts by weight, more preferably 0.1 to 1 part by weight.

なお、これら無水物は、実質的にポリアミド樹脂、無機充填材と溶融混練する際に無水物の構造を取ればよく、加水分解してカルボン酸あるいはその水溶液の様な形態で溶融混練に供し、溶融混練の際の加熱により脱水反応させ、実質的に無水酸の形でポリアミド樹脂と溶融混練してもかまわない。   In addition, these anhydrides should just take the structure of an anhydride at the time of melt-kneading with a polyamide resin and an inorganic filler substantially, and hydrolyze and use for melt-kneading in the form of carboxylic acid or its aqueous solution, The dehydration reaction may be carried out by heating during melt kneading, and melt kneading with the polyamide resin in the form of substantially anhydrous acid may be used.

本発明に用いられるポリアミド樹脂組成物には、さらに、他種ポリマー、耐衝撃性改良材、難燃剤等を配合してもよく、これらを2種以上配合してもよい。   The polyamide resin composition used in the present invention may further contain other types of polymers, impact resistance improvers, flame retardants, and the like, or two or more thereof.

他種ポリマーとしては、例えば、他のポリアミド、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ABS樹脂、SAN樹脂、ポリスチレン等を挙げることができる。これら他種ポリマーの配合量は、テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を重縮合して得られるポリアミド樹脂100重量部に対して、0.1〜100重量部であることが好ましい。より好ましくは、1〜80重量部、さらに好ましくは、3〜50重量部、最も好ましくは、5〜40重量部である。   Examples of other types of polymers include other polyamides, polyethylene, polypropylene, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, liquid crystal polymer, polysulfone, polyethersulfone, ABS resin, SAN resin, polystyrene, and the like. The blending amount of these other polymers is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the polyamide resin obtained by polycondensation of tetramethylenediamine and an aliphatic dicarboxylic acid having 7 or more carbon atoms. . More preferably, it is 1 to 80 parts by weight, further preferably 3 to 50 parts by weight, and most preferably 5 to 40 parts by weight.

本発明のエンジンルーム内部品の耐衝撃性を改良するためには、耐衝撃性改良材として、オレフィン系化合物および/または共役ジエン系化合物を重合して得られる(共)重合体などの変性ポリオレフィン、ポリアミド系エラストマー、ポリエステル系エラストマーなどを配合することが好ましい。これらの耐衝撃性改良材を2種以上併用することも可能である。   In order to improve the impact resistance of the components in the engine room of the present invention, a modified polyolefin such as a (co) polymer obtained by polymerizing an olefin compound and / or a conjugated diene compound as an impact resistance improver. It is preferable to blend polyamide elastomer, polyester elastomer and the like. Two or more of these impact resistance improving materials can be used in combination.

(共)重合体としては、例えば、エチレン系共重合体、共役ジエン系重合体、共役ジエン−芳香族ビニル炭化水素系共重合体などが挙げられる。ここで、エチレン系共重合体とは、エチレンと他の単量体との共重合体および多元共重合体をさし、エチレンと共重合する他の単量体としては炭素数3以上のα−オレフィン、非共役ジエン、酢酸ビニル、ビニルアルコール、α,β−不飽和カルボン酸およびその誘導体などの中から選択することができる。   Examples of (co) polymers include ethylene copolymers, conjugated diene polymers, conjugated diene-aromatic vinyl hydrocarbon copolymers, and the like. Here, the ethylene-based copolymer means a copolymer of ethylene and another monomer and a multi-component copolymer, and the other monomer copolymerized with ethylene is an α having 3 or more carbon atoms. It can be selected from among olefins, non-conjugated dienes, vinyl acetate, vinyl alcohol, α, β-unsaturated carboxylic acids and derivatives thereof.

炭素数3以上のα−オレフィンとしては、例えば、プロピレン、ブテン−1が好ましく使用できる。非共役系ジエンとしては、例えば、5−メチリデン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、ジシクロペンタジエン、1,4−ヘキサジエンなどが挙げられる。α,β−不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、ブテンジカルボン酸などが挙げられ、その誘導体としてはアルキルエステル、アリールエステル、グリシジルエステル、酸無水物、イミドを例として挙げることができる。   As the α-olefin having 3 or more carbon atoms, for example, propylene and butene-1 can be preferably used. Examples of non-conjugated dienes include 5-methylidene-2-norbornene, 5-ethylidene-2-norbornene, dicyclopentadiene, 1,4-hexadiene, and the like. Examples of the α, β-unsaturated carboxylic acid include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and butenedicarboxylic acid. Examples include esters, aryl esters, glycidyl esters, acid anhydrides, and imides.

また、共役ジエン系重合体とは、少なくとも1種の共役ジエンを構成成分とする重合体であり、例えば、1,3−ブタジエンなどの単独重合体や1,3−ブタジエン、イソプレン(2−メチル−1,3−ブタジエン)、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエンから選ばれる1種以上の単量体の共重合体などが挙げられる。これらの重合体の不飽和結合の一部または全部が水添により還元されているものも好ましく使用できる。   The conjugated diene polymer is a polymer having at least one conjugated diene as a constituent component. For example, a homopolymer such as 1,3-butadiene, 1,3-butadiene, and isoprene (2-methyl). -1,3-butadiene), 2,3-dimethyl-1,3-butadiene, and a copolymer of one or more monomers selected from 1,3-pentadiene. Those in which some or all of the unsaturated bonds of these polymers are reduced by hydrogenation can also be preferably used.

共役ジエン−芳香族ビニル炭化水素系共重合体とは、共役ジエンと芳香族ビニル炭化水素からなるブロック共重合体またはランダム共重合体であり、これを構成する共役ジエンの例としては前記の単量体が挙げられ、特に1,3−ブタジエン、イソプレンが好ましい。芳香族ビニル炭化水素の例としては、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、1,3−ジメチルスチレン、ビニルナフタレンなどが挙げられ、中でもスチレンが好ましく使用できる。また、共役ジエン−芳香族ビニル炭化水素系共重合体の芳香環以外の二重結合以外の不飽和結合の一部または全部が水添により還元されているものも好ましく使用できる。   The conjugated diene-aromatic vinyl hydrocarbon copolymer is a block copolymer or random copolymer comprising a conjugated diene and an aromatic vinyl hydrocarbon. In particular, 1,3-butadiene and isoprene are preferable. Examples of the aromatic vinyl hydrocarbon include styrene, α-methyl styrene, o-methyl styrene, p-methyl styrene, 1,3-dimethyl styrene, vinyl naphthalene, and among them, styrene is preferably used. In addition, a conjugated diene-aromatic vinyl hydrocarbon copolymer in which part or all of unsaturated bonds other than double bonds other than aromatic rings are reduced by hydrogenation can be preferably used.

このような耐衝撃性改良材の具体例としては、エチレン/プロピレン共重合体、エチレン/ブテン−1共重合体、エチレン/ヘキセン−1共重合体、エチレン/プロピレン/ジシクロペンタジエン共重合体、エチレン/プロピレン/5−エチリデン−2−ノルボルネン共重合体、未水添または水添スチレン/イソプレン/スチレントリブロック共重合体、未水添または水添スチレン/ブタジエン/スチレントリブロック共重合体、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/アクリル酸メチル共重合体、エチレン/アクリル酸エチル共重合体、エチレン/メタクリル酸メチル共重合体、エチレン/メタクリル酸エチル共重合体、エチレン/アクリル酸エチル−g−無水マレイン酸共重合体、(「g」はグラフトを表わす、以下同じ)、エチレン/メタクリル酸メチル−g−無水マレイン酸共重合体、エチレン/アクリル酸エチル−g−マレイミド共重合体、エチレン/アクリル酸エチル−g−N−フェニルマレイミド共重合体およびこれら共重合体の部分ケン化物、エチレン/グリシジルメタクリレート共重合体、エチレン/ビニルアセテート/グリシジルメタクリレート共重合体、エチレン/メタクリル酸メチル/グリシジルメタクリレート共重合体、エチレン/グリシジルアクリレート共重合体、エチレン/ビニルアセテート/グリシジルアクリレート共重合体、エチレン/グリシジルエーテル共重合体、エチレン/プロピレン−g−無水マレイン酸共重合体、エチレン/ブテン−1−g−無水マレイン酸共重合体、エチレン/プロピレン/1,4−ヘキサジエン−g−無水マレイン酸共重合体、エチレン/プロピレン/ジシクロペンタジエン−g−無水マレイン酸共重合体、エチレン/プロピレン/2,5−ノルボルナジエン−g−無水マレイン酸共重合体、エチレン/プロピレン−g−N−フェニルマレイミド共重合体、エチレン/ブテン−1−g−N−フェニルマレイミド共重合体、水添スチレン/ブタジエン/スチレン−g−無水マレイン酸共重合体、水添スチレン/イソプレン/スチレン−g−無水マレイン酸共重合体、エチレン/プロピレン−g−メタクリル酸グリシジル共重合体、エチレン/ブテン−1−g−メタクリル酸グリシジル共重合体、エチレン/プロピレン/1,4−ヘキサジエン−g−メタクリル酸グリシジル共重合体、エチレン/プロピレン/ジシクロペンタジエン−g−メタクリル酸グリシジル共重合体、水添スチレン/ブタジエン/スチレン−g−メタクリル酸グリシジル共重合体、ナイロン12/ポリテトラメチレングリコール共重合体、ナイロン12/ポリトリメチレングリコール共重合体、ポリブチレンテレフタレート/ポリテトラメチレングリコール共重合体、ポリブチレンテレフタレート/ポリトリメチレングリコール共重合体などを挙げることができる。この中で、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/プロピレン−g−無水マレイン酸共重合体、エチレン/ブテン−1−g−無水マレイン酸共重合体、水添スチレン/ブタジエン/スチレン−g−無水マレイン酸共重合体がさらに好ましく、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/プロピレン−g−無水マレイン酸共重合体、エチレン/ブテン−1−g−無水マレイン酸共重合体が特に好ましい。   Specific examples of such impact resistance improvers include ethylene / propylene copolymer, ethylene / butene-1 copolymer, ethylene / hexene-1 copolymer, ethylene / propylene / dicyclopentadiene copolymer, Ethylene / propylene / 5-ethylidene-2-norbornene copolymer, unhydrogenated or hydrogenated styrene / isoprene / styrene triblock copolymer, unhydrogenated or hydrogenated styrene / butadiene / styrene triblock copolymer, ethylene / Methacrylic acid copolymers and some or all of the carboxylic acid moieties in these copolymers as salts with sodium, lithium, potassium, zinc, calcium, ethylene / methyl acrylate copolymers, ethylene / acrylic Ethyl acid copolymer, ethylene / methyl methacrylate copolymer, ethylene / methacrylic acid Ethyl acid copolymer, ethylene / ethyl acrylate-g-maleic anhydride copolymer (“g” represents graft, the same applies hereinafter), ethylene / methyl methacrylate-g-maleic anhydride copolymer, ethylene / Ethyl acrylate-g-maleimide copolymer, ethylene / ethyl acrylate-g-N-phenylmaleimide copolymer and partially saponified products of these copolymers, ethylene / glycidyl methacrylate copolymer, ethylene / vinyl acetate / Glycidyl methacrylate copolymer, ethylene / methyl methacrylate / glycidyl methacrylate copolymer, ethylene / glycidyl acrylate copolymer, ethylene / vinyl acetate / glycidyl acrylate copolymer, ethylene / glycidyl ether copolymer, ethylene / propylene-g -Anhydrous Inic acid copolymer, ethylene / butene-1-g-maleic anhydride copolymer, ethylene / propylene / 1,4-hexadiene-g-maleic anhydride copolymer, ethylene / propylene / dicyclopentadiene-g- Maleic anhydride copolymer, ethylene / propylene / 2,5-norbornadiene-g-maleic anhydride copolymer, ethylene / propylene-gN-phenylmaleimide copolymer, ethylene / butene-1-gN- Phenylmaleimide copolymer, hydrogenated styrene / butadiene / styrene-g-maleic anhydride copolymer, hydrogenated styrene / isoprene / styrene-g-maleic anhydride copolymer, ethylene / propylene-g-glycidyl methacrylate copolymer Polymer, ethylene / butene-1-g-glycidyl methacrylate copolymer, ethylene / propylene / 1,4-hexadiene-g-glycidyl methacrylate copolymer, ethylene / propylene / dicyclopentadiene-g-glycidyl methacrylate copolymer, hydrogenated styrene / butadiene / styrene-g-glycidyl methacrylate copolymer, Examples include nylon 12 / polytetramethylene glycol copolymer, nylon 12 / polytrimethylene glycol copolymer, polybutylene terephthalate / polytetramethylene glycol copolymer, polybutylene terephthalate / polytrimethylene glycol copolymer. it can. Among them, ethylene / methacrylic acid copolymers and some or all of the carboxylic acid moieties in these copolymers as salts with sodium, lithium, potassium, zinc, calcium, ethylene / propylene-g-anhydrous Maleic acid copolymers, ethylene / butene-1-g-maleic anhydride copolymers, hydrogenated styrene / butadiene / styrene-g-maleic anhydride copolymers are more preferable, ethylene / methacrylic acid copolymers and these A part or all of the carboxylic acid moiety in the copolymer made into a salt with sodium, lithium, potassium, zinc, calcium, ethylene / propylene-g-maleic anhydride copolymer, ethylene / butene-1-g -Maleic anhydride copolymers are particularly preferred.

耐衝撃性改良材の配合量は、ポリアミド樹脂100重量部に対して、5〜20重量部であることが好ましい。より好ましくは5〜10重量部である。5〜20重量部とすることにより、高い弾性率を維持しつつ、耐衝撃性を付与することができる。   The blending amount of the impact resistance improving material is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the polyamide resin. More preferably, it is 5 to 10 parts by weight. By setting it as 5-20 weight part, impact resistance can be provided, maintaining a high elasticity modulus.

難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤および金属水酸化物系難燃剤などのハロゲン原子を含まない非ハロゲン系難燃剤、臭素系難燃剤に代表されるハロゲン系難燃剤を挙げることができ、これらの難燃剤を2種以上併用してもよい。   Examples of the flame retardant include non-halogen flame retardants that do not contain halogen atoms, such as phosphorus flame retardants, nitrogen flame retardants, and metal hydroxide flame retardants, and halogen flame retardants typified by bromine flame retardants. These flame retardants may be used in combination of two or more.

難燃剤の配合量は、ポリアミド樹脂100重量部に対して、1〜50重量部とすることが好ましい。1〜50重量部とすることで、難燃性、靭性を両立することができる。   The blending amount of the flame retardant is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the polyamide resin. By setting it as 1-50 weight part, a flame retardance and toughness can be made compatible.

リン系難燃剤としては、例えば、赤燐、ポリリン酸アンモニウム、ポリリン酸メラミンなどのポリリン酸系化合物、(ジ)ホスフィン酸金属塩、ホスファゼン化合物、芳香族リン酸エステル、芳香族縮合リン酸エステル、ハロゲン化リン酸エステルなどが挙げられる。   Examples of the phosphorus-based flame retardant include polyphosphoric acid compounds such as red phosphorus, ammonium polyphosphate, and melamine polyphosphate, (di) phosphinic acid metal salts, phosphazene compounds, aromatic phosphate esters, aromatic condensed phosphate esters, And halogenated phosphoric acid esters.

(ジ)ホスフィン酸塩は、例えば、ホスフィン酸と金属炭酸塩、金属水酸化物又は金属酸化物を使用して水性媒体中で製造される。(ジ)ホスフィン酸塩は、本来モノマー性化合物であるが、反応条件に依存し、環境によっては重合度が1〜3のポリマー性ホスフィン酸塩となる場合もある。ホスフィン酸としては、例えば、ジメチルホスフィン酸、エチルメチルホスフィン酸、ジエチルホスフィン酸、メチル−n−プロピルホスフィン酸、メタンジ(メチルホスフィン酸)、ベンゼン−1,4−(ジメチルホスフィン酸)、メチルフェニルホスフィン酸及びジフェニルホスフィン酸等が挙げられる。また、上記のホスフィン酸と反応させる金属成分(M)としては、カルシウムイオン、マグネシウムイオン、アルミニウムイオン及び/又は亜鉛イオンを含む金属炭酸塩、金属水酸化物又は金属酸化物が挙げられる。(ジ)ホスフィン酸塩としては、例えば、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛、メチル−n−プロピルホスフィン酸カルシウム、メチル―n−プロピルホスフィン酸マグネシウム、メチル−n−プロピルホスフィン酸アルミニウム、メチル−n−プロピルホスフィン酸亜鉛、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸アルミニウム、メチルフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸亜鉛等が挙げられる。ジホスフィン酸塩としては、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン−1,4−ジ(メチルホスフィン酸)カルシウム、ベンゼン−1,4−ジ(メチルホスフィン酸)マグネシウム、ベンゼン−1,4−ジメチルホスフィン酸)アルミニウム、ベンゼン−1,4−ジ(メチルホスフィン酸)亜鉛等が挙げられる。これらの(ジ)ホスフィン酸塩の中でも、特に、難燃性、電気的特性の観点からエチルメチルホスフィン酸アルミニウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛が好ましい。   The (di) phosphinate is produced in an aqueous medium using, for example, phosphinic acid and a metal carbonate, metal hydroxide or metal oxide. The (di) phosphinate is originally a monomeric compound, but depending on the reaction conditions, it may be a polymeric phosphinate having a degree of polymerization of 1 to 3 depending on the environment. Examples of phosphinic acid include dimethylphosphinic acid, ethylmethylphosphinic acid, diethylphosphinic acid, methyl-n-propylphosphinic acid, methandi (methylphosphinic acid), benzene-1,4- (dimethylphosphinic acid), and methylphenylphosphine. Examples include acids and diphenylphosphinic acid. Moreover, as a metal component (M) made to react with said phosphinic acid, the metal carbonate, a metal hydroxide, or a metal oxide containing a calcium ion, a magnesium ion, an aluminum ion, and / or a zinc ion is mentioned. Examples of (di) phosphinic acid salts include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, magnesium ethylmethylphosphinate, aluminum ethylmethylphosphinate, ethyl Zinc methylphosphinate, calcium diethylphosphinate, magnesium diethylphosphinate, aluminum diethylphosphinate, zinc diethylphosphinate, calcium methyl-n-propylphosphinate, magnesium methyl-n-propylphosphinate, methyl-n-propylphosphinic acid Aluminum, zinc methyl-n-propylphosphinate, calcium methylphenylphosphinate, methylphenylphosphite Magnesium acid, aluminum methylphenyl phosphinate, methyl phenyl phosphinate, zinc, calcium diphenyl phosphinate, magnesium diphenyl phosphinate, aluminum diphenyl phosphinate, and zinc diphenyl phosphinate and the like. Diphosphinic acid salts include methandi (methylphosphinic acid) calcium, methandi (methylphosphinic acid) magnesium, methandi (methylphosphinic acid) aluminum, methandi (methylphosphinic acid) zinc, benzene-1,4-di (methylphosphinic acid) Examples include calcium, benzene-1,4-di (methylphosphinic acid) magnesium, benzene-1,4-dimethylphosphinic acid) aluminum, and benzene-1,4-di (methylphosphinic acid) zinc. Among these (di) phosphinic acid salts, aluminum ethylmethylphosphinate, aluminum diethylphosphinate, and zinc diethylphosphinate are particularly preferable from the viewpoints of flame retardancy and electrical characteristics.

ホスファゼン化合物は、分子中に−P=N−結合を有する有機化合物、好ましくは、環状フェノキシホスファゼン、鎖状フェノキシホスファゼン、ならびに、架橋フェノキシホスファゼン化合物から選択される少なくとも1種の化合物である。環状フェノキシホスファゼン化合物としては、例えば、塩化アンモニウムと五塩化リンとを120〜130℃の温度で反応させて得られる環状および直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後にフェノキシ基で置換して得られる、フェノキシシクロトリホスファゼン、オクタフェノキシシクロテトラホスファゼン、デカフェノキシシクロペンタホスファゼン等の化合物が挙げられる。鎖状フェノキシホスファゼン化合物としては、例えば、上記の方法で得られるヘキサクロロシクロトリホスファゼンを220〜250℃の温度で開還重合し、得られた重合度3〜10000の直鎖状ジクロロホスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。架橋フェノキシホスファゼン化合物としては、例えば、4,4’−スルホニルジフェニレン(ビスフェノールS残基)の架橋構造を有する化合物、2,2−(4,4’−ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4’−オキシジフェニレン基の架橋構造を有する化合物、4,4’−チオジフェニレン基の架橋構造を有する化合物等の、4,4’−ジフェニレン基の架橋構造を有する化合物等が挙げられる。架橋フェノキシホスファゼン化合物中のフェニレン基の含有量は、環状ホスファゼン化合物および/または鎖状フェノキシホスファゼン化合物中の全フェニル基およびフェニレン基数を基準として、通常50〜99.9%、好ましくは70〜90%である。また、該架橋フェノキシホスファゼン化合物は、その分子内にフリーの水酸基を有しない化合物であることが特に好ましい。   The phosphazene compound is an organic compound having a —P═N— bond in the molecule, preferably at least one compound selected from cyclic phenoxyphosphazenes, chain phenoxyphosphazenes, and crosslinked phenoxyphosphazene compounds. Examples of the cyclic phenoxyphosphazene compound include hexachlorocyclotriphosphazene and octachlorocyclotetraphosphazene from a mixture of cyclic and linear chlorophosphazenes obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C. Examples thereof include compounds such as phenoxycyclotriphosphazene, octaphenoxycyclotetraphosphazene, and decaffenoxycyclopentaphosphazene obtained by taking out cyclic chlorophosphazene such as decachlorocyclopentaphosphazene and then substituting it with a phenoxy group. As the chain phenoxyphosphazene compound, for example, hexachlorocyclotriphosphazene obtained by the above method is subjected to reversion polymerization at a temperature of 220 to 250 ° C., and the obtained linear dichlorophosphazene having a polymerization degree of 3 to 10,000 is converted into a phenoxy group. The compound obtained by substituting with is mentioned. Examples of the crosslinked phenoxyphosphazene compound include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (bisphenol S residue) and a crosslinked structure of 2,2- (4,4′-diphenylene) isopropylidene group. Compounds having a crosslinked structure of 4,4′-diphenylene groups, such as compounds, compounds having a crosslinked structure of 4,4′-oxydiphenylene groups, compounds having a crosslinked structure of 4,4′-thiodiphenylene groups, etc. Is mentioned. The content of the phenylene group in the crosslinked phenoxyphosphazene compound is usually 50 to 99.9%, preferably 70 to 90%, based on the total number of phenyl groups and phenylene groups in the cyclic phosphazene compound and / or the chain phenoxyphosphazene compound. It is. The crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.

芳香族リン酸エステルは、オキシ塩化リン及びフェノール類又はフェノール類とアルコール類の混合物との反応により生成する化合物である。芳香族リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、2−エチルヘキシルジフェニルホスフェート、またはt−ブチルフェニルジフェニルホスフェート、ビス−(t−ブチルフェニル)フェニルホスフェート、トリス−(t−ブチルフェニル)ホスフェートなどのブチル化フェニルホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス−(イソプロピルフェニル)ジフェニルホスフェート、トリス−(イソプロピルフェニル)ホスフェートなどのプロピル化フェニルホスフェートなどが挙げられる。   An aromatic phosphate ester is a compound produced by a reaction between phosphorus oxychloride and phenols or a mixture of phenols and alcohols. Examples of the aromatic phosphate include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, t-butylphenyl diphenyl phosphate, and bis- (t-butylphenyl). ), Butylated phenyl phosphates such as phenyl phosphate, tris- (t-butylphenyl) phosphate, propylated phenyl phosphates such as isopropylphenyl diphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropylphenyl) phosphate, and the like. It is done.

芳香族縮合リン酸エステルは、オキシ塩化リンと二価のフェノール系化合物、及びフェノール(またはアルキルフェノール)との反応生成物である。芳香族縮合リン酸エステルとしては、例えば、レゾルシノールビス−ジフェニルホスフェート、レゾルシノールビス−ジキシレニルホスフェート、ビスフェノールAビス−ジフェニルホスフェートなどが挙げられる。   The aromatic condensed phosphate ester is a reaction product of phosphorus oxychloride, a divalent phenol compound, and phenol (or alkylphenol). Examples of the aromatic condensed phosphate ester include resorcinol bis-diphenyl phosphate, resorcinol bis-dixylenyl phosphate, bisphenol A bis-diphenyl phosphate, and the like.

ハロゲン化リン酸エステルは、触媒の存在下で、アルキレンオキサイドとオキシ塩化リンを反応させることによって製造される。例えば、ハロゲン化リン酸エステルとしては、トリス(クロロエチル)ホスフェート、トリス(β−クロロプロピル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、テトラキス(2クロロエチル)ジクロロイソペンチルジホスフェート、ポリオキシアルキレンビス(ジクロロアルキル)ホスフェートなどが挙げられる。   Halogenated phosphoric acid esters are produced by reacting alkylene oxide and phosphorus oxychloride in the presence of a catalyst. For example, as the halogenated phosphate ester, tris (chloroethyl) phosphate, tris (β-chloropropyl) phosphate, tris (dichloropropyl) phosphate, tetrakis (2chloroethyl) dichloroisopentyl diphosphate, polyoxyalkylene bis (dichloroalkyl) ) Phosphate and the like.

リン系難燃剤の配合量は、ポリアミド樹脂100重量部に対して、1〜50重量部であることが好ましい。より好ましくは2〜40重量部、さらに好ましくは3〜35重量部である。   It is preferable that the compounding quantity of a phosphorus flame retardant is 1-50 weight part with respect to 100 weight part of polyamide resins. More preferably, it is 2-40 weight part, More preferably, it is 3-35 weight part.

窒素系難燃剤としては、例えば、トリアジン系化合物とシアヌール酸またはイソシアヌール酸の塩を形成する化合物が挙げられる。トリアジン系化合物とシアヌール酸またはイソシアヌール酸の塩とは、トリアジン系化合物とシアヌール酸またはイソシアヌール酸との付加物であり、通常は1対1(モル比)、場合により2対1(モル比)の組成を有する付加物である。トリアジン系化合物のうち、シアヌール酸またはイソシアヌール酸と塩を形成しないものは除外される。シアヌール酸またはイソシアヌール酸との塩のうち、特に好ましいトリアジン系化合物の例としては、メラミン、モノ(ヒドロキシメチル)メラミン、ジ(ヒドロキシメチル)メラミン、トリ(ヒドロキシメチル)メラミン、ベンゾグアナミン、アセトグアナミン、2−アミド−4,6−ジアミノ−1,3,5−トリアジンの塩が挙げられ、とりわけメラミン、ベンゾグアナミン、アセトグアナミンの塩が好ましい。トリアジン系化合物とシアヌール酸またはイソシアヌール酸との塩の具体例としては、メラミンシアヌレート、モノ(β−シアノエチル)イソシアヌレート、ビス(β−シアノエチル)イソシアヌレート、トリス(β−シアノエチル)イソシアヌレートなどが挙げられ、とりわけメラミンシアヌレートが好ましい。   Examples of the nitrogen-based flame retardant include a compound that forms a salt of cyanuric acid or isocyanuric acid with a triazine-based compound. A triazine compound and a salt of cyanuric acid or isocyanuric acid are adducts of a triazine compound and cyanuric acid or isocyanuric acid, usually 1 to 1 (molar ratio), sometimes 2 to 1 (molar ratio). ). Of the triazine compounds, those that do not form a salt with cyanuric acid or isocyanuric acid are excluded. Among the salts with cyanuric acid or isocyanuric acid, particularly preferred triazine compounds include melamine, mono (hydroxymethyl) melamine, di (hydroxymethyl) melamine, tri (hydroxymethyl) melamine, benzoguanamine, acetoguanamine, Examples include salts of 2-amido-4,6-diamino-1,3,5-triazine, with melamine, benzoguanamine and acetoguanamine being particularly preferred. Specific examples of salts of triazine compounds with cyanuric acid or isocyanuric acid include melamine cyanurate, mono (β-cyanoethyl) isocyanurate, bis (β-cyanoethyl) isocyanurate, tris (β-cyanoethyl) isocyanurate, etc. Among them, melamine cyanurate is particularly preferable.

窒素系難燃剤の配合量は、ポリアミド樹脂100重量部に対して、1〜50重量部であることが好ましい。より好ましくは3〜30重量部、さらに好ましくは5〜20重量部である。   It is preferable that the compounding quantity of a nitrogen-type flame retardant is 1-50 weight part with respect to 100 weight part of polyamide resins. More preferably, it is 3-30 weight part, More preferably, it is 5-20 weight part.

金属水酸化物系難燃剤としては、例えば、水酸化マグネシウムや水酸化アルミニウムなどが挙げられ、水酸化マグネシウムがより好ましい。これらは通常市販されているものであり、粒子径、比表面積、形状など特に限定されるものではないが、好ましくは粒子径が0.1〜20μm、比表面積が3〜75m/g、形状は球状、針状または小板状のものがよい。金属水酸化物系難燃剤の表面処理については施されていてもいなくてもよい。表面処理法の例としては、シランカップリング剤、アニオン界面活性剤、多価官能性有機酸、エポキシ樹脂など熱硬化性樹脂による被覆形成などの処理法が挙げられる。 Examples of the metal hydroxide flame retardant include magnesium hydroxide and aluminum hydroxide, and magnesium hydroxide is more preferable. These are usually commercially available and are not particularly limited, such as particle diameter, specific surface area, and shape, but preferably have a particle diameter of 0.1 to 20 μm, a specific surface area of 3 to 75 m 2 / g, and a shape. Is preferably spherical, needle-shaped or platelet-shaped. The surface treatment of the metal hydroxide flame retardant may or may not be performed. Examples of the surface treatment method include treatment methods such as coating formation with a thermosetting resin such as a silane coupling agent, an anionic surfactant, a polyfunctional organic acid, and an epoxy resin.

金属水酸化物系難燃剤の配合量は、ポリアミド樹脂100重量部に対して、1〜50重量部が好ましい。好ましくは10〜50重量部、より好ましくは20〜50重量部である。   As for the compounding quantity of a metal hydroxide type flame retardant, 1-50 weight part is preferable with respect to 100 weight part of polyamide resins. Preferably it is 10-50 weight part, More preferably, it is 20-50 weight part.

臭素系難燃剤としては、化学構造中に臭素を含有する化合物であれば特に制限はなく、通常公知の難燃剤を使用することができる。例えば、ヘキサブロモベンゼン、ペンタブロモトルエン、ヘキサブロモビフェニル、デカブロモビフェニル、ヘキサブロモシクロデカン、デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル、ヘキサブロモジフェニルエーテル、ビス(ペンタブロモフェノキシ)エタン、エチレン−ビス(テトラブロモフタルイミド)、テトラブロモビスフェノールAなどのモノマー系有機臭素化合物、臭素化ポリカーボネート(例えば臭素化ビスフェノールAを原料として製造されたポリカーボネートオリゴマーあるいはそのビスフェノールAとの共重合物)、臭素化エポキシ化合物(例えば臭素化ビスフェノールAとエピクロルヒドリンとの反応によって製造されるジエポキシ化合物や臭素化フェノール類とエピクロルヒドリンとの反応によって得られるモノエポキシ化合物)、ポリ(臭素化ベンジルアクリレート)、臭素化ポリフェニレンエーテル、臭素化ビスフェノールA、塩化シアヌールおよび臭素化フェノールの縮合物、臭素化(ポリスチレン)、ポリ(臭素化スチレン)、架橋臭素化ポリスチレンなどの臭素化ポリスチレン、架橋または非架橋臭素化ポリ(−メチルスチレン)などのハロゲン化されたポリマー系臭素化合物が挙げられ、なかでもエチレンビス(テトラブロモフタルイミド)、臭素化エポキシポリマー、臭素化ポリスチレン、架橋臭素化ポリスチレン、臭素化ポリフェニレンエーテルおよび臭素化ポリカーボネートが好ましく、臭素化ポリスチレン、架橋臭素化ポリスチレン、臭素化ポリフェニレンエーテルおよび臭素化ポリカーボネートが好ましく使用できる。   The brominated flame retardant is not particularly limited as long as it is a compound containing bromine in the chemical structure, and generally known flame retardants can be used. For example, hexabromobenzene, pentabromotoluene, hexabromobiphenyl, decabromobiphenyl, hexabromocyclodecane, decabromodiphenyl ether, octabromodiphenyl ether, hexabromodiphenyl ether, bis (pentabromophenoxy) ethane, ethylene-bis (tetrabromophthalimide) ), Monomeric organic bromine compounds such as tetrabromobisphenol A, brominated polycarbonates (for example, polycarbonate oligomers produced from brominated bisphenol A or copolymers thereof with bisphenol A), brominated epoxy compounds (for example brominated) For the reaction of diepoxy compounds and brominated phenols produced by the reaction of bisphenol A with epichlorohydrin and epichlorohydrin Monoepoxy compound), poly (brominated benzyl acrylate), brominated polyphenylene ether, brominated bisphenol A, cyanuric chloride and brominated phenol condensate, brominated (polystyrene), poly (brominated styrene), Examples include brominated polystyrene such as crosslinked brominated polystyrene, and halogenated polymeric bromine compounds such as crosslinked or non-crosslinked brominated poly (-methylstyrene). Among them, ethylene bis (tetrabromophthalimide), brominated epoxy polymers Brominated polystyrene, crosslinked brominated polystyrene, brominated polyphenylene ether and brominated polycarbonate are preferred, and brominated polystyrene, crosslinked brominated polystyrene, brominated polyphenylene ether and brominated polycarbonate are preferably used. It can be.

臭素系難燃剤の配合量は、ポリアミド樹脂100重量部に対して、1〜50重量部が好ましい。より好ましくは10〜50重量部、さらに好ましくは20〜50重量部である。   The blending amount of the brominated flame retardant is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the polyamide resin. More preferably, it is 10-50 weight part, More preferably, it is 20-50 weight part.

また、上記の臭素化難燃剤と併用することによって、相乗的に難燃性を向上させるために使用される難燃助剤を添加することも好ましく、例えば、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、十二酸化アンチモン、結晶性アンチモン酸、アンチモン酸ナトリウム、アンチモン酸リチウム、アンチモン酸バリウム、リン酸アンチモン、硼酸亜鉛、錫酸亜鉛、塩基性モリブデン酸亜鉛、モリブデン酸カルシウム亜鉛、酸化モリブデン、酸化ジルコニウム、酸化亜鉛、酸化鉄、赤燐、膨潤性黒鉛、カーボンブラック等を例示できる。これらのうち三酸化アンチモン、五酸化アンチモンがより好ましい。難燃助剤の配合量は、難燃性改良効果の点から、ポリアミド樹脂100重量部に対して、0.2〜30重量部であることが好ましい。より好ましくは1〜20重量部である。   In addition, it is also preferable to add a flame retardant aid used synergistically to improve flame retardancy by using in combination with the brominated flame retardant, for example, antimony trioxide, antimony tetraoxide, Antimony oxide, antimony deoxydioxide, crystalline antimonic acid, sodium antimonate, lithium antimonate, barium antimonate, antimony phosphate, zinc borate, zinc stannate, basic zinc molybdate, calcium zinc molybdate, molybdenum oxide, oxidation Examples include zirconium, zinc oxide, iron oxide, red phosphorus, swellable graphite, and carbon black. Of these, antimony trioxide and antimony pentoxide are more preferable. It is preferable that the compounding quantity of a flame retardant adjuvant is 0.2-30 weight part with respect to 100 weight part of polyamide resins from the point of a flame retardance improvement effect. More preferably, it is 1-20 weight part.

さらに、本発明のエンジンルーム内部品用ポリアミド樹脂組成物には、本発明の効果を損なわない範囲で、各種添加剤、例えば酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体、ハロゲン化銅、ヨウ素化合物等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤及び滑剤(脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素及びポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン、アニリンブラック等)、可塑剤(p−オキシ安息香酸オクチル、N−ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートなどの非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)を配合することができる。   Furthermore, the polyamide resin composition for parts in an engine room of the present invention has various additives such as antioxidants and heat stabilizers (hindered phenol-based, hydroquinone-based, phosphite) within the range not impairing the effects of the present invention. Systems and their substitutes, copper halides, iodine compounds, etc.), weathering agents (resorcinols, salicylates, benzotriazoles, benzophenones, hindered amines, etc.), mold release agents and lubricants (aliphatic alcohols, aliphatic amides) , Aliphatic bisamides, bisureas and polyethylene waxes), pigments (cadmium sulfide, phthalocyanine, carbon black, etc.), dyes (nigrosine, aniline black, etc.), plasticizers (octyl p-oxybenzoate, N-butylbenzenesulfonamide) Etc.), antistatic agent (alkyl sulfate type a) On antistatic agents, quaternary ammonium salt type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine-based amphoteric antistatic agent, etc.) can be blended.

ヒンダードフェノール系酸化防止剤としては、2,4−ジメチル−6−t−ブチルフェノール、2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−p−クレゾール、2,6−ジ−t−ブチル−4−エチルフェノール、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)、オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリチルテトラキス[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、3,9−ビス[2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−ジ−t−ブチルフェニル)ブタン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)、N,N’−ヘキサメチレン−ビス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナミド)、3,5−ジ−t−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートなどが挙げられる。特にエステル型高分子ヒンダードフェノールタイプが好ましく、具体的には、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリチルテトラキス[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、3,9−ビス[2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンなどが好ましく用いられる。   Examples of the hindered phenol antioxidant include 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butylphenol, 2,6-di-t-butyl-p-cresol, 2,6- Di-t-butyl-4-ethylphenol, 4,4′-butylidenebis (6-t-butyl-3-methylphenol), 2,2′-methylene-bis (4-methyl-6-t-butylphenol), 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol), octadecyl-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate, tetrakis [methylene-3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, pentaerythrityltetrakis [3- (3 ', 5'-di-tert-butyl-4'-hydride) Xylphenyl) propionate], 3,9-bis [2- (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy) -1,1-dimethylethyl] -2,4,8, 10-tetraoxaspiro [5,5] undecane, 1,1,3-tris (2-methyl-4-hydroxy-5-di-t-butylphenyl) butane, tris (3,5-di-t-butyl) -4-hydroxybenzyl) isocyanurate, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butyla) Nilino) -1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate), N, N′-hexamethylene-bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2, 4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 2,4-bis [(octylthio) methyl] -o-cresol, isooctyl-3- (3,5-di- t-butyl-4-hydroxyphenyl) propionate and the like. In particular, an ester type polymer hindered phenol type is preferable, and specifically, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, pentaerythrityl tetrakis. [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate], 3,9-bis [2- (3- (3-t-butyl-4-hydroxy-5-methyl) Phenyl) propionyloxy) -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane and the like are preferably used.

ホスファイト系化合物の具体例としては、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,4−ジ−クミルフェニル)ペンタエリスリトール−ジ−ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビスフェニレンホスファイト、ジ−ステアリルペンタエリスリトール−ジ−ホスファイト、トリフェニルホスファイト、3,5−ジ−ブチル−4−ヒドロキシベンジルホスフォネートジエチルエステルなどが挙げられる。   Specific examples of phosphite compounds include bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, bis (2,4-di-t-butylphenyl) pentaerythritol. -Di-phosphite, bis (2,4-di-cumylphenyl) pentaerythritol-di-phosphite, tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t- Butylphenyl) -4,4'-bisphenylene phosphite, di-stearyl pentaerythritol di-phosphite, triphenyl phosphite, 3,5-di-butyl-4-hydroxybenzyl phosphonate diethyl ester It is done.

これら酸化防止剤は、2種以上を組み合わせると相乗的な効果が得られることがあるので、併用してもよい。酸化防止剤の配合量には特に制限はないが、ポリアミド樹脂100重量部に対して、0.01〜20重量部が好ましい。   These antioxidants may have a synergistic effect when two or more are combined, and may be used in combination. Although there is no restriction | limiting in particular in the compounding quantity of antioxidant, 0.01-20 weight part is preferable with respect to 100 weight part of polyamide resins.

また、耐熱安定剤の具体例としては、フッ化銅、塩化銅、臭化銅、ヨウ化銅のハロゲン化銅、酸化銅、硫酸銅、硝酸銅などの無機酸銅化合物、酢酸銅、ラウリン酸銅、ステアリン酸銅、ナフテン酸銅、カプリン酸銅等の有機酸銅化合物が挙げられるが、その中でもヨウ化銅、酢酸銅が好ましく、より好ましくはヨウ化銅である。これらの配合量はポリアミド樹脂100重量部に対して、0.01〜0.3重量部、特に好ましくは0.01〜0.1重量部である。   Specific examples of the heat stabilizer include copper fluoride, copper chloride, copper bromide, copper iodide copper halide, copper oxide, copper sulfate, copper nitrate, inorganic acid copper compounds, copper acetate, lauric acid, etc. Although organic acid copper compounds, such as copper, copper stearate, copper naphthenate, and caprate, are mentioned, Among these, copper iodide and copper acetate are preferable, and copper iodide is more preferable. These compounding quantities are 0.01-0.3 weight part with respect to 100 weight part of polyamide resins, Most preferably, it is 0.01-0.1 weight part.

さらに、銅化合物とハロゲン化アルカリと併用して用いることでより高い耐熱性を付与することができる。ハロゲン化アルカリとしては、例えば、ヨウ化カリウム、ヨウ化マグネシウム等を挙げることができ、好ましくはヨウ化カリウムである。好ましい配合量としては、上記銅化合物中の銅1原子に対し、該ハロゲン化アルカリ中のハロゲン原子が0.3〜4原子の割合である。   Furthermore, higher heat resistance can be imparted by using in combination with a copper compound and an alkali halide. Examples of the alkali halide include potassium iodide and magnesium iodide, and potassium iodide is preferable. As a preferable compounding quantity, the halogen atom in this alkali halide is a ratio of 0.3-4 atom with respect to 1 atom of copper in the said copper compound.

本発明のエンジンルーム内部品用ポリアミド樹脂組成物の製造方法としては、例えば、原料のポリアミド樹脂、無機充填材、必要により耐衝撃性改良材、難燃剤および/または他種ポリマーなどを、公知の溶融混練機に供給して溶融混練する方法などを挙げることができる。溶融混練機としては、例えば、単軸あるいは2軸の押出機、バンバリーミキサー、ニーダーおよびミキシングロールなどが挙げられる。ポリアミド樹脂に、これら無機充填材、耐衝撃性改良材、難燃剤および/または他種ポリマーや各種添加剤を均一に分散させる方法として、溶融混練機を用いた場合、混練機のL/D(スクリュー長/スクリュー径)、ベントの有無、混練温度、滞留時間、それぞれの成分の添加位置、添加量をコントロールすることが有効である。一般に溶融混練機のL/Dを長く、滞留時間を長くすることは、樹脂組成物における各成分の均一分散を促進するため好ましい。   As a method for producing a polyamide resin composition for an engine compartment component of the present invention, for example, a raw material polyamide resin, an inorganic filler, if necessary, an impact resistance improving material, a flame retardant and / or other kinds of polymers, etc. are publicly known. Examples thereof include a method of supplying to a melt kneader and performing melt kneading. Examples of the melt kneader include a single or twin screw extruder, a Banbury mixer, a kneader, and a mixing roll. When a melt kneader is used as a method for uniformly dispersing these inorganic fillers, impact modifiers, flame retardants and / or other types of polymers and various additives in a polyamide resin, the L / D ( It is effective to control (screw length / screw diameter), presence / absence of vent, kneading temperature, residence time, addition position and amount of each component. In general, it is preferable to lengthen the L / D of the melt-kneader and lengthen the residence time in order to promote uniform dispersion of each component in the resin composition.

本発明の自動車エンジンルーム内部品用ポリアミド樹脂組成物は、射出成形、押出成形、ブロー成形、真空成形などの任意の成形方法により、所望の形状に成形することができる。   The polyamide resin composition for automotive engine compartment components of the present invention can be molded into a desired shape by any molding method such as injection molding, extrusion molding, blow molding, vacuum molding and the like.

前記ポリアミド樹脂組成物は、高温環境下で使用した場合においても弾性率の低下が抑えられ、室温〜高温環境下での寸法変化が小さい成形品を得ることができる。また、ポリアミド樹脂本来の吸水性が低いために、高温環境下で成形品に吸収された水の蒸発によるふくれを抑制することができる。特に、高温環境下で使用される自動車エンジンルーム内部品として好適に用いることができる。   Even when the polyamide resin composition is used in a high temperature environment, a decrease in elastic modulus can be suppressed, and a molded product having a small dimensional change from a room temperature to a high temperature environment can be obtained. Further, since the inherent water absorption of the polyamide resin is low, blistering due to evaporation of water absorbed in the molded article under a high temperature environment can be suppressed. In particular, it can be suitably used as a part in an automobile engine room used in a high temperature environment.

前記ポリアミド樹脂組成物が使用されるエンジンルーム内部品としては、エンジン本体部品、エンジン吸気系部品、エンジン冷却系部品、エンジン潤滑系部品、エンジン動弁系部品、エンジンカバーなどが挙げられる。エンジン本体部品としては、エンジンマウント、ロッカーカバー、チェーンガイド、エンジン吸気系部品としては、エアクリーナー、エアフローメーター、EGR部品、インテークマニホールド、スロットルボディ、インテークダクト、インテークパイプ、レゾネーター、キャニスター、エンジン冷却系部品としては、ラジエータサポート、ウォーターポンプインレット、ウォーターポンプアウトレット、ウォーターポンプインペラー、サーモスタットハウジング、クーリングファン、ファンシュラウド、リザーバータンク、リザーバータンクキャップ、エンジン潤滑系部品としては、オイルポンプ、オイルフィルターハウジング、オイルフィラーキャップ、オイルレベルゲージ、パワーステアリングタンク、エンジン動弁系部品としては、タイミングベルトカバー、タイミングベルトテンショナー、エンジン燃料供給系部品としては、フューエルレール、フューエルストレーナー、その他部品としては、ハーネスコネクター、ガイド、アルタネーターカバー、ディストリビューターカバー、ブレーキマスターシリンダー、スイッチブーツ、ランプ防水カバー、コネクタカバー、ラバーフック、サスペンションブーツ、サスペンションアッパーマウント、サスペンションブッシュ、スタビライザーブッシュ、ステアリングラックブーツ、ステアリングラックブッシュ、プラグコードキャップ、成形パッキン、バッテリー端子カバーなどが挙げられる。   Examples of the engine room parts in which the polyamide resin composition is used include engine body parts, engine intake system parts, engine cooling system parts, engine lubrication system parts, engine valve system parts, engine covers, and the like. As engine body parts, engine mount, rocker cover, chain guide, and engine intake system parts as air cleaner, air flow meter, EGR parts, intake manifold, throttle body, intake duct, intake pipe, resonator, canister, engine cooling system Parts include radiator support, water pump inlet, water pump outlet, water pump impeller, thermostat housing, cooling fan, fan shroud, reservoir tank, reservoir tank cap, engine lubrication parts include oil pump, oil filter housing, oil Filler caps, oil level gauges, power steering tanks, engine valve system parts Imming belt cover, timing belt tensioner, engine fuel supply system parts are fuel rail, fuel strainer, other parts are harness connector, guide, alternator cover, distributor cover, brake master cylinder, switch boot, lamp waterproof cover , Connector cover, rubber hook, suspension boot, suspension upper mount, suspension bush, stabilizer bush, steering rack boot, steering rack bush, plug cord cap, molded packing, battery terminal cover, and the like.

以下に実施例を挙げて本発明を更に具体的に説明する。材料特性評価については下記の方法に従って行った。   The present invention will be described more specifically with reference to the following examples. The material properties were evaluated according to the following method.

[硫酸相対粘度(ηr)]
98%硫酸中、0.01g/ml濃度、25℃でオストワルド式粘度計を用いて測定を行った。
[Sulfuric acid relative viscosity (ηr)]
Measurement was performed using an Ostwald viscometer at a concentration of 0.01 g / ml in 25% sulfuric acid in 98% sulfuric acid.

[飽和吸水率]
100mm×150mm×3mm厚みの角板を、60℃、相対湿度95%の雰囲気中に500時間静置した後の重量増加より算出した。ただし、実施例9および比較例13のみ前記試料にかえて箱型成形品から採取した長さ55mm、幅13mm、厚み2mmの試験片を使用した。
[Saturated water absorption]
A square plate having a thickness of 100 mm × 150 mm × 3 mm was calculated from an increase in weight after being left in an atmosphere of 60 ° C. and a relative humidity of 95% for 500 hours. However, only in Example 9 and Comparative Example 13, a test piece having a length of 55 mm, a width of 13 mm, and a thickness of 2 mm collected from a box-shaped molded product was used instead of the sample.

[粘弾性]
幅13mm、厚み3mmのIzod試験片を長さ55mmにカットした試料を用い、SIIナノテクノロジー社製DMS6100を用い、試料の55mm×13mm面中心部を、曲げモードにて、周波数1Hz、チャック間距離20mm、昇温速度2℃/分、20℃〜200℃で測定し、30℃および110℃における貯蔵弾性率、30〜110℃における変位(55mm×13mmの試料の、55mm×13mm面に対する垂直方向における変位)を求めた。また、ポリアミド樹脂のガラス転移温度に対応するtanδのピークトップの値、およびその温度を求めた。ただし、実施例9および比較例13のみ前記試料にかえて箱型成形品から採取した長さ55mm、幅13mm、厚み2mmの試験片を使用した。
[Viscoelasticity]
Using a sample obtained by cutting an Izod test piece having a width of 13 mm and a thickness of 3 mm into a length of 55 mm, using a DMS6100 made by SII Nanotechnology, the center of the 55 mm × 13 mm surface of the sample is bent at a frequency of 1 Hz, and the distance between chucks. Measured at 20 mm, heating rate 2 ° C./min, 20 ° C. to 200 ° C., storage modulus at 30 ° C. and 110 ° C., displacement at 30 to 110 ° C. (55 mm × 13 mm sample perpendicular to 55 mm × 13 mm plane) Displacement). Further, the peak top value of tan δ corresponding to the glass transition temperature of the polyamide resin and the temperature thereof were determined. However, only in Example 9 and Comparative Example 13, a test piece having a length of 55 mm, a width of 13 mm, and a thickness of 2 mm collected from a box-shaped molded product was used instead of the sample.

[熱特性]
SIIナノテクノロジー社製 ロボットDSCRDC220を用い、ポリアミド樹脂組成物を約5mg精秤し、窒素雰囲気下、次の条件で、ポリアミド樹脂の降温結晶化温度、融点、融解熱量を測定した。ポリアミド樹脂組成物を、ポリアミド樹脂の融点+35℃に昇温して溶融状態とした後、20℃/分の降温速度で、30℃まで降温したときに観測される発熱ピークの温度(降温結晶化温度:Tc)を求めた。続いて、30℃で3分間保持した後、20℃/分の昇温速度でポリアミド樹脂の融点+35℃まで昇温したときに観測される吸熱ピークの温度(融点:Tm)と融解熱量(ΔHm)を求めた。なお、ΔHmは、ポリアミド樹脂組成物の融解熱量を、ポリアミド樹脂の配合割合で割りかえし、ポリアミド樹脂単体の融解熱量として記載した。
[Thermal characteristics]
Using a robot DSCRDC220 manufactured by SII Nanotechnology, about 5 mg of the polyamide resin composition was precisely weighed, and the temperature drop crystallization temperature, melting point, and heat of fusion of the polyamide resin were measured under a nitrogen atmosphere under the following conditions. The temperature of the exothermic peak observed when the polyamide resin composition is heated to a melting point of the polyamide resin + 35 ° C. to a molten state and then cooled to 30 ° C. at a temperature lowering rate of 20 ° C./min (temperature-falling crystallization). Temperature: Tc) was determined. Subsequently, after holding at 30 ° C. for 3 minutes, the temperature of the endothermic peak (melting point: Tm) and the heat of fusion (ΔHm) observed when the temperature is raised to the melting point of the polyamide resin + 35 ° C. at a rate of temperature increase of 20 ° C./min. ) In addition, (DELTA) Hm divided the heat of fusion of the polyamide resin composition by the compounding ratio of the polyamide resin, and described it as the heat of fusion of the polyamide resin alone.

[非繊維状無機充填材の平均粒子径]
非繊維状無機充填材の平均粒子径(D50)は、レーザー粒度分布計(SALD−2100:島津製作所(株)製)を用いて測定した。
[Average particle size of non-fibrous inorganic filler]
The average particle size (D50) of the non-fibrous inorganic filler was measured using a laser particle size distribution meter (SALD-2100: manufactured by Shimadzu Corporation).

参考例1(ナイロン410の製造)
テトラメチレンジアミン(関東化学)とセバシン酸(東京化成)の等モル塩(ナイロン410塩)700g、テトラメチレンジアミン5.3g(ナイロン410塩に対して2.5mol%)、イオン交換水300gを、撹拌翼付きの内容積が3Lの圧力容器に仕込んで窒素置換した後、窒素で缶内圧力を0.05MPaに加圧した。この圧力容器を密閉したまま、ヒーター温度を260℃に設定して加熱を開始した。40分後に、缶内温度は150℃、缶内圧力は0.3MPaに到達した。水を留出させながら、缶内圧力を0.3MPaに維持した。缶内温度が250℃に到達した時点で、ヒーター設定温度を280℃に変更し、放圧を開始して、水を留出させながら、30分かけて缶内圧力をゼロにした。このとき、缶内温度は275℃であった。窒素フロー下で、2時間保持することにより、缶内温度は280℃に到達した。圧力容器底部の吐出口から内容物をガット状にして取り出し、ペレタイズすることによりηr=2.8のナイロン410を得た。
Reference Example 1 (Manufacture of nylon 410)
Tetramethylenediamine (Kanto Chemical) and sebacic acid (Tokyo Kasei) equimolar salt (nylon 410 salt) 700 g, tetramethylenediamine 5.3 g (2.5 mol% with respect to nylon 410 salt), ion-exchanged water 300 g, After charging into a 3 L pressure vessel with a stirring blade and replacing with nitrogen, the internal pressure of the can was increased to 0.05 MPa with nitrogen. With this pressure vessel sealed, heating was started by setting the heater temperature to 260 ° C. After 40 minutes, the internal temperature of the can reached 150 ° C., and the internal pressure of the can reached 0.3 MPa. The pressure inside the can was maintained at 0.3 MPa while distilling water. When the inside temperature of the can reached 250 ° C., the heater set temperature was changed to 280 ° C., the pressure release was started, and the pressure inside the can was reduced to zero over 30 minutes while distilling water. At this time, the inside temperature of the can was 275 ° C. By holding for 2 hours under a nitrogen flow, the temperature in the can reached 280 ° C. The contents were taken out from the discharge port at the bottom of the pressure vessel in a gut shape and pelletized to obtain nylon 410 having ηr = 2.8.

参考例2(ナイロン46の製造)
テトラメチレンジアミン(関東化学)とアジピン酸(東京化成)の等モル塩(ナイロン46塩)800g、テトラメチレンジアミン12.0g(ナイロン46塩に対して4.00mol%)、イオン交換水65gを、撹拌翼付きの内容積が3Lの圧力容器に仕込んで窒素置換した後、窒素で缶内圧力を0.05MPaに加圧した。この密閉した圧力容器を、ヒーター温度を245℃に設定して加熱を開始した。2時間後に、缶内温度が220℃、缶内圧力が1.35MPaに到達した。その後、圧力容器からクーリングベルト上に吐出し、ナイロン46低次縮合物を得た。これを、減圧下(50Pa)、260℃で20時間固相重合することにより、ηr=3.1のナイロン46を得た。
Reference Example 2 (Manufacture of nylon 46)
Tetramethylenediamine (Kanto Chemical) and adipic acid (Tokyo Kasei) equimolar salt (nylon 46 salt) 800 g, tetramethylenediamine 12.0 g (4.00 mol% with respect to nylon 46 salt), ion-exchanged water 65 g, After charging into a 3 L pressure vessel with a stirring blade and replacing with nitrogen, the internal pressure of the can was increased to 0.05 MPa with nitrogen. The sealed pressure vessel was heated by setting the heater temperature to 245 ° C. After 2 hours, the internal temperature of the can reached 220 ° C. and the internal pressure of the can reached 1.35 MPa. Then, it discharged on the cooling belt from the pressure vessel, and obtained the nylon 46 low-order condensate. This was subjected to solid phase polymerization under reduced pressure (50 Pa) at 260 ° C. for 20 hours to obtain nylon 46 having ηr = 3.1.

実施例1〜3、比較例1〜8
二軸押出機(日本製鋼所製TEX30型)を用い、表1に示す組成となるようにポリアミド樹脂、タルク、耐衝撃性改良材を供給して溶融混練した。実施例1〜3、比較例1〜3では、ポリアミド樹脂、タルクの混合物をメインフィーダー(上流側供給口)から供給した。比較例4〜7では、ポリアミド樹脂単体をメインフィーダーから供給した。比較例8では、ポリアミド樹脂をメインフィーダー(上流側供給口)から、耐衝撃性改良材をサイドフィーダー(下流側供給口)から供給した。溶融混練温度は、ポリアミド樹脂の融点+20℃、スクリュー回転数は250rpmとした。押出されたガットはペレタイズした後、80℃で24時間真空乾燥した。これを、射出成形機(住友重機社製SG75H−MIV、シリンダー温度を融点+20℃、金型温度を80℃、射出圧力を下限圧+0.5MPaに設定)により各試験片を作製し、飽和吸水率、粘弾性、熱特性を評価した。試験片は、吸水しないように、射出成形直後にシール袋に保管した。表1に結果を示した。なお、ポリアミド樹脂組成物の原料は以下に示すものを用いた。
ナイロン410(N410):参考例1
ナイロン610(N610):CM2001(東レ製)、ηr=2.70
ナイロン66(N66):CM3001N(東レ製)、ηr=2.95
ナイロン46(N46):参考例2
ナイロン6(N6):CM1017(東レ製)、ηr=2.65
タルク:日本タルク社製、P−6(平均粒子径:4μm)
耐衝撃性改良材:三井化学製、酸変性エチレン/ブテン−1共重合体、タフマーMH5020
Examples 1-3, Comparative Examples 1-8
Using a twin screw extruder (TEX30 type manufactured by Nippon Steel), polyamide resin, talc, and impact resistance improver were supplied so as to have the composition shown in Table 1, and melt kneaded. In Examples 1 to 3 and Comparative Examples 1 to 3, a mixture of polyamide resin and talc was supplied from the main feeder (upstream supply port). In Comparative Examples 4 to 7, a single polyamide resin was supplied from the main feeder. In Comparative Example 8, the polyamide resin was supplied from the main feeder (upstream supply port), and the impact resistance improving material was supplied from the side feeder (downstream supply port). The melt kneading temperature was the melting point of the polyamide resin + 20 ° C., and the screw rotation speed was 250 rpm. The extruded gut was pelletized and then vacuum dried at 80 ° C. for 24 hours. Each test piece was prepared with an injection molding machine (SG75H-MIV manufactured by Sumitomo Heavy Industries, Ltd., the cylinder temperature was set to melting point + 20 ° C., the mold temperature was set to 80 ° C., and the injection pressure was set to the lower limit pressure +0.5 MPa), and saturated water absorption was performed. The rate, viscoelasticity and thermal properties were evaluated. The test piece was stored in a seal bag immediately after injection molding so as not to absorb water. Table 1 shows the results. In addition, the raw material of a polyamide resin composition used the following.
Nylon 410 (N410): Reference Example 1
Nylon 610 (N610): CM2001 (manufactured by Toray), ηr = 2.70
Nylon 66 (N66): CM3001N (manufactured by Toray), ηr = 2.95
Nylon 46 (N46): Reference Example 2
Nylon 6 (N6): CM1017 (manufactured by Toray), ηr = 2.65
Talc: manufactured by Nippon Talc Co., Ltd., P-6 (average particle size: 4 μm)
Impact resistance improver: Mitsui Chemicals, acid-modified ethylene / butene-1 copolymer, TAFMER MH5020

Figure 2013227555
Figure 2013227555

実施例1と比較例1、2、4〜6の比較から、ナイロン410は30℃における貯蔵弾性率と110℃における貯蔵弾性率の比が比較的大きく、ナイロン610やナイロン66に比べて30℃〜110℃の変位が小さいことがわかる。また、実施例1と比較例2の対比から、ナイロン410はナイロン66よりも、30℃での貯蔵弾性率は低い特性を示す。また、実施例1と比較例3の比較から、ナイロン410は、ナイロン46よりも飽和吸水率が低く、これをベースポリマーとして使用した成形品は、高温環境下で使用した場合に水の蒸発による膨れが抑制できることが期待できる。   From the comparison between Example 1 and Comparative Examples 1, 2, 4 to 6, nylon 410 has a relatively large ratio of storage elastic modulus at 30 ° C. to storage elastic modulus at 110 ° C., which is 30 ° C. compared to nylon 610 and nylon 66. It can be seen that the displacement at ˜110 ° C. is small. Further, from the comparison between Example 1 and Comparative Example 2, nylon 410 exhibits a lower storage elastic modulus at 30 ° C. than nylon 66. Further, from comparison between Example 1 and Comparative Example 3, nylon 410 has a lower saturated water absorption than nylon 46, and a molded product using this as a base polymer is caused by water evaporation when used in a high temperature environment. It can be expected that swelling can be suppressed.

ナイロン46は、結晶化度の指標となるΔHmが最も大きく、30℃、110℃ともにその貯蔵弾性率はナイロン66よりも高い。一方、ナイロン410のΔHmは、ナイロン66よりも小さく、それに対応して、30℃の貯蔵弾性率も低いが、110℃の貯蔵弾性率は高い。ナイロン410では、ガラス転移温度に相当するtanδのピークトップの値が小さいことから、非晶部の運動性が抑制されているためと考えられる。以上より、本発明の構成成分であるポリアミド樹脂として、ナイロン410が優れた特性を有することがわかる。   Nylon 46 has the largest ΔHm as an index of crystallinity, and its storage elastic modulus is higher than that of nylon 66 at 30 ° C. and 110 ° C. On the other hand, ΔHm of nylon 410 is smaller than that of nylon 66, and correspondingly, the storage elastic modulus at 30 ° C. is low, but the storage elastic modulus at 110 ° C. is high. In nylon 410, since the value of the peak top of tan δ corresponding to the glass transition temperature is small, it is considered that the mobility of the amorphous part is suppressed. From the above, it can be seen that nylon 410 has excellent characteristics as a polyamide resin which is a constituent of the present invention.

実施例1と比較例1、2の比較により、ポリアミド樹脂として、ナイロン410を使用した場合には、110℃における貯蔵弾性率/30℃における貯蔵弾性率が最も大きく、30〜110℃の変位が小さい。   According to the comparison between Example 1 and Comparative Examples 1 and 2, when nylon 410 is used as the polyamide resin, the storage elastic modulus at 110 ° C./the storage elastic modulus at 30 ° C. is the largest, and the displacement of 30 to 110 ° C. small.

実施例1と比較例1〜7の比較から、タルク配合により、いずれのポリマーにおいても結晶化速度の指標となるTm−Tcは小さくなり、結晶化速度は向上する。タルク配合による結晶化促進効果は、ナイロン410が最も大きく、より早い成形サイクルが期待できる。   From the comparison between Example 1 and Comparative Examples 1 to 7, Tm-Tc, which is an index of the crystallization rate, is reduced by talc blending in any polymer, and the crystallization rate is improved. Nylon 410 has the largest crystallization promoting effect by blending talc, and a faster molding cycle can be expected.

実施例1と比較例4の比較により、タルクを配合することで、tanδのピークトップの値が小さくなり、30〜110℃の変位が小さくなる。   As a result of comparison between Example 1 and Comparative Example 4, by adding talc, the peak top value of tan δ is reduced and the displacement at 30 to 110 ° C. is reduced.

実施例4〜8、比較例9〜12
二軸押出機(日本製鋼所製TEX30型)を用い、メインフィーダー(上流側供給口)からポリアミド樹脂およびタルクを、サイドフィーダー(下流側供給口)からガラス繊維または炭素繊維を、それぞれ表2または表3に示す組成となるように供給して溶融混練した。溶融混練温度は、ポリアミド樹脂の融点+20℃、スクリュー回転数は250rpmとした。押出されたガットはペレタイズした後、80℃で24時間真空乾燥した。得られたペレットから、実施例1と同様に試験片を作製して飽和吸水率、粘弾性、熱特性を評価した。表2および表3に結果を示した。ポリアミド樹脂およびタルクは表1と同様の原料を、ガラス繊維、および炭素繊維は以下に示すものを用いた。
円形断面ガラス繊維(円形GF):日本電気硝子社製T−275H(断面の直径10.5μm、表面処理剤:シラン系カップリング剤、繊維長3mm)
扁平断面ガラス繊維(扁平GF):日東紡社製CSG 3PA−820S(長径28μm、短径7μm、扁平率4.0、断面形状:長円形、表面処理剤:シラン系カップリング剤、繊維長3mm)
炭素繊維:東レ製TV14−006
Examples 4-8, Comparative Examples 9-12
Using a twin screw extruder (Nippon Steel Works TEX30 type), polyamide resin and talc from the main feeder (upstream supply port), glass fiber or carbon fiber from the side feeder (downstream supply port), respectively Table 2 or The composition shown in Table 3 was supplied and melt-kneaded. The melt kneading temperature was the melting point of the polyamide resin + 20 ° C., and the screw rotation speed was 250 rpm. The extruded gut was pelletized and then vacuum dried at 80 ° C. for 24 hours. From the obtained pellets, test pieces were prepared in the same manner as in Example 1, and the saturated water absorption, viscoelasticity, and thermal characteristics were evaluated. Tables 2 and 3 show the results. The polyamide resin and talc used the same raw materials as in Table 1, and the glass fibers and carbon fibers shown below were used.
Circular cross-section glass fiber (circular GF): T-275H manufactured by Nippon Electric Glass Co., Ltd. (cross-sectional diameter: 10.5 μm, surface treatment agent: silane coupling agent, fiber length: 3 mm)
Flat cross-section glass fiber (flat GF): CSG 3PA-820S manufactured by Nittobo Co., Ltd. (major axis 28 μm, minor axis 7 μm, oblateness ratio 4.0, cross-sectional shape: oval, surface treatment agent: silane coupling agent, fiber length 3 mm )
Carbon fiber: Toray TV14-006

Figure 2013227555
Figure 2013227555

実施例4、6の比較から、扁平GFを使用した方が30℃〜110℃での変形量が小さく、室温〜高温環境下間の寸法安定性に優れる。   From the comparison between Examples 4 and 6, the amount of deformation at 30 ° C. to 110 ° C. is smaller when flat GF is used, and the dimensional stability between room temperature and high temperature is excellent.

Figure 2013227555
Figure 2013227555

実施例9、比較例13
自動車エンジンルーム内部品を想定し、実施例4と比較例10で作製したポリアミド樹脂組成物を、射出成形機(日本製鋼所製J220EII−2M、シリンダー温度を融点+25℃、金型温度を80℃、射出圧力を下限圧+1.0MPaに設定)し、箱型成形品(長さ100mm、幅60mm、高さ25mm、肉厚2mm)を得た。得られた成形品を切削加工して、長さ55mm、幅13mm、厚み2mmの試験片を採取し、飽和吸水率、粘弾性、熱特性を測定した。結果を表4に示した。
Example 9 and Comparative Example 13
The polyamide resin composition produced in Example 4 and Comparative Example 10, assuming parts in an automobile engine room, was injected into an injection molding machine (J220EII-2M manufactured by Nippon Steel Works, melting point + 25 ° C., mold temperature 80 ° C. The injection pressure was set to the lower limit pressure +1.0 MPa) to obtain a box-shaped product (length 100 mm, width 60 mm, height 25 mm, wall thickness 2 mm). The obtained molded product was cut to obtain a test piece having a length of 55 mm, a width of 13 mm, and a thickness of 2 mm, and measured for saturated water absorption, viscoelasticity, and thermal characteristics. The results are shown in Table 4.

Figure 2013227555
Figure 2013227555

本発明のポリアミド樹脂組成物は高温剛性に優れるという特徴を生かして自動車エンジンルーム内部品用途に好適に用いることができる。   The polyamide resin composition of the present invention can be suitably used for automotive engine room parts by taking advantage of its high temperature rigidity.

Claims (8)

テトラメチレンジアミンと炭素数7以上の脂肪族ジカルボン酸を主要成分とする単量体を重縮合して得られるポリアミド樹脂100重量部に対して、無機充填材を0.01重量部以上200重量部以下配合してなるポリアミド樹脂組成物であって、曲げモードで測定した110℃における貯蔵弾性率と、曲げモードで測定した30℃における貯蔵弾性率との比(110℃における貯蔵弾性率/30℃における貯蔵弾性率)が0.30以上であり、ポリアミド樹脂のガラス転移温度に相当するtanδのピークトップの値が0.098以下である、自動車エンジンルーム内部品用ポリアミド樹脂組成物。 0.01 parts by weight or more and 200 parts by weight of inorganic filler per 100 parts by weight of polyamide resin obtained by polycondensation of monomers mainly composed of tetramethylenediamine and aliphatic dicarboxylic acid having 7 or more carbon atoms A polyamide resin composition comprising the following: ratio of storage elastic modulus at 110 ° C. measured in bending mode to storage elastic modulus at 30 ° C. measured in bending mode (storage elastic modulus at 110 ° C./30° C. The storage resin modulus of the tan δ corresponding to the glass transition temperature of the polyamide resin is 0.098 or less. 前記無機充填材が、非繊維状無機充填材を含む請求項1に記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物。 The polyamide resin composition for parts in an automobile engine room according to claim 1, wherein the inorganic filler includes a non-fibrous inorganic filler. 前記非繊維状無機充填材が、タルク、ワラステナイト、マイカおよびカオリンからなる群より選ばれる少なくとも1種である請求項2に記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物。 The polyamide resin composition for automotive engine compartment parts according to claim 2, wherein the non-fibrous inorganic filler is at least one selected from the group consisting of talc, wollastonite, mica and kaolin. 前記無機充填材が、さらに繊維状無機充填材を含む請求項2または3に記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物。 The polyamide resin composition for parts in an automobile engine room according to claim 2 or 3, wherein the inorganic filler further contains a fibrous inorganic filler. 前記繊維状無機充填材が、ガラス繊維および/または炭素繊維である請求項4に記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物。 The polyamide resin composition for automotive engine compartment parts according to claim 4, wherein the fibrous inorganic filler is glass fiber and / or carbon fiber. 飽和吸水率が6.0重量%以下である、請求項1〜5のいずれかに記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物。 The polyamide resin composition for parts in an automobile engine room according to any one of claims 1 to 5, wherein the saturated water absorption is 6.0% by weight or less. 前記炭素数7以上の脂肪族ジカルボン酸が、アゼライン酸、セバシン酸、ウンデカン二酸およびドデカン二酸からなる群より選ばれる少なくとも1種である請求項1〜6のいずれかに記載の自動車エンジンルーム内部品用ポリアミド樹脂組成物。 The automobile engine room according to any one of claims 1 to 6, wherein the aliphatic dicarboxylic acid having 7 or more carbon atoms is at least one selected from the group consisting of azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid. Polyamide resin composition for internal parts. 請求項1〜7いずれかに記載のポリアミド樹脂組成物を成形してなる自動車エンジンルーム内部品。 A part in an automobile engine room formed by molding the polyamide resin composition according to claim 1.
JP2013068794A 2012-03-29 2013-03-28 Polyamide resin composition for automobile engine room interior part Pending JP2013227555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013068794A JP2013227555A (en) 2012-03-29 2013-03-28 Polyamide resin composition for automobile engine room interior part

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012076590 2012-03-29
JP2012076590 2012-03-29
JP2013068794A JP2013227555A (en) 2012-03-29 2013-03-28 Polyamide resin composition for automobile engine room interior part

Publications (1)

Publication Number Publication Date
JP2013227555A true JP2013227555A (en) 2013-11-07

Family

ID=49675504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068794A Pending JP2013227555A (en) 2012-03-29 2013-03-28 Polyamide resin composition for automobile engine room interior part

Country Status (1)

Country Link
JP (1) JP2013227555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089080A (en) * 2014-11-07 2016-05-23 三菱エンジニアリングプラスチックス株式会社 Polyamide resin composition and molded article
JP2016222828A (en) * 2015-06-01 2016-12-28 旭化成株式会社 Fan molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089080A (en) * 2014-11-07 2016-05-23 三菱エンジニアリングプラスチックス株式会社 Polyamide resin composition and molded article
JP2016222828A (en) * 2015-06-01 2016-12-28 旭化成株式会社 Fan molded article

Similar Documents

Publication Publication Date Title
JP5522036B2 (en) Method for producing polyamide resin
JP5451940B2 (en) Semi-aromatic polyamide and molded article comprising the same
US8487024B2 (en) Polyamide, polyamide composition, and method for producing polyamide
EP2414446B1 (en) Flame resistant semiaromatic polyamide resin composition and articles therefrom
US7989538B2 (en) Flame resistant semiaromatic polyamide resin compositions and processes for the preparation of the compositions exhibiting increased melt flow and articles therefrom
JPWO2010113736A1 (en) Polyamide resin, polyamide resin composition, and molded article comprising these
JP6226704B2 (en) Polyamide resin composition
JP2011225830A (en) Process for producing polyamide resin
JP5776368B2 (en) Polyamide resin composition and method for producing the same
CN109312153B (en) Thermoplastic resin composition and molded article obtained by molding same
JP2015224286A (en) Polyamide resin composition
JP2013227556A (en) Polyamide resin composition for case of information communication device
JP2018193547A (en) Thermoplastic resin composition and molded article obtained by molding the same
JP2013227555A (en) Polyamide resin composition for automobile engine room interior part
JP6843698B2 (en) Polyamide composition and molded product
JP2016056260A (en) Polyamide resin and production process therefor
JP2019178261A (en) Polyamide composition and molded article
CN115551920A (en) Polymer compositions with improved mechanical properties at high temperatures and corresponding articles
JP2017155150A (en) Polyamide composition, polyamide composition molded article and manufacturing method of polyamide composition
EP4067427A1 (en) Polyamide resin composition and molded object thereof
JP5644263B2 (en) Underhood parts for automobiles
CA3229749A1 (en) Flame-proof, partially aromatic polyamides
JP2016216627A (en) Polyamide composition
JP2023007062A (en) Resin composition and molded article
WO2016031257A1 (en) Polyamide, polyamide production method, polyamide composition, polyamide composition molded article and production method for same