JP2013225961A - Power receiving device, power transmitting device and power transmitting system - Google Patents

Power receiving device, power transmitting device and power transmitting system Download PDF

Info

Publication number
JP2013225961A
JP2013225961A JP2012096346A JP2012096346A JP2013225961A JP 2013225961 A JP2013225961 A JP 2013225961A JP 2012096346 A JP2012096346 A JP 2012096346A JP 2012096346 A JP2012096346 A JP 2012096346A JP 2013225961 A JP2013225961 A JP 2013225961A
Authority
JP
Japan
Prior art keywords
power
coil
power transmission
power receiving
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012096346A
Other languages
Japanese (ja)
Inventor
Futoshi Deguchi
太志 出口
Yasuhito Yuasa
安仁 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012096346A priority Critical patent/JP2013225961A/en
Publication of JP2013225961A publication Critical patent/JP2013225961A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve certainty of power transmission to an electronic apparatus while suppressing reduction in efficiency of power transmission.SOLUTION: A power receiving device is configured to receive power, through electromagnetic induction, from a power transmitting device 1 comprising a power transmitting coil 5 which is formed by spirally winding a conductor. The power receiving device comprises a power receiving coil 6 which is formed by spirally winding a conductor, and a load circuit section 202 to which power is supplied via the power receiving coil 6. An inductance value of the power receiving coil 6 is a value on the basis of a coupling coefficient in the case where at least a part of the power receiving coil 6 is positioned between an inner ring and an outer ring of the power transmitting coil 5.

Description

本発明は、送電装置から受電装置にワイヤレスで送電するワイヤレス電力伝送システムに関するものであり、特に、広範囲で受電装置が受電可能なワイヤレス電力伝送システムに関する。   The present invention relates to a wireless power transmission system that wirelessly transmits power from a power transmission device to a power reception device, and more particularly to a wireless power transmission system that can receive power in a wide range.

近年、2時電池を備えた電子機器へ直接給電ケーブルを使用せずに電力を伝送する非接触充電(ワイヤレス電力伝送)が注目を集めている。電子機器およびこの電子機器の送電装置はそれぞれコイルを有し、この2つのコイル間で電磁誘導を発生させることにより、電子機器は電力が伝送される。この非接触による電力伝送の効率を高めるために様々な手法が提案されている。   In recent years, contactless charging (wireless power transmission) has been attracting attention, in which power is transmitted directly to an electronic device equipped with a two-hour battery without using a power feeding cable. The electronic device and the power transmission device of the electronic device each have a coil, and electric power is transmitted to the electronic device by generating electromagnetic induction between the two coils. Various techniques have been proposed to increase the efficiency of this non-contact power transmission.

例えば、コンデンサを有する共振回路が送電用および受電用のコイルに設けられ、電力伝送の良い効率を高めるためにコンデンサの容量とコイルのインダクタンスとの値が調整される。これらの値を試行錯誤せずに調整するために、送電装置の電源回路と電子機器の負荷回路とのインピーダンスをコイルに合わせたある特定の抵抗値(誘導抵抗)まで下げて電力が伝送される(特許文献1参照)。   For example, a resonance circuit having a capacitor is provided in the coils for power transmission and power reception, and the values of the capacitance of the capacitor and the inductance of the coil are adjusted in order to increase the efficiency of power transmission. In order to adjust these values without trial and error, power is transmitted by reducing the impedance of the power supply circuit of the power transmission device and the load circuit of the electronic device to a specific resistance value (inductive resistance) that matches the coil. (See Patent Document 1).

WO2009/037821号公報WO2009 / 037821

上述の(特許文献1)では、容量値およびインダクタンス値を調整するために、送電コイルおよび受電コイル間の結合係数も利用されるが、結合係数は送電コイルおよび受電コイルの位置関係によって変化するため、どの位置関係における結合係数を利用するかによって、算出される容量値およびインダクタンス値は変化する。   In the above (Patent Document 1), the coupling coefficient between the power transmission coil and the power reception coil is also used to adjust the capacitance value and the inductance value, but the coupling coefficient changes depending on the positional relationship between the power transmission coil and the power reception coil. The calculated capacitance value and inductance value vary depending on the positional relationship in which the coupling coefficient is used.

一般的に、送電コイルおよび受電コイルの中心が一致するときに結合係数が大きくなる。そこで、伝送効率を最大限に高めるために、送電コイルおよび受電コイルの中心が一致するとき伝送効率が最大となるように容量値およびインダクタンス値は調整された。   Generally, the coupling coefficient increases when the centers of the power transmission coil and the power reception coil coincide. Therefore, in order to maximize the transmission efficiency, the capacitance value and the inductance value are adjusted so that the transmission efficiency is maximized when the centers of the power transmission coil and the power reception coil coincide.

しかしながら、受電コイルが送電コイルの端部に位置する場合、送受電コイル間の磁気結合が低下するため、受電コイルを有する受電装置は電力を受電することが困難であった。すなわち、受電コイルが送電コイルの中心部付近に位置するときにしか受電装置は受電できないため、受電コイルの受電可能な範囲が限定された。   However, when the power receiving coil is located at the end of the power transmitting coil, the magnetic coupling between the power transmitting and receiving coils is reduced, and thus it is difficult for the power receiving device having the power receiving coil to receive power. That is, since the power receiving device can receive power only when the power receiving coil is located near the center of the power transmitting coil, the range in which the power receiving coil can receive power is limited.

上記課題に鑑み、本願発明は、受電コイルの受電可能な範囲を広くすることを目的とする。   In view of the above problems, an object of the present invention is to widen the power receiving range of the power receiving coil.

上記課題を解決するために、本願発明の受電装置は、導体を渦巻状に巻回して形成される送電コイルを有する送電装置から電磁誘導によって電力を受電する受信装置であって、導体を渦巻状に巻回して形成される受電コイルと、前記受電コイルを介して電力が供給される負荷回路部と、を備え、前記受電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの内輪と外輪との間に位置する場合の結合係数に基づいた値である。   In order to solve the above problems, a power receiving device according to the present invention is a receiving device that receives power by electromagnetic induction from a power transmitting device having a power transmitting coil formed by winding a conductor in a spiral shape, and the conductor is spirally shaped. And a load circuit unit to which electric power is supplied via the power receiving coil, and an inductance value of the power receiving coil is such that at least a part of an inner ring of the power receiving coil is the power transmitting This value is based on the coupling coefficient when the coil is located between the inner ring and the outer ring.

また、本願発明の送電装置は、導体を渦巻状に巻回して形成される受電コイルを有する受電装置に電磁誘導によって電力を送電する送電装置であって、導体を渦巻状に巻回して形成される送電コイルと、前記送電コイルに電力を供給する電源回路部と、を備え、前記送電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの内輪と外輪との間に位置する場合の結合係数に基づいた値である。   The power transmission device of the present invention is a power transmission device that transmits power by electromagnetic induction to a power receiving device having a power receiving coil formed by winding a conductor in a spiral shape, and is formed by winding a conductor in a spiral shape. A power transmission circuit that supplies power to the power transmission coil, and the inductance value of the power transmission coil is such that at least a part of the inner ring of the power reception coil is between the inner ring and the outer ring of the power transmission coil. It is a value based on the coupling coefficient when positioned.

また、本願発明の電力伝送システムは、電磁誘導によって電力伝送を行う電力伝送システムであって、導体を渦巻状に巻回して形成される送電コイルおよび受電コイルを有する伝送回路部と、前記送電コイルに電力を供給する電源回路部と、前記受電コイルを介して電力が供給される負荷回路部と、を備え、前記送電コイルおよび前記受電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの外輪および内輪との間に位置する場合の結合係数に基づいた値である。   The power transmission system of the present invention is a power transmission system that performs power transmission by electromagnetic induction, and includes a transmission circuit unit having a power transmission coil and a power reception coil formed by winding a conductor in a spiral shape, and the power transmission coil A power circuit section for supplying power to the power supply circuit, and a load circuit section for supplying power via the power receiving coil, wherein the power transmission coil and the power receiving coil have inductance values at least part of the inner ring of the power receiving coil. Is a value based on the coupling coefficient when the power transmission coil is located between the outer ring and the inner ring.

本願発明の受電装置、送電装置および電力伝送システムは上述のように構成されるため、受電装置が受電可能な範囲を広げることができる。   Since the power receiving device, the power transmitting device, and the power transmission system of the present invention are configured as described above, the range in which the power receiving device can receive power can be expanded.

本発明の実施の形態に係るワイヤレス電力伝送システムの回路構成図1 is a circuit configuration diagram of a wireless power transmission system according to an embodiment of the present invention. 本発明の実施の形態に係るワイヤレス電力伝送システムの回路構成の概念図1 is a conceptual diagram of a circuit configuration of a wireless power transmission system according to an embodiment of the present invention. 本発明の実施の形態に係るワイヤレス電力伝送システムの第1例の斜視図The perspective view of the 1st example of the wireless power transmission system which concerns on embodiment of this invention 本発明の実施の形態に係るワイヤレス電力伝送システムの第1例の上面図The top view of the 1st example of the wireless power transmission system concerning an embodiment of the invention 本発明の実施の形態に係るワイヤレス電力伝送システムの第1例の断面図Sectional drawing of the 1st example of the wireless power transmission system which concerns on embodiment of this invention 本発明の実施の形態に係る送電装置と電子機器との位置関係を説明するための図The figure for demonstrating the positional relationship of the power transmission apparatus and electronic device which concern on embodiment of this invention 本発明の実施の形態に係る結合係数と受電コイルの位置との関係を示す図The figure which shows the relationship between the coupling coefficient which concerns on embodiment of this invention, and the position of a receiving coil 本発明の実施の形態に係る出力電圧と受電コイルの位置との関係を示す図The figure which shows the relationship between the output voltage which concerns on embodiment of this invention, and the position of a receiving coil 比較例に係る出力電圧と受電コイルの位置との関係を示す図The figure which shows the relationship between the output voltage which concerns on a comparative example, and the position of a receiving coil 本発明の実施の形態に係るワイヤレス電力伝送システムの第2例の斜視図The perspective view of the 2nd example of the wireless power transmission system which concerns on embodiment of this invention

本発明の受電装置は、導体を渦巻状に巻回して形成される送電コイルを有する送電装置から電磁誘導によって電力を受電する受信装置であって、導体を渦巻状に巻回して形成される受電コイルと、前記受電コイルを介して電力が供給される負荷回路部と、を備え、前記受電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの内輪と外輪との間に位置する場合の結合係数に基づいた値である。   The power receiving device of the present invention is a receiving device that receives power by electromagnetic induction from a power transmitting device having a power transmitting coil formed by winding a conductor in a spiral shape, and is a power receiving device formed by winding a conductor in a spiral shape A coil and a load circuit unit to which electric power is supplied via the power receiving coil, and the inductance value of the power receiving coil is such that at least a part of the inner ring of the power receiving coil is between the inner ring and the outer ring of the power transmitting coil. It is a value based on the coupling coefficient in the case of being located.

また、本発明の受電装置は、前記受電コイルのインダクタンス値は、前記負荷回路部のインピーダンス値に基づいた値である。   In the power receiving device of the present invention, the inductance value of the power receiving coil is a value based on the impedance value of the load circuit unit.

また、本発明の受電装置は、前記受電コイルに直列に接続され、前記受電コイルと共振するコンデンサをさらに備える。   The power receiving device of the present invention further includes a capacitor connected in series to the power receiving coil and resonating with the power receiving coil.

また、本発明の受電装置は、前記受電コイルのインダクタンス値は、前記受電コイルが前記送電コイルの内輪よりも前記送電コイルの外輪の近くに位置する場合の結合係数に基づいた値である。   In the power receiving device of the present invention, the inductance value of the power receiving coil is a value based on a coupling coefficient when the power receiving coil is positioned closer to the outer ring of the power transmitting coil than the inner ring of the power transmitting coil.

以上より、受電コイルのインダクタンス値は受電コイルが送電コイルの端部に位置するときの結合係数に基づいた値であるため、受電装置は広範囲で受電することができる。   As described above, since the inductance value of the power receiving coil is a value based on the coupling coefficient when the power receiving coil is located at the end of the power transmitting coil, the power receiving device can receive power in a wide range.

また、本発明の送電装置は、導体を渦巻状に巻回して形成される受電コイルを有する受電装置に電磁誘導によって電力を送電する送電装置であって、導体を渦巻状に巻回して形成される送電コイルと、前記送電コイルに電力を供給する電源回路部と、を備え、前記送電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの内輪と外輪との間に位置する場合の結合係数に基づいた値である。   The power transmission device of the present invention is a power transmission device that transmits power by electromagnetic induction to a power receiving device having a power receiving coil formed by winding a conductor in a spiral shape, and is formed by winding a conductor in a spiral shape. A power transmission circuit that supplies power to the power transmission coil, and the inductance value of the power transmission coil is such that at least a part of the inner ring of the power reception coil is between the inner ring and the outer ring of the power transmission coil. It is a value based on the coupling coefficient when positioned.

また、本発明の送電装置は、前記送電コイルに直列に接続され、前記送電コイルと共振するコンデンサをさらに備える。   The power transmission device of the present invention further includes a capacitor connected in series to the power transmission coil and resonating with the power transmission coil.

また、本発明の送電装置は、前記送電コイルを格納すると共に、前記受電装置を載置可能な範囲が可視化される筐体をさらに有する。   The power transmission device of the present invention further includes a housing that stores the power transmission coil and visualizes a range in which the power reception device can be placed.

また、本発明の送電装置は、前記送電コイルは第1の外輪辺および第2の外輪辺から構成される角部を有し、前記送電コイルのインダクタンス値は、前記受電コイルの内輪が前記第1の外輪辺の中点よりも前記第1の外輪辺を含む直線および前記第2の外輪辺を含む直線の交点の近くに位置する場合の結合係数に基づく値である。   Further, in the power transmission device of the present invention, the power transmission coil has a corner portion constituted by a first outer ring side and a second outer ring side, and an inductance value of the power transmission coil is determined by the inner ring of the power reception coil. It is a value based on the coupling coefficient in the case of being located near the intersection of the straight line including the first outer ring side and the straight line including the second outer ring side rather than the midpoint of one outer ring side.

以上より、本送電コイルのインダクタンス値は受電コイルが送電コイルの端部に位置するときの結合係数に基づく値であるため、送電装置は広範囲で受電装置に送電することができる。   As described above, since the inductance value of the power transmission coil is a value based on the coupling coefficient when the power reception coil is located at the end of the power transmission coil, the power transmission device can transmit power to the power reception device in a wide range.

また、本発明の電力伝送システムは、電磁誘導によって電力伝送を行う電力伝送システムであって、導体を渦巻状に巻回して形成される送電コイルおよび受電コイルを有する伝送回路部と、前記送電コイルに電力を供給する電源回路部と、前記受電コイルを介して電力が供給される負荷回路部と、を備え、前記送電コイルおよび前記受電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの外輪および内輪との間に位置する場合の結合係数に基づいた値である。   The power transmission system of the present invention is a power transmission system that performs power transmission by electromagnetic induction, and includes a transmission circuit unit having a power transmission coil and a power reception coil formed by winding a conductor in a spiral shape, and the power transmission coil A power circuit section for supplying power to the power supply circuit, and a load circuit section for supplying power via the power receiving coil, wherein the power transmission coil and the power receiving coil have inductance values at least part of the inner ring of the power receiving coil. Is a value based on the coupling coefficient when the power transmission coil is located between the outer ring and the inner ring.

また、本発明の電力伝送システムは、前記送電コイルのインダクタンス値は、前記電源回路部から見た前記伝送回路部のインピーダンス値に基づいた値である。   In the power transmission system of the present invention, the inductance value of the power transmission coil is a value based on the impedance value of the transmission circuit unit viewed from the power supply circuit unit.

また、本発明の電力伝送システムは、前記受電コイルのインダクタンス値は、前記負荷回路部のインピーダンス値に基づいた値である。   In the power transmission system of the present invention, the inductance value of the power receiving coil is a value based on the impedance value of the load circuit unit.

また、本発明の電力伝送システムは、前記送電コイルのインダクタンス値をL1とし、前記受電コイルのインダクタンス値をL2とし、前記電源回路部から見た前記伝送回路部のインピーダンス値をZ1とし、前記負荷回路部のインピーダンス値をZ2とし、前記結合係数をKとし、前記送電コイルから前記受電コイルへ伝送する電力の周波数をfとする場合、2πfL1=Z1/K、2πfL2=Z2/Kの関係を満たす。   In the power transmission system of the present invention, the inductance value of the power transmission coil is L1, the inductance value of the power reception coil is L2, the impedance value of the transmission circuit unit viewed from the power supply circuit unit is Z1, and the load When the impedance value of the circuit unit is Z2, the coupling coefficient is K, and the frequency of power transmitted from the power transmission coil to the power reception coil is f, the relationship of 2πfL1 = Z1 / K and 2πfL2 = Z2 / K is satisfied. .

以上より、送電コイルおよび受電コイルのインダクタンス値は、受電コイルが送電コイルの端部に位置するときの結合係数に基づいた値であるため、負荷回路部は広範囲で受電することができる。   As described above, since the inductance values of the power transmission coil and the power reception coil are values based on the coupling coefficient when the power reception coil is positioned at the end of the power transmission coil, the load circuit unit can receive power in a wide range.

また、本発明の受電装置は、送電コイルを有する送電装置から電磁誘導によって電力を受電する受信装置であって、前記送電コイルから電力を受信する受電コイルと、前記受電コイルを介して電力が供給される負荷回路部と、を備え、前記受電コイルのインダクタンス値は、前記受電コイルと前記送電コイルとの結合係数が最大とならないときの結合係数に基づいた値である。   The power receiving device of the present invention is a receiving device that receives power from a power transmitting device having a power transmitting coil by electromagnetic induction, and the power is supplied through the power receiving coil that receives power from the power transmitting coil and the power receiving coil. The inductance value of the power receiving coil is a value based on the coupling coefficient when the coupling coefficient between the power receiving coil and the power transmitting coil is not maximized.

また、本発明の送電装置は、受電コイルの有する受電装置に電磁誘導によって電力を送電する送電装置であって、前記受電コイルに送電する送電コイルと、前記送電コイルに電力を供給する電源回路部と、を備え、前記送電コイルのインダクタンス値は、前記受電コイルと前記送電コイルとの結合係数が最大とならないときの結合係数に基づいた値である。   The power transmission device of the present invention is a power transmission device that transmits electric power to the power reception device of the power reception coil by electromagnetic induction, the power transmission coil that transmits power to the power reception coil, and a power supply circuit unit that supplies power to the power transmission coil The inductance value of the power transmission coil is a value based on the coupling coefficient when the coupling coefficient between the power receiving coil and the power transmission coil is not maximized.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、図1を用いて本発明の実施の形態のワイヤレス電力伝送システム3の概要について説明する。図1は、本発明の実施の形態に係るワイヤレス電力伝送システムの回路構成図である。このワイヤレス電力伝送システム3は、送電装置(充電装置)1から携帯電話などの電子機器2にワイヤレス(無接点)で電力伝送を行うものであり、電子機器2は、搭載された図示しない部品を動作させるための電力を供給する2次電池4を備え、送電装置1から送られる電力で2次電池4の充電が行われる。   First, the outline | summary of the wireless power transmission system 3 of embodiment of this invention is demonstrated using FIG. FIG. 1 is a circuit configuration diagram of a wireless power transmission system according to an embodiment of the present invention. The wireless power transmission system 3 performs power transmission wirelessly (contactlessly) from a power transmission device (charging device) 1 to an electronic device 2 such as a mobile phone, and the electronic device 2 includes mounted components (not shown). The secondary battery 4 that supplies power for operation is provided, and the secondary battery 4 is charged with the power transmitted from the power transmission device 1.

このワイヤレス電力伝送システム3では、電磁誘導により(磁束を媒体として)電力伝送を行うために、送電装置1が送電コイル(1次コイル)5を備え、電子機器2が受電コイル(2次コイル)6を備える。送電装置1の送電コイル5に交流電力が供給されると、この送電コイル5が電子機器2の受電コイル6と磁気結合して、受電コイル6に交流電圧が誘起され、これにより交流電力が送電コイル5から受電コイル6に伝送される。なお、本実施の形態において、非接触電力伝送の方式は、電磁誘導方式でも、電波方式でも、電磁界共鳴方式でもよい。   In this wireless power transmission system 3, in order to perform power transmission by electromagnetic induction (using magnetic flux as a medium), the power transmission device 1 includes a power transmission coil (primary coil) 5, and the electronic device 2 receives a power reception coil (secondary coil). 6 is provided. When AC power is supplied to the power transmission coil 5 of the power transmission device 1, the power transmission coil 5 is magnetically coupled to the power reception coil 6 of the electronic device 2, and an AC voltage is induced in the power reception coil 6, whereby AC power is transmitted. It is transmitted from the coil 5 to the power receiving coil 6. In this embodiment, the non-contact power transmission method may be an electromagnetic induction method, a radio wave method, or an electromagnetic resonance method.

送電装置1は、電子機器2に電力を伝送する1次側伝送回路部101と、1次側伝送回路部101に電力を供給する電源回路部102と、を備える。1次側伝送回路部101は、送電コイル5と、送電コイル5に直列に接続する1次側コンデンサ19(図2参照)と、を備える。電源回路部102は、AC/DCコンバータ11と、送電制御部12と、DC/ACインバータ13と、を有する。AC/DCコンバータ11では、電源(商用電源)8から供給される交流電力を直流電力に変換する。送電制御部12は、DC/ACインバータ13の動作を制御する。DC/ACインバータ13は、AC/DCコンバータ11から送電制御部12を介して送られる直流電力を所定の周波数の交流電圧に変換して送電コイル5に供給する直流−交流変換部である。なお、DC/ACインバータ13はドライバ等に置き換えられても良い。   The power transmission device 1 includes a primary transmission circuit unit 101 that transmits power to the electronic device 2 and a power supply circuit unit 102 that supplies power to the primary transmission circuit unit 101. The primary side transmission circuit unit 101 includes a power transmission coil 5 and a primary side capacitor 19 (see FIG. 2) connected in series to the power transmission coil 5. The power supply circuit unit 102 includes an AC / DC converter 11, a power transmission control unit 12, and a DC / AC inverter 13. The AC / DC converter 11 converts AC power supplied from a power source (commercial power source) 8 into DC power. The power transmission control unit 12 controls the operation of the DC / AC inverter 13. The DC / AC inverter 13 is a DC-AC converter that converts DC power sent from the AC / DC converter 11 via the power transmission control unit 12 into an AC voltage having a predetermined frequency and supplies the AC voltage to the power transmission coil 5. Note that the DC / AC inverter 13 may be replaced with a driver or the like.

送電制御部12は、制御回路14と、電圧監視部15と、温度監視部16と、を有する。制御回路14は、DC/ACインバータ13の動作を制御する。電圧監視部15は、DC/ACインバータ13から送電コイル5に供給される交流電力の電圧を監視する。温度監視部16は、送電コイル5の温度を監視する。この電圧監視部15および温度監視部16で電圧および温度の異常が検知されると、送電コイル5への給電が停止される。   The power transmission control unit 12 includes a control circuit 14, a voltage monitoring unit 15, and a temperature monitoring unit 16. The control circuit 14 controls the operation of the DC / AC inverter 13. The voltage monitoring unit 15 monitors the voltage of AC power supplied from the DC / AC inverter 13 to the power transmission coil 5. The temperature monitoring unit 16 monitors the temperature of the power transmission coil 5. When the voltage monitoring unit 15 and the temperature monitoring unit 16 detect an abnormality in voltage and temperature, power supply to the power transmission coil 5 is stopped.

DC/ACインバータ13は、AC/DCコンバータ11、送電制御部12を介して送られる直流電力を所定の周波数の交流電圧に変換し、1次側伝送回路部101に供給する。   The DC / AC inverter 13 converts the DC power sent via the AC / DC converter 11 and the power transmission control unit 12 into an AC voltage having a predetermined frequency, and supplies the AC voltage to the primary side transmission circuit unit 101.

電子機器2は、送電装置1から電力を受信する2次側伝送回路部201と、2次側伝送回路部201で受電した電力を利用する負荷回路部202と、を備える。2次側伝送回路部201は、受電コイル6と、受電コイル6と直列に接続する2次側コンデンサ29(図2参照)を備える。負荷回路部202は、受電回路部21と、受電制御部22と、充電制御回路23と、を有する。受電回路部21は、送電装置1の送電コイル5との間での電磁誘導により受電コイル6に誘起された交流電流を所定の直流電力に変換する。受電制御部22は、受電回路部21の動作を制御する。充電制御回路23は、受電回路部21から受電制御部22を介して送られる電力を2次電池4に供給して2次電池4の充電を行う。   The electronic device 2 includes a secondary transmission circuit unit 201 that receives power from the power transmission device 1 and a load circuit unit 202 that uses power received by the secondary transmission circuit unit 201. The secondary side transmission circuit unit 201 includes a power receiving coil 6 and a secondary side capacitor 29 (see FIG. 2) connected in series with the power receiving coil 6. The load circuit unit 202 includes a power reception circuit unit 21, a power reception control unit 22, and a charge control circuit 23. The power receiving circuit unit 21 converts an alternating current induced in the power receiving coil 6 by electromagnetic induction with the power transmitting coil 5 of the power transmitting device 1 into predetermined direct current power. The power reception control unit 22 controls the operation of the power reception circuit unit 21. The charging control circuit 23 charges the secondary battery 4 by supplying electric power sent from the power receiving circuit unit 21 via the power receiving control unit 22 to the secondary battery 4.

受電回路部21は、整流回路24(AC/DCコンバータ)と、レギュレータ(DC/DCコンバータ)25と、を有する。整流回路24は、受電コイル6に誘起された(受電コイル6が受電した)交流電力を直流電力に変換する交流−直流変換部である。レギュレータ25は、整流回路24から送られる直流電力を、2次電池4の充電に適合する所定の電圧に変換する直流−直流変換部である。また、整流回路24およびレギュレータ25は受電側電力変換部の一例である。   The power receiving circuit unit 21 includes a rectifier circuit 24 (AC / DC converter) and a regulator (DC / DC converter) 25. The rectifier circuit 24 is an AC-DC converter that converts AC power induced in the power receiving coil 6 (received by the power receiving coil 6) into DC power. The regulator 25 is a DC-DC converter that converts DC power sent from the rectifier circuit 24 into a predetermined voltage suitable for charging the secondary battery 4. The rectifier circuit 24 and the regulator 25 are an example of a power receiving side power converter.

受電制御部22は、制御回路26と、電圧監視部27と、を有する。制御回路26は、受電回路部21の動作を制御する。制御回路26は、受電回路部21の動作を制御する。電圧監視部27は、受電コイル6に誘起される交流電力の電圧を監視する。この他、受電制御部22は、電子機器2に搭載された機器の状態、例えば、受電コイル6の温度や、2次電池4の充電状態等を監視し、異常が検知されると、受電動作を停止する。   The power reception control unit 22 includes a control circuit 26 and a voltage monitoring unit 27. The control circuit 26 controls the operation of the power receiving circuit unit 21. The control circuit 26 controls the operation of the power receiving circuit unit 21. The voltage monitoring unit 27 monitors the voltage of AC power induced in the power receiving coil 6. In addition, the power reception control unit 22 monitors the state of the device mounted on the electronic device 2, for example, the temperature of the power receiving coil 6, the charging state of the secondary battery 4, etc. To stop.

また、本実施の形態では、送電装置1に、その電子機器載置面上に電子機器2が載置されたことを検知する電子機器検知部31が設けられる。この電子機器検知部31の検知結果に基づいて、送電装置1の送電動作が制御される。すなわち、電子機器載置面(充電面)上に電子機器2が載置されると、送電コイル5への交流電力の供給を開始し、電子機器2が送電装置1から離れると、送電コイル5への交流電力の供給を停止する。   Moreover, in this Embodiment, the electronic device detection part 31 which detects that the electronic device 2 was mounted on the electronic device mounting surface in the power transmission apparatus 1 is provided. Based on the detection result of the electronic device detection unit 31, the power transmission operation of the power transmission device 1 is controlled. That is, when the electronic device 2 is placed on the electronic device placement surface (charging surface), supply of AC power to the power transmission coil 5 is started, and when the electronic device 2 leaves the power transmission device 1, the power transmission coil 5. Stop supplying AC power to

この電子機器検知部31では、電子機器2の受電コイル6が送電装置1の送電コイル5に近接することで負荷インピーダンスが変化することにより送電コイル5に生じる電圧値(または電流値)の変動に基づいて、電子機器2が電子機器載置面上に載置されたことを検知する。このとき、送電コイル5の電圧値(または電流値)の変動量を予め設定されたしきい値と比較して、電子機器2が電子機器載置面上に載置されたか否かの判定を行えばよい。   In the electronic device detection unit 31, the fluctuation of the voltage value (or current value) generated in the power transmission coil 5 due to the load impedance changing due to the power receiving coil 6 of the electronic device 2 being close to the power transmission coil 5 of the power transmission device 1. Based on this, it is detected that the electronic device 2 is placed on the electronic device placement surface. At this time, the amount of change in the voltage value (or current value) of the power transmission coil 5 is compared with a preset threshold value to determine whether or not the electronic device 2 is placed on the electronic device placement surface. Just do it.

また、本実施の形態では、電子機器2にも、自身が送電装置1の電子機器載置面上に載置されたことを検知する送電装置検知部41が設けられる。この送電装置検知部41の検知結果に基づいて、電子機器2の受電動作が制御される。   In the present embodiment, the electronic device 2 is also provided with the power transmission device detection unit 41 that detects that it is placed on the electronic device placement surface of the power transmission device 1. Based on the detection result of the power transmission device detection unit 41, the power receiving operation of the electronic device 2 is controlled.

この送電装置検知部41では、電子機器2の受電コイル6が送電装置1の送電コイル5に近接することで負荷インピーダンスが変化することにより受電コイル6に生じる電圧値(または電流値)の変動に基づいて、電子機器2が電子機器載置面上に載置されたことを検知する。このとき、受電コイル6の電圧値(または電流値)の変動量を予め設定されたしきい値と比較して、電子機器2が電子機器載置面上に載置されたか否かの判定を行えばよい。   In the power transmission device detection unit 41, the fluctuation of the voltage value (or current value) generated in the power reception coil 6 due to a change in load impedance caused by the power reception coil 6 of the electronic device 2 approaching the power transmission coil 5 of the power transmission device 1. Based on this, it is detected that the electronic device 2 is placed on the electronic device placement surface. At this time, the fluctuation amount of the voltage value (or current value) of the power receiving coil 6 is compared with a preset threshold value to determine whether or not the electronic device 2 is placed on the electronic device placement surface. Just do it.

また、本実施の形態では、送電装置1および電子機器2がそれぞれ情報送受信部32,42を備えており、送電装置1と電子機器2との間で送電コイル5および受電コイル6を介して所要の情報を送受信する情報伝送ができるようになっている。なお、この情報伝送は、単純なビット通信でもあってもよいし、コード化通信であってもよい。   Moreover, in this Embodiment, the power transmission apparatus 1 and the electronic device 2 are each provided with the information transmission / reception parts 32 and 42, and it is required via the power transmission coil 5 and the power receiving coil 6 between the power transmission apparatus 1 and the electronic device 2. It is possible to transmit information to send and receive information. Note that this information transmission may be simple bit communication or coded communication.

送電装置1および電子機器2の各情報送受信部32,42はそれぞれ、情報を含む信号の変復調を行う変復調回路33,43を有する。この変復調回路33,43では、送信元の変復調回路33,43で生成した変調信号が、送電コイル5および受電コイル6を介して送信先に送られ、送信先では、送電コイル5または受電コイル6の出力から取り出された変調信号を変復調回路33,43で復調して送信情報を取得する。   The information transmission / reception units 32 and 42 of the power transmission device 1 and the electronic device 2 have modulation / demodulation circuits 33 and 43 that perform modulation / demodulation of signals including information, respectively. In the modulation / demodulation circuits 33 and 43, the modulation signal generated by the transmission / reception modulation circuits 33 and 43 is sent to the transmission destination via the power transmission coil 5 and the power reception coil 6, and at the transmission destination, the power transmission coil 5 or the power reception coil 6. The modulation signal extracted from the output is demodulated by the modem circuits 33 and 43 to obtain transmission information.

ここで、送電装置1から電子機器2に情報を送信する場合、情報送受信部32から出力される変調信号をDC/ACインバータ13で電力伝送用の交流信号に重畳することで、電力伝送と同時に情報送信を行うことができる。また、電力伝送が行われていないときに情報伝送を行うようにしてもよい。   Here, when transmitting information from the power transmission device 1 to the electronic device 2, the modulation signal output from the information transmission / reception unit 32 is superimposed on the AC signal for power transmission by the DC / AC inverter 13, thereby simultaneously with power transmission. Information transmission can be performed. Further, information transmission may be performed when power transmission is not performed.

ここで送電装置1と電子機器2との間でやりとりされる情報としては、送電装置1および電子機器2の各々の状態に関する状態情報である。状態情報として、例えば2次電池4の充電中に、2次電池4の充電状態に関する情報を電子機器2から送電装置1に送信し、2次電池4の充電が必要な場合は電力伝送を継続し、2次電池4の充電が完了すると電力伝送を停止する。また、状態情報として、温度や電圧などの情報を送電装置1と電子機器2との間でやりとりし、状態情報が異常を示しているときにも電力伝送を停止する制御を行う。   Here, the information exchanged between the power transmission device 1 and the electronic device 2 is state information regarding the states of the power transmission device 1 and the electronic device 2. As the state information, for example, during charging of the secondary battery 4, information on the charging state of the secondary battery 4 is transmitted from the electronic device 2 to the power transmission device 1, and power transmission is continued when the secondary battery 4 needs to be charged. When the charging of the secondary battery 4 is completed, the power transmission is stopped. Further, as status information, information such as temperature and voltage is exchanged between the power transmission device 1 and the electronic device 2, and control is performed to stop power transmission even when the status information indicates an abnormality.

また、本実施の形態では、送電装置1および電子機器2がそれぞれ認証部34,44を備えており、送電装置1と電子機器2との間で相互認証が行われる。送電装置1および電子機器2では、各々が備える情報送受信部32,42により、相互認証に用いられる送電装置1および電子機器2の各識別情報などの認証情報がやりとりされ、この認証情報に基づいて認証部34,44において互いに相手方の認証を行う。   Moreover, in this Embodiment, the power transmission apparatus 1 and the electronic device 2 are each provided with the authentication parts 34 and 44, and mutual authentication is performed between the power transmission apparatus 1 and the electronic device 2. FIG. In the power transmission device 1 and the electronic device 2, authentication information such as identification information of the power transmission device 1 and the electronic device 2 used for mutual authentication is exchanged by the information transmission / reception units 32 and 42 included in each, and based on this authentication information Authentication units 34 and 44 authenticate each other.

この相互認証は、送電装置1から電子機器2への電力伝送を開始する際に行われる。すなわち、送電装置1および電子機器2がそれぞれ、送電装置1の電子機器載置面上に電子機器2が載置されたことを検知すると、送電装置1と電子機器2と間で識別情報をやりとりして、互いに相手方の認証を行う。この相互認証が成功すると、送電装置1から電子機器2への電力伝送が開始される。相互認証が失敗したときは電力伝送が行われない。   This mutual authentication is performed when power transmission from the power transmission device 1 to the electronic device 2 is started. That is, when the power transmission device 1 and the electronic device 2 detect that the electronic device 2 is placed on the electronic device placement surface of the power transmission device 1, identification information is exchanged between the power transmission device 1 and the electronic device 2. And authenticate each other. When this mutual authentication is successful, power transmission from the power transmission device 1 to the electronic device 2 is started. When mutual authentication fails, power transmission is not performed.

次に、送電コイル5および受電コイル6のインダクタンス値(以下、L値とも称する)の決定方法について、図2を用いて説明する。   Next, a method for determining inductance values (hereinafter also referred to as L values) of the power transmission coil 5 and the power reception coil 6 will be described with reference to FIG.

図2は、本発明の実施の形態に係るワイヤレス電力伝送システムの回路構成の概念図である。図2に示すように、ワイヤレス電力伝送システム3は電源回路部102、伝送回路部301および負荷回路部202を備え、伝送回路部301は上述した1次側伝送回路部101および2次側伝送回路部201を有する。   FIG. 2 is a conceptual diagram of a circuit configuration of the wireless power transmission system according to the embodiment of the present invention. As shown in FIG. 2, the wireless power transmission system 3 includes a power supply circuit unit 102, a transmission circuit unit 301, and a load circuit unit 202. The transmission circuit unit 301 includes the above-described primary transmission circuit unit 101 and secondary transmission circuit. Part 201.

1次側伝送回路部101は送電コイル5と送電コイル5の一端に直列に接続される1次側コンデンサ19を有する。そして、送電コイル5と1次側コンデンサ19とは直列共振回路を形成する。   The primary side transmission circuit unit 101 includes a power transmission coil 5 and a primary side capacitor 19 connected in series to one end of the power transmission coil 5. And the power transmission coil 5 and the primary side capacitor | condenser 19 form a series resonance circuit.

同様に、2次側伝送回路部201は受電コイル6と受電コイル6の一端に直列に接続される2次側コンデンサ29を有する、そして、受電コイル6と2次側コンデンサ29とは直列共振回路を形成する。   Similarly, the secondary-side transmission circuit unit 201 includes a power receiving coil 6 and a secondary capacitor 29 connected in series to one end of the power receiving coil 6. The power receiving coil 6 and the secondary capacitor 29 are a series resonant circuit. Form.

再度簡単に電力伝送の流れを説明すると、電源回路部102は電源8に電気的に接続され、電源8より電力が供給される。そして、電源回路部102は1次側伝送回路部101に電気的に接続され、電源8からの電力を上述のように変換し、1次側伝送回路部101を介して電子機器2に送電する。   To briefly explain the flow of power transmission again, the power supply circuit unit 102 is electrically connected to the power supply 8 and supplied with power from the power supply 8. The power supply circuit unit 102 is electrically connected to the primary side transmission circuit unit 101, converts the power from the power source 8 as described above, and transmits the electric power to the electronic device 2 via the primary side transmission circuit unit 101. .

負荷回路部202は、2次側伝送回路部201に電気的に接続され、送電装置1から伝送された電力を2次側伝送回路部201を介して受信する。そして、負荷回路部202は上述のように受電した電力を変換し、変換した電力を負荷回路部202内の2次電池4に蓄電する。   The load circuit unit 202 is electrically connected to the secondary transmission circuit unit 201 and receives the power transmitted from the power transmission device 1 via the secondary transmission circuit unit 201. Then, the load circuit unit 202 converts the received power as described above, and stores the converted power in the secondary battery 4 in the load circuit unit 202.

以上のように構成されるワイヤレス電力伝送システム3において、電源回路部102から伝送回路部301を見たときのインピーダンスをZ1、負荷回路部202のインピーダンス(伝送回路部301から負荷回路部202を見たときのインピーダンス)をZ2、送電コイル5のリアクタンスをX1(=ωL1)、受電コイル6のリアクタンスをX2(=ωL2)、送電コイル5および受電コイル6間の結合係数(結合度)をK(=M/√(L1×L2)、M:相互リアクタンス)、伝送周波数をf(=ω/(2π))とすると、本実施の形態では次の(式1)および(式2)の関係を満たす。   In the wireless power transmission system 3 configured as described above, the impedance when viewing the transmission circuit unit 301 from the power supply circuit unit 102 is Z1, and the impedance of the load circuit unit 202 (see the load circuit unit 202 from the transmission circuit unit 301). Impedance) is Z2, the reactance of the power transmission coil 5 is X1 (= ωL1), the reactance of the power reception coil 6 is X2 (= ωL2), and the coupling coefficient (degree of coupling) between the power transmission coil 5 and the power reception coil 6 is K ( = M / √ (L1 × L2), M: mutual reactance), and transmission frequency is f (= ω / (2π)), in the present embodiment, the relationship of the following (formula 1) and (formula 2) is Fulfill.

ωL1=Z1/K ・・・(式1)
ωL2=Z2/K ・・・(式2)
この(式1)、(式2)の関係式を満たすL1、L2が算出され、送電コイル5のL値をL1とし、受電コイル6のL値をL2とする。そして、送電コイル5と共振回路を形成する1次側コンデンサ19のキャパシタンス値(以下、C値、容量とも称する)であるC1はL1に基づいた(例えば、伝送周波数f、C1およびL1を利用して共振の方程式から算出される)値である。
ωL1 = Z1 / K (Formula 1)
ωL2 = Z2 / K (Formula 2)
L1 and L2 satisfying the relational expressions (Equation 1) and (Equation 2) are calculated, and the L value of the power transmission coil 5 is L1, and the L value of the power reception coil 6 is L2. C1 which is the capacitance value (hereinafter also referred to as C value or capacitance) of the primary side capacitor 19 that forms a resonance circuit with the power transmission coil 5 is based on L1 (for example, using transmission frequencies f, C1 and L1). Calculated from the resonance equation).

このようにL1およびL2が算出されることにより、直列共振回路を構成する送電コイル5および受電コイル6を含む伝送回路部301において、1次側伝送回路部101および2次側伝送回路部201とのインピーダンス整合を取ることができる。この結果、電子機器2が載置される場所が変わっても、送電コイル5および受電コイル6間の結合係数の変動が少なくなる。すなわち、電子機器2が載置される位置が変わっても、電子機器2は受電することができる。   By calculating L1 and L2 in this way, in the transmission circuit unit 301 including the power transmission coil 5 and the power reception coil 6 constituting the series resonant circuit, the primary side transmission circuit unit 101 and the secondary side transmission circuit unit 201 Impedance matching can be achieved. As a result, even if the place where the electronic device 2 is placed changes, the variation in the coupling coefficient between the power transmission coil 5 and the power reception coil 6 is reduced. That is, even if the position where the electronic device 2 is placed changes, the electronic device 2 can receive power.

上述のようにL1,L2,Z1,Z2,C1,C2は算出されるため、L1はインピーダンスZ1および結合係数Kに基づいた値であり、L2はインピーダンスZ2および結合係数Kに基づいた値である。換言すると、インピーダンスZ1は送電コイル5のL値(L1)および結合係数Kに基づいた値であり、インピーダンスZ2は受電コイル6のL値(L2)および結合係数Kに基づいた値である。   Since L1, L2, Z1, Z2, C1, and C2 are calculated as described above, L1 is a value based on the impedance Z1 and the coupling coefficient K, and L2 is a value based on the impedance Z2 and the coupling coefficient K. . In other words, the impedance Z1 is a value based on the L value (L1) of the power transmission coil 5 and the coupling coefficient K, and the impedance Z2 is a value based on the L value (L2) of the power receiving coil 6 and the coupling coefficient K.

このとき、L1およびL2は2つの関係式(例えば、(式1)および(式2))を満たす値であり、この2つの関係式は共通の結合係数Kが用いられる。また、結合係数KはL1およびL2に基づく値である。したがって、L1はインピーダンスZ1、インピーダンスZ2、および、受電コイル6のL値(L2)に基づく値であり、L2はインピーダンスZ1、インピーダンスZ2、および、送電コイル5のL値(L1)に基づく値である。換言すると、インピーダンスZ1は送電コイル5のL値(L1)、受電コイル6のL値(L2)、および、出力インピーダンスZ2に基づく値であり、インピーダンスZ2はインピーダンスZ1、送電コイル5のL値(L1)、および受電コイル6のL値(L2)に基づく値である。   At this time, L1 and L2 are values satisfying two relational expressions (for example, (Expression 1) and (Expression 2)), and a common coupling coefficient K is used for these two relational expressions. The coupling coefficient K is a value based on L1 and L2. Therefore, L1 is a value based on the impedance Z1, the impedance Z2, and the L value (L2) of the power receiving coil 6, and L2 is a value based on the impedance Z1, the impedance Z2, and the L value (L1) of the power transmitting coil 5. is there. In other words, the impedance Z1 is a value based on the L value (L1) of the power transmission coil 5, the L value (L2) of the power receiving coil 6, and the output impedance Z2, and the impedance Z2 is the L value of the impedance Z1 and the power transmission coil 5 ( L1) and a value based on the L value (L2) of the power receiving coil 6.

すなわち、(式1)および(式2)からL1,L2,Z1およびZ2は(式3)関係を満たす。   That is, from (Expression 1) and (Expression 2), L1, L2, Z1, and Z2 satisfy the (Expression 3) relationship.

Z1/L1=Z2/L2 ・・・(式3)
したがって、(式3)に示すように本実施の形態では、インピーダンスZ1および送電コイル5のL値(L1)の比率と、インピーダンスZ2および受電コイル6のL値(L2)の比率とは同じである。
Z1 / L1 = Z2 / L2 (Formula 3)
Therefore, as shown in (Equation 3), in the present embodiment, the ratio of the impedance Z1 and the L value (L1) of the power transmission coil 5 is the same as the ratio of the impedance Z2 and the L value (L2) of the power receiving coil 6. is there.

以下、図3〜6を用いてワイヤレス電力伝送システム3の構成を説明する。なお、同一の構成、機能を有する部材は同一の符号を付し、詳細な説明は省略する。   Hereinafter, the configuration of the wireless power transmission system 3 will be described with reference to FIGS. Members having the same configuration and function are denoted by the same reference numerals, and detailed description thereof is omitted.

図3は、本発明の実施の形態に係るワイヤレス電力伝送システムの第1例の斜視図、図4は、本発明の実施の形態に係るワイヤレス電力伝送システムの第1例の上面図、図5は、本発明の実施の形態に係るワイヤレス電力伝送システムの第1例の断面図である。また、図5は図4をX軸で切ったときの断面をY軸方向に見たときの図でもある。   3 is a perspective view of a first example of the wireless power transmission system according to the embodiment of the present invention. FIG. 4 is a top view of the first example of the wireless power transmission system according to the embodiment of the present invention. These are sectional drawings of the 1st example of the wireless power transmission system which concerns on embodiment of this invention. FIG. 5 is also a view of the cross section of FIG. 4 taken along the X axis when viewed in the Y axis direction.

図3〜5に示すように、送電装置1は1つの面を充電面(電子機器載置面)1bとする筐体1aを有し、この筐体1a内に送電コイル5を格納する。電子機器2は1つの面を充電面2bとする筐体2aを有し、この筐体2a内に受電コイル6を有する。電子機器2は送電装置1の筐体1aの上面(充電面1a)に置かれることにより、送電コイル5および受電コイル6を介して電力が供給される。もちろん、電子機器2は、受電コイル6の平面方向が送電コイル5の平面方向に対向するように置かれる方が好ましい。   As illustrated in FIGS. 3 to 5, the power transmission device 1 includes a housing 1 a having one surface as a charging surface (electronic device placement surface) 1 b and stores the power transmission coil 5 in the housing 1 a. The electronic device 2 has a housing 2a having one surface as a charging surface 2b, and a power receiving coil 6 in the housing 2a. When the electronic device 2 is placed on the upper surface (charging surface 1 a) of the housing 1 a of the power transmission device 1, power is supplied via the power transmission coil 5 and the power reception coil 6. Of course, the electronic device 2 is preferably placed so that the plane direction of the power receiving coil 6 faces the plane direction of the power transmission coil 5.

また、送電コイルは図4、5に示すように、送電コイル5は充電面1bに対して略平行に配置される。そして、送電コイル5は充電面1bの対極面よりも充電面1bの近くに配置される。すなわち、送電コイル5は充電面1bの近くに配置される。このため、送電コイル5と、充電面1aに置かれる電子機器2との距離を近づけることができ、電力伝送の効率を高めることができる。   Moreover, as shown in FIGS. 4 and 5, the power transmission coil 5 is disposed substantially parallel to the charging surface 1b. And the power transmission coil 5 is arrange | positioned near the charging surface 1b rather than the counter electrode surface of the charging surface 1b. That is, the power transmission coil 5 is disposed near the charging surface 1b. For this reason, the distance between the power transmission coil 5 and the electronic device 2 placed on the charging surface 1a can be reduced, and the efficiency of power transmission can be increased.

また送電コイル5は導体が内側から外側に向かって渦巻状に巻回された平面コイルであり、送電コイル5は最も内側に巻回された導体である内輪(内周)5aと最も外側に巻回された導体である外輪(外周)5bとを有する。内輪5aは複数の内輪側角部5cは有する多角形状であり、同様に、外輪5bも複数の外輪側角部5dを有する多角形状である。本実施の形態の内輪側角部5cおよび外輪側角部5dは弧状(弓状)に形成されるが、これに限定する必要はない。また内輪5aの内側は中空部であり、送電コイル5はこの中空部の周り導体が巻回される。   The power transmission coil 5 is a planar coil in which a conductor is spirally wound from the inside to the outside, and the power transmission coil 5 is wound on the outermost side with an inner ring (inner circumference) 5a that is a conductor wound on the innermost side. And an outer ring (outer circumference) 5b which is a turned conductor. The inner ring 5a has a polygonal shape having a plurality of inner ring side corners 5c, and similarly, the outer ring 5b has a polygonal shape having a plurality of outer ring side corners 5d. Although the inner ring side corner portion 5c and the outer ring side corner portion 5d of the present embodiment are formed in an arc shape (bow shape), it is not necessary to limit to this. Moreover, the inner side of the inner ring 5a is a hollow portion, and the conductor around the hollow portion of the power transmission coil 5 is wound.

同様に、受電コイル6も充電面2b側に配置される。すなわち、受電コイル6は充電面2bの対極面よりも充電面2bの近くに配置される。これにより、電子機器2を送電装置1に載置した際に、受電コイル6と送電装置1との距離を近づけることができ、電力伝送の効率を高めることができる。   Similarly, the power receiving coil 6 is also arranged on the charging surface 2b side. That is, the power receiving coil 6 is disposed closer to the charging surface 2b than the counter electrode surface of the charging surface 2b. Thereby, when the electronic device 2 is mounted on the power transmission device 1, the distance between the power receiving coil 6 and the power transmission device 1 can be reduced, and the efficiency of power transmission can be increased.

また、受電コイル6は導体が内側から外側に向かって渦巻状に巻回された平面コイルであり、最も内側に巻回された導体である内輪(内周)6aと最も外側に巻回された導体である外輪(外周)6bとを有する。内輪6aおよび外輪6bは略円状に形成されるが、これに限定する必要はない。また内輪6aの内側は中空部であり、受電コイル6はこの中空部の周りに導体が巻回される。   The power receiving coil 6 is a planar coil in which a conductor is spirally wound from the inside to the outside, and is wound outwardly from an inner ring (inner circumference) 6a that is a conductor wound inwardly. And an outer ring (outer periphery) 6b which is a conductor. Although the inner ring 6a and the outer ring 6b are formed in a substantially circular shape, it is not necessary to limit to this. Further, the inner side of the inner ring 6a is a hollow portion, and a conductor is wound around the hollow portion of the power receiving coil 6.

また、電子機器2(の筐体2a)は、所定の範囲を示す充電範囲(載置範囲)105を有する。充電範囲105は電子機器2を充電可能な範囲であり、図5に示すように、筐体2aに視覚化(可視化)される。すなわち、電子機器2は少なくとも充電範囲105より内側に置かれる場合、電子機器2は充電可能となる。このように筐体2aに充電範囲105が視覚化されることにより、ユーザにどこに電子機器2を置けばよいかを伝えることができる。   Further, the electronic device 2 (the housing 2a thereof) has a charging range (mounting range) 105 indicating a predetermined range. The charging range 105 is a range in which the electronic device 2 can be charged, and is visualized (visualized) on the housing 2a as shown in FIG. That is, when the electronic device 2 is placed at least inside the charging range 105, the electronic device 2 can be charged. In this way, the charging range 105 is visualized in the housing 2a, so that it is possible to tell the user where to place the electronic device 2.

なお、どのように充電範囲105を視覚化してもよい。本実施の形態の場合、筐体2aと充電範囲105との色を分けているが、充電範囲105は筐体2aの窪み等で可視化されてもよい。すなわち、筐体1aは、充電範囲105が充電面1aに対して凹凸を成すように形成されてもよい。   Note that the charging range 105 may be visualized in any way. In the present embodiment, the housing 2a and the charging range 105 are separated in color, but the charging range 105 may be visualized by a depression or the like of the housing 2a. That is, the housing 1a may be formed such that the charging range 105 is uneven with respect to the charging surface 1a.

また、本実施の形態では、図5において、受電コイル6の中心が充電範囲105の内側である場合、電子機器2が充電範囲105の内側であるとする。但し、これに限定する必要はなく、受電コイル5(または電子機器2)のすべてが充電範囲105の内側である場合、または、受電コイル5(または電子機器2)の少なくとも一部が充電範囲105上にある場合、電子機器2が充電範囲105の内側である(すなわち、電子機器2を充電可能である)としてもよい。   Further, in the present embodiment, in FIG. 5, when the center of power receiving coil 6 is inside charging range 105, electronic device 2 is assumed to be inside charging range 105. However, the present invention is not limited to this. When all of the power receiving coil 5 (or electronic device 2) is inside the charging range 105, or at least a part of the power receiving coil 5 (or electronic device 2) is within the charging range 105. When it is above, the electronic device 2 may be inside the charging range 105 (that is, the electronic device 2 can be charged).

次に、図6〜8を用いて本実施の形態のワイヤレス電力伝送システム3の特性について説明する。   Next, characteristics of the wireless power transmission system 3 according to the present embodiment will be described with reference to FIGS.

図6は、本発明の実施の形態に係る送電コイルと受電コイルとの位置関係を説明するための図、図7は、本発明の実施の形態に係る結合係数と受電コイルの位置との関係を示す図、図8は、本発明の実施の形態に係る出力電圧と受電コイルの位置との関係を示す図である。なお、図6では送電コイル5と受電コイル6との位置関係を明確に示すために、筐体2aを省略して図示する。   FIG. 6 is a diagram for explaining the positional relationship between the power transmitting coil and the power receiving coil according to the embodiment of the present invention, and FIG. 7 is the relationship between the coupling coefficient and the position of the power receiving coil according to the embodiment of the present invention. FIG. 8 is a diagram showing the relationship between the output voltage and the position of the power receiving coil according to the embodiment of the present invention. In FIG. 6, the casing 2 a is omitted in order to clearly show the positional relationship between the power transmission coil 5 and the power reception coil 6.

図6は受電コイル6がそれぞれ位置A〜Cに置かれる場合を示す。X軸とY軸との交点を送電コイル5の中心とすると、位置Aは受電コイル6の中心が送電コイル5の中心に位置するときである。位置Bは、受電コイル6を位置Aから充電範囲105までX軸方向に(X0からX1まで)移動させたときである。すなわち、位置Bは受電コイルの中心がX軸および充電範囲の交点に位置するときである。また、位置Cは、充電範囲105の角となる点に受電コイル6の中心が位置するときである。   FIG. 6 shows a case where the power receiving coil 6 is placed at positions A to C, respectively. Assuming that the intersection of the X axis and the Y axis is the center of the power transmission coil 5, the position A is when the center of the power reception coil 6 is located at the center of the power transmission coil 5. The position B is when the power receiving coil 6 is moved from the position A to the charging range 105 in the X-axis direction (from X0 to X1). That is, position B is when the center of the power receiving coil is located at the intersection of the X axis and the charging range. Further, the position C is when the center of the power receiving coil 6 is located at a point that becomes the corner of the charging range 105.

詳細は後述するが、送電コイル5のL値(L1)および受電コイル6のL値(L2)は受電コイル6が位置Cに位置するときの結合係数Kと、上記関係式(1)、(2)を用いて算出された値である。このときの送電コイル5および受電コイル6の位置関係に基づいて変化する結合係数Kの推移を図7に示す。また、送電コイル5および受電コイル6の位置関係に基づいて変化する整流回路24がレギュレータ25に出力する電圧(以下、出力電圧Eとも称する)の推移を図8に示す。   Although the details will be described later, the L value (L1) of the power transmission coil 5 and the L value (L2) of the power reception coil 6 are the coupling coefficient K when the power reception coil 6 is located at the position C and the above relational expressions (1), ( 2). FIG. 7 shows the transition of the coupling coefficient K that changes based on the positional relationship between the power transmission coil 5 and the power reception coil 6 at this time. FIG. 8 shows the transition of the voltage (hereinafter also referred to as output voltage E) output to the regulator 25 by the rectifier circuit 24 that changes based on the positional relationship between the power transmission coil 5 and the power reception coil 6.

図7は、縦軸を結合係数K、横軸を受電コイル6の送電コイル5に対する位置(2次コイルのX軸方向のシフト量)とするグラフである。すなわち、図7は電子機器2を送電コイル5の中心(図6のX軸とY軸の交点)からX軸方向に(X1まで)移動させたときの結合係数Kの変化量(推移)を示す。図7から分かるように、受電コイル6が送電コイル5の中心付近にあるときは高い結合係数Kを維持できるが、受電コイル6が送電コイル5の端部に近づくと急激に結合係数Kが低下する。   FIG. 7 is a graph in which the vertical axis represents the coupling coefficient K and the horizontal axis represents the position of the power receiving coil 6 with respect to the power transmission coil 5 (the shift amount of the secondary coil in the X-axis direction). That is, FIG. 7 shows the amount of change (transition) of the coupling coefficient K when the electronic device 2 is moved from the center of the power transmission coil 5 (intersection of the X axis and Y axis in FIG. 6) in the X axis direction (up to X1). Show. As can be seen from FIG. 7, when the power receiving coil 6 is near the center of the power transmission coil 5, a high coupling coefficient K can be maintained, but when the power receiving coil 6 approaches the end of the power transmission coil 5, the coupling coefficient K rapidly decreases. To do.

また、図8は図7のグラフに類似した現象を示す。図8は、縦軸を出力電圧E、横軸を受電コイル6の送電コイル5に対する位置(2次コイルのX軸方向のシフト量)とするグラフである。すなわち、図8は電子機器2を送電コイル5の中心からX軸方向に(X1まで)移動させたときの出力電圧E(レギュレータ25の入力電圧)の変化量(推移)を示す。   FIG. 8 shows a phenomenon similar to the graph of FIG. FIG. 8 is a graph in which the vertical axis represents the output voltage E and the horizontal axis represents the position of the power receiving coil 6 relative to the power transmission coil 5 (the shift amount of the secondary coil in the X-axis direction). That is, FIG. 8 shows the change amount (transition) of the output voltage E (input voltage of the regulator 25) when the electronic device 2 is moved from the center of the power transmission coil 5 in the X-axis direction (up to X1).

図7、8を参照して分かるように、結合係数Kと整流回路24の出力電圧Eとは同様の変化傾向を示し、受電コイル6が送電コイル5の端部に近づくと急激に低下する。すわなち、結合係数Kが高いほど、電力伝送の効率が高くなる(整流回路24は出力電圧Eを高くすることができる)。   As can be seen with reference to FIGS. 7 and 8, the coupling coefficient K and the output voltage E of the rectifier circuit 24 show the same change tendency, and rapidly decrease when the power receiving coil 6 approaches the end of the power transmitting coil 5. In other words, the higher the coupling coefficient K, the higher the efficiency of power transmission (the rectifier circuit 24 can increase the output voltage E).

また、図示してないが、上述した結合係数Kと出力電圧Eの傾向は、受電コイル6をY軸方向に移動させたときも同様の傾向を示す。以上のことから、受電コイル6が送電コイル5の端部に近づくほど(送電コイル5の中心部から離れるほど)、結合係数Kおよび出力電圧Eは小さくなる。したがって、本実施の形態の充電範囲105において、結合係数Kおよび出力電圧Eは位置A、位置B、位置Cの順に小さくなる。   Although not shown, the above-described tendency of the coupling coefficient K and the output voltage E shows the same tendency when the power receiving coil 6 is moved in the Y-axis direction. From the above, the coupling coefficient K and the output voltage E become smaller as the power receiving coil 6 approaches the end of the power transmission coil 5 (as it moves away from the center of the power transmission coil 5). Therefore, in the charging range 105 of the present embodiment, the coupling coefficient K and the output voltage E decrease in the order of position A, position B, and position C.

次に、本実施の形態の特徴的な点について詳細に説明する。   Next, characteristic points of the present embodiment will be described in detail.

以下の説明において、受電コイル6が充電範囲105内に載置される場合おいて、送電コイル5および受電コイル6間の結合係数(または、整流回路24の出力電圧E)が最小となるときをKminとする。本実施の形態では、受電コイル6の中心部が充電範囲105の角部に位置するとき、すなわち、受電コイル6が位置Cに位置するときの結合係数がKminである。また、受電コイル6が位置Cに位置するときの整流回路24の出力電圧をEminとする。   In the following description, when the power receiving coil 6 is placed in the charging range 105, the coupling coefficient between the power transmitting coil 5 and the power receiving coil 6 (or the output voltage E of the rectifier circuit 24) is minimized. Kmin. In the present embodiment, the coupling coefficient when the center portion of the power receiving coil 6 is located at the corner of the charging range 105, that is, when the power receiving coil 6 is located at the position C, is Kmin. Further, the output voltage of the rectifier circuit 24 when the power receiving coil 6 is located at the position C is Emin.

また以下の説明において、受電コイル6が充電範囲105内に載置される場合おいて、送電コイル5および受電コイル6間の結合係数(または、整流回路24の出力電圧E)が最大となるときをKmaxとする。本実施の形態では、受電コイル6の中心部が充電範囲105(または送電コイル5)の中心部付近に位置するときの結合係数がKmaxである。また、結合係数Kmaxとなる位置に受電コイル6が位置するときの整流回路24の出力電圧をEmaxとする。   In the following description, when the power receiving coil 6 is placed in the charging range 105, the coupling coefficient between the power transmitting coil 5 and the power receiving coil 6 (or the output voltage E of the rectifier circuit 24) becomes maximum. Is Kmax. In the present embodiment, the coupling coefficient when the center portion of power receiving coil 6 is located near the center portion of charging range 105 (or power transmission coil 5) is Kmax. Further, the output voltage of the rectifier circuit 24 when the power receiving coil 6 is located at the position where the coupling coefficient Kmax is set to Emax.

本実施の形態のように、送電コイル5を平巻きのコイルで形成する場合、送電コイル5の磁束強度は、内側が強く、外側が弱い傾向となる。また上述したように、結合係数Kは受電コイル6が送電コイル5の中心部に位置するときが強く、受電コイル6が送電コイル5の外側に位置するときが弱い傾向になる。   When the power transmission coil 5 is formed of a flat coil as in the present embodiment, the magnetic flux intensity of the power transmission coil 5 tends to be strong on the inside and weak on the outside. As described above, the coupling coefficient K tends to be strong when the power receiving coil 6 is located at the center of the power transmitting coil 5 and weak when the power receiving coil 6 is located outside the power transmitting coil 5.

このため、受電コイル6が送電コイル5の端部に位置する場合、磁気結合が低下し、伝送効率が低下するため、電子機器2は受電することが困難であった。   For this reason, when the power receiving coil 6 is located at the end of the power transmitting coil 5, the magnetic coupling is lowered and the transmission efficiency is lowered, so that it is difficult for the electronic device 2 to receive power.

そこで、本実施の形態では、上記関係式(1)、(2)を用いて送電コイル5のL値(L1)および受電コイル6のL値(L2)を算出する際に、結合係数Kminが用いられる。すなわち、L1およびL2は結合係数Kminに基づく値である。   Therefore, in the present embodiment, when calculating the L value (L1) of the power transmission coil 5 and the L value (L2) of the power receiving coil 6 using the relational expressions (1) and (2), the coupling coefficient Kmin is Used. That is, L1 and L2 are values based on the coupling coefficient Kmin.

これにより、受電コイル6が送電コイル5の端部(例えば位置C)に位置するときの伝送効率を向上させることができる。すなわち、出力電圧Eminを大きくすることができ、受電コイル6が送電コイル5の端部に位置するときでも電子機器2は受電することができる。   Thereby, the transmission efficiency when the power receiving coil 6 is located at the end (for example, position C) of the power transmitting coil 5 can be improved. That is, the output voltage Emin can be increased, and the electronic device 2 can receive power even when the power receiving coil 6 is located at the end of the power transmitting coil 5.

また、L1およびL2が結合係数Kminに基づく値である場合、受電コイル6が送電コイル5の中心部付近に位置するときの伝送効率は低下するが、送電コイル5が発生させる磁束は強いため、受電コイル6が送電コイル5の中心部に位置するときでも電子機器2は受電することができる。   When L1 and L2 are values based on the coupling coefficient Kmin, the transmission efficiency when the power receiving coil 6 is located near the center of the power transmission coil 5 is reduced, but the magnetic flux generated by the power transmission coil 5 is strong. Even when the power receiving coil 6 is located at the center of the power transmitting coil 5, the electronic device 2 can receive power.

したがって、電子機器2は受電コイル6が送電コイル5の中心部に位置する場合だけでなく、発生する磁束が弱い端部に位置する場合でも、受電することができる。すなわち、電子機器2が受電可能な範囲を大きくすることができる。   Therefore, the electronic device 2 can receive power not only when the power receiving coil 6 is positioned at the center of the power transmitting coil 5 but also when it is positioned at the end where the generated magnetic flux is weak. That is, the range in which the electronic device 2 can receive power can be increased.

さらに、本実施の形態では送電コイル5の外輪5bは受電コイル6の外輪6bよりも大きいため、送電コイル5は広範囲に磁界を発生させることができる。すなわち、電子機器2は広範囲で受電可能となる。   Further, in the present embodiment, the outer ring 5b of the power transmission coil 5 is larger than the outer ring 6b of the power reception coil 6, and therefore the power transmission coil 5 can generate a magnetic field in a wide range. That is, the electronic device 2 can receive power over a wide range.

以上より、L1およびL2は受電コイル6が送電コイル5の端部に位置するときの結合係数Kに基づく値であるが、ここでの送電コイル5の端部に位置するときとは、少なくとも受電コイル6が送電コイル5の中心部(X軸とY軸との交点)よりも、送電コイル5の外輪の近くに位置するときである。   From the above, L1 and L2 are values based on the coupling coefficient K when the power receiving coil 6 is located at the end of the power transmitting coil 5, but when the power receiving coil 6 is located at the end of the power transmitting coil 5 here, at least the power receiving This is when the coil 6 is positioned closer to the outer ring of the power transmission coil 5 than the center of the power transmission coil 5 (intersection of the X axis and the Y axis).

また、一般的に送電コイル5の中空部と受電コイル6の中空部とが重なる場合(例えば、受電コイル6が位置Aに位置する場合)、磁気結合が高くなる、すなわち、結合係数Kが1に近づく。換言すると、送電コイル5の中空部と受電コイル6の中空部とのうち、一方の中空部が他方の中空部を包含しない場合、結合係数Kが低下し、伝送効率が低下する傾向にある。したがって、受電コイル6の少なくとも一部が内輪5aと外輪5bとの間に位置する場合、または、送電コイル5の導体上に位置する場合の結合係数Kに基づいて、L1およびL2が算出されることにより、受電コイル6が送電コイル5の端部に位置するときの伝送効率を高めることができ、電子機器2は広範囲で受電することができる。   In general, when the hollow portion of the power transmission coil 5 and the hollow portion of the power reception coil 6 overlap (for example, when the power reception coil 6 is located at the position A), the magnetic coupling becomes high, that is, the coupling coefficient K is 1. Get closer to. In other words, when one hollow part does not include the other hollow part among the hollow part of the power transmission coil 5 and the hollow part of the power receiving coil 6, the coupling coefficient K tends to decrease and the transmission efficiency tends to decrease. Accordingly, L1 and L2 are calculated based on the coupling coefficient K when at least a part of the power receiving coil 6 is located between the inner ring 5a and the outer ring 5b or on the conductor of the power transmitting coil 5. Thereby, the transmission efficiency when the power receiving coil 6 is located at the end of the power transmitting coil 5 can be increased, and the electronic device 2 can receive power in a wide range.

また、図8に示すように、出力電圧Eは、受電コイル6が送電コイル5の外輪5b付近に位置するときに急激に低下するため、L1およびL2は受電コイル6の中心が送電コイル5の内輪5aよりも外輪5bの近くに位置するときの結合係数Kに基づく値である方がより好ましい。   Further, as shown in FIG. 8, the output voltage E rapidly decreases when the power receiving coil 6 is positioned in the vicinity of the outer ring 5 b of the power transmission coil 5, so that the center of the power receiving coil 6 is L1 and L2 of the power transmission coil 5. A value based on the coupling coefficient K when located closer to the outer ring 5b than to the inner ring 5a is more preferable.

よって、L1およびL2は、受電コイル6が位置Bに位置するときの結合係数Kに基づいて算出されてもよく、受電コイル6が位置Cに位置するときの結合係数Kに基づいて算出されてもよい。   Therefore, L1 and L2 may be calculated based on the coupling coefficient K when the power receiving coil 6 is positioned at the position B, or calculated based on the coupling coefficient K when the power receiving coil 6 is positioned at the position C. Also good.

もちろん、本実施の形態の場合、受電コイル6が位置Cに位置するときに結合係数Kは充電範囲105内において最小となるので、L1およびL2は、受電コイル6が位置Cに位置するときの結合係数K(Kmin)に基づいて算出される方が好ましい。すなわち、本実施の形態のように送電コイル5が複数の外輪側角部5dを有する多角形状である場合、L1およびL2は受電コイル6が送電コイル5の外輪側角部5dに近接するときの結合係数Kに基づく値である方が好ましい。   Of course, in the case of the present embodiment, the coupling coefficient K is minimized within the charging range 105 when the power receiving coil 6 is located at the position C. Therefore, L1 and L2 are the values when the power receiving coil 6 is located at the position C It is preferable to calculate based on the coupling coefficient K (Kmin). That is, when the power transmission coil 5 has a polygonal shape having a plurality of outer ring side corners 5d as in the present embodiment, L1 and L2 are obtained when the power receiving coil 6 is close to the outer ring side corner 5d of the power transmission coil 5. A value based on the coupling coefficient K is preferable.

ここでの受電コイル6が送電コイル5の外輪側角部5dに近接するとは、受電コイル6が送電コイル5の中心点よりも外輪側角部5dの近くに位置する場合であり、より好ましくは、受電コイル6が送電コイルの内輪側角部5cよりも外輪側角部5dの近くに位置する場合である。あるいは、外輪側角部が外輪辺5eおよび5fから構成される場合、受電コイル6の内輪6aが外輪辺5e(または外輪辺5f)の中点よりも、外輪辺5eを含む直線および外輪辺5fを含む直線の交点7の近くに位置する場合の結合係数Kに基づいてL1およびL2を算出してもよい。   Here, the power receiving coil 6 is close to the outer ring side corner 5d of the power transmission coil 5 when the power receiving coil 6 is located closer to the outer ring side corner 5d than the center point of the power transmission coil 5, more preferably. This is a case where the power receiving coil 6 is located closer to the outer ring side corner 5d than the inner ring side corner 5c of the power transmission coil. Alternatively, when the outer ring side corner is composed of the outer ring sides 5e and 5f, the inner ring 6a of the power receiving coil 6 includes a straight line including the outer ring side 5e and the outer ring side 5f from the midpoint of the outer ring side 5e (or the outer ring side 5f). L1 and L2 may be calculated based on the coupling coefficient K in the case of being located near the intersection 7 of the straight line including.

また上述したように、レギュレータ25は整流回路24を介して入力される直流電圧を所定の直流電圧に変換して出力するが、一般的に、レギュレータ25は変換可能な直流電圧の範囲(以下、入力電圧範囲とも称する)を有する。例えば、レギュレータ25の入力電圧範囲が8〜32Vで、出力電圧が9Vである場合、レギュレータ25は15Vの直流電圧を9Vに変換して出力可能だが、3Vの直流電圧から9Vの直流電圧を出力することは困難である。また、この入力電圧範囲の大きいレギュレータ25はコストがかかり、電子機器2のコストアップの要因となる。   Further, as described above, the regulator 25 converts the DC voltage input through the rectifier circuit 24 into a predetermined DC voltage and outputs it. Input voltage range). For example, when the input voltage range of the regulator 25 is 8 to 32V and the output voltage is 9V, the regulator 25 can output 15V DC voltage by converting it to 9V, but it outputs 9V DC voltage from 3V DC voltage. It is difficult to do. In addition, the regulator 25 having a large input voltage range is costly and causes an increase in the cost of the electronic device 2.

しかしながら、本実施の形態ではL1およびL2は結合係数Kminを用いて算出されるため、電子機器2のコストアップを抑制することができる。詳細に説明すると、本実施の形態では、受電コイル6が送電コイル5の端部に位置するときの伝送効率が高くなり、受電コイル6が送電コイル5の中心部に位置するときの伝送効率が低くなる。すなわち、出力電圧Emaxを小さく、出力電圧Eminを大きくすることができる。換言すると、レギュレータ25に入力される直流電圧の範囲を小さくすることができる。したがって、電子機器2に大きな入力電圧範囲を有するレギュレータ25を実装する必要がなく、電子機器2のコストアップを抑制することができる。   However, in the present embodiment, L1 and L2 are calculated using the coupling coefficient Kmin, so that an increase in cost of the electronic device 2 can be suppressed. More specifically, in this embodiment, the transmission efficiency when the power receiving coil 6 is located at the end of the power transmission coil 5 is high, and the transmission efficiency when the power receiving coil 6 is located at the center of the power transmission coil 5 is high. Lower. That is, the output voltage Emax can be reduced and the output voltage Emin can be increased. In other words, the range of the DC voltage input to the regulator 25 can be reduced. Therefore, it is not necessary to mount the regulator 25 having a large input voltage range on the electronic device 2, and the cost increase of the electronic device 2 can be suppressed.

また、本実施の形態において、レギュレータ25は入力電圧範囲を有し、この入力電圧範囲の下限値は出力電圧Emin以下であり、上限値は出力電圧Emax以上である。したがって、受電コイル6は充電範囲105内であればどこに載置されても、2次電池4の充電を行うことができる。   In the present embodiment, the regulator 25 has an input voltage range. The lower limit value of the input voltage range is equal to or lower than the output voltage Emin, and the upper limit value is equal to or higher than the output voltage Emax. Accordingly, the secondary battery 4 can be charged wherever the power receiving coil 6 is placed within the charging range 105.

次に図9を用いて本実施の形態に対する比較例について説明する。   Next, a comparative example for the present embodiment will be described with reference to FIG.

図9は、比較例に係る出力電圧と受電コイルの位置との関係を示す図である。比較例では、送電コイル5および受電コイル6のL値の算出方法が異なり、L1およびL2は結合係数Kminに基づく値ではなく、受電コイル6が位置Aに位置するときの結合係数Kと関係式(1)、(2)を用いて算出された値である。このときの出力電圧Eの推移を図9に示す。   FIG. 9 is a diagram illustrating a relationship between the output voltage and the position of the power receiving coil according to the comparative example. In the comparative example, the calculation method of the L value of the power transmission coil 5 and the power reception coil 6 is different, and L1 and L2 are not values based on the coupling coefficient Kmin, but the relation coefficient and the coupling coefficient K when the power reception coil 6 is located at the position A. This is a value calculated using (1) and (2). The transition of the output voltage E at this time is shown in FIG.

図8および図9を比較すると、位置Aにおいては、図9に示すグラフの方が高い出力電圧Eが計測される。しかしながら、図9に示す比較例では、位置Bにおいて、電子機器2は充分な電力が供給されず、整流回路24は直流電圧を出力することができない。すなわち、比較例にようにL1およびL2が算出される場合、電子機器2は送電コイル5の端部で受電することができず、充電可能な範囲が限定される。   8 and 9 are compared, at the position A, the output voltage E higher in the graph shown in FIG. 9 is measured. However, in the comparative example shown in FIG. 9, at position B, the electronic device 2 is not supplied with sufficient power, and the rectifier circuit 24 cannot output a DC voltage. That is, when L1 and L2 are calculated as in the comparative example, the electronic device 2 cannot receive power at the end of the power transmission coil 5, and the chargeable range is limited.

以上から、受電コイル6が送電コイル5の端部に位置するときの結合係数に適するL1およびL2を算出することにより、電子機器2が受電可能な範囲を広くすることができる。すなわち、受電コイル6が送電コイル5の端部に位置する場合でも、整流回路24は直流電圧を出力することができ、2次電池4を受電することができる。   From the above, by calculating L1 and L2 suitable for the coupling coefficient when the power receiving coil 6 is located at the end of the power transmitting coil 5, the range in which the electronic device 2 can receive power can be widened. That is, even when the power receiving coil 6 is located at the end of the power transmitting coil 5, the rectifier circuit 24 can output a DC voltage and can receive the secondary battery 4.

以下、上記説明した本実施の形態における補足事項に説明する。   Hereinafter, supplementary items in the above-described embodiment will be described.

図8、9に示すように、出力電圧Eは、受電コイル6が送電コイル5の外輪5b付近に位置するときに急激に低下するため、L1およびL2は受電コイル6が送電コイル5の内輪5aよりも外輪5bに近接するときの結合係数Kに基づく値である方が好ましい。これにより、受電コイル6が送電コイル5の外輪付近に位置するときでも、レギュレータ25はより確実に直流電圧を出力することができ、すなわち、2次電池4へ給電することができる。   As shown in FIGS. 8 and 9, the output voltage E rapidly decreases when the power receiving coil 6 is positioned near the outer ring 5 b of the power transmission coil 5. It is more preferable that the value be based on the coupling coefficient K when approaching the outer ring 5b. Thereby, even when the power receiving coil 6 is located near the outer ring of the power transmitting coil 5, the regulator 25 can output the DC voltage more reliably, that is, can supply power to the secondary battery 4.

また、送電コイル5および受電コイル6の形状、種類は特に限定されない。すなわち、送電コイル5および受電コイル6は円形状でも、多角形状でもよく、平面コイルでも、多層コイルでもよい。また、送電装置1および電子機器2は本実施の形態のように直方体でなくてもよく、充電面1bおよび2bは平らでなくてもよい。   Further, the shapes and types of the power transmission coil 5 and the power reception coil 6 are not particularly limited. That is, the power transmission coil 5 and the power reception coil 6 may be circular or polygonal, and may be a planar coil or a multilayer coil. Further, the power transmission device 1 and the electronic device 2 may not be a rectangular parallelepiped as in the present embodiment, and the charging surfaces 1b and 2b may not be flat.

また、本実施の形態では、図7に示す結合係数Kの推移の関係上、受電コイル6が送電コイル5の端部に位置するときの結合係数Kを用いてL1およびL2を算出したが、受電コイル6が送電コイルの中心部に位置するときに、結合係数Kが減少する傾向にある場合、このときの結合係数Kを用いてL1およびL2を算出してもよい。すなわち、L1およびL2を算出する際に使用される結合係数Kが少なくとも結合係数Kmax以外であればよい。他の言い方をすると、L1およびL2は結合係数Kmax以外の結合係数Kに基づく値である。   Moreover, in this Embodiment, L1 and L2 were calculated using the coupling coefficient K when the receiving coil 6 is located in the edge part of the power transmission coil 5 on the relationship of transition of the coupling coefficient K shown in FIG. When the power receiving coil 6 is positioned at the center of the power transmitting coil, if the coupling coefficient K tends to decrease, L1 and L2 may be calculated using the coupling coefficient K at this time. That is, the coupling coefficient K used when calculating L1 and L2 only needs to be at least other than the coupling coefficient Kmax. In other words, L1 and L2 are values based on the coupling coefficient K other than the coupling coefficient Kmax.

また、受電コイル6が送電コイル5の外輪5bの外側に位置するときの結合係数Kを用いてL1およびL2を算出してもよい。また、送電コイル5が強力な磁界を発生させる場合、充電範囲105は送電コイル5の外輪5bよりも大きく構成されてもよい。   Alternatively, L1 and L2 may be calculated using the coupling coefficient K when the power receiving coil 6 is positioned outside the outer ring 5b of the power transmitting coil 5. When the power transmission coil 5 generates a strong magnetic field, the charging range 105 may be configured to be larger than the outer ring 5b of the power transmission coil 5.

また図10に示すように送電装置1は縦置きされてもよい。図10は本発明の実施の形態に係るワイヤレス電力伝送システムの第2例の斜視図である。なお、図10では、電子機器2および筐体2bを省略しており、受電コイル6のみを開示している。   Moreover, as shown in FIG. 10, the power transmission apparatus 1 may be installed vertically. FIG. 10 is a perspective view of a second example of the wireless power transmission system according to the embodiment of the present invention. In FIG. 10, the electronic device 2 and the housing 2b are omitted, and only the power receiving coil 6 is disclosed.

図10に示すように、第2例の場合、送電装置1の筐体1aは電子機器2を保持するための2つの電子機器用ボックス1cを有する。電子機器2は電子機器用ボックス1cに挿入されることで、送電装置1の側面に固定される。これにより、送電装置1を縦置きにした場合においても、電子機器2を送電装置1の近傍に配置することができ、電子機器2は受電することができる。   As shown in FIG. 10, in the case of the second example, the housing 1 a of the power transmission device 1 includes two electronic device boxes 1 c for holding the electronic device 2. The electronic device 2 is fixed to the side surface of the power transmission device 1 by being inserted into the electronic device box 1c. Thereby, even when the power transmission device 1 is placed vertically, the electronic device 2 can be disposed in the vicinity of the power transmission device 1, and the electronic device 2 can receive power.

なお、筐体1aは3つ以上の電子機器用ボックス1cが設けられてもよく、図10のように一方の側面だけでなく、両側面に電子機器用ボックス1cが設けられてもよい。また、1つの電子機器用ボックス1cに複数の電子機器2が挿入されてもよい。   The housing 1a may be provided with three or more electronic device boxes 1c, and the electronic device boxes 1c may be provided on both sides as shown in FIG. A plurality of electronic devices 2 may be inserted into one electronic device box 1c.

また、第1例のように、電子機器2を送電装置1の上面に載置する場合、送電装置1は机で構成されてもよい。すなわち、机内に2次側伝送回路部201および負荷回路部202が設けられ、ユーザは机の上に電子機器2(携帯端末、PC等)を置くだけで電子機器2は充電される。これにより、長時間の会議等でも、電子機器2を電源ケーブルに接続することなく、操作することができ、利便制を向上させることができる。   Further, as in the first example, when the electronic device 2 is placed on the upper surface of the power transmission device 1, the power transmission device 1 may be configured by a desk. That is, the secondary-side transmission circuit unit 201 and the load circuit unit 202 are provided in the desk, and the user simply charges the electronic device 2 (mobile terminal, PC, etc.) on the desk to charge the electronic device 2. Thereby, even for a long-time meeting or the like, the electronic device 2 can be operated without being connected to the power cable, and the convenience system can be improved.

本発明は、送電コイルを介して送電する送電装置、受電コイルを介して受電する受電装置、および、送電装置と受電装置とを備える電力伝送システムに適用可能である。   The present invention is applicable to a power transmission device that transmits power via a power transmission coil, a power reception device that receives power via a power reception coil, and a power transmission system including a power transmission device and a power reception device.

1 送電装置
2 電子機器
3 ワイヤレス電力伝送システム
4 2次電池
5 送電コイル
5a 内輪
5b 外輪
5c 内輪側角部
5d 外輪側角部
5e 外輪辺
5f 外輪辺
6 受電コイル
6a 内輪
6b 外輪
7 交点
8 電源
11 AC/DCコンバータ
12 送電制御部
13 DC/ACインバータ
14 制御回路
15 電圧監視部
16 温度監視部
19 1次側コンデンサ
21 受電回路部
22 受電制御部
23 充電制御回路
24 整流回路
25 レギュレータ
26 制御回路
27 電圧監視部
29 2次側コンデンサ
31 電子機器検知部
32 情報送受信部
33 変復調回路
34 認証部
41 送電装置検知部
42 情報送受信部
43 変復調回路
44 認証部
101 1次側伝送回路部
102 電源回路部
105 充電範囲
201 2次側伝送回路部
202 負荷回路部
301 伝送回路部
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 2 Electronic device 3 Wireless power transmission system 4 Secondary battery 5 Power transmission coil 5a Inner ring 5b Outer ring 5c Inner ring side corner 5d Outer ring side corner 5e Outer ring side 5f Outer ring side 6 Power receiving coil 6a Inner ring 6b Outer ring 7 Intersection 8 Power supply 11 AC / DC converter 12 Power transmission control unit 13 DC / AC inverter 14 Control circuit 15 Voltage monitoring unit 16 Temperature monitoring unit 19 Primary side capacitor 21 Power receiving circuit unit 22 Power receiving control unit 23 Charge control circuit 24 Rectifier circuit 25 Regulator 26 Control circuit 27 Voltage monitoring unit 29 Secondary side capacitor 31 Electronic device detection unit 32 Information transmission / reception unit 33 Modulation / demodulation circuit 34 Authentication unit 41 Power transmission device detection unit 42 Information transmission / reception unit 43 Modulation / demodulation circuit 44 Authentication unit 101 Primary side transmission circuit unit 102 Power supply circuit unit 105 Charging range 201 Secondary transmission circuit 20 A load circuit section 301 transmission circuit unit

Claims (14)

導体を渦巻状に巻回して形成される送電コイルを有する送電装置から電磁誘導によって電力を受電する受信装置であって、
導体を渦巻状に巻回して形成される受電コイルと、
前記受電コイルを介して電力が供給される負荷回路部と、を備え、
前記受電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの内輪と外輪との間に位置する場合の結合係数に基づいた値であることを特徴とする受電装置。
A receiving device that receives power by electromagnetic induction from a power transmission device having a power transmission coil formed by winding a conductor in a spiral shape,
A power receiving coil formed by winding a conductor in a spiral;
A load circuit unit to which electric power is supplied through the power receiving coil,
The power receiving device is characterized in that the inductance value of the power receiving coil is a value based on a coupling coefficient when at least a part of the inner ring of the power receiving coil is located between the inner ring and the outer ring of the power transmitting coil.
請求項1に記載の受電装置であって、
前記受電コイルのインダクタンス値は、前記負荷回路部のインピーダンス値に基づいた値であることを特徴とする受電装置。
The power receiving device according to claim 1,
The power receiving device according to claim 1, wherein an inductance value of the power receiving coil is a value based on an impedance value of the load circuit unit.
請求項2に記載の受電装置であって、
前記受電コイルに直列に接続され、前記受電コイルと共振するコンデンサをさらに備えることを特徴とする受電装置。
The power receiving device according to claim 2,
The power receiving device further comprising a capacitor connected in series to the power receiving coil and resonating with the power receiving coil.
請求項1に記載の受電装置であって、
前記受電コイルのインダクタンス値は、前記受電コイルが前記送電コイルの内輪よりも前記送電コイルの外輪の近くに位置する場合の結合係数に基づいた値であることを特徴とする受電装置。
The power receiving device according to claim 1,
The power receiving device is characterized in that the inductance value of the power receiving coil is a value based on a coupling coefficient when the power receiving coil is positioned closer to the outer ring of the power transmitting coil than the inner ring of the power transmitting coil.
導体を渦巻状に巻回して形成される受電コイルを有する受電装置に電磁誘導によって電力を送電する送電装置であって、
導体を渦巻状に巻回して形成される送電コイルと、
前記送電コイルに電力を供給する電源回路部と、を備え、
前記送電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの内輪と外輪との間に位置する場合の結合係数に基づいた値であることを特徴とする送電装置。
A power transmission device that transmits power by electromagnetic induction to a power reception device having a power reception coil formed by winding a conductor in a spiral shape,
A power transmission coil formed by winding a conductor spirally;
A power supply circuit section for supplying power to the power transmission coil,
The power transmission apparatus according to claim 1, wherein the inductance value of the power transmission coil is a value based on a coupling coefficient when at least a part of the inner ring of the power reception coil is located between the inner ring and the outer ring of the power transmission coil.
請求項5に記載の送電装置であって、
前記送電コイルに直列に接続され、前記送電コイルと共振するコンデンサをさらに備えることを特徴とする送電装置。
The power transmission device according to claim 5,
A power transmission device further comprising a capacitor connected in series to the power transmission coil and resonating with the power transmission coil.
請求項5に記載の送電装置であって、
前記送電コイルを格納すると共に、前記受電装置を載置可能な範囲が可視化される筐体をさらに有することを特徴とする送電装置。
The power transmission device according to claim 5,
The power transmission device further includes a housing that stores the power transmission coil and visualizes a range in which the power reception device can be placed.
請求項5に記載の送電装置であって、
前記送電コイルは第1の外輪辺および第2の外輪辺から構成される角部を有し、
前記送電コイルのインダクタンス値は、前記受電コイルの内輪が前記第1の外輪辺の中点よりも前記第1の外輪辺を含む直線および前記第2の外輪辺を含む直線の交点の近くに位置する場合の結合係数に基づく値であることを特徴とする送電装置。
The power transmission device according to claim 5,
The power transmission coil has a corner portion composed of a first outer ring side and a second outer ring side,
The inductance value of the power transmission coil is such that the inner ring of the power receiving coil is located closer to the intersection of the straight line including the first outer ring side and the straight line including the second outer ring side than the midpoint of the first outer ring side. A power transmission device having a value based on a coupling coefficient in the case of performing.
電磁誘導によって電力伝送を行う電力伝送システムであって、
導体を渦巻状に巻回して形成される送電コイルおよび受電コイルを有する伝送回路部と、
前記送電コイルに電力を供給する電源回路部と、
前記受電コイルを介して電力が供給される負荷回路部と、を備え、
前記送電コイルおよび前記受電コイルのインダクタンス値は、前記受電コイルの内輪の少なくとも一部が前記送電コイルの外輪および内輪との間に位置する場合の結合係数に基づいた値であることを特徴とする電力伝送システム。
A power transmission system that transmits power by electromagnetic induction,
A transmission circuit unit having a power transmission coil and a power reception coil formed by winding a conductor in a spiral shape;
A power supply circuit unit for supplying power to the power transmission coil;
A load circuit unit to which electric power is supplied through the power receiving coil,
The inductance value of the power transmission coil and the power reception coil is a value based on a coupling coefficient when at least a part of the inner ring of the power reception coil is located between the outer ring and the inner ring of the power transmission coil. Power transmission system.
請求項9に記載の電力伝送システムであって、
前記送電コイルのインダクタンス値は、前記電源回路部から見た前記伝送回路部のインピーダンス値に基づいた値であることを特徴とする電力伝送システム。
The power transmission system according to claim 9,
The power transmission system according to claim 1, wherein an inductance value of the power transmission coil is a value based on an impedance value of the transmission circuit unit viewed from the power supply circuit unit.
請求項10に記載の電力伝送システムであって、
前記受電コイルのインダクタンス値は、前記負荷回路部のインピーダンス値に基づいた値であることを特徴とする電力伝送システム。
The power transmission system according to claim 10,
The power transmission system according to claim 1, wherein an inductance value of the power receiving coil is a value based on an impedance value of the load circuit unit.
請求項12に記載の電力伝送システムであって、
前記送電コイルのインダクタンス値をL1とし、
前記受電コイルのインダクタンス値をL2とし、
前記電源回路部から見た前記伝送回路部のインピーダンス値をZ1とし、
前記負荷回路部のインピーダンス値をZ2とし、
前記結合係数をKとし、
前記送電コイルから前記受電コイルへ伝送する電力の周波数をfとする場合、
2πfL1=Z1/K、2πfL2=Z2/Kの関係を満たすことを特徴とする電力伝送システム。
The power transmission system according to claim 12,
The inductance value of the power transmission coil is L1,
The inductance value of the power receiving coil is L2,
The impedance value of the transmission circuit unit viewed from the power supply circuit unit is Z1,
The impedance value of the load circuit unit is Z2,
The coupling coefficient is K,
When the frequency of power transmitted from the power transmission coil to the power reception coil is f,
A power transmission system satisfying a relationship of 2πfL1 = Z1 / K and 2πfL2 = Z2 / K.
送電コイルを有する送電装置から電磁誘導によって電力を受電する受信装置であって、
前記送電コイルから電力を受信する受電コイルと、
前記受電コイルを介して電力が供給される負荷回路部と、を備え、
前記受電コイルのインダクタンス値は、前記受電コイルと前記送電コイルとの結合係数が最大とならないときの結合係数に基づいた値であることを特徴とする受電装置。
A receiving device that receives power by electromagnetic induction from a power transmission device having a power transmission coil,
A power receiving coil that receives power from the power transmitting coil;
A load circuit unit to which electric power is supplied through the power receiving coil,
The power receiving device according to claim 1, wherein the inductance value of the power receiving coil is a value based on a coupling coefficient when a coupling coefficient between the power receiving coil and the power transmitting coil is not maximized.
受電コイルの有する受電装置に電磁誘導によって電力を送電する送電装置であって、
前記受電コイルに送電する送電コイルと、
前記送電コイルに電力を供給する電源回路部と、を備え、
前記送電コイルのインダクタンス値は、前記受電コイルと前記送電コイルとの結合係数が最大とならないときの結合係数に基づいた値であることを特徴とする送電装置。
A power transmission device that transmits power by electromagnetic induction to a power reception device of a power reception coil,
A power transmission coil for transmitting power to the power reception coil;
A power supply circuit section for supplying power to the power transmission coil,
An inductance value of the power transmission coil is a value based on a coupling coefficient when a coupling coefficient between the power receiving coil and the power transmission coil is not maximized.
JP2012096346A 2012-04-20 2012-04-20 Power receiving device, power transmitting device and power transmitting system Pending JP2013225961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096346A JP2013225961A (en) 2012-04-20 2012-04-20 Power receiving device, power transmitting device and power transmitting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096346A JP2013225961A (en) 2012-04-20 2012-04-20 Power receiving device, power transmitting device and power transmitting system

Publications (1)

Publication Number Publication Date
JP2013225961A true JP2013225961A (en) 2013-10-31

Family

ID=49595652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096346A Pending JP2013225961A (en) 2012-04-20 2012-04-20 Power receiving device, power transmitting device and power transmitting system

Country Status (1)

Country Link
JP (1) JP2013225961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173345A (en) * 2014-03-11 2015-10-01 オムロンオートモーティブエレクトロニクス株式会社 communication system
US9973029B2 (en) 2013-06-26 2018-05-15 Canon Kabushiki Kaisha Wireless power transmission/reception apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9973029B2 (en) 2013-06-26 2018-05-15 Canon Kabushiki Kaisha Wireless power transmission/reception apparatus
JP2015173345A (en) * 2014-03-11 2015-10-01 オムロンオートモーティブエレクトロニクス株式会社 communication system

Similar Documents

Publication Publication Date Title
US10529484B2 (en) Coil device of wireless power transfer system
US10205351B2 (en) Wireless power transmitter, wireless power repeater and wireless power transmission method
US9866278B2 (en) Wireless power repeater
EP2555377B1 (en) Contactless power feeding apparatus and contactless power feeding method
CN103718417B (en) Capacitive character contactless power supply system
JP5405694B1 (en) Power transmission device, electronic device and wireless power transmission system
JP5121307B2 (en) Non-contact power transmission coil unit, portable terminal, power transmission device, and non-contact power transmission system
JP6142413B2 (en) Antenna coil unit
US9682631B2 (en) Non-contact electricity supply device
CN105515216A (en) Apparatus and method for transmitting power wirelessly
US9818532B2 (en) Method of forming electromagnetic space
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
JP2015186426A (en) Power reception system
KR102125917B1 (en) Wireless power transmitting device
JP2012023913A (en) Non-contact power feeding device
JP2012070463A (en) Non-contact power supply device
JP6399351B2 (en) Power transmission device, vehicle equipped with power transmission device and wireless power transmission system
JP6535003B2 (en) Wireless power receiver
JP2013225961A (en) Power receiving device, power transmitting device and power transmitting system
JP6737301B2 (en) Wireless power transmission system
JP2012105503A (en) Non-contact power supply device
JP6215969B2 (en) Wireless power transmission system and power transmission device and power reception device thereof
JP2012143093A (en) Proximity wireless charging ac adapter
KR20170139319A (en) A wireless power transmitter and a wireless power receiver
JP2019126202A (en) Lc circuit unit, wireless transmission equipment, wireless power reception device, and wireless power transmission system