JP2013227444A - Composite particle and cell preparation using the same - Google Patents

Composite particle and cell preparation using the same Download PDF

Info

Publication number
JP2013227444A
JP2013227444A JP2012101189A JP2012101189A JP2013227444A JP 2013227444 A JP2013227444 A JP 2013227444A JP 2012101189 A JP2012101189 A JP 2012101189A JP 2012101189 A JP2012101189 A JP 2012101189A JP 2013227444 A JP2013227444 A JP 2013227444A
Authority
JP
Japan
Prior art keywords
composite particles
particles
cells
cell
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012101189A
Other languages
Japanese (ja)
Inventor
Tsutomu Furuzono
勉 古薗
Masaaki Inaba
雅章 稲葉
Shinya Fukumoto
真也 福本
Yohei Mima
洋平 三間
Hideji Fujii
秀司 藤井
Yasumitsu Kokayu
康充 小粥
Shojiro Matsuda
晶二郎 松田
Hideki Takamori
秀樹 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Osaka University NUC
Kinki University
Osaka City University
SofSera Corp
Josho Gakuen Educational Foundation
Original Assignee
Gunze Ltd
Osaka University NUC
Kinki University
Osaka City University
SofSera Corp
Josho Gakuen Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd, Osaka University NUC, Kinki University, Osaka City University, SofSera Corp, Josho Gakuen Educational Foundation filed Critical Gunze Ltd
Priority to JP2012101189A priority Critical patent/JP2013227444A/en
Priority to PCT/JP2013/061758 priority patent/WO2013161751A1/en
Publication of JP2013227444A publication Critical patent/JP2013227444A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Abstract

PROBLEM TO BE SOLVED: To provide composite particles which can sufficiently hold cells thereon for a period of time until an effect of the transplanted cells is developed, and to provide a cell preparation including the composite particles with the cells supported thereon.SOLUTION: The purpose of the invention can be achieved by composite particles each of which includes inorganic particles adsorbed on a surface of a particle composed of an L-lactide-ε-caprolactone copolymer, wherein the constitutional molar ratio of L-lactide to an ε-caprolactone in the copolymer is approximately 75/25. Furthermore, a cell preparation including cell-supporting composite particles, which includes cell-supporting composite particles produced by supporting cells on the composite particles is provided.

Description

本発明は、細胞移植による効果が得られるまでの期間、十分に細胞を保持することが可能な複合粒子、及び当該複合粒子に細胞を担持させてなる細胞担持複合粒子を含む細胞製剤に関する。   The present invention relates to a composite particle capable of sufficiently retaining cells until the effect of cell transplantation is obtained, and a cell preparation containing cell-supported composite particles in which cells are supported on the composite particles.

骨髄中に存在する多能幹細胞又は血管内皮前駆細胞は、各組織における生理学的及び病的血管新生に関与することが明らかとなっている。これらの細胞の血管新生能を利用し、骨髄や末梢血から分離された幹細胞を虚血下肢、虚血心筋等に直接移植して血管新生を促し、血行再建を目指す血管新生療法が試みられている。このような治療は、細胞工学的手法やサイトカインを併用した移植法により有効性を高める検討がなされているものの、いまだ十分な効果は得られていないのが現状である。   Pluripotent stem cells or vascular endothelial progenitor cells present in the bone marrow have been shown to be involved in physiological and pathological angiogenesis in each tissue. By using the angiogenic ability of these cells, stem cells isolated from bone marrow and peripheral blood are directly transplanted to ischemic lower limbs, ischemic myocardium, etc. Yes. Although such treatments have been studied to increase the effectiveness by a cell engineering technique or a transplantation method combined with cytokines, a sufficient effect has not been obtained yet.

近年、血管新生療法のメカニズムにおいて、新生血管の構造内に取り込まれる移植細胞はごくわずかであり、むしろ移植細胞が複数のサイトカインを移植部位において分泌することが血管新生に重要であることが明らかとなった。しかしながら、移植細胞は48時間以内に、その70〜80%が体循環に移行し、移植部位に留まるものが少ないことが確認された。これらの知見は、非特許文献1〜7において報告されている。従って、十分な治療効果を実現するためには、移植細胞を移植の効果が得られるまでの期間、血行再建を必要とする部位(すなわち移植部位)に留まらせる技術が求められていた。   In recent years, in the mechanism of angiogenesis therapy, only a few transplanted cells are taken up into the structure of the neovascularization, but it is clear that it is important for angiogenesis that the transplanted cells secrete multiple cytokines at the transplant site. became. However, it was confirmed that 70 to 80% of transplanted cells migrated into the systemic circulation within 48 hours, and few remained at the transplanted site. These findings are reported in Non-Patent Documents 1-7. Therefore, in order to realize a sufficient therapeutic effect, there has been a demand for a technique for allowing transplanted cells to remain at a site requiring revascularization (that is, a transplant site) until a transplant effect is obtained.

再生医療においては、細胞を用いて機能低下や機能不全に陥った組織・臓器の再生を行う際、投与される培養細胞を担持させるための細胞移植用スキャフォールド(細胞担体)が不可欠である。細胞移植用スキャフォールドとしては、ゼラチン、コラーゲン等が知られている。ゼラチンやコラーゲンは、非常に有効な素材であるが、動物由来であるため抗原性等の問題がある。また、ゼラチンやコラーゲンを用いた細胞スキャフォールドは、体内で分解されやすいため、移植部位に細胞を長期間保持することが困難である。   In regenerative medicine, a scaffold for cell transplantation (cell carrier) for supporting cultured cells to be administered is indispensable when cells are used to regenerate tissues or organs that have deteriorated or malfunctioned. Known scaffolds for cell transplantation include gelatin and collagen. Gelatin and collagen are very effective materials, but have problems such as antigenicity because they are derived from animals. In addition, since a cell scaffold using gelatin or collagen is easily decomposed in the body, it is difficult to hold cells at a transplant site for a long period of time.

これに対し、ハイドロキシアパタイト等の無機物は、非動物性であることから抗原性等の心配がなく、生体適合性にも優れている。しかも、細胞の接着と増殖をも可能にするため、細胞移植用スキャフォールドとして好適である。ただし、無機物には、強度や靱性が低いという欠点があり、この欠点を補うために、無機物と生体吸収性高分子を複合化させた複合粒子が開発されている。例えば、特許文献1には、ポリエステル又は極性末端基を含む重合体により形成された支持体表面に、カルシウム塩によって形成されたナノ粒子が固定化されてなる非球形微粒子が開示されている。また、特許文献2には、生体への影響が懸念されるような有機溶剤、及び分子レベルの界面活性剤や分散安定剤等の添加剤を使用せず、熱可塑性樹脂粒子の表面に無機粒子が吸着した球状の複合微粒子を製造する方法が開示されている。   In contrast, inorganic substances such as hydroxyapatite are non-animal, so there is no concern about antigenicity and the biocompatibility is excellent. Moreover, since it enables cell adhesion and proliferation, it is suitable as a scaffold for cell transplantation. However, inorganic materials have the drawback of low strength and toughness, and composite particles in which inorganic materials and bioabsorbable polymers are combined have been developed to compensate for these disadvantages. For example, Patent Document 1 discloses non-spherical fine particles in which nanoparticles formed of calcium salt are immobilized on the surface of a support formed of polyester or a polymer containing polar end groups. In addition, Patent Document 2 discloses that inorganic particles are not formed on the surface of thermoplastic resin particles without using an organic solvent that may be affected by a living body and additives such as molecular level surfactants and dispersion stabilizers. Discloses a method for producing spherical composite fine particles with adsorbed particles.

このように、無機物と生体吸収性高分子で構成される複合粒子の分野においても、細胞を担持させる複合粒子に対して、細胞スキャフォールドとして好適な物性及び高い安全性を付与するための様々な技術が開発されてきている。このような背景から、生体内において移植の効果が得られるまでの十分な期間に亘って移植細胞を保持することが可能であり、且つ細胞移植の効果が得られた後は速やかに吸収され得る、細胞スキャフォールドとしてより一層優れた物性を有する細胞スキャフォールドが求められていた。   Thus, also in the field of composite particles composed of inorganic substances and bioabsorbable polymers, various properties for imparting suitable physical properties and high safety as cell scaffolds to composite particles supporting cells. Technology has been developed. From such a background, it is possible to hold the transplanted cells for a sufficient period until the transplantation effect is obtained in vivo, and it can be absorbed quickly after the cell transplantation effect is obtained. There has been a demand for a cell scaffold having even more excellent physical properties as a cell scaffold.

特開2010−235686号公報JP 2010-235686 A 特開2011−184615号公報JP 2011-184615 A

Weel V,et al.Ann Vasc Surg 2008;22:582−597Weel V, et al. Ann Vasc Surg 2008; 22: 582-597 Phelps EA and Garcia AJ.Regen Med 2009;4:65−80Phelps EA and Garcia AJ. Regen Med 2009; 4: 65-80 Andrew S,et al.Semin Thorac Cardiovasc Surg 2008;20:49−101Andrew S, et al. Semin Thorac Cardiovas Surg 2008; 20: 49-101 Sieveking DP and Ng MKC Vascular Medicine 2009;14:153−166Sieveking DP and Ng MKC Vascular Medicine 2009; 14: 153-166 Mheid IAI et al.Angiology 2009;59:705−716Mheid IAI et al. Angiology 2009; 59: 705-716 Aranguren XL et al.J Mol Med 2009;87:3−16Aranguren XL et al. J Mol Med 2009; 87: 3-16 福本真也,小山英則,田中新二,前野孝明,庄司拓仁他:重症下肢虚血に対する自家骨髄単核細胞移植の有効性―透析患者を含めた検討―.日本透析医学会雑誌 2004,37:1493−1501.Shinya Fukumoto, Hidenori Koyama, Shinji Tanaka, Takaaki Maeno, Takuhito Shoji et al .: Efficacy of autologous bone marrow mononuclear cell transplantation for severe limb ischemia—including dialysis patients—. Journal of Japanese Society for Dialysis Therapy 2004, 37: 1493-1501.

本発明は、細胞移植の効果が得られるまでの期間、移植部位において細胞を保持することが可能な複合粒子を提供することを主な目的とする。更に、本発明は、前記複合粒子に細胞を担持させてなる細胞担持複合粒子を含む細胞製剤を提供することを目的とする。   The main object of the present invention is to provide composite particles capable of retaining cells at the transplant site until a cell transplant effect is obtained. Furthermore, an object of the present invention is to provide a cell preparation containing cell-supporting composite particles obtained by supporting cells on the composite particles.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、L-ラクチドとε−カプロラクトンの構成モル比が略75:25であるL-ラクチド−ε−カプロラクトン共重合体からなる粒子表面にハイドロキシアパタイト等の無機粒子を吸着させた複合粒子上に細胞を担持させて移植すると、移植部位において細胞移植の効果が得られるまでの期間に亘って十分に細胞が保持され、細胞移植の効果が顕著に高められることを見出した。本発明は、このような知見に基づいて更に研究を重ねた結果、完成されたものである。すなわち、本発明は下記態様の複合粒子及び細胞製剤を提供する。
項1.L-ラクチド−ε−カプロラクトン共重合体からなる粒子表面に無機粒子を吸着させてなり、前記共重合体におけるL-ラクチドとε−カプロラクトンの構成モル比が略75:25である複合粒子。
項2.前記無機粒子がハイドロキシアパタイトである、項1に記載の複合粒子。
項3.移植細胞用のスキャフォールドとして使用される、項1又は2に記載の複合粒子。
項4.項1〜3のいずれかに記載の複合粒子に細胞を担持させてなる細胞担持複合粒子を含む、細胞製剤。
項5.前記細胞が骨髄単核細胞である、項4に記載の細胞製剤。
項6.血管新生促進用である、項5に記載の細胞製剤。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that particles comprising an L-lactide-ε-caprolactone copolymer having a constituent molar ratio of L-lactide to ε-caprolactone of approximately 75:25. When cells are transplanted by carrying them on composite particles having inorganic particles such as hydroxyapatite adsorbed on the surface, the cells are sufficiently retained for a period of time until the effect of cell transplantation is obtained at the transplantation site. It has been found that the effect is remarkably enhanced. The present invention has been completed as a result of further research based on such knowledge. That is, this invention provides the composite particle and cell preparation of the following aspect.
Item 1. Composite particles in which inorganic particles are adsorbed on the surface of particles made of an L-lactide-ε-caprolactone copolymer, and the constituent molar ratio of L-lactide and ε-caprolactone in the copolymer is approximately 75:25.
Item 2. Item 2. The composite particle according to Item 1, wherein the inorganic particle is hydroxyapatite.
Item 3. Item 3. The composite particle according to Item 1 or 2, which is used as a scaffold for transplanted cells.
Item 4. Item 4. A cell preparation comprising cell-supporting composite particles obtained by supporting cells on the composite particles according to any one of Items 1 to 3.
Item 5. Item 5. The cell preparation according to Item 4, wherein the cell is a bone marrow mononuclear cell.
Item 6. Item 6. The cell preparation according to Item 5, which is used for promoting angiogenesis.

本発明の複合粒子は、L-ラクチドとε−カプロラクトンの構成モル比が略75:25であるL-ラクチド−ε−カプロラクトン共重合体からなる粒子の表面に無機粒子を吸着させてなることを特徴とする。このようなL-ラクチド−ε−カプロラクトン共重合体を使用することにより、細胞移植後の無機粒子の脱落を抑制することが可能であり、しかも、細胞移植の効果が得られるまでの十分な期間に亘って(例えば1週間〜数か月間)細胞を保持することが可能である。そのため、本発明の複合粒子上に細胞を担持させて移植することにより、生体内で安定に細胞を保持することができ(すなわち、細胞担持力に優れる)、移植先の組織再生効率を飛躍的に高めることができる。また、本発明の複合粒子は、細胞移植の効果が得られた後は、速やかに分解吸収されるため、細胞移植の効果が得られた後も生体から除去する必要がない。   The composite particle of the present invention is formed by adsorbing inorganic particles on the surface of a particle composed of an L-lactide-ε-caprolactone copolymer having a constitutional molar ratio of L-lactide and ε-caprolactone of about 75:25. Features. By using such an L-lactide-ε-caprolactone copolymer, it is possible to suppress dropping of inorganic particles after cell transplantation, and a sufficient period until the effect of cell transplantation is obtained. It is possible to hold cells over a period of time (for example, for one week to several months). Therefore, by carrying the cells on the composite particles of the present invention, the cells can be stably held in the living body (that is, excellent in cell carrying power), and the tissue regeneration efficiency at the transplant destination is dramatically improved. Can be increased. Further, since the composite particles of the present invention are rapidly decomposed and absorbed after the effect of cell transplantation is obtained, it is not necessary to remove them from the living body even after the effect of cell transplantation is obtained.

更に、本発明の複合粒子は、動物性材料を使用せずに調製されることから、抗原性等の問題がない。しかも、本発明の複合粒子に細胞を担持させる場合、単に複合粒子と移植細胞を混合するだけで高い細胞接着が実現されることから、短期間且つ簡便に本発明の細胞製剤を調製することができる。とりわけ、本発明の複合粒子に骨髄単核細胞を担持させた細胞製剤は、血管新生促進用として有用であり、下肢虚血の治療に好適に使用できる。   Furthermore, since the composite particles of the present invention are prepared without using animal materials, there are no problems such as antigenicity. Moreover, when cells are carried on the composite particles of the present invention, high cell adhesion is realized simply by mixing the composite particles and the transplanted cells, so that the cell preparation of the present invention can be easily prepared in a short period of time. it can. In particular, the cell preparation in which bone marrow mononuclear cells are supported on the composite particles of the present invention is useful for promoting angiogenesis and can be suitably used for the treatment of lower limb ischemia.

図1は、複合粒子の素材及び平均粒子径による粒子単位表面積あたりの組織内での細胞担持力の評価結果を示すグラフである。図中P<0.05はANOVA Scheffe検定による有意差を示す。FIG. 1 is a graph showing evaluation results of cell carrying power in a tissue per unit surface area of particles based on a composite particle material and an average particle diameter. In the figure, P <0.05 indicates a significant difference by ANOVA Scheffe test. 図2は、GFP濃度(即ち、複合粒子に担持される細胞量)と血流改善度(血流比)の関係を示すグラフである。図中、GFP濃度は、単位筋肉組織中のGFP濃度を示し、Arbitrary Unitにて表されている。FIG. 2 is a graph showing the relationship between the GFP concentration (that is, the amount of cells carried by the composite particles) and the blood flow improvement degree (blood flow ratio). In the figure, the GFP concentration indicates the GFP concentration in the unit muscle tissue and is represented by an Arbitrary Unit. 図3は、複合粒子の素材の違いによる血流改善度(血流比)を示すグラフである。図中P<0.05はANOVA Scheffe検定による有意差を示す。FIG. 3 is a graph showing the blood flow improvement degree (blood flow ratio) due to the difference in the material of the composite particles. In the figure, P <0.05 indicates a significant difference by ANOVA Scheffe test.

1.複合粒子
本発明の複合粒子は、L-ラクチド−ε−カプロラクトン共重合体からなる粒子表面に無機粒子を吸着させてなる複合粒子であり、前記共重合体におけるL-ラクチドとε−カプロラクトンの構成モル比が略75:25であることを特徴とする。以下、本発明の複合粒子について詳述する。
1. Composite Particle The composite particle of the present invention is a composite particle obtained by adsorbing inorganic particles on the particle surface made of an L-lactide-ε-caprolactone copolymer, and the composition of L-lactide and ε-caprolactone in the copolymer The molar ratio is approximately 75:25. Hereinafter, the composite particles of the present invention will be described in detail.

本発明において、複合粒子における核粒子を構成するポリマーとして、L-ラクチド:ε−カプロラクトン(モル比)が略75:25であるL-ラクチド−ε−カプロラクトン共重合体(以下、「PLCL(75/25)」と略記することもある)を用いる。PLCL(75/25)を、無機粒子を吸着させる核粒子として使用することにより、無機粒子に対する表面吸着作用に優れたものとすることができる。また、PLCL(75/25)は、細胞を担持させて移植した際、細胞移植の効果が発現されるまでの期間に亘って細胞を保持でき、更に生体内で分解・吸収されることから、細胞スキャフォールドとして好適な物性を実現することができる。   In the present invention, as a polymer constituting the core particle in the composite particle, an L-lactide-ε-caprolactone copolymer (hereinafter referred to as “PLCL (75) having an L-lactide: ε-caprolactone (molar ratio) of about 75:25”. / 25) ”may be abbreviated as“). By using PLCL (75/25) as a core particle for adsorbing inorganic particles, it is possible to make the surface adsorbing action excellent on inorganic particles. In addition, PLCL (75/25) can retain cells for a period of time until the effect of cell transplantation is expressed when the cells are transplanted while carrying cells, and is further decomposed and absorbed in vivo. Physical properties suitable as a cell scaffold can be realized.

本発明で使用されるPLCL(75/25)は、L−ラクチド(L-乳酸の環状二量体)及びεカプロラクトンを所定量のモル比でモノマーとし、それらを開環重合して得られる。本発明で使用されるL-ラクチド−ε−カプロラクトン共重合体の重量平均分子量としては、特に制限されるものではないが、例えば、20,000〜1,000,000、好ましくは300,000〜900,000、更に好ましく500,000〜800,000が挙げられる。ここで、重量平均分子量は、GPC分析により算出される値である。   PLCL (75/25) used in the present invention is obtained by ring-opening polymerization of L-lactide (a cyclic dimer of L-lactic acid) and ε-caprolactone as monomers at a predetermined molar ratio. The weight average molecular weight of the L-lactide-ε-caprolactone copolymer used in the present invention is not particularly limited, but is, for example, 20,000 to 1,000,000, preferably 300,000 to 900,000, more preferably 500,000 to 800,000 can be mentioned. Here, the weight average molecular weight is a value calculated by GPC analysis.

本発明の複合粒子において、PLCL(75/25)の含有割合としては、特に制限されないが、例えば、当該複合粒子の総重量当たり、50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは80〜99.9質量%が挙げられる。   In the composite particles of the present invention, the content ratio of PLCL (75/25) is not particularly limited, but is, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 80%, based on the total weight of the composite particles. The mass% or more, More preferably, 80-99.9 mass% is mentioned.

本発明の複合粒子において、PLCL(75/25)により構成される各粒子は、中空又は非中空のいずれの構造であってもよいが、好ましくは非中空構造が挙げられる。   In the composite particle of the present invention, each particle constituted by PLCL (75/25) may have either a hollow structure or a non-hollow structure, and preferably a non-hollow structure.

本発明の複合粒子は、PLCL(75/25)からなる粒子の表面に無機粒子が吸着した構造をとる。   The composite particles of the present invention have a structure in which inorganic particles are adsorbed on the surface of particles made of PLCL (75/25).

本発明で使用される無機粒子を構成する無機化合物の種類については、特に制限されないが、例えば、リン酸カルシウム、シリカ、チタニア、アルミナ、ジルコニア、酸化鉄、酸化錫、酸化亜鉛、金、銀、パラジウム、白金、カーボンブラック、炭酸カルシウム、クレイ(例えば、モンモリロナイト)等が挙げられる。これらの無機化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの無機化合物の中でも、好ましくはリン酸カルシウムが挙げられる。   The type of the inorganic compound constituting the inorganic particles used in the present invention is not particularly limited, but for example, calcium phosphate, silica, titania, alumina, zirconia, iron oxide, tin oxide, zinc oxide, gold, silver, palladium, Platinum, carbon black, calcium carbonate, clay (for example, montmorillonite), etc. are mentioned. These inorganic compounds may be used individually by 1 type, and may be used in combination of 2 or more type. Among these inorganic compounds, calcium phosphate is preferable.

リン酸カルシウムとしては、具体的には、ハイドロキシアパタイト(Ca10(PO46(OH)2)、リン酸トリカルシウム(Ca3(PO42)、メタリン酸カルシウム(Ca(PO32)、フッ化アパタイト(Ca10(PO462)、クロロアパタイト(Ca10(PO46Cl2)等が挙げられる。これらのリン酸カルシウムは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのリン酸カルシウムの中でも、PLCL(75/25)に対する吸着性、生体適合性、移植用細胞の保持・増殖性等にも優れているという観点から、好ましくはハイドロキシアパタイトが挙げられる。 Specific examples of calcium phosphate include hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), tricalcium phosphate (Ca 3 (PO 4 ) 2 ), calcium metaphosphate (Ca (PO 3 ) 2 ), Examples thereof include fluorapatite (Ca 10 (PO 4 ) 6 F 2 ) and chloroapatite (Ca 10 (PO 4 ) 6 Cl 2 ). These calcium phosphates may be used individually by 1 type, and may be used in combination of 2 or more type. Among these calcium phosphates, hydroxyapatite is preferably used from the viewpoint of excellent adsorption to PLCL (75/25), biocompatibility, retention / proliferation of transplanted cells, and the like.

また、これらの無機化合物は、焼結処理に供された焼結物であることが好ましい。上記無機化合物の焼結物を使用することにより、耐熱性や化学的安定性を備えさせることが可能になる。   These inorganic compounds are preferably sintered products that have been subjected to a sintering treatment. By using a sintered product of the above inorganic compound, it becomes possible to provide heat resistance and chemical stability.

本発明で使用される無機粒子の平均粒子径については、無機粒子を構成する無機化合物の種類や本発明の複合粒子の用途等に応じて適宜設定されるが、PLCL(75/25)に対する吸着性を向上させるという観点から、10〜1000nm、好ましくは10〜800nm、更に好ましくは15〜500nmが挙げられる。当該平均粒子径は、走査型電子顕微鏡を用いて、無機粒子50個以上の粒子径を測定し、平均値を算出することにより求められる値である。このような平均粒子径の無機粒子は、例えば、湿式法、水熱法、熱分解法、ゾルゲル法、アルコキシド法等の製法によって得ることができる。   The average particle size of the inorganic particles used in the present invention is appropriately set according to the type of inorganic compound constituting the inorganic particles, the use of the composite particles of the present invention, etc., but is adsorbed to PLCL (75/25). From the viewpoint of improving the property, 10 to 1000 nm, preferably 10 to 800 nm, and more preferably 15 to 500 nm can be mentioned. The said average particle diameter is a value calculated | required by measuring the particle diameter of 50 or more inorganic particles using a scanning electron microscope, and calculating an average value. Inorganic particles having such an average particle diameter can be obtained by a production method such as a wet method, a hydrothermal method, a thermal decomposition method, a sol-gel method, or an alkoxide method.

本発明の複合粒子において、無機粒子の含有割合としては、特に制限されないが、例えば、当該複合粒子の総重量当たり、0.001〜50質量%、好ましくは0.01〜30質量%、更に好ましくは0.1〜20質量%が挙げられる。   In the composite particles of the present invention, the content ratio of the inorganic particles is not particularly limited. For example, 0.001 to 50% by mass, preferably 0.01 to 30% by mass, and more preferably, per total weight of the composite particles. Is 0.1 to 20% by mass.

本発明の複合粒子の平均粒子径については、当該複合粒子の用途等に応じて適宜設定されるが、例えば1〜1,000μm、好ましくは5〜500μm、更に好ましくは25〜150μmが挙げられる。平均粒子径は、光学顕微鏡を用いて、本発明の複合粒子50個以上の粒子径を測定し、平均値を算出することにより求められる値である。また、本発明の複合粒子における粒度分布としては、例えば、全粒子に対する75μm以上300μm未満の粒子の割合が5〜100%、好ましくは10〜100%が挙げられる。これらの粒度分布は、走査型電子顕微鏡を用いて測定される。   About the average particle diameter of the composite particle of this invention, although suitably set according to the use etc. of the said composite particle, 1-1,000 micrometers, Preferably it is 5-500 micrometers, More preferably, 25-150 micrometers is mentioned. An average particle diameter is a value calculated | required by measuring the particle diameter of 50 or more composite particles of this invention using an optical microscope, and calculating an average value. Moreover, as a particle size distribution in the composite particle | grains of this invention, the ratio of the particle | grains of 75 micrometers or more and less than 300 micrometers with respect to all the particles is 5-100%, Preferably 10-100% is mentioned. These particle size distributions are measured using a scanning electron microscope.

本発明の複合粒子において、PLCL(75/25)からなる核粒子の平均粒子径、無機粒子からなる表面層の厚さについては、特に制限されず、複合粒子の平均粒子径、PLCL(75/25)や無機粒子の含有量等に応じて適宜設定される。   In the composite particles of the present invention, the average particle diameter of the core particles made of PLCL (75/25) and the thickness of the surface layer made of inorganic particles are not particularly limited, and the average particle diameter of the composite particles, PLCL (75/25). 25), the content of inorganic particles, and the like.

2.製造方法
本発明の複合粒子の製造方法については、特に制限されず、従来公知の方法に従って、PLCL(75/25)からなる粒子に無機粒子を吸着させればよい。本発明の複合粒子の製造方法の好適な一例として、下記の第1工程及び第2工程を含む方法が挙げられる。
2. Production Method The production method of the composite particles of the present invention is not particularly limited, and inorganic particles may be adsorbed on particles made of PLCL (75/25) according to a conventionally known method. A preferred example of the method for producing composite particles of the present invention includes a method including the following first step and second step.

第1工程
第1工程では、疎水性溶媒中に前記PLCL(75/25)を溶解させた疎水性溶液、無機粒子、及び親水性溶液を含む混合液に対して、ホモジナイザーを用いて撹拌してピッカリングエマルジョンを形成させる。
First Step In the first step, a mixed solution containing a hydrophobic solution in which the PLCL (75/25) is dissolved in a hydrophobic solvent, inorganic particles, and a hydrophilic solution is stirred using a homogenizer. A pickering emulsion is formed.

本第1工程において、疎水性溶液に使用される疎水性溶媒としては、PLCL(75/25)を溶解できることを限度として特に制限されないが、例えば、モノクロロメタン、ジクロロメタン、トリクロロメタン、テトラクロロメタン、トリフルオロ酢酸、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール等のハロゲン系炭化水素、トルエン等が挙げられる。これらの疎水性溶媒は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの中でも、好ましくはハロゲン系炭化水素、更に好ましくはジクロロメタンが挙げられる。   In the first step, the hydrophobic solvent used in the hydrophobic solution is not particularly limited as long as it can dissolve PLCL (75/25). For example, monochloromethane, dichloromethane, trichloromethane, tetrachloromethane, Examples thereof include trifluoroacetic acid, halogenated hydrocarbons such as 1,1,1,3,3,3-hexafluoro-2-propanol, and toluene. These hydrophobic solvents may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, halogenated hydrocarbons are preferable, and dichloromethane is more preferable.

本第1工程で使用される疎水性溶液の粘度は、得られる複合粒子の平均粒子径に影響を与え得る。後述する撹拌速度によって複合粒子の平均粒子径を所望の範囲に調整するためには、疎水性溶媒と混合するPLCL(75/25)の配合割合を所定の範囲に調整することにより疎水性溶液の粘度を約700mPa・S以下に設定することが望ましい。なお、ここで粘度は、回転振動式粘度計(具体的には、ビスコメイトVM−10A−L:CBCマテリアルズ(株)製が例示される)により、溶媒をジクロロメタンとして室温(約20)℃で測定して得られる値である。また、測定の際には、溶媒の揮発による粘度の変動を避けるため粘度計のプローブを疎水性溶液に浸漬後、すぐに測定することが望ましい。疎水性溶液をこのような粘度に調整するためのPLCL(75/25)の含有割合は、例えば、0.01〜30質量%、好ましくは2〜20質量%、更に好ましくは4〜10質量%が挙げられる。   The viscosity of the hydrophobic solution used in the first step can affect the average particle size of the resulting composite particles. In order to adjust the average particle diameter of the composite particles to a desired range by the stirring speed described later, the blending ratio of PLCL (75/25) mixed with the hydrophobic solvent is adjusted to a predetermined range to adjust the hydrophobic solution. It is desirable to set the viscosity to about 700 mPa · S or less. Here, the viscosity is measured at room temperature (about 20) ° C. using dichloromethane as a solvent with a rotational vibration viscometer (specifically, Viscomate VM-10A-L: manufactured by CBC Materials Co., Ltd.). It is a value obtained by measuring with. Further, at the time of measurement, it is desirable to measure immediately after the probe of the viscometer is immersed in the hydrophobic solution in order to avoid the fluctuation of the viscosity due to the volatilization of the solvent. The content ratio of PLCL (75/25) for adjusting the hydrophobic solution to such a viscosity is, for example, 0.01 to 30% by mass, preferably 2 to 20% by mass, and more preferably 4 to 10% by mass. Is mentioned.

また、本第1工程で使用される親水性溶液としては、前記疎水性溶液と相溶性のないことを限度として特に制限されず、例えば、水、メタノール、エタノール等が挙げられる。これらの親水性溶液は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの中でも、好ましくは水が挙げられる。   The hydrophilic solution used in the first step is not particularly limited as long as it is not compatible with the hydrophobic solution, and examples thereof include water, methanol, ethanol and the like. These hydrophilic solutions may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, water is preferable.

本第1工程では、先ず、前記疎水性溶液、無機粒子、及び親水性溶液を混合して、混合液を調製する。当該混合液において、前記疎水性溶液、無機粒子、及び親水性溶液の各含有量については特に制限されないが、例えば、前記疎水性溶液は1〜20質量%、好ましくは5〜15質量%、更に好ましくは8〜12質量%;前記無機粒子は、0.05〜2質量%、好ましくは0.1〜1質量%、更に好ましくは0.2〜0.5質量%;前記親水性溶液は78〜98.95質量%、好ましくは84〜94.9質量%、更に好ましくは87.5〜91.8質量%を充足するように設定すればよい。   In the first step, first, the hydrophobic solution, the inorganic particles, and the hydrophilic solution are mixed to prepare a mixed solution. In the mixed solution, the content of the hydrophobic solution, inorganic particles, and hydrophilic solution is not particularly limited. For example, the hydrophobic solution is 1 to 20% by mass, preferably 5 to 15% by mass, Preferably 8 to 12% by mass; the inorganic particles are 0.05 to 2% by mass, preferably 0.1 to 1% by mass, more preferably 0.2 to 0.5% by mass; and the hydrophilic solution is 78% by mass. What is necessary is just to set so that -98.95 mass%, Preferably it is 84-94.9 mass%, More preferably, 87.5-91.8 mass% is satisfied.

また、前記混合液の調製において、前記疎水性溶液、無機粒子、及び親水性溶液の添加順序については特に制限されないが、複合粒子の表面に無機粒子を一層均一に吸着させるという観点から、前記無機粒子と親水性溶液を混合した後に、これに前記疎水性溶液を添加することが望ましい。また、前記無機粒子と親水性溶液を混合する際には、必要に応じて超音波処理等に供して、無機粒子の凝集を抑制させておくことが望ましい。   Further, in the preparation of the mixed solution, the order of addition of the hydrophobic solution, the inorganic particles, and the hydrophilic solution is not particularly limited, but from the viewpoint of more uniformly adsorbing the inorganic particles on the surface of the composite particles, After mixing the particles and the hydrophilic solution, it is desirable to add the hydrophobic solution thereto. Moreover, when mixing the said inorganic particle and a hydrophilic solution, it is desirable to use for ultrasonic processing etc. as needed to suppress aggregation of an inorganic particle.

本第1工程において、前記混合液に対して、ホモジナイザーを用いて撹拌処理することにより、ピッカリングエマルジョンが形成される。ホモジナイザーによる撹拌速度として、好ましくは4.5〜8m/s、更に好ましくは4.5〜7m/sが挙げられる。また、ホモジナイザーによる撹拌時間としては、例えば、0.1〜30分間、好ましくは0.5〜25、更に好ましくは1〜20分間が挙げられる。撹拌速度を上記範囲内で調整することにより、得られる複合粒子の平均粒子径を調整することができる。例えば、複合粒子の平均粒子径を50μmとする場合、撹拌速度は3〜10m/s、好ましくは3.5〜8m/s、更に好ましくは4.5〜7m/sとすればよく、撹拌時間としては例えば10〜30分、好ましくは15〜25分が挙げられる。また、例えば複合粒子の平均粒子径を100μmとする場合、撹拌速度は2〜9m/s、好ましくは2.5〜7m/s、更に好ましくは3.5〜6m/sとすればよく、撹拌時間としては例えば5〜20分、好ましくは5〜15分が挙げられる。また、撹拌は、得られる複合粒子の粒子径に応じて多段階、好ましくは2段階で行ってもよい。例えば、最初の撹拌後に得られた粒子が目的とする平均粒子径よりも大きい場合、更に高速で撹拌して所望の平均粒子径となるように調整すればよい。   In the first step, a pickering emulsion is formed by stirring the mixed solution using a homogenizer. The stirring speed by the homogenizer is preferably 4.5 to 8 m / s, more preferably 4.5 to 7 m / s. Moreover, as stirring time by a homogenizer, 0.1 to 30 minutes, for example, Preferably it is 0.5 to 25, More preferably, 1 to 20 minutes is mentioned. By adjusting the stirring speed within the above range, the average particle diameter of the obtained composite particles can be adjusted. For example, when the average particle diameter of the composite particles is 50 μm, the stirring speed may be 3 to 10 m / s, preferably 3.5 to 8 m / s, more preferably 4.5 to 7 m / s, and the stirring time. Examples include 10 to 30 minutes, preferably 15 to 25 minutes. For example, when the average particle diameter of the composite particles is 100 μm, the stirring speed is 2 to 9 m / s, preferably 2.5 to 7 m / s, more preferably 3.5 to 6 m / s. Examples of the time include 5 to 20 minutes, preferably 5 to 15 minutes. Stirring may be performed in multiple stages, preferably in two stages, depending on the particle size of the composite particles obtained. For example, when the particles obtained after the first stirring are larger than the target average particle size, the particles may be adjusted so as to have a desired average particle size by stirring at a higher speed.

上記のように撹拌処理することにより、PLCL(75/25)粒子表面が無機微粒子によって被覆された複合粒子が、親水性溶液に分散した状態のピッカリングエマルジョンが形成される。   By performing the stirring treatment as described above, a Pickering emulsion is formed in which the composite particles in which the PLCL (75/25) particle surfaces are coated with inorganic fine particles are dispersed in a hydrophilic solution.

第2工程
本第2工程では、前記第1工程で形成されたピッカリングエマルジョンから疎水性溶媒を除去して、複合粒子を回収する。
Second Step In the second step, the hydrophobic particles are removed from the pickering emulsion formed in the first step, and the composite particles are recovered.

ピッカリングエマルジョンから疎水性溶媒を除去する方法としては、特に制限されず、使用する疎水性溶媒の種類に応じて、常温・常圧で揮散させる方法、分散剤を減圧蒸留により留去する方法、加熱乾燥する方法等の中から適宜設定すればよい。   The method for removing the hydrophobic solvent from the pickering emulsion is not particularly limited, depending on the type of the hydrophobic solvent to be used, a method of evaporating at normal temperature and normal pressure, a method of distilling the dispersant by vacuum distillation, What is necessary is just to set suitably from the methods etc. which heat-dry.

疎水性溶媒として、ハロゲン系炭化水素を使用する場合であれば、本第2工程における分散媒の除去方法の好適な例として、ポットミル回転台を使用して常温で1〜50rpmの回転速度でハロゲン系炭化水素を揮散させる方法が挙げられる。   If a halogen-based hydrocarbon is used as the hydrophobic solvent, a suitable example of the method for removing the dispersion medium in the second step is halogen at a rotation speed of 1 to 50 rpm at room temperature using a pot mill rotary table. The method of volatilizing a system hydrocarbon is mentioned.

本第2工程によって、複合粒子の核層を形成している疎水性溶媒が除去された後、遠心分離、留去等によって親水性溶液を分離することにより、目的物である複合粒子が得られる。なお、本第2工程では、疎水性溶媒の除去と共に、親水性溶液の除去も同時に行ってもよい。   In this second step, the hydrophobic solvent forming the core layer of the composite particle is removed, and then the hydrophilic solution is separated by centrifugation, distillation, etc., to obtain the target composite particle. . In the second step, the hydrophilic solution may be removed simultaneously with the removal of the hydrophobic solvent.

斯して回収された複合粒子は、超音波処理、エタノールや水等の洗浄液による洗浄処理等の更なる洗浄処理に供してもよい。更に、必要に応じて篩分け等によって分画することにより、所望の粒子径に調整された複合粒子を得ることができる。篩分けは、従来公知の方法により行うことができ限定されないが、所望の粒子径が分画される目開きを有する篩網が設置された振動篩器等を用いて行うことができる。   The composite particles thus recovered may be subjected to further cleaning treatment such as ultrasonic treatment and washing treatment with a washing liquid such as ethanol or water. Furthermore, the composite particle adjusted to the desired particle diameter can be obtained by fractionating by sieving etc. as needed. Although sieving can be performed by a conventionally known method and is not limited, it can be performed by using a vibrating sieve equipped with a sieve screen having a mesh for dividing a desired particle diameter.

例えば、平均粒子径50μの複合粒子を得る場合であれば、JIS Z8801−1に準じ、目開き10〜90μm、好ましくは20〜90μm、更に好ましくは25〜75μmの篩網(具体的にはTHE IIDA TESTING SIEVE(IIDA MANUFACTURING CO.LTD.)が例示される)を使用することにより分画できる。より具体的には、例えば、75μm目開きの篩網を通過し、25μm目開きの篩網を通過しなかったものを平均粒子径50μmの複合粒子として得ることができる。また、平均粒子径100μの複合粒子を得る場合であれば、目開き20〜180μm、好ましくは53〜180μm、更に好ましくは75〜150μmの篩網を使用することにより分画できる。より具体的には、例えば、150μm目開きの篩網を通過し、75μm目開きの篩網を通過しなかったものを平均粒子径100μmの複合粒子として得ることができる。   For example, in the case of obtaining composite particles having an average particle size of 50 μm, a sieve mesh having a mesh size of 10 to 90 μm, preferably 20 to 90 μm, more preferably 25 to 75 μm, according to JIS Z8801-1 (specifically, THE. It can be fractionated by using IIDA TESTING SIEVE (exemplified by IIDA MANUFACTURING CO. LTD.). More specifically, for example, particles that pass through a 75 μm sieve screen and do not pass through a 25 μm sieve screen can be obtained as composite particles having an average particle diameter of 50 μm. Further, when obtaining composite particles having an average particle diameter of 100 μm, fractionation can be performed by using a sieve screen having an opening of 20 to 180 μm, preferably 53 to 180 μm, more preferably 75 to 150 μm. More specifically, for example, particles that pass through a sieve screen having a 150 μm mesh and do not pass through a sieve mesh having a 75 μm mesh can be obtained as composite particles having an average particle diameter of 100 μm.

3.細胞製剤
本発明の複合粒子は、培養細胞、又は生体内の細胞や組織に接着し、細胞増殖の足場として使用されるので、医用材料として好適に使用される。医用材料として、具体的には、細胞培養用の担体、骨補充材、軟組織補充材、細胞担持用担体等が例示される。とりわけ、本発明の複合粒子は、再生医療等によって細胞を移植する際に、細胞移植用のスキャフォールド(移植細胞を担持させる担体)として好適である。即ち、本発明は、更に、前記複合粒子に細胞を担持させてなる細胞担持複合粒子を含む細胞製剤をも提供する。
3. Cell preparation The composite particles of the present invention adhere to cultured cells or cells or tissues in the living body and are used as a scaffold for cell proliferation, and therefore are suitably used as medical materials. Specific examples of the medical material include a cell culture carrier, a bone supplement, a soft tissue supplement, and a cell carrier. In particular, the composite particles of the present invention are suitable as a scaffold for cell transplantation (a carrier for supporting transplanted cells) when cells are transplanted by regenerative medicine or the like. That is, the present invention further provides a cell preparation containing cell-supporting composite particles obtained by supporting cells on the composite particles.

本発明の複合粒子に担持させる細胞の種類については、特に制限されないが、例えば、ES細胞、iPS細胞、各種間葉系幹細胞、骨髄単核細胞、末梢血単核細胞、血管内皮前駆細胞、血小板、血管内皮細胞、平滑筋細胞、中皮細胞、骨格筋芽細胞、骨芽細胞、前骨芽細胞、線維芽細胞、脂肪細胞、神経細胞等が挙げられる。ES細胞、iPS細胞、及び間葉系幹細胞は分化されたものであってもよい。これらの細胞中でも、好ましくは単核細胞、更に好ましくは骨髄単核細胞が挙げられる。本発明の複合粒子に骨髄単核細胞を担持させて、これを細胞製剤として使用することにより、血管新生を顕著に増幅させることができ、より効果的な細胞移植による血管新生療法が可能になる。即ち、本発明の複合粒子に骨髄単核細胞を担持させた細胞製剤は血管新生促進用として好適に使用され得る。従来、下肢血管の動脈硬化等が原因で潰瘍や壊死が生じる下肢虚血は下肢切断の危険があったが、本発明の複合粒子に骨髄単核細胞を担持させた細胞製剤を下肢虚血患部周辺に移植することによって、患部における血管新生を促進し、下肢虚血の効果的な治療が可能になる。   The type of cells to be carried on the composite particles of the present invention is not particularly limited. For example, ES cells, iPS cells, various mesenchymal stem cells, bone marrow mononuclear cells, peripheral blood mononuclear cells, vascular endothelial progenitor cells, platelets Vascular endothelial cells, smooth muscle cells, mesothelial cells, skeletal myoblasts, osteoblasts, preosteoblasts, fibroblasts, adipocytes, nerve cells and the like. ES cells, iPS cells, and mesenchymal stem cells may be differentiated. Among these cells, mononuclear cells are preferable, and bone marrow mononuclear cells are more preferable. By supporting bone marrow mononuclear cells on the composite particles of the present invention and using them as a cell preparation, angiogenesis can be remarkably amplified and angiogenesis therapy by more effective cell transplantation becomes possible. . That is, a cell preparation in which bone marrow mononuclear cells are supported on the composite particles of the present invention can be suitably used for promoting angiogenesis. Conventionally, lower limb ischemia in which ulcers and necrosis occur due to arteriosclerosis of the lower limb blood vessels has been a risk of lower limb amputation. By transplanting around, it promotes angiogenesis in the affected area and enables effective treatment of lower limb ischemia.

本発明の複合粒子に担持させる細胞数については、担持させる細胞の種類や用途等に応じて適宜設定されるが、例えば、複合粒子1個当たり、担持させる細胞数が10〜100,000個、好ましくは100〜10,000個、更に好ましくは500〜5,000個が挙げられる。   The number of cells to be carried on the composite particles of the present invention is appropriately set according to the type and use of the cells to be carried. For example, the number of cells to be carried is 10 to 100,000 per composite particle, Preferably 100-10,000 pieces, More preferably, 500-5,000 pieces are mentioned.

本発明の複合粒子に上記細胞を担持させる方法としては、特に限定されないが、例えば、当該複合粒子と担持させる細胞を、適当な液体中で混合する方法等が挙げられる。このような複合粒子と細胞の混合に使用される液体としては、担持させる細胞の種類等に応じて適宜調製され得るが、DMEM等の培地、生理食塩水、リン酸緩衝溶液、血漿(ヘパリン加血漿、クエン酸ナトリウム加血漿等)等が挙げられる。本発明の細胞製剤が主に成体への移植を目的として使用されることから、これらの液体の中でも、好ましくは培地、生理食塩水、リン酸緩衝溶液、血漿等が挙げられ、更に好ましくは血漿が挙げられる。   The method of supporting the cells on the composite particles of the present invention is not particularly limited, and examples thereof include a method of mixing the composite particles and the cells to be supported in an appropriate liquid. The liquid used for mixing such composite particles and cells can be appropriately prepared according to the type of cells to be supported, but is not limited to a medium such as DMEM, physiological saline, phosphate buffer solution, plasma (heparinized). Plasma, sodium citrate plasma and the like). Since the cell preparation of the present invention is mainly used for transplantation into adults, among these liquids, preferably a medium, physiological saline, phosphate buffer solution, plasma and the like are mentioned, more preferably plasma. Is mentioned.

また、本発明の複合粒子に上記細胞を担持させる他の方法としては、例えば、複合粒子の存在下で担持させる細胞を培養し、複合粒子と細胞の間の相互作用を介して接着させる方法が挙げられる。   In addition, as another method of supporting the cells on the composite particles of the present invention, for example, a method of culturing cells to be supported in the presence of the composite particles and adhering them through the interaction between the composite particles and the cells. Can be mentioned.

また、本発明の複合粒子は細胞接着性に優れることから、移植前にインキュベーションを行わなくても生体内で十分に細胞を保持することができる。しかしながら、複合粒子に細胞を担持してから移植するまでに、必要に応じてインキュベーションを行ってもよい。インキュベーションを行う場合、インキュベーション時間及び条件は、複合粒子上に細胞が担持される限り特に限定されないが、好ましくは、37℃、5%CO2条件下で約1〜3時間が挙げられる。 In addition, since the composite particles of the present invention are excellent in cell adhesion, cells can be sufficiently retained in vivo without incubation before transplantation. However, incubation may be performed as necessary from the time the cells are carried on the composite particle to the time of transplantation. When incubation is performed, the incubation time and conditions are not particularly limited as long as the cells are supported on the composite particles, and preferably include about 1 to 3 hours at 37 ° C. under 5% CO 2 conditions.

本発明の複合粒子に細胞を担持させた細胞担持複合粒子は、必要に応じて、薬学的に許容される担体に混合されて細胞製剤として使用されてもよい。このような担体としては、例えば、生理食塩水、リン酸緩衝溶液、血漿等が挙げられる。当該細胞製剤の投与法等については、使用する細胞の種類、適用対象となる疾患の種類等に応じて適宜設定される。   The cell-supporting composite particles in which cells are supported on the composite particles of the present invention may be mixed with a pharmaceutically acceptable carrier and used as a cell preparation, if necessary. Examples of such carriers include physiological saline, phosphate buffer solution, plasma and the like. About the administration method etc. of the said cell formulation, it sets suitably according to the kind of cell to be used, the kind of disease etc. which are applied.

以下に実施例等を示して本発明を更に具体的に説明する。なお、本発明は以下の実施形態に限定されるものではない。後述する試験例において使用するため、下記実施例1及び比較例1〜3の複合粒子を調製した。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following embodiment. For use in test examples described later, composite particles of Example 1 and Comparative Examples 1 to 3 below were prepared.

実施例1:HAp-PLCL(75/25)複合粒子
1.低結晶性ハイドロキシアパタイト粒子の調製
球状形態の低結晶性ハイドロキシアパタイト粒子を以下に示す湿式法で調製した。なお、Ca(NO32・4H2O及び(NH42HPO4は、ナカライテスク株式会社製のものを用い、25%アンモニア水は和光純薬工業株式会社製のものを用い、純水としてMilli−Q waterを使用した。
Example 1: HAp-PLCL (75/25) composite particles Preparation of Low Crystalline Hydroxyapatite Particles Low crystalline hydroxyapatite particles having a spherical shape were prepared by the wet method shown below. In addition, Ca (NO 3 ) 2 .4H 2 O and (NH 4 ) 2 HPO 4 are manufactured by Nacalai Tesque Co., Ltd., and 25% ammonia water is manufactured by Wako Pure Chemical Industries, Ltd. Milli-Q water was used as water.

先ず、25%アンモニア水でpHを12に調整したCa(NO32水溶液(42mN、80mL)を、冷却管及び半月状撹拌翼を接続した1Lフラスコに注ぎいれ、室温に保った。このフラスコに、アンモニア水でpHを12に調整した(NH42HPO4水溶液(100mN、200mL)を室温にて添加し、10時間反応させた。次に、得られた反応物を遠心分離により分離洗浄することにより、低結晶性ハイドロキシアパタイト粒子を得た。 First, a Ca (NO 3 ) 2 aqueous solution (42 mN, 80 mL) whose pH was adjusted to 12 with 25% aqueous ammonia was poured into a 1 L flask connected with a condenser and a semicircular stirring blade, and kept at room temperature. (NH 4 ) 2 HPO 4 aqueous solution (100 mN, 200 mL) adjusted to pH 12 with aqueous ammonia was added to this flask at room temperature and allowed to react for 10 hours. Next, the obtained reaction product was separated and washed by centrifugation to obtain low crystalline hydroxyapatite particles.

2.高結晶性ハイドロキシアパタイト粒子の調製
上記で得られた低結晶性ハイドロキシアパタイト粒子を、次に示す方法によって焼成することで高結晶性ハイドロキシアパタイトナノ粒子を作製した。
2. Preparation of highly crystalline hydroxyapatite particles Highly crystalline hydroxyapatite nanoparticles were produced by firing the low crystalline hydroxyapatite particles obtained above by the following method.

まず、融着防止剤として、0.5gのポリアクリル酸(ALDRICH社製、重量平均分子量15,000g/mol)を含むpH7.0の水溶液(以下、水溶液A)100mlに、0.5gの低結晶性ハイドロキシアパタイトナノ粒子を分散させることで、同粒子表面にポリアクリル酸を吸着させた。次に、上記で調製した分散液に、水酸化カルシウム〔Ca(OH)2〕飽和水溶液500mlを添加することで、同粒子表面にポリアクリル酸カルシウムを析出させた。結果として生じる沈澱物を回収し、減圧下80℃にて乾燥させることで、混合粒子を取得した。 First, as an anti-fusing agent, 0.5 g of polyacrylic acid (manufactured by ALDRICH, weight average molecular weight 15,000 g / mol), pH 7.0 aqueous solution (hereinafter referred to as Aqueous Solution A) 100 ml, By dispersing crystalline hydroxyapatite nanoparticles, polyacrylic acid was adsorbed on the surface of the particles. Next, 500 ml of a saturated aqueous solution of calcium hydroxide [Ca (OH) 2 ] was added to the dispersion prepared above to precipitate calcium polyacrylate on the particle surface. The resulting precipitate was collected and dried at 80 ° C. under reduced pressure to obtain mixed particles.

上記混合粒子をルツボに入れ、焼結温度800℃にて一時間焼結を行なった。この際、ポリアクリル酸カルシウムは熱分解し、酸化カルシウム〔CaO〕となった。   The mixed particles were put in a crucible and sintered at a sintering temperature of 800 ° C. for 1 hour. At this time, calcium polyacrylate was thermally decomposed to calcium oxide [CaO].

次に、上記で調製した水溶液A500mlに得られた焼結体を懸濁し、遠心分離により分離洗浄し、更に蒸留水に懸濁し、同様に遠心分離により分離洗浄を行なうことによって、融着防止剤及び硝酸アンモニウムを除去し、高結晶性ハイドロキシアパタイトナノ粒子を回収した。   Next, the anti-fusing agent is obtained by suspending the obtained sintered body in 500 ml of the aqueous solution A prepared above, separating and washing by centrifugation, further suspending in distilled water, and similarly performing separation and washing by centrifugation. Then, ammonium nitrate was removed, and highly crystalline hydroxyapatite nanoparticles were recovered.

得られた高結晶性ハイドロキシアパタイトナノ粒子を走査型電子顕微鏡にて観察して平均粒子径を測定した結果、同平均粒子径は48nmであった。なお、走査型電子顕微鏡は、日本電子株式会社製、モデル名JSM−6301Fを用いて、倍率90,000倍で観察を行った。   As a result of observing the obtained highly crystalline hydroxyapatite nanoparticles with a scanning electron microscope and measuring the average particle size, the average particle size was 48 nm. The scanning electron microscope was observed at a magnification of 90,000 using a model name JSM-6301F manufactured by JEOL Ltd.

3.複合粒子の調製
L−ラクチド−ε−カプロラクトン共重合体(PLCL)からなる粒子の表面にハイドロキシアパタイト粒子が吸着した複合粒子を以下の方法に従って調製した。
L−ラクチド−ε−カプロラクトン共重合体は、ガラス反応管にラクチド及ε-カプロラクトン(モル比75:25)を入れ、これにオクチル酸スズ300ppm(スズ金属換算:87ppm)加えて、窒素雰囲気下で重合することにより、重量平均分子量78万の共重合体を得た。得られた共重合体を粉砕機で粉砕し、核粒子となるL−ラクチド−ε−カプロラクトン共重合体の粒子(平均粒子径3.0mm)を得た。以下、このL−ラクチド−ε−カプロラクトン共重合体の粒子を『PLCL(75/25)』と略記することがある。
3. Preparation of Composite Particles Composite particles having hydroxyapatite particles adsorbed on the surface of particles made of L-lactide-ε-caprolactone copolymer (PLCL) were prepared according to the following method.
In the L-lactide-ε-caprolactone copolymer, lactide and ε-caprolactone (molar ratio 75:25) are placed in a glass reaction tube, and 300 ppm of tin octylate (tin metal conversion: 87 ppm) is added thereto, under a nitrogen atmosphere. To obtain a copolymer having a weight average molecular weight of 780,000. The obtained copolymer was pulverized by a pulverizer to obtain L-lactide-ε-caprolactone copolymer particles (average particle diameter: 3.0 mm) serving as core particles. Hereinafter, the particles of the L-lactide-ε-caprolactone copolymer may be abbreviated as “PLCL (75/25)”.

(平均粒子径50μmの複合粒子の調製)
上記で得られた高結晶性ハイドロキシアパタイト粒子1gを純水(Milli−Q水)500mLに分散させ、1分間超音波処理を行った。これに、PLCL(75/25)15gをジクロロメタン265g(200mL)に溶解させたジクロロメタン溶液280gを添加して、ホモジナイザー(マイクロテック・ニチオン製ヒスコトロンNS−56;ジェネレーターシャフトNS−20)で撹拌速度6.28m/sで20分間撹拌することにより、ピッカリングエマルジョンを形成させた。次に、得られたピッカリングエマルジョンを、ポットミル回転高架台(ANZ−51S;日陶科学株式会社製)にて4.5rpmの速度で室温(約20℃)で72時間回転させながら、ジクロロメタンを除去して、複合粒子の分散液を得た。
(Preparation of composite particles having an average particle diameter of 50 μm)
1 g of the highly crystalline hydroxyapatite particles obtained above was dispersed in 500 mL of pure water (Milli-Q water) and subjected to ultrasonic treatment for 1 minute. To this was added 280 g of a dichloromethane solution in which 15 g of PLCL (75/25) was dissolved in 265 g (200 mL) of dichloromethane, and the stirring speed was 6 with a homogenizer (Hiscotron NS-56 manufactured by Microtech Nichion; generator shaft NS-20). A pickering emulsion was formed by stirring for 20 minutes at 28 m / s. Next, while the obtained pickering emulsion was rotated for 72 hours at room temperature (about 20 ° C.) at a speed of 4.5 rpm on a pot mill rotary elevated platform (ANZ-51S; manufactured by Nichito Kagaku Co., Ltd.), dichloromethane was added. Removal was performed to obtain a dispersion of composite particles.

次いで、得られた複合粒子の分散液をエタノール洗浄処理に供した。まず、各複合粒子の分散液を遠心分離(300rpm、2分間)した後、上澄みを除去して沈澱物(複合粒子)を回収した。回収した沈澱物にエタノールに添加して、30秒間の超音波処理を行った後に、遠心分離(300rpm、2分間)により、沈澱物(複合粒子)を回収した。得られた沈澱物に対して、エタノール洗浄処理を4回繰り返し行った後に乾燥することにより、複合粒子を得た。L−ラクチド−ε−カプロラクトン共重合体の粒子(PLCL(75/25))の表面にハイドロキシアパタイト粒子が吸着した複合粒子を『HAp−PLCL(75/25)』と略記することがある。   Next, the obtained dispersion of composite particles was subjected to an ethanol washing treatment. First, the dispersion liquid of each composite particle was centrifuged (300 rpm, 2 minutes), and then the supernatant was removed to collect a precipitate (composite particle). The recovered precipitate was added to ethanol and subjected to ultrasonic treatment for 30 seconds, and then the precipitate (composite particles) was recovered by centrifugation (300 rpm, 2 minutes). The obtained precipitate was repeatedly washed with ethanol four times and then dried to obtain composite particles. Composite particles in which hydroxyapatite particles are adsorbed on the surface of L-lactide-ε-caprolactone copolymer particles (PLCL (75/25)) may be abbreviated as “HAp-PLCL (75/25)”.

その後、THE IIDA TESTING SIEVE(IIDA MANUFACTURING CO.LTD.(JIS Z8801−1))を用いた篩分けにより平均粒子径50μmの複合粒子を分画した。平均粒子径50μmの複合粒子は、目開き75μmの篩を通過して得開き25μmの篩を通過しなかった粒子を回収して得た。このようにして得られた平均粒子径50μmの複合粒子の収率は、仕込み量(使用した高結晶ハイドロキシアパタイトとPLCLの総量:16g)に対して48%であった。   Thereafter, composite particles having an average particle diameter of 50 μm were fractionated by sieving using THE IIDA TESTING SIEVE (IIDA MANUFACTURING CO. LTD. (JIS Z8801-1)). The composite particles having an average particle size of 50 μm were obtained by collecting particles obtained by passing through a sieve having an opening of 75 μm and not passing through a sieve having an opening of 25 μm. The yield of composite particles having an average particle size of 50 μm thus obtained was 48% with respect to the charged amount (total amount of high crystalline hydroxyapatite and PLCL used: 16 g).

(平均粒子径100μmの複合粒子の調製)
上記で得られた高結晶性ハイドロキシアパタイト粒子1gを純水(Milli−Q水)520mLに分散させ、1分間超音波処理を行った。これに、PLCL(75/25)15gをジクロロメタン239g(180mL)に溶解させたジクロロメタン溶液254gを添加して、ホモジナイザー(マイクロテック・ニチオン製ヒスコトロンNS−56;ジェネレーターシャフトNS−20)で撹拌速度4.19m/sで10分間撹拌し、さらに、ホモジナイザー(マイクロテック・ニチオン製ヒスコトロンNS−56;ジェネレーターシャフトNS−20)で撹拌速度6.28m/sで10分間撹拌することにより、ピッカリングエマルジョンを形成させた。次に、得られたピッカリングエマルジョンを、ポットミル回転高架台(ANZ−51S;日陶科学株式会社製)にて4.5rpmの速度で室温(約20℃)で72時間回転させながら、ジクロロメタンを除去して、複合粒子の分散液を得た。
(Preparation of composite particles having an average particle size of 100 μm)
1 g of the highly crystalline hydroxyapatite particles obtained above was dispersed in 520 mL of pure water (Milli-Q water) and subjected to ultrasonic treatment for 1 minute. To this was added 254 g of a dichloromethane solution in which 15 g of PLCL (75/25) was dissolved in 239 g (180 mL) of dichloromethane, and the stirring speed was 4 with a homogenizer (Hiscotron NS-56 manufactured by Microtech Nichion; generator shaft NS-20). The mixture was stirred for 10 minutes at 19 m / s, and further stirred with a homogenizer (Hiscotron NS-56 manufactured by Microtech Nichion; generator shaft NS-20) at a stirring speed of 6.28 m / s for 10 minutes. Formed. Next, while the obtained pickering emulsion was rotated for 72 hours at room temperature (about 20 ° C.) at a speed of 4.5 rpm on a pot mill rotary elevated platform (ANZ-51S; manufactured by Nichito Kagaku Co., Ltd.), dichloromethane was added. Removal was performed to obtain a dispersion of composite particles.

次いで、得られた複合粒子の分散液を前記平均粒子径50μmの複合粒子の調製と同様のエタノール洗浄処理、及び篩分けに供した。平均粒子径100μmの複合粒子の篩分けは、目開き150μmの篩を通過して目開き75μmの篩を通過しなかった粒子を回収することにより行った。このようにして得られた平均粒子径100μmの複合粒子の収率は仕込み量(使用した高結晶ハイドロキシアパタイトとPLCLの総量:16g)に対して73%であった。   Subsequently, the obtained dispersion liquid of composite particles was subjected to the same ethanol washing treatment and sieving as the preparation of composite particles having an average particle diameter of 50 μm. Sifting of composite particles having an average particle diameter of 100 μm was performed by collecting particles that passed through a sieve having an opening of 150 μm but did not pass through a sieve having an opening of 75 μm. The yield of composite particles having an average particle diameter of 100 μm thus obtained was 73% with respect to the charged amount (total amount of high crystalline hydroxyapatite and PLCL used: 16 g).

比較例1:ハイドロキシアパタイトとポリ−L−ラクチド(PLLA)との複合粒子
上記で得られた高結晶性ハイドロキシアパタイト粒子1gを純水(Milli-Q Water)500mLに分散させ、1分間超音波処理を行った。これに、ポリ−L−ラクチド(PLLA:重量平均分子量=100,000)1gをジクロロメタン13g(約8.8mL)に溶解させたジクロロメタン溶液14gを添加して、ホモジナイザー(Dispergierantried T10 basic(IKA社製))で周速度6.54m/sで3分間撹拌することにより、ピッカリングエマルジョンを形成させた。次に、マグネティックスターラーを用いて一晩撹拌し、得られたピッカリングエマルジョンからジクロロメタンを除去して複合粒子の分散液を得た。
Comparative Example 1: Composite particles of hydroxyapatite and poly-L-lactide (PLLA) 1 g of the highly crystalline hydroxyapatite particles obtained above was dispersed in 500 mL of pure water (Milli-Q Water) and sonicated for 1 minute. Went. To this, 14 g of a dichloromethane solution in which 1 g of poly-L-lactide (PLLA: weight average molecular weight = 100,000) was dissolved in 13 g of dichloromethane (about 8.8 mL) was added, and a homogenizer (Dispergerated T10 basic (manufactured by IKA) was added. The pickering emulsion was formed by stirring for 3 minutes at a peripheral speed of 6.54 m / s. Next, the mixture was stirred overnight using a magnetic stirrer, and dichloromethane was removed from the resulting pickering emulsion to obtain a dispersion of composite particles.

得られた分散液に対し、実施例1に記載されるエタノール洗浄処理を行い、その後、実施例1(平均粒子径100μmの複合粒子の調製)と同様の方法に従って篩分けすることより平均粒子径100μmの複合粒子を得た。以下、ハイドロキシアパタイトとポリ−L−ラクチドとの複合粒子を、「HAp−PLLA」と略記することがある。   The obtained dispersion is subjected to the ethanol washing treatment described in Example 1, and then sieved according to the same method as in Example 1 (preparation of composite particles having an average particle diameter of 100 μm) to obtain an average particle diameter. 100 μm composite particles were obtained. Hereinafter, the composite particles of hydroxyapatite and poly-L-lactide may be abbreviated as “HAp-PLLA”.

比較例2:ハイドロキシアパタイトとL-ラクチド−ε−カプロラクトン共重合体(50/50)との複合粒子
上記で得られた高結晶性ハイドロキシアパタイト粒子1.5gを純水(Milli-Q Water)800mLに分散させ、1分間超音波処理を行った。これに、L-ラクチド−ε−カプロラクトン共重合体(50/50)(L-ラクチド:カプロラクトンのモル比50:50、重量平均分子量280,000)8gをジクロロメタン92g(約62mL)に溶解させたジクロロメタン溶液100gを添加して、ホモジナイザー(マイクロテック・ニチオン製ヒスコトロンNS−56(ジェネレーターシャフトNS−20))で撹拌速度2.93m/sで3分間撹拌することにより、ピッカリングエマルジョンを形成させた。次に、振とう機に瓶を固定して一晩揺らすことにより、得られたピッカリングエマルジョンからジクロロメタンを除去して複合粒子の分散液を得た。
Comparative Example 2: Composite particles of hydroxyapatite and L-lactide-ε-caprolactone copolymer (50/50) 1.5 g of the highly crystalline hydroxyapatite particles obtained above were added to 800 mL of pure water (Milli-Q Water). And was sonicated for 1 minute. 8 g of L-lactide-ε-caprolactone copolymer (50/50) (L-lactide: caprolactone molar ratio 50:50, weight average molecular weight 280,000) was dissolved in 92 g of dichloromethane (about 62 mL). Pickering emulsion was formed by adding 100 g of dichloromethane solution and stirring with a homogenizer (Hiscotron NS-56 (Generator Shaft NS-20) manufactured by Microtech Nichion) at a stirring speed of 2.93 m / s for 3 minutes. . Next, the bottle was fixed on a shaker and shaken overnight, whereby dichloromethane was removed from the obtained pickering emulsion to obtain a dispersion of composite particles.

得られた分散液に対し、実施例1に記載されるエタノール洗浄処理を行い、その後、実施例1と同様の方法に従って篩分けすることより平均粒子径50μm又は100μmをそれぞれ分画し、各平均粒子径の複合粒子を得た。以下、ハイドロキシアパタイトとL-ラクチド−ε−カプロラクトン共重合体(50/50)との複合粒子を、「HAp−PLCL(50/50)」と略記することがある。   The obtained dispersion was subjected to the ethanol washing treatment described in Example 1, and then fractionated with an average particle size of 50 μm or 100 μm by sieving according to the same method as in Example 1, Composite particles having a particle size were obtained. Hereinafter, the composite particles of hydroxyapatite and L-lactide-ε-caprolactone copolymer (50/50) may be abbreviated as “HAp-PLCL (50/50)”.

比較例3:ハイドロキシアパタイトとL-ラクチド/グリコリド共重合体(90/10)との複合粒子
上記で得られた高結晶性ハイドロキシアパタイト粒子3.5gを純水(Milli-Q Water)700mLに分散させ、1分間超音波処理を行った。これに、L-ラクチド/グリコリド共重合体(90/10)(L-ラクチド:グリコリドのモル比90:10、重量平均分子量=150,000)24gをジクロロメタン176g(約119mL)に溶解させたジクロロメタン溶液200gを添加して、ホモジナイザー(マイクロテック・ニチオン製ヒスコトロンNS−56(ジェネレーターシャフトNS−20))で撹拌速度4.19m/sで3分間撹拌することにより、ピッカリングエマルジョンを形成させた。次に、ポットミル回転高架台(ANZ−51S;日陶科学株式会社製)にて37rpmの速度で室温(約20℃)で72時間回転させながら、得られたピッカリングエマルジョンからジクロロメタンを除去し、複合粒子の分散液を得た。
Comparative Example 3: Composite particles of hydroxyapatite and L-lactide / glycolide copolymer (90/10) 3.5 g of the highly crystalline hydroxyapatite particles obtained above were dispersed in 700 mL of pure water (Milli-Q Water). And sonicated for 1 minute. To this, 24 g of L-lactide / glycolide copolymer (90/10) (L-lactide: glycolide molar ratio 90:10, weight average molecular weight = 150,000) was dissolved in 176 g of dichloromethane (about 119 mL). A pickering emulsion was formed by adding 200 g of the solution and stirring with a homogenizer (Hiscotron NS-56 (Generator Shaft NS-20) manufactured by Microtech Nichion) at a stirring speed of 4.19 m / s for 3 minutes. Next, dichloromethane was removed from the obtained pickering emulsion while rotating at a room temperature (about 20 ° C.) for 72 hours at a speed of 37 rpm on a pot mill rotary elevated platform (ANZ-51S; manufactured by Nissho Science Co., Ltd.) A dispersion of composite particles was obtained.

得られた分散液に対し、実施例1に記載されるエタノール洗浄処理を行い、その後、実施例1と同様の方法に従って篩分けすることより平均粒子径50μm又は100μmをそれぞれ分画し、各平均粒子径の複合粒子を得た。このようにして得られた平均粒子径50μmの複合粒子の収率は、仕込み量(使用した高結晶ハイドロキシアパタイトとPLGAの総量:27.5g)に対して18.2%であり、平均粒子径100μmの複合粒子の収率は仕込み量に対して53.5%であった。以下、ハイドロキシアパタイトとL-ラクチド/グリコリド共重合体(90/10)との複合粒子を、「HAp−PLGA(90/10)」と略記することがある。   The obtained dispersion was subjected to the ethanol washing treatment described in Example 1, and then fractionated with an average particle size of 50 μm or 100 μm by sieving according to the same method as in Example 1, Composite particles having a particle size were obtained. The yield of the composite particles having an average particle diameter of 50 μm thus obtained was 18.2% with respect to the charged amount (total amount of high crystalline hydroxyapatite and PLGA used: 27.5 g). The yield of 100 μm composite particles was 53.5% with respect to the charged amount. Hereinafter, the composite particles of hydroxyapatite and L-lactide / glycolide copolymer (90/10) may be abbreviated as “HAp-PLGA (90/10)”.

[試験例1]
麻酔下(ペントバルビタール50μg/体重(g)、腹腔内投与)でC57BL6−Cr−Slc(雄、8週齢:日本エスエルシー株式会社より入手)の左大腿動脈とその分岐を結紮、切除して下肢虚血マウスモデルを作製した。
[Test Example 1]
Under anesthesia (pentobarbital 50 μg / body weight (g), intraperitoneal administration), the left femoral artery and its branch of C57BL6-Cr-Slc (male, 8 weeks old: obtained from Japan SLC Co., Ltd.) were ligated and excised. A mouse model of lower limb ischemia was prepared.

グリーンマウス(EGFP-トランスジェニックマウス)由来のGFP産生骨髄単核細胞(BMC)を、複合粒子の細胞担持力を評価するために用いた。GFP産生骨髄単核細胞は、次のようにして調製した。すなわち、EGFPトランスジェニックマウスを頸椎脱臼にて屠殺後、両側大腿骨及び脛骨を摘出して骨髄液を抽出した。得られた骨髄液を、Ficoll液(Ficoll−Paque Plus:(GE Healthcare AB(Sweden)製)にて処理し、骨髄単核細胞のみを分離回収した。この骨髄単核細胞を、培養液(DMEM 血清(−))で懸濁し、1×106細胞/100μlとなるよう調整した(インキュベーション時間は0時間)。 GFP-producing bone marrow mononuclear cells (BMC) derived from green mice (EGFP-transgenic mice) were used to evaluate the cell carrying capacity of the composite particles. GFP producing bone marrow mononuclear cells were prepared as follows. That is, after killing the EGFP transgenic mouse by cervical dislocation, bilateral femur and tibia were excised and bone marrow fluid was extracted. The obtained bone marrow fluid was treated with Ficoll solution (Ficoll-Paque Plus: (GE Healthcare AB (Sweden)), and only bone marrow mononuclear cells were separated and collected. It was suspended in serum (−)) and adjusted to 1 × 10 6 cells / 100 μl (incubation time was 0 hour).

上記で得られた細胞懸濁液(100μl)を、上記実施例1及び比較例1〜3の各複合粒子(それぞれ1.5mg)と混合することにより、GFP産生骨髄単核細胞を担持させた複合粒子を得た。また、コントロールとして、上記で得られた細胞懸濁液(100μl)を、ポリ−L-ラクチド(PLLA)(PLA−Particles;Micromod Partikeltechnologie社製)のみの粒子(平均粒子径:100μm)(1.5mg)と混合することにより、GFP産生骨髄単核細胞を担持させたPLLA粒子を得た。   The cell suspension (100 μl) obtained above was mixed with each composite particle (each 1.5 mg) of Example 1 and Comparative Examples 1 to 3, thereby supporting GFP-producing bone marrow mononuclear cells. Composite particles were obtained. In addition, as a control, the cell suspension (100 μl) obtained above was prepared from particles (average particle size: 100 μm) of poly-L-lactide (PLLA) (PLA-Particles; manufactured by Micromod Partechtechnologies) only (1. 5 mg) to obtain PLLA particles carrying GFP-producing bone marrow mononuclear cells.

GFP産生骨髄単核細胞を担持させた複合粒子を、マウス虚血肢の4箇所に筋肉内注射(24G針を使用)した。移植7日目にマウスを頸椎脱臼にて屠殺し、大腿部筋肉を採取して筋肉の溶解液を調製した。大腿部筋肉の溶解液の調製は、Circulation.2004;109:2454−2461に記載される方法に準じて行った。   Composite particles carrying GFP-producing bone marrow mononuclear cells were injected intramuscularly (using a 24G needle) at four locations in the mouse ischemic limb. On day 7 after transplantation, the mice were sacrificed by cervical dislocation, and the thigh muscles were collected to prepare a muscle lysate. The preparation of thigh muscle lysate is described in Circulation. 2004; 109: 2454-2461.

GFP ELISAキット(Cell Biolabs(San Diego,CA)製)を用いて溶解液中のGFP濃度を測定した。また、Bicinchoninic(BCA) Protein Assay法により溶解液中の総タンパク濃度を測定した。各溶解液中のGFP濃度を総タンパク濃度で割った値を単位筋肉組織中のGFP濃度として算出した。更にその測定結果に基づいて複合粒子の単位表面積あたりのGFP濃度(Arbitrary Unit)を算出し、これを筋肉組織における複合粒子の骨髄単核細胞担持力として比較した。結果を図1に示す。   The GFP concentration in the lysate was measured using a GFP ELISA kit (manufactured by Cell Biolabs (San Diego, Calif.)). In addition, the total protein concentration in the lysate was measured by Bicinchonic (BCA) Protein Assay method. A value obtained by dividing the GFP concentration in each lysate by the total protein concentration was calculated as the GFP concentration in the unit muscle tissue. Furthermore, based on the measurement results, the GFP concentration (Arbitrary Unit) per unit surface area of the composite particles was calculated, and this was compared as the bone marrow mononuclear cell carrying ability of the composite particles in muscle tissue. The results are shown in FIG.

図1から明らかなように、比較例2(HAp−PLCL(50/50);平均粒子径100μm)を用いた場合は、比較例1(PLLA粒子にハイドロキシアパタイトを被覆させた複合粒子:平均粒子径100μm)と同程度の細胞担持力であった。これに対し、実施例1の複合粒子(HAp−PLCL(75/25))を用いた場合、組織内での細胞担持力が飛躍的に向上した。また、実施例1の複合粒子は、比較例3のHAp−PLGA(90/10)の場合と比較しても、組織内において顕著に高い細胞担持力を示した。   As is clear from FIG. 1, when Comparative Example 2 (HAp-PLCL (50/50); average particle size 100 μm) was used, Comparative Example 1 (composite particles in which hydroxyapatite was coated on PLLA particles: average particles) The cell carrying power was about the same as the diameter of 100 μm. On the other hand, when the composite particles of Example 1 (HAp-PLCL (75/25)) were used, the cell carrying power in the tissue was dramatically improved. In addition, the composite particles of Example 1 showed a significantly high cell carrying capacity in the tissue even when compared with the HAp-PLGA (90/10) of Comparative Example 3.

すなわち、L-ラクチドとε−カプロラクトンのモル比が75:25であるL-ラクチド−ε−カプロラクトン共重合体にハイドロキシアパタイトを吸着させて得られる複合粒子は、極めて高い細胞担持力を有することが示された。   That is, composite particles obtained by adsorbing hydroxyapatite to an L-lactide-ε-caprolactone copolymer having a molar ratio of L-lactide and ε-caprolactone of 75:25 may have an extremely high cell carrying ability. Indicated.

[試験例2]
試験例1と同様の方法で調製したGFP産生骨髄単核細胞の細胞懸濁液(100μl)を、上記実施例1及び比較例2の各複合粒子(それぞれ1.5mg)と混合することにより、GFP産生骨髄単核細胞を担持させた複合粒子を得た。
[Test Example 2]
By mixing a cell suspension (100 μl) of GFP-producing bone marrow mononuclear cells prepared by the same method as in Test Example 1 with each composite particle (1.5 mg each) of Example 1 and Comparative Example 2 above, Composite particles carrying GFP-producing bone marrow mononuclear cells were obtained.

GFP産生骨髄単核細胞を担持させた複合粒子を、下肢虚血マウスに筋肉内注射した。注射(移植)14日目の下肢の血流量を血流ドップラー法で測定(オメガフローFLO−N1:オメガウェーブ株式会社製)し、虚血肢(左下肢)の血流量を正常肢(右下肢)の血流量で割った値を血流改善度(血流比)とした(図2)。また、各群の血流改善度を比較する場合は、Vihicle処理(DMEM 血清(−)100μlを注入)マウスの下肢の血流改善度を1として、各群の血流改善度(血流比)をArbitrary Unitとして表した(図3)。なお、本試験で使用した下肢虚血マウスは、前記試験例1で用いたものと同様である。各単位筋肉組織中のGFP濃度は、下肢血流量の測定後に試験例1と同様の方法で測定された。得られた結果を図2及び3に示す。   Composite particles carrying GFP-producing bone marrow mononuclear cells were injected intramuscularly into lower limb ischemic mice. Injection (transplantation) The blood flow in the lower limb on the 14th day was measured by the blood flow Doppler method (Omega Flow FLO-N1: manufactured by OMEGA WAVE), and the blood flow in the ischemic limb (left lower limb) ) Divided by the blood flow volume was taken as the blood flow improvement degree (blood flow ratio) (FIG. 2). Moreover, when comparing the blood flow improvement degree of each group, the blood flow improvement degree (blood flow ratio) of each group is set with 1 as the blood flow improvement degree of the lower limb of the mouse treated (injected with 100 μl of DMEM serum (−)). ) As an Arbitrary Unit (FIG. 3). The lower limb ischemia mouse used in this test is the same as that used in Test Example 1. The GFP concentration in each unit muscle tissue was measured by the same method as in Test Example 1 after measuring the blood flow of the lower limbs. The obtained results are shown in FIGS.

図2は、HAp-PLCL(75/25)にGFP産生骨髄単核細胞を担持させ、虚血肢に注射した場合の単位筋肉組織中のGFP濃度と血流比の関係を示すグラフである。図2より、GFP濃度が高いほど血流改善度も高いことが示された。即ち、細胞担持力が高いほど血流改善度も高くなることが示された。   FIG. 2 is a graph showing the relationship between the GFP concentration in the unit muscle tissue and the blood flow ratio when GFP-producing bone marrow mononuclear cells are carried on HAp-PLCL (75/25) and injected into an ischemic limb. FIG. 2 shows that the higher the GFP concentration, the higher the blood flow improvement degree. That is, it was shown that the higher the cell carrying power, the higher the blood flow improvement degree.

図3は、複合粒子に使用される材料(PLCL(75/25)又はPLCL(50/50))によって血流の改善度が異なることを示す。即ち、高い細胞担持力を有する実施例1の複合粒子を用いた場合、Vihicle処理及び比較例2(HAp−PLCL(50/50))の複合粒子を用いた場合に比べて、顕著な血流改善効果を示した。従って、実施例1の複合粒子に骨髄単核細胞を担持させた細胞製剤によって、虚血下肢において高い血流改善効果が得られることが示された。   FIG. 3 shows that the improvement in blood flow varies depending on the material used for the composite particles (PLCL (75/25) or PLCL (50/50)). That is, when the composite particles of Example 1 having a high cell-carrying power are used, the blood flow is remarkable as compared with the case of using the composite particles of the vehicle treatment and Comparative Example 2 (HAp-PLCL (50/50)). The improvement effect was shown. Accordingly, it was shown that the cell preparation in which bone marrow mononuclear cells are supported on the composite particles of Example 1 can provide a high blood flow improvement effect in the ischemic leg.

[試験例3]
前述の実施例1及び比較例3の複合粒子を用いてハイドロキシアパタイトの脱離速度を評価した。具体的には、37℃のリン酸緩衝液(PBS)中に実施例1又は比較例3の複合粒子を浸漬し、浸漬直後(0週間)から24週間後までの表面モルフォロジィ変化を観察した。観察は、3Dリアルサーフィスビュー顕微鏡(株式会社キーエンス製)を使用し、倍率10,000倍で行った。3Dリアルサーフィスビュー写真の印刷物をハイドロキシアパタイト被覆部と非被覆部に切り分け、印刷物の全重量に対する、ハイドロキシアパタイト被覆部の重量%を計算することにより、ハイドロキシアパタイト粒子がPLCL粒子表面を被覆している割合を求めた。結果を下表1に示す。

Figure 2013227444
[Test Example 3]
Using the composite particles of Example 1 and Comparative Example 3 described above, the hydroxyapatite desorption rate was evaluated. Specifically, the composite particles of Example 1 or Comparative Example 3 were immersed in a phosphate buffer solution (PBS) at 37 ° C., and the surface morphology change from immediately after immersion (0 weeks) to 24 weeks was observed. . Observation was performed using a 3D real surface view microscope (manufactured by Keyence Corporation) at a magnification of 10,000 times. The printed material of 3D real surface view photograph is divided into a hydroxyapatite coated part and an uncoated part, and the hydroxyapatite coated particles cover the PLCL particle surface by calculating the weight percentage of the hydroxyapatite coated part relative to the total weight of the printed material. The percentage was determined. The results are shown in Table 1 below.
Figure 2013227444

表1に示されるように、ハイドロキシアパタイトを被覆させる粒子としてPLCL(75/25)を使用した場合、37℃のPBSに24週間浸漬させた後でも48%のハイドロキシアパタイト被覆率を保持していた。これに対し、PLGA(90/10)粒子にハイドロキシアパタイトを被覆させた場合は、浸漬4週間後で48%、24週間後で7%まで被覆率が著しく低下した。   As shown in Table 1, when PLCL (75/25) was used as particles to coat hydroxyapatite, it maintained a hydroxyapatite coverage of 48% even after being immersed in PBS at 37 ° C. for 24 weeks. . In contrast, when PLGA (90/10) particles were coated with hydroxyapatite, the coverage decreased significantly to 48% after 4 weeks of immersion and 7% after 24 weeks.

ハイドロキシアパタイトは、細胞の接着に有用であることから、生体内でのハイドロキシアパタイトの脱離速度が遅いことは、複合粒子上において、移植細胞による効果が得られるまでの間、安定に細胞を保持するために有効であると考えられる。即ち、この試験結果からも、ハイドロキシアパタイトを被覆させる粒子としてPLCL(75/25)が好適であることが示された。   Since hydroxyapatite is useful for cell adhesion, the slow desorption rate of hydroxyapatite in vivo keeps the cells stable on the composite particles until the effect of transplanted cells is obtained. It is thought that it is effective to do. That is, from this test result, it was shown that PLCL (75/25) is suitable as a particle to coat hydroxyapatite.

[まとめ]
L-ラクチド−ε−カプロラクトン共重合体(L-ラクチド:ε−カプロラクトンの構成モル比:75/25)からなる粒子に無機粒子が吸着されてなる複合粒子上に細胞を担持させることにより、生体内で細胞が組織再生に十分な期間、複合粒子上に留まることができ、組織再生の効率を高めることが可能であった。また、上記結果に示されるように、PLCL(75/25)粒子にハイドロキシアパタイトが吸着された複合粒子に骨髄単核細胞を担持させて虚血下肢モデルマウスに移植することにより、顕著に優れた血流改善効果が得られた。
[Summary]
By supporting cells on composite particles in which inorganic particles are adsorbed on particles made of L-lactide-ε-caprolactone copolymer (L-lactide: ε-caprolactone constituent molar ratio: 75/25), In the body, the cells can remain on the composite particles for a period sufficient for tissue regeneration, and the efficiency of tissue regeneration can be increased. In addition, as shown in the above results, bone marrow mononuclear cells were supported on composite particles in which hydroxyapatite was adsorbed on PLCL (75/25) particles, and transplanted to ischemic limb model mice. Blood flow improvement effect was obtained.

Claims (6)

L-ラクチド−ε−カプロラクトン共重合体からなる粒子表面に無機粒子を吸着させてなり、前記共重合体におけるL-ラクチドとε−カプロラクトンの構成モル比が略75:25である複合粒子。 Composite particles in which inorganic particles are adsorbed on the surface of particles made of an L-lactide-ε-caprolactone copolymer, and the constituent molar ratio of L-lactide and ε-caprolactone in the copolymer is approximately 75:25. 前記無機粒子がハイドロキシアパタイトである、請求項1に記載の複合粒子。 The composite particle according to claim 1, wherein the inorganic particle is hydroxyapatite. 移植細胞用のスキャフォールドとして使用される、請求項1又は2に記載の複合粒子。 The composite particle according to claim 1 or 2, which is used as a scaffold for transplanted cells. 請求項1〜3のいずれかに記載の複合粒子に細胞を担持させてなる細胞担持複合粒子を含む、細胞製剤。 A cell preparation comprising cell-supporting composite particles obtained by supporting cells on the composite particles according to claim 1. 前記細胞が骨髄単核細胞である、請求項4に記載の細胞製剤。 The cell preparation according to claim 4, wherein the cell is a bone marrow mononuclear cell. 血管新生促進用である、請求項5に記載の細胞製剤。 The cell preparation according to claim 5, which is used for promoting angiogenesis.
JP2012101189A 2012-04-26 2012-04-26 Composite particle and cell preparation using the same Pending JP2013227444A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012101189A JP2013227444A (en) 2012-04-26 2012-04-26 Composite particle and cell preparation using the same
PCT/JP2013/061758 WO2013161751A1 (en) 2012-04-26 2013-04-22 Composite particles and cell preparation prepared using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101189A JP2013227444A (en) 2012-04-26 2012-04-26 Composite particle and cell preparation using the same

Publications (1)

Publication Number Publication Date
JP2013227444A true JP2013227444A (en) 2013-11-07

Family

ID=49483064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101189A Pending JP2013227444A (en) 2012-04-26 2012-04-26 Composite particle and cell preparation using the same

Country Status (2)

Country Link
JP (1) JP2013227444A (en)
WO (1) WO2013161751A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843260A (en) * 2016-07-12 2019-06-04 莱雅公司 The composition of pickering emulsion

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742340C2 (en) 2016-09-08 2021-02-04 Шефер Кальк Гмбх Унд Ко. Кг Calcium salt-containing composite powder with microstructured particles
WO2018046127A1 (en) 2016-09-08 2018-03-15 Schaefer Kalk Gmbh & Co. Kg Inhibiting calcium carbonate additive
US11760874B2 (en) 2016-09-08 2023-09-19 Schaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having microstructured particles having inhibiting calcium carbonate
JP6961701B2 (en) 2016-09-08 2021-11-05 シェーファー・カーク・ゲーエムベーハー・ウント・コンパニー・カーゲーSchaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having fine structure particles
WO2018211626A1 (en) * 2017-05-17 2018-11-22 株式会社アドマテックス Composite particle material, and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184615A (en) * 2010-03-10 2011-09-22 National Cerebral & Cardiovascular Center Method for producing composite particle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126280A (en) * 1998-08-18 2000-05-09 Asahi Optical Co Ltd Production of sheet for bone prosthesis and sheet for bone prosthesis
JP4916159B2 (en) * 2005-11-09 2012-04-11 国立大学法人東北大学 Biological duct stent
JP5252399B2 (en) * 2006-06-19 2013-07-31 国立大学法人京都大学 Method for producing bioactive composite material
JP2008031617A (en) * 2006-06-30 2008-02-14 Shinshu Univ Biodegradable monofilament and method for producing the same
JP5463504B2 (en) * 2009-03-30 2014-04-09 独立行政法人国立循環器病研究センター Non-spherical fine particles and method for producing non-spherical fine particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184615A (en) * 2010-03-10 2011-09-22 National Cerebral & Cardiovascular Center Method for producing composite particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843260A (en) * 2016-07-12 2019-06-04 莱雅公司 The composition of pickering emulsion
JP2019520418A (en) * 2016-07-12 2019-07-18 ロレアル Composition of Pickering emulsion
CN109843260B (en) * 2016-07-12 2022-09-06 莱雅公司 Pickering emulsion composition
US11576851B2 (en) 2016-07-12 2023-02-14 L'oreal Composition of pickering emulsion

Also Published As

Publication number Publication date
WO2013161751A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
Zhou et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair
Gao et al. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering
Zhou et al. Electrospun poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene oxide scaffold: enhanced properties and promoted in vivo bone repair in rats
Cheng et al. Graphene family materials in bone tissue regeneration: perspectives and challenges
Fahimipour et al. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering
Liang et al. Accelerated bone regeneration by gold-nanoparticle-loaded mesoporous silica through stimulating immunomodulation
Tian et al. Fabrication of calcium phosphate microflowers and their extended application in bone regeneration
Wu et al. A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration
Li et al. Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation
Qi et al. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration
WO2013161751A1 (en) Composite particles and cell preparation prepared using same
Wang et al. Porous nanohydroxyapatite/collagen scaffolds loading insulin PLGA particles for restoration of critical size bone defect
Yu et al. Biomimetic hydroxyapatite nanorods promote bone regeneration via accelerating osteogenesis of BMSCs through T cell-derived IL-22
Hu et al. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics
Yan et al. Nanocomposite porous microcarriers based on strontium-substituted HA-g-poly (γ-benzyl-l-glutamate) for bone tissue engineering
Zong et al. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly (lactic acid) scaffolds
Tan et al. Dual-functional scaffolds of poly (L-lactic acid)/nanohydroxyapatite encapsulated with metformin: Simultaneous enhancement of bone repair and bone tumor inhibition
US9040070B2 (en) Material for induction of hard tissue regeneration
Shen et al. Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold
Zhang et al. Novel hierarchical nitrogen-doped multiwalled carbon nanotubes/cellulose/nanohydroxyapatite nanocomposite as an osteoinductive scaffold for enhancing bone regeneration
Wang et al. A 3D graphene coated bioglass scaffold for bone defect therapy based on the molecular targeting approach
Wei et al. Continued sustained insulin-releasing PLGA nanoparticles modified 3D-Printed PCL composite scaffolds for osteochondral repair
Gao et al. Sr-HA-graft-poly (γ-benzyl-l-glutamate) nanocomposite microcarriers: controllable Sr2+ release for accelerating osteogenenisis and bony nonunion repair
Sadek et al. Enhancement of critical-sized bone defect regeneration using UiO-66 nanomaterial in rabbit femurs
KR20110007672A (en) Porous microsphere and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328