JP2013224245A - METHOD FOR MANUFACTURING BaTi2O5-BASED COMPOSITE OXIDE - Google Patents

METHOD FOR MANUFACTURING BaTi2O5-BASED COMPOSITE OXIDE Download PDF

Info

Publication number
JP2013224245A
JP2013224245A JP2012276444A JP2012276444A JP2013224245A JP 2013224245 A JP2013224245 A JP 2013224245A JP 2012276444 A JP2012276444 A JP 2012276444A JP 2012276444 A JP2012276444 A JP 2012276444A JP 2013224245 A JP2013224245 A JP 2013224245A
Authority
JP
Japan
Prior art keywords
composite oxide
bati
batio
heat treatment
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012276444A
Other languages
Japanese (ja)
Other versions
JP6091881B2 (en
Inventor
Hiroyuki Tsunoda
洋幸 角田
Jun Tsuneyoshi
潤 恒吉
Matsuo Kishi
松雄 岸
Takashi Goto
孝 後藤
Yo Nuri
溶 塗
Hirokazu Katsui
宏和 且井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Seiko Instruments Inc
Original Assignee
Tohoku University NUC
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Seiko Instruments Inc filed Critical Tohoku University NUC
Priority to JP2012276444A priority Critical patent/JP6091881B2/en
Publication of JP2013224245A publication Critical patent/JP2013224245A/en
Application granted granted Critical
Publication of JP6091881B2 publication Critical patent/JP6091881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a BaTiO-based composite oxide in which a part of Ba and Ti in BaTiOcan be substituted with other elements in a high purity and high substitution rate and cheaply.SOLUTION: A method for manufacturing a BaTiO-based composite oxide includes a first heat treatment step of heating and reacting a raw material composed of BaTiOand BaZrOat 1,050 to 1,300°C and having a molar ratio Zr/(Ti+Zr) of 0.002 to 0.16 as a whole to thereby synthesize a BaTiO-based composite oxide, and a second heat treatment step of heating and reacting a mixture composed of the BaTiO-based composite oxide and TiOat 1,000 to 1,100°C and having a molar ratio Zr/(Ti+Zr) of 0.001 to 0.08 as a whole to thereby synthesize the BaTiO-based composite oxide.

Description

本発明は、BaTi25系複合酸化物の製造方法に関する。 The present invention relates to a method for producing a BaTi 2 O 5 composite oxide.

組成式BaTi25で表される二チタン酸バリウムは非鉛系のため環境に優しく、また、450℃付近で2〜3万という高い誘電率を示す有望な非鉛系強誘電体である。ただし、その実用化のためには、そのままでは高い強誘電相変化温度TC≒470℃を低くすることが不可欠である。そこで、代表的なTc低温化方法として、Baまたは/およびTiサイトの一部を異種元素で置換してBaTi25系複合酸化物とする元素置換法が知られており、中でも、Tiサイトにおける元素置換は効果的な元素置換法として用いられることが多い。ここで、BaTi25系複合酸化物とは、BaTi25中のBaまたは/およびTiの一部を他元素で置換した酸化物、またはBaTi25自体をいう。 Barium dititanate represented by the composition formula BaTi 2 O 5 is a lead-free ferroelectric material that is environmentally friendly because it is lead-free and also exhibits a high dielectric constant of 20,000 to 30,000 near 450 ° C. . However, for practical use, it is indispensable to lower the high ferroelectric phase change temperature T C ≈470 ° C. as it is. Therefore, as a typical Tc low temperature method, an element substitution method is known in which a BaTi / O and / or Ti site is partially substituted with a different element to form a BaTi 2 O 5 composite oxide. Element substitution at sites is often used as an effective element substitution method. Here, BaTi 2 O 5 based complex oxide, oxides obtained by substituting a part of Ba and / or Ti in BaTi 2 O 5 with another element, or BaTi 2 O 5 refers to itself.

上記BaTi25系複合酸化物の製造方法としては、例えば、BaTi25にMnO2を添加した後に電気炉で大気下焼結する方法がある(特許文献1)。この方法によれば、BaまたはTiサイトの一部がMnで置換され、Tcは320〜330℃まで下げられる。また、この方法は単純な工程からなり、特殊な装置を利用することもないため、容易かつ低コストでBaTi25系複合酸化物を製造できる。また、MnO2は焼結助剤としての役割も担い、製造したBaTi25系複合酸化物は焼結体として得られるので、これを強誘電体素子への応用につなげ易い。 As a method for producing the BaTi 2 O 5 -based composite oxide, for example, there is a method in which MnO 2 is added to BaTi 2 O 5 and then sintered in the air in an electric furnace (Patent Document 1). According to this method, a part of the Ba or Ti site is replaced with Mn, and T c is lowered to 320 to 330 ° C. In addition, this method consists of a simple process and does not use a special apparatus, so that a BaTi 2 O 5 composite oxide can be manufactured easily and at low cost. Further, MnO 2 also plays a role as a sintering aid, and the manufactured BaTi 2 O 5 composite oxide can be obtained as a sintered body, which can be easily applied to ferroelectric elements.

これとは別に、BaCO3、TiO2、およびZrO2の各粉末を原料として同時に混合し、これを950℃で加熱して固相反応させた後にアーク溶融することによる、BaTi25系複合酸化物の製造方法もある(非特許文献1)。この方法では、ZrがTiサイトにおける置換元素となる。この方法では、いずれも一般的で入手の容易なBaCO3、TiO2、およびZrO2を原料としており、工程も単純である。また、BaTi25系複合酸化物が高密多結晶体として得られるため、特許文献1の方法と同様に、強誘電体素子への応用につなげ易い。 Separately, BaCO 3 , TiO 2 , and ZrO 2 powders are simultaneously mixed as raw materials, heated at 950 ° C. for solid-phase reaction, and then melted by arc, and then BaTi 2 O 5 composite There is also a method for producing an oxide (Non-Patent Document 1). In this method, Zr becomes a substitution element at the Ti site. In this method, BaCO 3 , TiO 2 , and ZrO 2 which are common and easily available are used as raw materials, and the process is simple. Further, since the BaTi 2 O 5 -based composite oxide is obtained as a high-density polycrystalline body, it can be easily applied to a ferroelectric element as in the method of Patent Document 1.

特開2011−006266号公報JP 2011-006266 A

X.Y.Yue、R.Tu、and T.Goto、Materials Transactions、49、120(2008)X. Y. Yue, R.A. Tu, and T.A. Goto, Materials Transactions, 49, 120 (2008)

しかしながら、特許文献1に開示されているような従来のBaTi25系複合酸化物の製造方法では、既に形成されているBaTi25結晶中にMnを導入することになるため、MnまたはTiが余剰になる。これにより、BaTi25以外にも、Baに対してTiサイトが過剰となった非化学量論組成の化合物や、その他のMnまたはTiを含む異相が生成されることになる。したがって、この従来法では、BaTi25系複合酸化物を高純度で作製することはできないという問題がある。また、上記方法によると、BaTi25系複合酸化物相と異相が共存しているため、多くの場合で、正確な置換率を調べることが難しくなる。こうなると、Tc等の強誘電特性と置換率の相関性の把握が困難となるので、特性改善を狙った組成設計などの応用展開も難しくなる。 However, in the conventional method for producing a BaTi 2 O 5 composite oxide as disclosed in Patent Document 1, Mn is introduced into a BaTi 2 O 5 crystal that has already been formed. Ti becomes redundant. As a result, in addition to BaTi 2 O 5 , a non-stoichiometric composition compound in which Ti sites are excessive with respect to Ba, and other hetero phases containing Mn or Ti are generated. Therefore, this conventional method has a problem that the BaTi 2 O 5 -based composite oxide cannot be produced with high purity. Further, according to the above method, since the BaTi 2 O 5 -based composite oxide phase and the heterogeneous phase coexist, it is difficult in many cases to find an accurate substitution rate. In this case, it becomes difficult to grasp the correlation between the ferroelectric characteristics such as Tc and the substitution rate, and it becomes difficult to develop applications such as composition design for improving characteristics.

一方、非特許文献1に開示されているようなBaTi25系複合酸化物の製造方法では、試料を溶融状態にするために1400℃近くまで加熱する必要がある。そのため、電力の消費や耐熱炉の使用により、製造コストが高くなってしまう。また、上記方法ではアーク溶融を用いるので、装置が高額になり、水冷によるランニングコストもかさむ。このように、この方法では製造コストが高くなるという問題がある。また、アーク溶融後の急冷で得られる試料は高密・硬質の多結晶体であるので、粉末としての試料回収ができないため、試料の利用範囲が制限されてしまうという問題もある。なお、この問題を避けるために、溶融温度や焼結温度以下で固相反応させることを考えることはできる。しかし、この場合、原料中の3相の間での組み合わせによる反応が起こり、副生成物を生じるため、目的とするBaTi25系複合酸化物を高純度で得られない。そこで、副反応を抑えるためにZrO2の添加量を少なくすることも考えられるが、この場合、当然ながらZrの置換率を高くできなくなる。つまり、高純度化のために置換率が犠牲になってしまう。また、副反応が完全に無くなる訳ではないので、根本的な解決にはならない。 On the other hand, in the method for producing a BaTi 2 O 5 composite oxide disclosed in Non-Patent Document 1, it is necessary to heat the sample to near 1400 ° C. in order to make the sample into a molten state. For this reason, the manufacturing cost increases due to the consumption of electric power and the use of a heat-resistant furnace. In addition, since arc melting is used in the above method, the apparatus becomes expensive and the running cost by water cooling increases. Thus, this method has a problem that the manufacturing cost is increased. In addition, since the sample obtained by rapid cooling after arc melting is a high-density, hard polycrystal, the sample cannot be collected as a powder, so that there is a problem that the range of use of the sample is limited. In order to avoid this problem, it is possible to consider a solid phase reaction at a melting temperature or a sintering temperature or lower. However, in this case, a reaction due to the combination between the three phases in the raw material occurs and a by-product is generated, so that the target BaTi 2 O 5 composite oxide cannot be obtained with high purity. Thus, it is conceivable to reduce the amount of ZrO 2 added in order to suppress side reactions. In this case, however, the substitution rate of Zr cannot naturally be increased. That is, the replacement rate is sacrificed for high purity. In addition, since side reactions are not completely eliminated, it is not a fundamental solution.

本発明の目的は、BaTi25中のBaやTiの一部を、高純度・高置換率且つ安価に他元素へ置換できるBaTi25系複合酸化物の製造方法を提供することである。 An object of the present invention is to provide a method for producing a BaTi 2 O 5 -based composite oxide capable of substituting a part of Ba and Ti in BaTi 2 O 5 with other elements with high purity, high substitution rate and low cost. is there.

上述した課題を解決するために、発明者は高純度のBaTi25系複合酸化物を得るべく鋭意研究した結果、下記のBaTi25系複合酸化物の製造方法により本発明の目的を達成する。 In order to solve the above-mentioned problems, the inventors have intensively studied to obtain a high-purity BaTi 2 O 5 composite oxide, and as a result, the object of the present invention is achieved by the following method for producing a BaTi 2 O 5 composite oxide. Achieve.

すなわち、本発明の請求項1に係る発明は、BaTi25系複合酸化物の製造方法であって、BaTiO3およびBaZrO3とから構成される原料を、Zr/(Ti+Zr)で表されるモル比が全体で0.002〜0.16となるように秤量する秤量工程と、前記原料を1050〜1300℃で加熱して反応させ、BaTiO3系複合酸化物を合成する第1熱処理工程と、前記BaTiO3系複合酸化物およびTiO2を、Zr/(Ti+Zr)で表されるモル比が全体で0.001〜0.08の範囲になるように混合して混合物を生成する混合工程と、前記混合物を850〜1150℃で加熱して反応させて、BaTi25系複合酸化物を合成する第2熱処理工程と、を備えていることを特徴とする。 That is, the invention according to claim 1 of the present invention is a method for producing a BaTi 2 O 5 composite oxide, wherein a raw material composed of BaTiO 3 and BaZrO 3 is represented by Zr / (Ti + Zr). A weighing step of weighing so that the molar ratio is 0.002 to 0.16 as a whole, and a first heat treatment step of synthesizing a BaTiO 3 -based composite oxide by reacting by heating the raw materials at 1050 to 1300 ° C. Mixing the BaTiO 3 -based composite oxide and TiO 2 so that the molar ratio represented by Zr / (Ti + Zr) is in the range of 0.001 to 0.08 as a whole; And a second heat treatment step of synthesizing a BaTi 2 O 5 composite oxide by heating and reacting the mixture at 850 to 1150 ° C.

この方法では、最終的に得られるBaTi25系複合酸化物において、Baの数に対してTiサイトでのTiおよびZrの数の和が2になるように、使用する原料の投入量が調整される。これにより、Ba、Ti、およびOサイトの間の物質量比が化学量論的な1:2:5に調整されるため、従来のBaTi25系複合酸化物の製造方法のように非化学量論組成の化合物や、その他の異相が生成される虞がない。 In this method, in the finally obtained BaTi 2 O 5 composite oxide, the amount of raw materials used is set so that the sum of the number of Ti and Zr at the Ti site is 2 with respect to the number of Ba. Adjusted. As a result, the mass ratio between the Ba, Ti, and O sites is adjusted to a stoichiometric ratio of 1: 2: 5. Therefore, as in the conventional method of producing a BaTi 2 O 5 composite oxide, There is no possibility that a compound having a stoichiometric composition or other heterogeneous phase is generated.

また、試料中での固相反応を2回の熱処理工程に分けられ、そのいずれにおいても反応物系は2相からなる。これにより、各固相反応は2相のみの間での反応として単純化されており、従来のBaTi25系複合酸化物の製造方法のような3相間での複雑な反応が起こる虞がない。したがって、得られるBaTi25系複合酸化物の高純度化が達成できる。 In addition, the solid phase reaction in the sample can be divided into two heat treatment steps, and in either case, the reactant system consists of two phases. As a result, each solid phase reaction is simplified as a reaction between only two phases, and there is a possibility that a complicated reaction between three phases may occur as in the conventional method for producing a BaTi 2 O 5 composite oxide. Absent. Therefore, high purity of the obtained BaTi 2 O 5 composite oxide can be achieved.

また、最終製造目的のBaTi25系複合酸化物におけるZrの置換率はBaTi25系複合酸化物のTC低温化が有意となる0.001以上すなわち0.1%以上とし、置換限界である0.8以下すなわち8%以下とする。このようにするためには、秤量工程におにおいてZr/(Ti+Zr)で表されるモル比を0.002以上0.16以下とする必要がある。 The substitution rate of Zr in BaTi 2 O 5 based composite oxide of the final manufacturing purposes and BaTi 2 O 5 based composite oxide from T C lower temperature is to become 0.001 or more i.e. 0.1% or more significantly, substituted The limit is 0.8 or less, that is, 8% or less. In order to do this, the molar ratio represented by Zr / (Ti + Zr) in the weighing step needs to be 0.002 or more and 0.16 or less.

また、本発明の請求項2に係るBaTi25系複合酸化物の製造方法は、前記第1熱処理工程の前に、前記原料の平均粒径が10〜700nmの範囲になるように、前記原料を粉砕する第1粉砕工程を備えることを特徴とする。 Further, in the method for producing a BaTi 2 O 5 composite oxide according to claim 2 of the present invention, before the first heat treatment step, the raw material has an average particle size in a range of 10 to 700 nm. A first pulverization step of pulverizing the raw material is provided.

また、本発明の請求項3に係るBaTi25系複合酸化物の製造方法は、前記第2熱処理工程の前に、前記混合物の平均粒径が第2熱処理工程の直前において10〜700nmの範囲になるように、前記混合物を粉砕する第2粉砕工程を備えることを特徴とする。 Further, in the method for producing a BaTi 2 O 5 composite oxide according to claim 3 of the present invention, the average particle size of the mixture is 10 to 700 nm immediately before the second heat treatment step, before the second heat treatment step. A second crushing step of crushing the mixture so as to be in a range is provided.

このように各熱処理工程に際して反応物粒子を微細化しておくことにより、試料の比表面積を大きくし、熱処理工程で起こる固相反応の効率化が図られる。また、微細化により反応物がより均一に混合した状態になるため、反応系内で反応率の差が生じることや予期しない反応経路での反応が起きることを抑制することができる。   Thus, by making the reactant particles finer in each heat treatment step, the specific surface area of the sample is increased, and the efficiency of the solid phase reaction that occurs in the heat treatment step can be improved. Further, since the reactants are in a more uniformly mixed state by miniaturization, it is possible to suppress a difference in the reaction rate in the reaction system and a reaction occurring in an unexpected reaction path.

本発明に係るBaTi25系複合酸化物の製造方法では、原料中の元素物質量比がBaTi25系複合酸化物の組成に一致するように化学量論的に調整され、さらに、2回の熱処理工程で起こる固相反応がいずれも2相間の反応として単純化されるため、従来の固相反応法を利用したBaTi25系複合酸化の製造方法のような副生成物が発生する虞がなく、高純度のBaTi25系複合酸化を製造できる。 In the method for producing a BaTi 2 O 5 composite oxide according to the present invention, the ratio of the amount of elemental substances in the raw material is adjusted stoichiometrically to match the composition of the BaTi 2 O 5 composite oxide, Since both solid phase reactions occurring in the two heat treatment steps are simplified as a reaction between two phases, a by-product such as a production method of BaTi 2 O 5 based complex oxidation using a conventional solid phase reaction method can be obtained. There is no risk of occurrence, and a high-purity BaTi 2 O 5 composite oxide can be produced.

また、得られるBaTi25系複合酸化が高純度であることにより、その強誘電特性と置換率の相関が明瞭になり、特性改善を狙った高自由度な組成設計が可能になる。
また、2回の熱処理工程のいずれにおいても、電気炉の使用が可能な比較的低温での加熱で済むため、従来のアーク溶融法を利用したBaTi25系複合酸化の製造方法に比べて、製造コストを低くできる。
In addition, since the obtained BaTi 2 O 5 composite oxide has high purity, the correlation between the ferroelectric characteristics and the substitution rate becomes clear, and a composition design with a high degree of freedom aimed at improving the characteristics becomes possible.
In both of the two heat treatment steps, heating at a relatively low temperature that can use an electric furnace suffices, and therefore, compared with a manufacturing method of a BaTi 2 O 5 composite oxidation using a conventional arc melting method. , Manufacturing costs can be reduced.

また、本発明によれば、BaTi25系複合酸化を粉末として回収でき、従来のアーク溶融法を利用したBaTi25系複合酸化の製造方法に比べて、試料の利用範囲が広がる。
したがって、本発明は、BaTi25中のBaやTiの一部を、高純度・高置換率且つ安価に他元素へ置換できるBaTi25系複合酸化物の製造方法を提供できる。
Further, according to the present invention, the BaTi 2 O 5 composite oxidation can be recovered as a powder, and the range of use of the sample is widened as compared with the manufacturing method of the BaTi 2 O 5 composite oxidation using the conventional arc melting method.
Therefore, the present invention can provide a method for producing a BaTi 2 O 5 -based composite oxide capable of substituting a part of Ba and Ti in BaTi 2 O 5 with other elements with high purity, high substitution rate and low cost.

本発明に係るBaTi25系複合酸化物の製造方法の一例を示す工程図である。It is a process drawing showing an example of a manufacturing method of BaTi 2 O 5 based composite oxide according to the present invention.

本発明に係るBaTi25系複合酸化物の製造方法について、図1を参照しながら説明する。
図1は本発明に係るBaTi25系複合酸化物の製造方法の一例を示す工程図である。 この製造方法は、秤量工程(ステップS1)と、第1混合・粉砕工程(ステップS2)と、第1熱処理工程(ステップS3)と、TiO2調合工程(ステップS4)と、第2混合・粉砕工程(ステップS5)と、および第2熱処理工程(ステップS6)と、から構成されている。
A method for producing the BaTi 2 O 5 composite oxide according to the present invention will be described with reference to FIG.
FIG. 1 is a process diagram showing an example of a method for producing a BaTi 2 O 5 composite oxide according to the present invention. This manufacturing method includes a weighing process (step S1), a first mixing / pulverizing process (step S2), a first heat treatment process (step S3), a TiO 2 blending process (step S4), and a second mixing / pulverizing process. The process (step S5) and the 2nd heat treatment process (step S6) are comprised.

まず、ステップS1に係る秤量工程では、BaTiO3とBa(B)O3を、この段階でのBa/(Ti+(B))および(B)/(Ti+(B))で表したモル比および置換率が、それぞれ0.5および0.002〜0.16となるように秤量する。ここで、(B)はSi、V、Cr、Mn、Fe、Co、Ni、Ge、Se、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Sn、Hf、Ta、W、Re、Os、Ir、Ptの群の中から選ばれる1種類の元素を表す。ただし、後述する第1混合・粉砕工程において、試料乾燥前に必要に応じて上澄み液を廃棄する際にBaもしくは(B)が上澄み液とともに流出する等により不足する虞がある場合は、秤量工程においてBa/(Ti+(B))を0.45〜0.55の範囲で適宜調整しておくとよい。また、置換率はBaTi25系複合酸化物のTC低温化が有意となる0.001以上すなわち0.1%以上とし、置換限界である0.8以下すなわち8%以下とする。 First, in the weighing process according to step S1, the molar ratio of BaTiO 3 and Ba (B) O 3 represented by Ba / (Ti + (B)) and (B) / (Ti + (B)) at this stage Weigh so that the substitution rates are 0.5 and 0.002 to 0.16, respectively. Here, (B) is Si, V, Cr, Mn, Fe, Co, Ni, Ge, Se, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Sn, Hf, Ta, W, Re, Os. Represents one element selected from the group consisting of Ir, Ir and Pt. However, in the first mixing / grinding step, which will be described later, when discarding the supernatant as necessary before drying the sample, if there is a risk of Ba or (B) flowing out together with the supernatant, etc., the weighing step In this case, Ba / (Ti + (B)) may be appropriately adjusted within the range of 0.45 to 0.55. The substitution rate and BaTi 2 O 5 based composite oxide from T C lower temperature is to become 0.001 or more i.e. 0.1% or more significantly, to less than 0.8 or 8%, which is substituted limit.

なお、BaTiO3とBa(B)O3はいずれも粒子形状を有し、その粒径が細かいほど後述する第1混合・粉砕工程および第1熱処理工程での処理効率が向上するが、平均粒径が1μm以下であれば実質的に問題とはならない。 Both BaTiO 3 and Ba (B) O 3 have a particle shape, and the finer the particle size, the higher the processing efficiency in the first mixing / pulverization step and the first heat treatment step, which will be described later. If the diameter is 1 μm or less, there is no substantial problem.

次いで、ステップS2に係る第1混合・粉砕工程(第1粉砕工程)では、ステップS1にて秤量した秤量物の均一混合と当該秤量物を構成する粒子の微細化を行う。また、この工程で得られる混合粉末の平均粒径は、後述する第1熱処理工程での処理効率を高くするために、10nm〜1μm程度が好ましく、特に10〜700nm程度であるとより好ましい。なお、これを実現するための混合・粉砕時間は適宜調整できる。   Next, in the first mixing / pulverizing step (first pulverizing step) according to step S2, uniform mixing of the weighed material weighed in step S1 and refinement of the particles constituting the weighed material are performed. The average particle size of the mixed powder obtained in this step is preferably about 10 nm to 1 μm, more preferably about 10 to 700 nm, in order to increase the processing efficiency in the first heat treatment step described later. In addition, the mixing and pulverization time for realizing this can be adjusted as appropriate.

ここで、混合・粉砕方法としては、乾式・湿式のいずれの方法を採用してもよい。湿式法を採用した場合、混合媒質は、粒子同士の固着を防ぐ液体状態の物質であればよく、例えば、水や、アルカン類、アルコール類、ケトン類、芳香族などの有機溶媒、またはこれらを混合ないし相互溶解したもの等を適宜に使用できる。また、混合・粉砕方法としてミリング法を採用した場合、粉砕媒体として、種々のボールやビーズを適宜に使用できるが、硬質であるセラミックス製のものであればより好ましい。また、ミリング処理を行うためのポットは、硬質であるセラミックス製のものが好ましい。   Here, as a mixing / pulverization method, any of dry and wet methods may be employed. In the case of adopting a wet method, the mixed medium may be a liquid substance that prevents particles from sticking to each other. For example, water, alkanes, alcohols, ketones, aromatic organic solvents, or the like What was mixed or mutually dissolved can be used as appropriate. Further, when the milling method is adopted as the mixing and pulverizing method, various balls and beads can be appropriately used as the pulverizing medium, but those made of hard ceramics are more preferable. The pot for performing the milling treatment is preferably made of a hard ceramic.

具体的には、例えば、上記秤量物を硬質のセラミックス製のポットに入れて、硬質のセラミックス製のビーズおよび水を加えてミリング処理を行うことにより秤量物の混合・粉砕がなされる。その後、ビーズを除去してから試料を100℃〜300℃程度で乾燥する。   Specifically, for example, the weighed material is mixed and pulverized by placing the weighed material in a hard ceramic pot and adding a hard ceramic bead and water for milling. Then, after removing the beads, the sample is dried at about 100 ° C to 300 ° C.

次いで、ステップS3に係る第1熱処理工程では、ステップS2にて混合・粉砕した混合・粉砕物を、1050〜1300℃程度で加熱して反応させ、BaTiO3系複合酸化物を合成する。具体的には、例えば、秤量工程でBaTiO3およびBaZrO3を原料として使用した場合(つまり、上述の(B)元素としてZrを選択した場合)には、空気中にて1050〜1300℃で熱処理することにより、一般組成式Ba(Ti,Zr)O3で表されるBaTiO3系複合酸化物を単相で得ることができる。 Next, in the first heat treatment step according to step S3, the mixed and pulverized material mixed and pulverized in step S2 is heated and reacted at about 1050 to 1300 ° C. to synthesize a BaTiO 3 composite oxide. Specifically, for example, when BaTiO 3 and BaZrO 3 are used as raw materials in the weighing step (that is, when Zr is selected as the element (B) described above), heat treatment is performed at 1050 to 1300 ° C. in the air. As a result, a BaTiO 3 composite oxide represented by the general composition formula Ba (Ti, Zr) O 3 can be obtained in a single phase.

次いで、ステップS4に係るTiO2調合工程(混合工程)では、ステップS3の熱処理により生成された焼成物とTiO2を以下の通りに秤量する。すなわち、最終的な製造目的であるBaTi25系複合酸化物における置換率(B)/(Ti+(B))がyとなるようにBaTiO3系複合酸化物とTiO2を秤量する。 Next, in the TiO 2 preparation step (mixing step) according to step S4, the fired product and TiO 2 generated by the heat treatment in step S3 are weighed as follows. That is, the BaTiO 3 composite oxide and TiO 2 are weighed so that the substitution rate (B) / (Ti + (B)) in the BaTi 2 O 5 composite oxide, which is the final production purpose, is y.

そのためのBaTiO3系複合酸化物とTiO2の比は、以下のように決める。BaTiO3系複合酸化物における置換率(B)/(Ti+(B))をzと表し、ステップS4で作成するBaTi25系複合酸化物における置換率(B)/(Ti+(B))をyとし、BaTiO3系複合酸化物とTiO2のモル比をBaTiO3系複合酸化物/TiO2=a/bとするとき、式1を満たすように秤量する。 The ratio of the BaTiO 3 composite oxide and TiO 2 for that purpose is determined as follows. The substitution rate (B) / (Ti + (B)) in the BaTiO 3 composite oxide is represented by z, and the substitution rate (B) / (Ti + (B)) in the BaTi 2 O 5 composite oxide prepared in step S4. was a y, BaTiO 3 composite oxide molar ratio of BaTiO 3 composite oxide and TiO 2 / when the TiO 2 = a / b, and weighed so as to satisfy the equation 1.

a/b=(y/z)/(1−y/z) (式1)   a / b = (y / z) / (1-y / z) (Formula 1)

つまり、該比率a/bは、ステップS3で作製されるBaTiO3系複合酸化物とステップS4で作製する目的のBaTi25系複合酸化物における(B)元素の置換率zおよびyに応じて設定できる。たとえばz=0.16でy=0.05としたい場合、a/b=1/3とする。また、逆に、a/bに応じてzを設定してもよい。たとえば、a/b=1/2としたければ、ステップ3における置換率zをz=3yと設定しておけばよい。ただし、この場合、発明者の鋭意研究の結果によれば、該置換率yが0.08より大きいBaTi25系複合酸化物は安定的に製造できないため、zを0.16以下にする必要がある。 That is, the ratio a / b depends on the substitution rates z and y of the (B) element in the BaTiO 3 composite oxide produced in step S3 and the target BaTi 2 O 5 composite oxide produced in step S4. Can be set. For example, when z = 0.16 and y = 0.05, a / b = 1/3. Conversely, z may be set according to a / b. For example, if a / b = 1/2, the replacement rate z in step 3 may be set as z = 3y. However, in this case, according to the results of earnest research by the inventor, since the BaTi 2 O 5 composite oxide having the substitution rate y larger than 0.08 cannot be stably produced, z is made 0.16 or less. There is a need.

また、a/bは1よりも小さくすることが好ましい。もし1以上とすると、後のステップS6における熱処理の際にTiO2が多く存在することにより、たとえば、Ba6Ti1740のようなTiリッチなポリチタン酸バリウム系複合酸化物が生成されやすくなり、BaTi25系複合酸化物を高純度で得られなくなる。 Further, a / b is preferably smaller than 1. If it is 1 or more, a large amount of TiO 2 is present during the heat treatment in the subsequent step S6, so that, for example, a Ti-rich barium titanate-based composite oxide such as Ba 6 Ti 17 O 40 is likely to be generated. , BaTi 2 O 5 composite oxide cannot be obtained with high purity.

次いで、ステップS5に係る第2混合・粉砕工程(第2粉砕工程)では、ステップS4における秤量物の均一混合と粒子の微細化を行う。混合・粉砕方法や粒径については、第1混合・粉砕工程と同様であるので、その説明を省略する。   Next, in the second mixing / pulverizing step (second pulverizing step) according to step S5, the weighed material is uniformly mixed and the particles are refined in step S4. Since the mixing / pulverization method and the particle size are the same as those in the first mixing / pulverization step, description thereof is omitted.

最後に、ステップS6に係る第2熱処理工程では、ステップS5における混合・粉砕物を、1000〜1100℃程度で加熱し、固相反応させることにより、目的のBaTi25系複合酸化物を合成できる。この工程で起こる固相反応は、BaTiO3系複合酸化物とTiO2の2相間で起こる単純な反応であり、副生成物は生じない。したがって、BaTi25系複合酸化物を高純度で得ることできる。 Finally, in the second heat treatment process according to step S6, the mixed and pulverized product in step S5 is heated at about 1000 to 1100 ° C. to cause a solid phase reaction, thereby synthesizing the target BaTi 2 O 5 based composite oxide. it can. The solid phase reaction that occurs in this step is a simple reaction that occurs between the two phases of the BaTiO 3 composite oxide and TiO 2 , and no by-product is generated. Therefore, a BaTi 2 O 5 composite oxide can be obtained with high purity.

S1 秤量工程
S2 第1混合・粉砕工程
S3 第1熱処理工程
S4 TiO2調合工程
S5 第2混合・粉砕工程
S6 第2熱処理工程
S1 weighing process S2 first mixed and milled process S3 first heat treatment step S4 TiO 2 compounding process S5 second mixing and grinding step S6 second heat treatment step

Claims (3)

BaTiO3およびBaZrO3とから構成される原料を、Zr/(Ti+Zr)で表されるモル分率が全体で0.002〜0.16となるように秤量する秤量工程と、
前記原料を1050〜1300℃で加熱して反応させ、BaTiO3系複合酸化物を合成する第1熱処理工程と、
前記BaTiO3系複合酸化物およびTiO2を、Zr/(Ti+Zr)で表されるモル分率が全体で0.001〜0.08の範囲になるように混合して混合物を生成する混合工程と、
前記混合物を1000〜1100℃で加熱して反応させて、BaTi25系複合酸化物を合成する第2熱処理工程と、
を備えていることを特徴とするBaTi25系複合酸化物の製造方法。
A weighing step of weighing a raw material composed of BaTiO 3 and BaZrO 3 so that the molar fraction represented by Zr / (Ti + Zr) is 0.002 to 0.16 as a whole;
A first heat treatment step of reacting the raw material by heating at 1050 to 1300 ° C. to synthesize a BaTiO 3 composite oxide;
A mixing step of mixing the BaTiO 3 -based composite oxide and TiO 2 so that the molar fraction represented by Zr / (Ti + Zr) is in the range of 0.001 to 0.08 as a whole, thereby generating a mixture; ,
A second heat treatment step in which the mixture is heated and reacted at 1000 to 1100 ° C. to synthesize a BaTi 2 O 5 composite oxide;
A method for producing a BaTi 2 O 5 composite oxide, comprising:
前記第1熱処理工程の前に、前記原料の平均粒径が10〜700nmの範囲になるように、前記原料を粉砕する第1粉砕工程を備えることを特徴とする請求項1に記載のBaTi25系複合酸化物の製造方法。 2. The BaTi 2 according to claim 1, further comprising a first pulverization step of pulverizing the raw material so that an average particle size of the raw material is in a range of 10 to 700 nm before the first heat treatment step. method for producing O 5 based composite oxide. 前記第2熱処理工程の前に、前記混合物の平均粒径が10〜700nmの範囲になるように、前記混合物を粉砕する第2粉砕工程を備えることを特徴とする請求項1又は2に記載のBaTi25系複合酸化物の製造方法。 3. The method according to claim 1, further comprising a second pulverization step of pulverizing the mixture so that an average particle size of the mixture is in a range of 10 to 700 nm before the second heat treatment step. A method for producing a BaTi 2 O 5 composite oxide.
JP2012276444A 2012-03-19 2012-12-19 Method for producing BaTi2O5 composite oxide Active JP6091881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276444A JP6091881B2 (en) 2012-03-19 2012-12-19 Method for producing BaTi2O5 composite oxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012062500 2012-03-19
JP2012062500 2012-03-19
JP2012276444A JP6091881B2 (en) 2012-03-19 2012-12-19 Method for producing BaTi2O5 composite oxide

Publications (2)

Publication Number Publication Date
JP2013224245A true JP2013224245A (en) 2013-10-31
JP6091881B2 JP6091881B2 (en) 2017-03-08

Family

ID=49594592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276444A Active JP6091881B2 (en) 2012-03-19 2012-12-19 Method for producing BaTi2O5 composite oxide

Country Status (1)

Country Link
JP (1) JP6091881B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224246A (en) * 2012-03-19 2013-10-31 Seiko Instruments Inc POLYPHASE OXIDE PARTICLE, METHOD FOR MANUFACTURING POLYPHASE OXIDE PARTICLE, AND METHOD FOR MANUFACTURING BaTi2O5-BASED COMPOSITE OXIDE
JP2017110838A (en) * 2015-12-15 2017-06-22 株式会社村田製作所 Heat transportation device
JP2018203590A (en) * 2017-06-08 2018-12-27 セイコーインスツル株式会社 Barium dititanate-based complex oxide and manufacturing method therefor
CN114591079A (en) * 2022-03-11 2022-06-07 汕头市瑞升电子有限公司 High-voltage low-loss ceramic capacitor medium and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223669A (en) * 1982-06-18 1983-12-26 松下電器産業株式会社 High dielectric constant ceramic composition
JPH06227817A (en) * 1993-02-03 1994-08-16 Titan Kogyo Kk Fine granular powder of perovskite type compound
JP2006199563A (en) * 2005-01-24 2006-08-03 Murata Mfg Co Ltd Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor
JP2009051690A (en) * 2007-08-27 2009-03-12 Fuji Titan Kogyo Kk Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder, and ceramic electronic component using the same
JP2010103209A (en) * 2008-10-22 2010-05-06 Hitachi Ltd Piezoelectric element
JP2011006266A (en) * 2009-06-23 2011-01-13 Shimane Univ METHOD OF MANUFACTURING BaTi2O5 TYPE FERROELECTRIC CERAMIC
JP2011219351A (en) * 2010-03-25 2011-11-04 Seiko Instruments Inc BaTi2O5-BASED COMPOSITE OXIDE AND METHOD FOR PRODUCING BaTi2O5-BASED COMPOSITE OXIDE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223669A (en) * 1982-06-18 1983-12-26 松下電器産業株式会社 High dielectric constant ceramic composition
JPH06227817A (en) * 1993-02-03 1994-08-16 Titan Kogyo Kk Fine granular powder of perovskite type compound
JP2006199563A (en) * 2005-01-24 2006-08-03 Murata Mfg Co Ltd Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor
JP2009051690A (en) * 2007-08-27 2009-03-12 Fuji Titan Kogyo Kk Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder, and ceramic electronic component using the same
JP2010103209A (en) * 2008-10-22 2010-05-06 Hitachi Ltd Piezoelectric element
JP2011006266A (en) * 2009-06-23 2011-01-13 Shimane Univ METHOD OF MANUFACTURING BaTi2O5 TYPE FERROELECTRIC CERAMIC
JP2011219351A (en) * 2010-03-25 2011-11-04 Seiko Instruments Inc BaTi2O5-BASED COMPOSITE OXIDE AND METHOD FOR PRODUCING BaTi2O5-BASED COMPOSITE OXIDE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224246A (en) * 2012-03-19 2013-10-31 Seiko Instruments Inc POLYPHASE OXIDE PARTICLE, METHOD FOR MANUFACTURING POLYPHASE OXIDE PARTICLE, AND METHOD FOR MANUFACTURING BaTi2O5-BASED COMPOSITE OXIDE
JP2017110838A (en) * 2015-12-15 2017-06-22 株式会社村田製作所 Heat transportation device
JP2018203590A (en) * 2017-06-08 2018-12-27 セイコーインスツル株式会社 Barium dititanate-based complex oxide and manufacturing method therefor
CN114591079A (en) * 2022-03-11 2022-06-07 汕头市瑞升电子有限公司 High-voltage low-loss ceramic capacitor medium and preparation method thereof

Also Published As

Publication number Publication date
JP6091881B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
Rubio-Marcos et al. Effect of stoichiometry and milling processes in the synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction
Ganesh et al. Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder
CN101565317B (en) Production method of dielectric particles
JP6091881B2 (en) Method for producing BaTi2O5 composite oxide
WO2016084441A1 (en) Process for producing vanadium-dioxide-based heat-storage material
JP5445412B2 (en) Method for producing composite oxide powder
CN101549996A (en) Composite oxide particles and production method thereof
JP2007290887A (en) Bismuth titanate-based nanoparticle, piezoelectric ceramic using the same, and methods for producing them
JP5879078B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
Naderi-Beni et al. Development of a new sol-gel route for the preparation of aluminum oxynitride nano-powders
CN113348148B (en) Method for producing lithium titanium phosphate
JP5222853B2 (en) Method for producing alkali titanate compound
JP5873641B2 (en) Method for producing BaTi2O5 composite oxide
JP6267673B2 (en) Method for producing ferroelectric ceramics
JP6091882B2 (en) Multiphase oxide powder, method for producing multiphase oxide particles, and method for producing BaTi2O5 composite oxide
Pribošič et al. Chemical synthesis of KNbO3 and KNbO3–BaTiO3 ceramics
JP6963918B2 (en) Barium titanate-based composite oxide and its manufacturing method
JP6632455B2 (en) Method for producing vanadium dioxide based heat storage material
Fukada et al. Fabrication of lead-free piezoelectric NaNbO3 ceramics at low temperature using NaNbO3 nanoparticles synthesized by solvothermal method
JP5909319B2 (en) BaTi2O5 precursor powder, method for producing BaTi2O5 precursor powder, and method for producing BaTi2O5
JP5660947B2 (en) Method for producing BaTi2O5 composite oxide
Da Costa et al. Synthesis and thermochemistry of relaxor ferroelectrics in the lead magnesium niobate–lead titanate (PMN–PT) solid solutions series
JP2004315268A (en) Electroconductive oxide sintered compact, its producing method and obtained sputtering target
JP2012077068A (en) Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate
JP4937637B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6091881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250