JP2013224779A - Heat transporting device - Google Patents

Heat transporting device Download PDF

Info

Publication number
JP2013224779A
JP2013224779A JP2012096831A JP2012096831A JP2013224779A JP 2013224779 A JP2013224779 A JP 2013224779A JP 2012096831 A JP2012096831 A JP 2012096831A JP 2012096831 A JP2012096831 A JP 2012096831A JP 2013224779 A JP2013224779 A JP 2013224779A
Authority
JP
Japan
Prior art keywords
pipe
heat
transport device
heat transport
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012096831A
Other languages
Japanese (ja)
Inventor
Satoru Abe
覚 阿部
Yasuhei Koyama
泰平 小山
Yuki Tsukinari
勇起 月成
Yuta Komatsu
裕太 小松
Hiroyuki Mochida
寛之 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012096831A priority Critical patent/JP2013224779A/en
Publication of JP2013224779A publication Critical patent/JP2013224779A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly-efficient heat transporting device which is automatically operable without any external power and also has a high heat transporting ability.SOLUTION: A heat transporting device includes: a riser 1 for receiving heat from the outside; a downcomer 2 for radiating heat to the outside; an upper part communicating pipe 3 for connecting the riser with an upper part of the downcomer; a lower part communicating pipe 4 for connecting the riser with a lower part of the downcomer; and a working fluid 22 circulating through each pipe. At least one heat exchanging part 5 is provided around the upper part communicating pipe 3 so as to allow the working fluid 22 in the lower part communicating pipe 4 to circulate through the heat exchanging part 5.

Description

本発明は、発熱部を有する原子力プラントや産業用及び民生用機器を冷却するための熱輸送装置に関し、特に、外部動力を使用しない受動的な熱輸送装置に関する。   The present invention relates to a heat transport device for cooling a nuclear power plant having an exothermic part and industrial and consumer equipment, and more particularly to a passive heat transport device that does not use external power.

例えば、原子力プラントや産業用及び民生用機器の多くは、通常使用時に発熱する機器を有しているが、冷却材が失われるような苛酷事故時の冷却のために、又は装置の省エネ化や小型化・軽量化等のために、外部動力を使用しない冷却装置の要望が高まっている。   For example, many nuclear power plants and industrial and consumer equipment have equipment that generates heat during normal use, but they can be used for cooling in severe accidents where coolant is lost, or for energy saving equipment. In order to reduce the size and weight, there is a growing demand for cooling devices that do not use external power.

原子力プラントでは、原子炉設備の信頼性や安全性を一層高めるため、仮に津波により3つの機能(全交流電源、海水冷却機能、使用済み燃料貯蔵プールの冷却機能)を全て喪失したとしても、炉心損傷や使用済み燃料の損傷を防止し、放射性物質の放出を抑制しつつ冷却機能を維持できる熱輸送装置が求められている。このうち、使用済み燃料貯蔵プールの冷却については、既設の冷却系の喪失を想定し、外部動力が利用不可の状況においても、プール水を冷却できる装置が求められる。そのような熱輸送装置としてヒートパイプを用いる手段が提案されている(特許文献1)。   In the nuclear power plant, even if all three functions (all AC power supply, seawater cooling function, and spent fuel storage pool cooling function) are lost due to the tsunami, the core will be increased in order to further improve the reliability and safety of the reactor equipment. There is a need for a heat transport device that can prevent damage and damage to spent fuel, and maintain a cooling function while suppressing the release of radioactive materials. Among these, regarding the cooling of the spent fuel storage pool, assuming the loss of the existing cooling system, an apparatus capable of cooling the pool water is required even in a situation where external power is not available. Means using a heat pipe as such a heat transport device has been proposed (Patent Document 1).

また、電子・電気機器分野では、機器の小型・軽量化や大容量化が進み、発熱密度の増大が課題となっている。発熱密度の高い代表的な機器として、電動機の電源であるコンバータやインバータなどの電力変換装置が挙げられる。これらの装置内部には半導体素子が用いられており、稼動の際には、半導体素子が短時間で急激に発熱する。この除熱のため、外部動力を必要としないヒートパイプを用いた冷却装置が提案されている。   In the field of electronic / electrical equipment, the miniaturization, weight reduction, and increase in capacity of equipment have progressed, and an increase in heat generation density has become a problem. As a typical device having a high heat generation density, there is a power converter such as a converter or an inverter that is a power source of an electric motor. A semiconductor element is used in these devices, and the semiconductor element generates heat rapidly in a short time during operation. For this heat removal, a cooling device using a heat pipe that does not require external power has been proposed.

代表的なヒートパイプは、循環力に基づき、ウイック式と熱サイフォン式とが挙げられる。ウイック式は、毛細管構造を有する物体(ウイック)を密閉容器に内包し、これを循環力の発生源として利用する。一方、熱サイフォン式は、重力を利用し、液相とこれを沸騰させ生成した気相との密度差で作動流体を循環させる。   Typical heat pipes include a wick type and a thermosyphon type based on the circulation force. In the wick type, an object (wick) having a capillary structure is enclosed in a sealed container and used as a source of circulation force. On the other hand, the thermosyphon type uses gravity to circulate the working fluid with a density difference between a liquid phase and a gas phase generated by boiling the liquid phase.

特開平2−223896号公報JP-A-2-223896

しかしながら、上述した従来の熱輸送装置では、対象とする発熱機器の場所や熱輸送距離の長短によっては熱交換効率及び熱輸送能力が低下する場合がある。特に、ウイック式ヒートパイプは、毛細管構造を有する物体の空隙部を液相が流動するため、熱輸送距離の延長に伴う流路の圧力損失の増大が課題となる。さらに、この空隙部では液相の喪失を避ける必要があるため、冷却能力を向上させることが困難である。
また、熱サイフォン式のヒートパイプは、冷却部を鉛直方向上方に設置する必要があるため、熱及び冷媒の輸送方向が限定されるという課題があった。
However, in the above-described conventional heat transport device, the heat exchange efficiency and the heat transport capability may be lowered depending on the location of the target heat generating device and the length of the heat transport distance. In particular, the wick-type heat pipe has a problem that an increase in the pressure loss of the flow path due to the extension of the heat transport distance is caused because the liquid phase flows through the void portion of the object having a capillary structure. Furthermore, since it is necessary to avoid the loss of the liquid phase in this gap, it is difficult to improve the cooling capacity.
Moreover, since the thermosiphon type heat pipe needs to install the cooling unit vertically upward, there is a problem that the transport direction of heat and refrigerant is limited.

本発明は、上記問題を解決するためになされたもので、外部動力なしに自動的に動作するとともに熱交換効率及び熱輸送能力の高い高効率の熱輸送装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object thereof is to provide a highly efficient heat transport device that operates automatically without external power and has high heat exchange efficiency and heat transport capability.

上記課題を解決するために、本実施形態に係る熱輸送装置は、外部からの熱を受熱する上昇管と、外部へ熱を放熱する下降管と、前記上昇管と下降管の上部を接続する上部連通管と、前記上昇管と下降管の下部を接続する下部連通管と、各管内を循環する作動流体と、を有する熱輸送装置において、前記上部連通管の周囲に少なくとも一つの熱交換部を設け、前記熱交換部に前記下部連通管内の作動流体を循環させることを特徴とする。   In order to solve the above problems, a heat transport device according to the present embodiment connects a riser pipe that receives heat from the outside, a downcomer pipe that radiates heat to the outside, and an upper part of the riser pipe and the downcomer pipe. In a heat transport device having an upper communication pipe, a lower communication pipe that connects the lower part of the riser pipe and the lower pipe, and a working fluid that circulates in each pipe, at least one heat exchange section around the upper communication pipe And the working fluid in the lower communication pipe is circulated through the heat exchange section.

本実施形態によれば、外部動力なしに自動的に動作するとともに熱交換効率及び熱輸送能力の高い高効率の熱輸送装置を提供することができる。   According to this embodiment, it is possible to provide a highly efficient heat transport device that operates automatically without external power and has high heat exchange efficiency and heat transport capability.

第1の実施形態に係る熱輸送装置の断面構成図。The cross-sectional block diagram of the heat transport apparatus which concerns on 1st Embodiment. 第2の実施形態に係る熱輸送装置の断面構成図。The cross-sectional block diagram of the heat transport apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る熱輸送装置の上昇管の断面構成図。The cross-sectional block diagram of the riser pipe of the heat transport apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る熱輸送装置の断面構成図。The cross-sectional block diagram of the heat transport apparatus which concerns on 4th Embodiment. 第5の実施形態に係る熱輸送装置の断面構成図。The cross-sectional block diagram of the heat transport apparatus which concerns on 5th Embodiment. 第6の実施形態に係る熱輸送装置の断面構成図。Sectional block diagram of the heat transport apparatus which concerns on 6th Embodiment. 第7の実施形態に係る熱輸送装置の断面構成図。The cross-sectional block diagram of the heat transport apparatus which concerns on 7th Embodiment. 第8の実施形態に係る熱輸送装置の断面構成図。The cross-sectional block diagram of the heat transport apparatus which concerns on 8th Embodiment.

以下、本発明に係る熱輸送装置の実施形態を、図面を参照して説明する。
[第1の実施形態]
第1の実施形態に係る熱輸送装置を図1により説明する。
Hereinafter, an embodiment of a heat transport device according to the present invention will be described with reference to the drawings.
[First Embodiment]
The heat transport apparatus according to the first embodiment will be described with reference to FIG.

(構成)
第1の実施形態に係る熱輸送装置、気泡ポンプ型のヒートパイプであって、外部からの熱11を受熱する上昇管1、受熱した熱12を放熱する下降管2、上昇管1と下降管2の上部を連結する上部連通管3、上昇管1と下降管2の下部を連結する下部連通管4、上部連通管3の周囲に配置された熱交換部5とから構成される。下部連通管4は、図1に示すように、屈曲構造となっており、内部の作動流体22が熱交換部5を循環可能な構成となっている。また、上部連通管3と熱交換部5の間には相互に連通可能な連通部6が設けられている。
(Constitution)
FIG. 1 is a heat transport device according to the first embodiment, a bubble pump type heat pipe, a rising pipe 1 that receives heat 11 from the outside, a down pipe 2 that radiates the received heat 12, a rising pipe 1 and a down pipe 2, an upper communication pipe 3 that connects the upper part of the lower pipe 2, a lower communication pipe 4 that connects the lower part of the ascending pipe 1 and the lower pipe 2, and a heat exchanging unit 5 that is disposed around the upper communication pipe 3. As shown in FIG. 1, the lower communication pipe 4 has a bent structure, and the internal working fluid 22 can circulate through the heat exchange unit 5. Further, a communication part 6 that can communicate with each other is provided between the upper communication pipe 3 and the heat exchange part 5.

本実施形態では作動流体22として水が用いられ、装置稼動前に飽和蒸気圧を所望の圧力になるように調整されている。水は入手が容易であり、仮に配管が破損した場合においても、周囲に及ぼす影響は小さい。また、飽和蒸気圧を装置稼動前に調整することで、装置の稼動開始温度を変更し、熱輸送効率を最適に調整することができる。なお、熱輸送媒体として水以外の媒体を使用できることはもちろんである。   In this embodiment, water is used as the working fluid 22 and the saturated vapor pressure is adjusted to a desired pressure before the apparatus is operated. Water is easily available, and even if the piping is damaged, the influence on the surroundings is small. Further, by adjusting the saturated vapor pressure before the operation of the apparatus, it is possible to change the operation start temperature of the apparatus and optimally adjust the heat transport efficiency. Of course, a medium other than water can be used as the heat transport medium.

(作用)
このように構成された熱輸送装置において、管内に封入された作動流体22は上昇管1で外部からの熱11を受熱して沸騰し、その沸騰により生じる気泡23の上昇により生じる駆動力で各管内を循環する。そして、高温になった作動流体22は下降管2及び下部連通管4を循環する間に外部に熱12を放熱する。
(Function)
In the heat transport apparatus configured as described above, the working fluid 22 sealed in the pipe receives the heat 11 from the outside by the rising pipe 1 and boils, and each driving force generated by the rising of the bubbles 23 generated by the boiling causes each of the working fluids 22. Circulate in the pipe. The working fluid 22 that has reached a high temperature dissipates heat 12 while circulating through the downcomer 2 and the lower communication pipe 4.

さらに、放熱により温度が低下した下部連通管4内の作動流体22を熱交換部5内に循環させ、上部連結管3における気相21の凝縮を促進させる。また、上部連結管3と熱交換部5を連通部6で連通させたことにより、凝縮させる空間を拡大し凝縮能力を向上させている。   Furthermore, the working fluid 22 in the lower communication pipe 4 whose temperature has decreased due to heat radiation is circulated in the heat exchange section 5 to promote condensation of the gas phase 21 in the upper connection pipe 3. In addition, the upper connecting pipe 3 and the heat exchanging unit 5 are communicated with each other by the communicating unit 6, so that the space to be condensed is expanded and the condensing capacity is improved.

(効果)
本実施形態によれば、気泡による駆動力によって外部動力を用いることなく作動流体を循環させるとともに、上部連通管の周囲に設けた熱交換部に作動流体を循環させることで熱交換効率及び熱輸送能力を向上させることができる。
また、上部連通管と熱交換部に連通部を設けたことにより、凝縮空間を拡大し凝縮能力を高めたことにより、さらに熱交換効率を向上させることができる。
(effect)
According to the present embodiment, the working fluid is circulated without using external power by the driving force due to the bubbles, and the working fluid is circulated through the heat exchanging portion provided around the upper communication pipe, whereby heat exchange efficiency and heat transport are achieved. Ability can be improved.
Moreover, by providing the communication part in the upper communication pipe and the heat exchange part, the heat exchange efficiency can be further improved by expanding the condensation space and increasing the condensation capacity.

[第2の実施形態]
第2の実施形態に係る熱輸送装置を図2により説明する。
なお、上記実施形態と同一又は類似の構成には同一の符号を付し、重複説明は省略する。
[Second Embodiment]
A heat transport device according to a second embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the same or similar structure as the said embodiment, and duplication description is abbreviate | omitted.

本実施形態の熱輸送装置は、図2に示すように、上昇管1の途中に拡径部7を設け、拡径部7より上方の内径を下方よりも大きくしている。なお、拡径部7は、図3に示すように、複数設けてもよく、あるいは下方から上方に向けて上昇管1の径を漸次大きくする構成としてもよい。   As shown in FIG. 2, the heat transport device of the present embodiment is provided with an enlarged diameter portion 7 in the middle of the rising pipe 1, and the inner diameter above the enlarged diameter portion 7 is larger than the lower side. As shown in FIG. 3, a plurality of the enlarged diameter portions 7 may be provided, or the diameter of the rising pipe 1 may be gradually increased from the lower side to the upper side.

このように構成された熱輸送装置において、上昇管1内に封入された作動流体22が外部からの熱11を受熱すると作動流体22が沸騰することにより気泡23が生じ、この気泡23の上昇により生じる駆動力で各管内を循環する。その際、気泡23の成長や結合による大径化が拡径部7によって抑制され、気泡23を微細構造のまま上昇管1内を上昇させることができる。   In the heat transport device configured as described above, when the working fluid 22 enclosed in the riser pipe 1 receives heat 11 from the outside, the working fluid 22 boils and bubbles 23 are generated. It circulates in each pipe with the generated driving force. At that time, the increase in diameter due to the growth and bonding of the bubbles 23 is suppressed by the expanded diameter portion 7, and the bubbles 23 can be raised in the ascending pipe 1 while having a fine structure.

すなわち、気泡が大径化すると気泡の総表面積が減少するため作動流体22の駆動力が低下するが、本実施形態では上昇管1の途中に拡径部7を設けたことにより気泡の大径化を抑制し、これにより大きな駆動力で作動流体22を循環させることができる。
これにより、熱輸送装置の熱交換効率及び熱輸送能力をさらに向上させることができる。
That is, when the diameter of the bubbles increases, the total surface area of the bubbles decreases, so that the driving force of the working fluid 22 decreases. In this embodiment, the diameter of the bubbles is increased by providing the enlarged diameter portion 7 in the riser 1. Therefore, the working fluid 22 can be circulated with a large driving force.
Thereby, the heat exchange efficiency and heat transport capability of the heat transport device can be further improved.

[第3の実施形態]
第3の実施形態に係る熱輸送装置を図3により説明する。
なお、上記実施形態と同一又は類似の構成には同一の符号を付し、重複説明は省略する。
[Third Embodiment]
A heat transport device according to a third embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the same or similar structure as the said embodiment, and duplication description is abbreviate | omitted.

本実施形態の熱輸送装置は、上昇管1、上部連通管3、下降管2及び/又は下部連通管4を複数の配管で構成することを特徴としている。
図3は、上昇管1を複数の配管で構成した例を示しており、複数の上昇管1の上部及び下部を上昇管上部接続管30及び上昇管下部接続管31によりそれぞれ接続している。下降管2を複数の配管から構成する場合は、複数の下降管2を下降管上部接続管及び下降管下部接続管にそれぞれ接続する(図示せず)。
The heat transport device of this embodiment is characterized in that the ascending pipe 1, the upper communicating pipe 3, the descending pipe 2 and / or the lower communicating pipe 4 are constituted by a plurality of pipes.
FIG. 3 shows an example in which the ascending pipe 1 is constituted by a plurality of pipes, and the upper and lower parts of the plurality of ascending pipes 1 are connected by the ascending pipe upper connecting pipe 30 and the ascending pipe lower connecting pipe 31, respectively. When the downcomer 2 is composed of a plurality of pipes, the plurality of downcomers 2 are connected to the downcomer upper connection pipe and the downcomer lower connection pipe (not shown).

また、上部連通管及び下部連通管も適宜複数設置してもよく、その場合は、それぞれ上昇管上部接続管30及び上昇管下部接続管31、並びに下降管上部接続管及び下降管下部接続管に接続する(図示せず)。
また、図3の例では、外部の発熱体からの受熱量、受熱分布に応じて、上昇管の径を変化させている。
また、作動流体22の駆動力を向上させるために拡径部7を複数設置している。
In addition, a plurality of upper communication pipes and lower communication pipes may be provided as appropriate. In that case, the upper connection pipe 30 and the lower connection pipe 31 are connected to the upper connection pipe 30 and the lower connection pipe 31 respectively. Connect (not shown).
In the example of FIG. 3, the diameter of the riser tube is changed according to the amount of heat received from the external heating element and the heat receiving distribution.
A plurality of enlarged diameter portions 7 are provided to improve the driving force of the working fluid 22.

本実施形態によれば、外部の発熱体からの受熱量、受熱分布及び外部への放熱量、放熱分布に応じて、適宜上昇管1及び下降管2の配管数、配管径及び配置を調整することにより、最適な熱交換効率を得ることが可能となる。
これにより熱輸送装置の熱交換効率及び熱輸送能力をさらに向上させることができる。
According to the present embodiment, the number of pipes, the pipe diameters, and the arrangement of the riser pipe 1 and the downfall pipe 2 are appropriately adjusted according to the amount of heat received from the external heating element, the heat reception distribution, the amount of heat radiation to the outside, and the heat radiation distribution. This makes it possible to obtain optimum heat exchange efficiency.
Thereby, the heat exchange efficiency and heat transport capability of the heat transport device can be further improved.

[第4の実施形態]
第4の実施形態に係る熱輸送装置を図4により説明する。
なお、上記実施形態と同一又は類似の構成には同一の符号を付し、重複説明は省略する。
[Fourth Embodiment]
A heat transport device according to a fourth embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the same or similar structure as the said embodiment, and duplication description is abbreviate | omitted.

本実施形態の熱輸送装置は、図4に示すように、上部連通管3と上昇管1との接続部を下降管2との接続部よりも高くなるように上部連通管3を傾斜させて配置した構成としている。   As shown in FIG. 4, the heat transport device of the present embodiment is configured such that the upper communication tube 3 is inclined so that the connection portion between the upper communication tube 3 and the riser tube 1 is higher than the connection portion with the downcomer tube 2. The arrangement is arranged.

これにより、上昇管1から上部連通管3に送られた作動流体22は気泡23による駆動力と重力の作用により上部連通管3内を下降管2に向かって円滑に流れることが可能となり、熱輸送能力をさらに向上させることができる。なお、上部連通管の傾斜面を階段状に構成してもよい。   As a result, the working fluid 22 sent from the ascending pipe 1 to the upper communicating pipe 3 can smoothly flow in the upper communicating pipe 3 toward the descending pipe 2 by the action of the driving force by the bubbles 23 and gravity. The transportation capacity can be further improved. In addition, you may comprise the inclined surface of an upper communicating pipe in step shape.

[第5の実施形態]
第5の実施形態に係る熱輸送装置を図5により説明する。
なお、上記実施形態と同一又は類似の構成には同一の符号を付し、重複説明は省略する。
[Fifth Embodiment]
A heat transport device according to a fifth embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the same or similar structure as the said embodiment, and duplication description is abbreviate | omitted.

本実施形態の熱輸送装置は、上昇管1の入口部及び/又は拡径部7に旋回流発生器8を設けた構成としている。旋回流は、旋回羽根やねじりテープの設置、または壁面への傾斜溝、螺旋溝の加工等によって発生させるが(図示せず)、これに限定されず他の旋回流発生手段を用いてもよい。   The heat transport device according to the present embodiment has a configuration in which a swirling flow generator 8 is provided at the inlet portion and / or the enlarged diameter portion 7 of the riser 1. The swirl flow is generated by installing swirl vanes or torsion tape, or by processing an inclined groove or a spiral groove on the wall surface (not shown), but is not limited to this, and other swirl flow generating means may be used. .

この旋回流発生器8により上昇管1内を上昇する作動流体22に旋回流を発生させる。この旋回流は、旋回流のない流れと比較して管壁での熱伝達を大きくすることができるため、熱輸送能力をさらに向上させることができる。   The swirling flow generator 8 generates a swirling flow in the working fluid 22 rising in the ascending pipe 1. Since this swirl flow can increase heat transfer on the tube wall as compared with a flow without swirl flow, the heat transport capability can be further improved.

また、この旋回流によって気泡23を上昇管1内に均一に分散させる効果、及び気泡23を微細化する効果も有し、これにより気泡23による駆動力をさらに大きくすることができる。
本実施形態によれば、上昇管に旋回流発生器を設けたことによって、気泡の駆動力を大きくすることができるため、熱輸送能力をさらに向上させることができる。
The swirl flow also has the effect of uniformly dispersing the bubbles 23 in the ascending pipe 1 and the effect of miniaturizing the bubbles 23, whereby the driving force by the bubbles 23 can be further increased.
According to the present embodiment, since the swirling flow generator is provided in the ascending pipe, the driving force of the bubbles can be increased, so that the heat transport capability can be further improved.

[第6の実施形態]
第6の実施形態に係る熱輸送装置を図6により説明する。
なお、上記実施形態と同一又は類似の構成には同一の符号を付し、重複説明は省略する。
[Sixth Embodiment]
A heat transport device according to a sixth embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the same or similar structure as the said embodiment, and duplication description is abbreviate | omitted.

本実施形態の熱輸送装置は、上部連通管3内の液面に複数の仕切り板9を設置した構成としている。この仕切り板9は、図6に示すように、上部連通管3内の作動流体22の流れを妨げないよう、所定高さの仕切り板9を作動流体22の液面に設置している。   The heat transport device of the present embodiment has a configuration in which a plurality of partition plates 9 are installed on the liquid surface in the upper communication pipe 3. As shown in FIG. 6, the partition plate 9 is provided with a partition plate 9 having a predetermined height on the liquid surface of the working fluid 22 so as not to hinder the flow of the working fluid 22 in the upper communication pipe 3.

これにより、上部連通管3内を下流へと向かう作動流体22中に存在する所定の大きさ以上の気泡23は仕切り板9でせき止め、消滅させられるので、作動流体の駆動力が低下することがない。   As a result, the bubbles 23 having a predetermined size or more existing in the working fluid 22 going downstream in the upper communication pipe 3 are dammed and eliminated by the partition plate 9, and the driving force of the working fluid may be reduced. Absent.

なお、仕切り板9として、所定径以下のメッシュ部材を用いてもよく、これにより所定の大きさ以上の気泡をせき止め、消滅させることができる。
本実施形態によれば、仕切り板を上部連通管に設けたことにより、気泡による駆動力を高めることができるため、熱輸送能力をさらに向上させることができる。
Note that a mesh member having a predetermined diameter or less may be used as the partition plate 9, whereby bubbles having a predetermined size or more can be damped and eliminated.
According to this embodiment, since the partition plate is provided in the upper communication pipe, the driving force due to the bubbles can be increased, so that the heat transport capability can be further improved.

[第7の実施形態]
第7の実施形態に係る熱輸送装置を図7により説明する。
なお、上記実施形態と同一又は類似の構成には同一の符号を付し、重複説明は省略する。
[Seventh Embodiment]
A heat transport device according to a seventh embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the same or similar structure as the said embodiment, and duplication description is abbreviate | omitted.

本実施形態の熱輸送装置は、上部連通管3に複数の熱交換部5を設けた構成としている。上昇管1(受熱部)及び下降管2(放熱部)との間の距離が大きくなり、これにより上部連通管3の長さが長くなる場合、上部連通管3に複数の熱交換部5を設置し、下部連通管4を屈曲させて複数の熱交換部5に作動流体22を循環させる。   The heat transport device according to the present embodiment has a configuration in which a plurality of heat exchange units 5 are provided in the upper communication pipe 3. When the distance between the riser pipe 1 (heat receiving part) and the downcomer pipe 2 (heat radiating part) is increased, and thus the length of the upper communication pipe 3 is increased, a plurality of heat exchange parts 5 are connected to the upper communication pipe 3. It is installed, the lower communication pipe 4 is bent, and the working fluid 22 is circulated through the plurality of heat exchange parts 5.

このように、上部連通管3が長くなる場合でも、複数の熱交換部5を設けることにより、熱交換効率及び熱輸送能力を最適に維持することができる。
なお、図7では、熱交換部5を2つ設けた例を図示しているが、これに限定されず上部連通管3の長さに応じてその数を適宜増減することができる。
As described above, even when the upper communication pipe 3 becomes longer, the heat exchange efficiency and the heat transport capability can be optimally maintained by providing the plurality of heat exchange portions 5.
In addition, in FIG. 7, although the example which provided the two heat exchange parts 5 is shown in figure, it is not limited to this, The number can be increased / decreased suitably according to the length of the upper communication pipe 3. FIG.

[第8の実施形態]
第8の実施形態に係る熱輸送装置を図8により説明する。
なお、上記実施形態と同一又は類似の構成には同一の符号を付し、重複説明は省略する。
[Eighth Embodiment]
A heat transport device according to an eighth embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the same or similar structure as the said embodiment, and duplication description is abbreviate | omitted.

本実施形態の熱輸送装置は、熱交換部5の上部と、上昇管2の上部及び/又は下降管3の上部との間に連通管32を設置した構成としている。
これにより、上部連通管3において凝縮させる空間をさらに拡大し凝縮能力を向上させることができるので、熱交換効率及び熱輸送能力をさらに向上させることができる。
The heat transport device of this embodiment is configured such that a communication pipe 32 is installed between the upper part of the heat exchanging unit 5 and the upper part of the ascending pipe 2 and / or the upper part of the descending pipe 3.
Thereby, since the space to condense in the upper communication pipe 3 can further be expanded and a condensation capability can be improved, a heat exchange efficiency and a heat transport capability can further be improved.

なお、図7に示すように、複数の熱交換部5を上部連通管3に設置した場合でも、各熱交換部5と、上昇管2の上端部又は下降管3の上端部をそれぞれ連通管32によって接続するように構成してもよい。また、連通管32を上昇管上部接続管30(図3参照)に接続してもよい。   As shown in FIG. 7, even when a plurality of heat exchanging units 5 are installed in the upper communication pipe 3, each heat exchanging part 5 and the upper end part of the rising pipe 2 or the upper end part of the descending pipe 3 are respectively connected to the communicating pipe. 32 may be connected. Further, the communication pipe 32 may be connected to the ascending pipe upper connecting pipe 30 (see FIG. 3).

[第9の実施形態]
第9の実施形態に係る熱輸送装置は、作動流体22中に当該作動流体の沸点以下の蓄熱物質を内包する多数の不溶性のマイクロカプセル(図示せず)を混入させた構成としている。例えば、作動流体が水の場合、マイクロカプセルの蓄熱物質として融点が30〜70℃のパラフィン系の相変化物質が用いられる。
[Ninth Embodiment]
The heat transport device according to the ninth embodiment has a configuration in which a large number of insoluble microcapsules (not shown) enclosing a heat storage material having a boiling point or lower of the working fluid are mixed in the working fluid 22. For example, when the working fluid is water, a paraffinic phase change material having a melting point of 30 to 70 ° C. is used as the heat storage material of the microcapsules.

これにより、受熱11で加熱された液相22は、気泡23を発生させる前にマイクロカプセル内の蓄熱物質が相変化を起こすため、その潜熱を熱輸送に利用できる。これにより、熱輸送能力を大幅に向上させることができる。   Thereby, the liquid phase 22 heated by the heat receiving 11 causes a phase change of the heat storage material in the microcapsule before the bubbles 23 are generated, so that the latent heat can be used for heat transport. Thereby, a heat transport capability can be improved significantly.

[第10の実施形態]
第10の実施形態に係る熱輸送装置は、作動流体22中に気泡表面に吸着する吸着材を添加した構成としている(図示せず)。吸着材は、気泡23の表面に吸着され、これにより、気泡の成長及び気泡同士の結合拡大を抑制することができるため、作動流体の駆動力を高く維持することができる。
[Tenth embodiment]
The heat transport device according to the tenth embodiment has a configuration in which an adsorbent adsorbed on the bubble surface is added to the working fluid 22 (not shown). Since the adsorbent is adsorbed on the surface of the bubble 23, thereby suppressing the growth of the bubble and the expansion of the bond between the bubbles, the driving force of the working fluid can be kept high.

なお、吸着材として、作動流体や熱、配管材料により化学的反応を引き起こさない材料が望ましく、例えば、酸化チタン、アルミナ、シリカ等からなる微粒子や界面活性剤が用いられる。   The adsorbent is preferably a material that does not cause a chemical reaction due to working fluid, heat, or piping material. For example, fine particles or a surfactant made of titanium oxide, alumina, silica, or the like is used.

また、上述した実施形態の熱輸送装置を原子力プラントの使用済み燃料貯蔵プールや格納容器内の冷却用に適用した場合は、使用済み燃料プールや格納容器内の発生熱を、外部動力を用いずに自動的に冷却部へと輸送できる。例えば上記実施形態の熱輸送装置を格納容器の冷却に使用する場合は、上昇管1を原子炉格納容器内に配置し、記下降管2を原子炉格納容器外に配置すればよい。その際、熱輸送装置は、原子炉格納容器内の発熱状況に応じて複数台使用してもよい。
これにより、使用済み燃料プールや格納容器内の温度上昇を自動的かつ長期にわたって抑制できるため、原子力プランの安全性及び信頼性の向上を図ることができる。
Further, when the heat transport device of the above-described embodiment is applied for cooling the spent fuel storage pool or the containment vessel of the nuclear power plant, the generated heat in the spent fuel pool or the containment vessel is not used by using external power. Can be automatically transported to the cooling section. For example, when the heat transport device of the above-described embodiment is used for cooling the containment vessel, the riser 1 may be arranged in the reactor containment vessel, and the downcomer 2 may be arranged outside the reactor containment vessel. At that time, a plurality of heat transport devices may be used according to the heat generation state in the reactor containment vessel.
Thereby, since the temperature rise in a spent fuel pool or a containment vessel can be automatically suppressed for a long time, the safety and reliability of the nuclear power plan can be improved.

以上、本発明のいくつかの実施形態を説明したが、上述した実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、組み合わせ、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, embodiment mentioned above is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, combinations, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…上昇管、2…下降管、3…上部連通管、4…下部連通管、5…熱交換部、6…連通部、7…拡径部、8…旋回流発生器、9…仕切り板、21…気相、22…作動流体、23…気泡、30…上昇管上部接続管、31…上昇管下部接続管、32…連通管。 DESCRIPTION OF SYMBOLS 1 ... Rising pipe, 2 ... Down pipe, 3 ... Upper communication pipe, 4 ... Lower communication pipe, 5 ... Heat exchange part, 6 ... Communication part, 7 ... Diameter expansion part, 8 ... Swirling flow generator, 9 ... Partition plate 21 ... gas phase, 22 ... working fluid, 23 ... bubbles, 30 ... rising pipe upper connecting pipe, 31 ... rising pipe lower connecting pipe, 32 ... communication pipe.

Claims (12)

外部からの熱を受熱する上昇管と、外部へ熱を放熱する下降管と、前記上昇管と下降管の上部を接続する上部連通管と、前記上昇管と下降管の下部を接続する下部連通管と、各管内を循環する作動流体と、を有する熱輸送装置において、
前記上部連通管の周囲に少なくとも一つの熱交換部を設け、前記熱交換部に前記下部連通管内の作動流体を循環させることを特徴とする熱輸送装置。
A riser pipe that receives heat from the outside, a downcomer pipe that dissipates heat to the outside, an upper communication pipe that connects the upper part of the riser pipe and the downcomer pipe, and a lower communication that connects the lower part of the riser pipe and the downcomer pipe In a heat transport device having a pipe and a working fluid circulating in each pipe,
At least one heat exchange part is provided around the upper communication pipe, and the working fluid in the lower communication pipe is circulated through the heat exchange part.
前記熱交換部と前記上部連通管の間に少なくとも一つの連通部を設けたことを特徴とする請求項1記載の熱輸送装置。   The heat transport device according to claim 1, wherein at least one communication portion is provided between the heat exchange portion and the upper communication pipe. 前記熱交換部と前記上昇管の上部及び/又は前記熱交換部と前記下昇管の上部を連通させる連通管を設けたことを特徴とする請求項1又は2記載の熱輸送装置。   The heat transport device according to claim 1 or 2, further comprising a communication pipe that communicates the heat exchange part and the upper part of the riser pipe and / or the heat exchange part and the upper part of the lower riser pipe. 前記上昇管及び/又は下降管を複数設けたことを特徴とする請求項1乃至3のいずれか1項に記載の熱輸送装置。   The heat transport device according to any one of claims 1 to 3, wherein a plurality of the rising pipes and / or down pipes are provided. 前記上部連通管と上昇管との接続部を下降管との接続部よりも高くなるように上部連通管を傾斜させたことを特徴とする請求項1乃至4のいずれか1項に記載の熱輸送装置。   The heat according to any one of claims 1 to 4, wherein the upper communication pipe is inclined so that a connection portion between the upper communication pipe and the rising pipe is higher than a connection portion between the lower communication pipe and the downflow pipe. Transport equipment. 前記上昇管の途中に少なくとも一つの拡径部を設けたことを特徴とする請求項1乃至5のいずれか1項に記載の熱輸送装置。   The heat transport device according to any one of claims 1 to 5, wherein at least one enlarged-diameter portion is provided in the middle of the rising pipe. 前記上昇管の径を下方から上方に向けて拡大したことを特徴とする請求項1乃至5のいずれか1項に記載の熱輸送装置。   The heat transport device according to any one of claims 1 to 5, wherein the diameter of the riser pipe is expanded from below to above. 前記上部連通管の液面に少なくとも一つの仕切り板を設けたことを特徴とする請求項1乃至7いずれか1項に記載の熱輸送装置。   The heat transport device according to any one of claims 1 to 7, wherein at least one partition plate is provided on a liquid surface of the upper communication pipe. 前記作動流体よりも低融点の蓄熱物質を内包する多数の不溶性のマイクロカプセルを前記作動流体に含有させたことを特徴とする請求項1乃至8いずれか1項に記載の熱輸送装置。   9. The heat transport device according to claim 1, wherein a number of insoluble microcapsules containing a heat storage material having a melting point lower than that of the working fluid is contained in the working fluid. 気泡表面に吸着する微粒子を前記作動流体に含有させたことを特徴とする請求項1乃至9いずれか1項に記載の熱輸送装置。   The heat transport device according to any one of claims 1 to 9, wherein the working fluid contains fine particles adsorbed on a bubble surface. 前記作動流体は水であり、熱輸送装置の稼働前に飽和蒸気圧を所望の圧力に調整することを特徴とする請求項1乃至10いずれか1項に記載の熱輸送装置。   The heat transport device according to any one of claims 1 to 10, wherein the working fluid is water, and a saturated vapor pressure is adjusted to a desired pressure before the heat transport device is operated. 前記上昇管を原子炉格納容器内に配置し、前記下降管を原子炉格納容器外に配置することを特徴とする請求項1乃至11いずれか1項に記載の熱輸送装置。   The heat transport device according to any one of claims 1 to 11, wherein the riser pipe is disposed in a reactor containment vessel, and the downcomer pipe is disposed outside the reactor containment vessel.
JP2012096831A 2012-04-20 2012-04-20 Heat transporting device Pending JP2013224779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096831A JP2013224779A (en) 2012-04-20 2012-04-20 Heat transporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096831A JP2013224779A (en) 2012-04-20 2012-04-20 Heat transporting device

Publications (1)

Publication Number Publication Date
JP2013224779A true JP2013224779A (en) 2013-10-31

Family

ID=49594943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096831A Pending JP2013224779A (en) 2012-04-20 2012-04-20 Heat transporting device

Country Status (1)

Country Link
JP (1) JP2013224779A (en)

Similar Documents

Publication Publication Date Title
JP4578552B2 (en) Cooling device and power conversion device
US20150237767A1 (en) Heat sink for use with pumped coolant
US20150351290A1 (en) Method of absorbing sensible and latent heat with series-connected heat sinks
US20150230366A1 (en) Flexible two-phase cooling system
JP6327406B2 (en) Boiling cooling device and boiling cooling system
US20150257303A1 (en) Method of cooling multiple processors using series-connected heat sinks
JP2019032339A (en) Nuclear steam generator, method for operating the same, and reactor steam generation system
JP2012230079A (en) Nuclear power plant, fuel pool water cooling apparatus, and fuel pool water cooling method
JP7430769B2 (en) Pool type liquid metal fast spectrum reactor using printed circuit heat exchanger for connection to energy conversion system
JP2017537332A (en) Passive heat removal system built into the containment
CN107068215B (en) A kind of passive residual heat removal system and nuclear power system based on heat pipe heat exchanging
US20150233619A1 (en) Method of providing stable pump operation in a two-phase cooling system
JP6022286B2 (en) Condensing chamber cooling system
KR20230049652A (en) Thermal Power Conversion System Including Heat Pipes and Photovoltaic Cells
CN102425968B (en) Compact type loop heat pipe device
JP5727799B2 (en) Heat transfer device for reactor containment
JP2012251693A (en) Heat transport apparatus, and cooling device of reactor containment vessel
AU2015339823A1 (en) Method of absorbing heat with series-connected heat sink modules
WO2016069380A1 (en) Flexible two-phase cooling system
AU2015339759A1 (en) Heat sink for use with pumped coolant
JP2013224779A (en) Heat transporting device
JP2015055380A (en) Cooling device
TW201211743A (en) Electronic system cooler
Yuki et al. Development of functional porous heat sink for cooling high-power electronic devices
KR101815958B1 (en) Passive containment cooling system for pressurized water reactor using phase-change material