JP2013222656A - Battery laminate - Google Patents

Battery laminate Download PDF

Info

Publication number
JP2013222656A
JP2013222656A JP2012094884A JP2012094884A JP2013222656A JP 2013222656 A JP2013222656 A JP 2013222656A JP 2012094884 A JP2012094884 A JP 2012094884A JP 2012094884 A JP2012094884 A JP 2012094884A JP 2013222656 A JP2013222656 A JP 2013222656A
Authority
JP
Japan
Prior art keywords
battery
battery cell
thickness
plate
electrode tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012094884A
Other languages
Japanese (ja)
Other versions
JP5988669B2 (en
Inventor
Rie Morisaki
梨恵 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2012094884A priority Critical patent/JP5988669B2/en
Publication of JP2013222656A publication Critical patent/JP2013222656A/en
Application granted granted Critical
Publication of JP5988669B2 publication Critical patent/JP5988669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress an increase in the thickness of a battery laminate even when the thickness of individual battery cells is increased, by a simple method.SOLUTION: A plurality of thin plate-like battery cells (10) and a plurality of plate materials (20) are alternately stacked. Each of the battery cells is directly or indirectly fixed to an adjacent plate material. The plate materials are provided with thickness increase absorbing means (27, 31) capable of absorbing an increase in the thickness of the battery cells.

Description

本発明は複数の薄板状の電池が積み重ねられてなる電池積層体に関する。   The present invention relates to a battery stack in which a plurality of thin plate batteries are stacked.

リチウムイオン二次電池に代表される非水電解質電池は、エネルギー密度が高いという特徴から、自動車やバイク等の各種移動機器、携帯情報端末、無停電電源装置(UPS(Uninterruptible Power Supply))等の電源として利用されている。このような用途において、エネルギー密度を更に向上させるため、可撓性を有するラミネートシートで発電要素を外装した薄板状のラミネート形リチウムイオン二次電池が多く使用されている。更に、所望する電池容量を得るために、複数の薄板状の二次電池(電池セル)を絶縁シートを介して積み重ねてこれらを直列に接続した電池積層体も実用されている(例えば特許文献1参照)。電池積層体は、略直方体形状の内壁で囲まれた収納空間を有する容器に収納して使用される。   Non-aqueous electrolyte batteries typified by lithium-ion secondary batteries are characterized by high energy density, so they include various mobile devices such as automobiles and motorcycles, personal digital assistants, uninterruptible power supplies (UPSs), etc. It is used as a power source. In such applications, in order to further improve the energy density, a thin plate-like laminated lithium ion secondary battery in which a power generation element is packaged with a flexible laminate sheet is often used. Furthermore, in order to obtain a desired battery capacity, a battery laminate in which a plurality of thin plate-like secondary batteries (battery cells) are stacked via an insulating sheet and these are connected in series is also practically used (for example, Patent Document 1). reference). The battery stack is used by being housed in a container having a housing space surrounded by a substantially rectangular parallelepiped inner wall.

特許第4499977号明細書Patent No. 4499977

一般に、二次電池は、充放電を繰り返すことにより体積膨張することがあることが知られている。ラミネート形の二次電池の外装のシートは容易に変形するため、二次電池が膨らみ、その厚みが増加する。複数の電池セルを積み重ねた上記の電池積層体において、個々の電池セルの厚みがそれぞれ増加すると、電池積層体全体の厚み(積層方向に沿った寸法)の増加量は無視できない。従って、電池積層体を収納する容器が、電池積層体の厚みの増加によって変形し、装置に当該容器を組み込むことができなくなったり、当該容器が破損したりする可能性がある。   In general, it is known that a secondary battery may expand in volume by repeated charge and discharge. Since the outer sheet of the laminated secondary battery is easily deformed, the secondary battery swells and its thickness increases. In the above battery stack in which a plurality of battery cells are stacked, when the thickness of each battery cell increases, the amount of increase in the thickness of the entire battery stack (dimension along the stacking direction) cannot be ignored. Therefore, there is a possibility that the container that stores the battery stack is deformed by an increase in the thickness of the battery stack, and the container cannot be incorporated into the apparatus or the container is damaged.

本発明は、上記の従来の問題を解決し、簡単な方法で、個々の電池セルの厚みが増加したとしても、電池積層体の厚みの増加を抑制することを目的とする。   An object of the present invention is to solve the above-described conventional problems and to suppress an increase in the thickness of a battery stack even if the thickness of each battery cell is increased by a simple method.

本発明の電池積層体は、複数の薄板状の電池セルと複数の板材とが、電池セルと板材とが交互に配置されて積み重ねられた電池積層体である。前記複数の電池セルのそれぞれは、隣接する板材に直接的に又は間接的に固定されている。前記板材には、前記電池セルの厚みの増加を吸収することができる厚み増加吸収手段が設けられている。   The battery laminated body of the present invention is a battery laminated body in which a plurality of thin battery cells and a plurality of plate materials are stacked by alternately arranging battery cells and plate materials. Each of the plurality of battery cells is directly or indirectly fixed to an adjacent plate material. The plate member is provided with a thickness increase absorbing means capable of absorbing an increase in the thickness of the battery cell.

本発明によれば、電池セルが膨らむことによる厚みの増加を吸収する厚み増加吸収手段が板材に設けられている。従って、簡単な方法で、電池セルの厚みが増加したとしても、電池積層体の厚みの増加を抑制することができる。   According to this invention, the thickness increase absorption means which absorbs the increase in thickness by a battery cell swelling is provided in the board | plate material. Therefore, even if the thickness of the battery cell is increased by a simple method, an increase in the thickness of the battery stack can be suppressed.

図1Aは、本発明の実施形態1にかかる電池積層体を構成する電池セルの正面側から見た斜視図、図1Bは、その背面側から見た斜視図である。1A is a perspective view seen from the front side of a battery cell constituting the battery stack according to Embodiment 1 of the present invention, and FIG. 1B is a perspective view seen from the back side thereof. 図2は、本発明の実施形態1にかかる電池積層体を示した斜視図である。FIG. 2 is a perspective view showing the battery stack according to Embodiment 1 of the present invention. 図3は、本発明の実施形態1にかかる電池積層体の積層構成を説明する分解斜視図である。FIG. 3 is an exploded perspective view for explaining the stacking configuration of the battery stack according to the first embodiment of the present invention. 図4Aは、本発明の実施形態1にかかる電池積層体を構成する板材の正面図、図4Bは、図4Aの4B−4B線を含む面に沿った、当該板材の矢視断面図である。FIG. 4A is a front view of a plate material constituting the battery stack according to Embodiment 1 of the present invention, and FIG. 4B is a cross-sectional view of the plate material along the plane including line 4B-4B of FIG. 4A. . 図5は、本発明の一実施形態にかかる電池積層体を示した正面図である。FIG. 5 is a front view showing a battery stack according to an embodiment of the present invention. 図6Aは、本発明の実施形態2にかかる電池積層体を構成する板材の正面図、図6Bは、図6Aの6B−6B線を含む面に沿った、当該板材の矢視断面図である。6A is a front view of a plate material constituting the battery stack according to Embodiment 2 of the present invention, and FIG. 6B is a cross-sectional view of the plate material along the plane including line 6B-6B in FIG. 6A. . 図7Aは、本発明の実施形態2にかかる電池積層体を構成する別の板材の正面図、図7Bは、図7Aの7B−7B線を含む面に沿った、当該板材の矢視断面図である。7A is a front view of another plate member constituting the battery stack according to Embodiment 2 of the present invention, and FIG. 7B is a cross-sectional view of the plate member taken along the line including line 7B-7B in FIG. 7A. It is. 図8Aは、本発明の実施形態3にかかる電池積層体を構成する板材の正面図、図8Bは、図8Aの8B−8B線を含む面に沿った、当該板材の矢視断面図である。FIG. 8A is a front view of a plate material constituting the battery stack according to Embodiment 3 of the present invention, and FIG. 8B is a cross-sectional view of the plate material along the plane including line 8B-8B in FIG. 8A. . 図9Aは、本発明の実施形態4にかかる電池積層体を構成する板材の正面図、図9Bは、図9Aの9B−9B線を含む面に沿った、当該板材の矢視断面図である。9A is a front view of a plate material constituting a battery stack according to Embodiment 4 of the present invention, and FIG. 9B is a cross-sectional view of the plate material along a plane including line 9B-9B in FIG. 9A. . 図10Aは、本発明の実施形態4にかかる電池積層体を構成する別の板材の正面図、図10Bは、図10Aの10B−10B線を含む面に沿った、当該板材の矢視断面図である。FIG. 10A is a front view of another plate member constituting the battery stack according to Embodiment 4 of the present invention, and FIG. 10B is a cross-sectional view of the plate member taken along the line including line 10B-10B in FIG. 10A. It is. 図11は、本発明の電池積層体を構成する別の電池セルの正面側から見た斜視図である。FIG. 11 is a perspective view of another battery cell constituting the battery stack of the present invention as viewed from the front side. 図12Aは、本発明の別の電池積層体の正面図である。FIG. 12A is a front view of another battery stack of the present invention. 図12Bは、本発明の更に別の電池積層体の正面図である。FIG. 12B is a front view of still another battery stack of the present invention. 図13Aは、本発明の更に別の電池積層体の積層構成を説明する分解斜視図である。FIG. 13A is an exploded perspective view illustrating a stacked configuration of still another battery stack of the present invention. 図13Bは、図13Aに示した電池積層体の正面図である。FIG. 13B is a front view of the battery stack shown in FIG. 13A.

上記の本発明の電池積層体において、前記厚み増加吸収手段が、前記板材の前記電池セルが対向する領域内に形成された貫通穴又は薄肉部を含んでいてもよい。あるいは、前記厚み増加吸収手段が、前記板材と前記電池セルとの間に設けられた、圧縮変形可能な緩衝部材を含んでいてもよい。   In the battery laminate of the present invention, the thickness increase absorbing means may include a through hole or a thin wall portion formed in a region of the plate material facing the battery cell. Alternatively, the thickness increase absorbing means may include a compression deformable buffer member provided between the plate member and the battery cell.

隣り合う電池セル間において正極タブと負極タブとを電気的に接続できるように、正極タブ及び/又は負極タブが対向する前記板材の領域に切り欠きが形成されていることが好ましい。これより、電池セルから導出された正極タブ及び負極タブを、板材を内包する最小面積の長方形(後述する二点鎖線25で示された長方形)からはみ出させることなく、容易に、複数の電池セルを直列に接続することができる。   It is preferable that a notch is formed in the region of the plate material facing the positive electrode tab and / or the negative electrode tab so that the positive electrode tab and the negative electrode tab can be electrically connected between adjacent battery cells. Thus, a plurality of battery cells can be easily formed without protruding the positive electrode tab and the negative electrode tab derived from the battery cell from a rectangle having a minimum area containing a plate material (a rectangle indicated by a two-dot chain line 25 described later). Can be connected in series.

以下に、本発明を好適な実施形態を示しながら詳細に説明する。但し、本発明は以下の実施形態に限定されないことはいうまでもない。以下の説明において参照する各図は、説明の便宜上、本発明の実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明は以下の各図に示されていない任意の構成部材を備え得る。また、以下の各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。   Below, this invention is demonstrated in detail, showing suitable embodiment. However, it goes without saying that the present invention is not limited to the following embodiments. For convenience of explanation, the drawings referred to in the following description show only the main members necessary for explaining the present invention in a simplified manner among the constituent members of the embodiment of the present invention. Therefore, the present invention can include arbitrary components not shown in the following drawings. In addition, the dimensions of the members in the following drawings do not faithfully represent the actual dimensions of the constituent members and the dimensional ratios of the members.

[実施形態1]
(電池セル)
最初に、本発明の実施形態1にかかる電池積層体に使用される電池セルの概略構成を説明する。
[Embodiment 1]
(Battery cell)
Initially, the schematic structure of the battery cell used for the battery laminated body concerning Embodiment 1 of this invention is demonstrated.

図1Aは、本発明の実施形態1にかかる電池積層体を構成する電池セル10の正面側から見た斜視図、図1Bは、その背面側から見た斜視図である。電池セル10は、平面視形状が略矩形であり、当該略矩形の縦横寸法に比べて厚みが薄い薄板形状を有する。この電池セル10では、ラミネートシート13からなる外装内に、略矩形の平面視形状を有する薄板状の発電要素(図示せず)が電解液とともに封入されている。発電要素は、正極集電体の所定領域の両面に正極活物質を含む正極合剤層が塗布形成された正極と、負極集電体の所定領域の両面に負極活物質を含む負極合剤層が塗布形成された負極とが、セパレータを介して交互に積層されてなる電極積層体である。電池の種類は特に制限はないが、二次電池、中でもリチウムイオン二次電池が好ましい。   1A is a perspective view seen from the front side of the battery cell 10 constituting the battery stack according to Embodiment 1 of the present invention, and FIG. 1B is a perspective view seen from the back side thereof. The battery cell 10 has a substantially rectangular shape in plan view, and has a thin plate shape that is thinner than the vertical and horizontal dimensions of the substantially rectangular shape. In the battery cell 10, a thin plate-shaped power generation element (not shown) having a substantially rectangular plan view shape is enclosed in an exterior made of a laminate sheet 13 together with an electrolytic solution. The power generation element includes a positive electrode in which a positive electrode mixture layer including a positive electrode active material is applied and formed on both surfaces of a predetermined region of the positive electrode current collector, and a negative electrode mixture layer including a negative electrode active material on both surfaces of the predetermined region of the negative electrode current collector Is an electrode laminate in which negative electrodes formed by coating are alternately laminated via separators. The type of the battery is not particularly limited, but a secondary battery, particularly a lithium ion secondary battery is preferable.

ラミネートシート13は、発電要素に比べて薄く、且つ、可撓性を有している。ラミネートシート13は、例えば、アルミニウム等からなる基層の、発電要素に対向する側の面に熱融着性樹脂層(例えば変性ポリオレフィン層)が積層された可撓性を有する多層シートであってもよい。1枚の矩形のラミネートシート13が、発電要素を挟むように下辺(一方の短辺)14bで二つ折りにされ、下辺14b以外の三辺に沿って重ね合わされてヒートシール法などによりシールされている。   The laminate sheet 13 is thinner than the power generation element and has flexibility. The laminate sheet 13 may be a flexible multilayer sheet in which a heat-fusible resin layer (for example, a modified polyolefin layer) is laminated on the surface of the base layer made of aluminum or the like on the side facing the power generation element. Good. One rectangular laminate sheet 13 is folded in two at the lower side (one short side) 14b so as to sandwich the power generation element, is overlapped along three sides other than the lower side 14b, and is sealed by a heat sealing method or the like. Yes.

下辺14bに対向する上辺(他方の短辺)14aから、正極タブ11p及び負極タブ11nが導出されている。正極タブ11p及び負極タブ11nは、短冊形状を有し、上辺14aに対して直交する方向(即ち、上辺14aに隣接する一対の側辺(長辺)14sと平行な方向)に沿って延びている。正極タブ11pは、例えばアルミニウムの薄板からなり、発電要素を構成する複数の正極集電体(図示せず)と電気的に接続されている。また、負極タブ11nは、例えば銅の薄板、ニッケルメッキされた銅の薄板、または銅/ニッケルのクラッド材等からなり、発電要素を構成する複数の負極集電体(図示せず)と電気的に接続されている。   A positive electrode tab 11p and a negative electrode tab 11n are led out from an upper side (the other short side) 14a facing the lower side 14b. The positive electrode tab 11p and the negative electrode tab 11n have a strip shape and extend along a direction orthogonal to the upper side 14a (that is, a direction parallel to a pair of side sides (long sides) 14s adjacent to the upper side 14a). Yes. The positive electrode tab 11p is made of, for example, an aluminum thin plate, and is electrically connected to a plurality of positive electrode current collectors (not shown) constituting the power generation element. The negative electrode tab 11n is made of, for example, a copper thin plate, a nickel-plated copper thin plate, or a copper / nickel clad material, and is electrically connected to a plurality of negative electrode current collectors (not shown) constituting the power generation element. It is connected to the.

図1Aに示されているように、電池セル10の正面側では、発電要素に対応する長方形の領域16が、電池セル10の三辺14a,14s,14sに沿ったラミネートシート13のシール領域に対して突出している。一方、図1Bに示されているように、電池セル10の裏面は略一平面をなしている。本発明では、説明の便宜のために、図1Aに示された、発電要素によって長方形の突出領域16が形成された側の面を電池セル10の「正面」と呼び、図1Bに示された略平面である側の面を電池セル10の「裏面」と呼ぶ。また、正面と裏面とを結ぶ方向を「厚さ方向」と呼ぶ。   As shown in FIG. 1A, on the front side of the battery cell 10, a rectangular region 16 corresponding to the power generation element is a sealing region of the laminate sheet 13 along the three sides 14 a, 14 s, and 14 s of the battery cell 10. Protrusively. On the other hand, as shown in FIG. 1B, the back surface of the battery cell 10 is substantially flat. In the present invention, for convenience of explanation, the surface on the side where the rectangular projecting region 16 is formed by the power generation element shown in FIG. 1A is called the “front” of the battery cell 10 and is shown in FIG. 1B. The surface on the side that is substantially flat is called the “back surface” of the battery cell 10. A direction connecting the front surface and the back surface is referred to as a “thickness direction”.

(電池積層体)
図2は、本発明の実施形態1にかかる電池積層体1を示した斜視図、図3は、電池積層体1の積層構成を説明する分解斜視図である。図2及び図3に示されているように、複数(本例では7個)の電池セル10と複数(本例では6枚)の板材20とが、電池セル10と板材20とが交互に配置されて積層されている。電池積層体1を構成する複数の電池セル10は同一形状を有し、また、電池積層体1を構成する複数の板材20は同一形状を有している。本発明では、電池セル10と板材20との交互積層方向を「積層方向」と呼ぶ。
(Battery stack)
FIG. 2 is a perspective view showing the battery stack 1 according to Embodiment 1 of the present invention, and FIG. 3 is an exploded perspective view for explaining the stack configuration of the battery stack 1. As shown in FIGS. 2 and 3, a plurality (seven in this example) of battery cells 10 and a plurality (six in this example) of plate members 20 are alternately formed by the battery cells 10 and the plates 20. Arranged and stacked. The plurality of battery cells 10 constituting the battery stack 1 have the same shape, and the plurality of plate members 20 constituting the battery stack 1 have the same shape. In the present invention, the alternate stacking direction of the battery cell 10 and the plate member 20 is referred to as a “stacking direction”.

図4Aは、板材20の正面図である。図4Bは、図4Aの4B−4B線を含む面に沿った板材20の矢視断面図である。板材20は、全体として略長方形形状を有している。図4Aに示されているように、板材20の上側の短辺の両端を除く部分に切り欠き21が形成され、その結果、板材20の上側に略U字状の端縁が形成されている。また、切り欠き21の下方には、略長方形の貫通穴27が形成されている。貫通穴27の端縁に沿って、略長方形の枠状の緩衝部材31が、板材20の両面に固定されている。緩衝部材31も、板材20の貫通穴27に対応する領域が開口している。図4Aにおいて、緩衝部材31の上下方向及び左右方向の各外寸法は、電池セル10の発電要素に対応する領域16(図1A参照)の寸法に略一致する。   FIG. 4A is a front view of the plate member 20. 4B is a cross-sectional view of the plate member 20 taken along the plane including the line 4B-4B in FIG. 4A. The plate material 20 has a substantially rectangular shape as a whole. As shown in FIG. 4A, a notch 21 is formed in a portion excluding both ends of the upper short side of the plate member 20, and as a result, a substantially U-shaped edge is formed on the upper side of the plate member 20. . A substantially rectangular through hole 27 is formed below the notch 21. A substantially rectangular frame-shaped buffer member 31 is fixed to both surfaces of the plate member 20 along the edge of the through hole 27. The buffer member 31 also has an opening corresponding to the through hole 27 of the plate member 20. In FIG. 4A, the outer dimensions of the buffer member 31 in the vertical direction and the horizontal direction substantially match the dimensions of the region 16 (see FIG. 1A) corresponding to the power generation element of the battery cell 10.

板材20は、硬質の実施的に剛体と見なしうる材料からなる。例えば、ポリカーボネート等の絶縁性を有する樹脂材料、銅、アルミニウムなどの熱伝導性に優れた金属材料からなることが好ましい。板材20の厚さは、板材20の材料などによって異なるが、0.3mm以上、更には0.5mm以上、特に0.8mm以上であることが好ましい。板材20の厚さの上限は、電池積層体1の全体厚さ等を考慮して適宜設定しうるが、1.5mm以下、更には1.2mm以下であることが好ましい。   The plate 20 is made of a hard material that can be considered as a rigid body. For example, it is preferably made of an insulating resin material such as polycarbonate or a metal material having excellent thermal conductivity such as copper or aluminum. The thickness of the plate member 20 varies depending on the material of the plate member 20 and the like, but is preferably 0.3 mm or more, more preferably 0.5 mm or more, and particularly preferably 0.8 mm or more. The upper limit of the thickness of the plate member 20 can be appropriately set in consideration of the overall thickness of the battery stack 1 and the like, but is preferably 1.5 mm or less, and more preferably 1.2 mm or less.

緩衝部材31は、押力を加えると容易に圧縮変形し、当該押力を解除すると直ちに初期の状態に戻る特性を有している。緩衝部材31の材料は、このような特性を有していれば特に制限はないが、例えば、柔軟な多孔質材料、いわゆるスポンジを用いることができる。具体的には、ウレタンフォーム、発泡ポリエチレン、ゴムスポンジなどを用いることができる。緩衝部材31が絶縁性を有することは、隣り合う電池セル10間の短絡を防止するのに有利である。緩衝部材31の厚さは、電池セル10の厚み膨張の程度等を考慮して設定しうるが、0.3mm以上、更には0.5mm以上であることが好ましい。緩衝部材31が厚すぎると、電池セル10の厚みの増加を吸収する能力(厚み増加吸収能)が向上しないばかりか、電池積層体1の全体厚みが増加する。従って、緩衝部材31の上限は、1.5mm以下、更には1.0mm以下であることが好ましい。   The buffer member 31 has a characteristic that it easily compresses and deforms when a pressing force is applied, and immediately returns to the initial state when the pressing force is released. The material of the buffer member 31 is not particularly limited as long as it has such characteristics. For example, a flexible porous material, so-called sponge, can be used. Specifically, urethane foam, polyethylene foam, rubber sponge and the like can be used. The insulating property of the buffer member 31 is advantageous in preventing a short circuit between adjacent battery cells 10. Although the thickness of the buffer member 31 can be set in consideration of the degree of expansion of the battery cell 10 thickness, it is preferably 0.3 mm or more, and more preferably 0.5 mm or more. If the buffer member 31 is too thick, not only the capacity to absorb the increase in thickness of the battery cell 10 (thickness increase absorption capacity) is improved, but also the overall thickness of the battery stack 1 increases. Accordingly, the upper limit of the buffer member 31 is preferably 1.5 mm or less, and more preferably 1.0 mm or less.

緩衝部材31を板材20に固定する方法は特に制限はなく、例えば、両面粘着テープや接着剤を用いることができる。特に、両面粘着テープにより固定する方法は、電池積層体1の積層工程を簡単且つ迅速に行うことができるので好ましい。   There is no restriction | limiting in particular in the method of fixing the buffer member 31 to the board | plate material 20, For example, a double-sided adhesive tape and an adhesive agent can be used. In particular, the method of fixing with a double-sided pressure-sensitive adhesive tape is preferable because the stacking process of the battery stack 1 can be performed easily and quickly.

図2及び図3に示されているように、板材20を挟んで隣り合う2つの電池セル10間において異極のタブ(即ち正極タブ11pと負極タブ11n)同士が積層方向に互いに対向するように、1つおきの電池セル10は裏返されている。そして、板材20を挟んで隣り合う電池セル10間おいて、互いに対向する正極タブ11pと負極タブ11nとが、板材20に形成された切り欠き21を介して、電気的に接続されている。その結果、複数の電池セル10が直列に接続されている。   As shown in FIG. 2 and FIG. 3, the tabs of different polarities (that is, the positive electrode tab 11 p and the negative electrode tab 11 n) are opposed to each other in the stacking direction between two adjacent battery cells 10 with the plate member 20 interposed therebetween. Moreover, every other battery cell 10 is turned over. The positive electrode tab 11p and the negative electrode tab 11n facing each other are electrically connected to each other between the adjacent battery cells 10 with the plate material 20 interposed therebetween via a notch 21 formed in the plate material 20. As a result, the plurality of battery cells 10 are connected in series.

各電池セル10は、隣接する板材20に緩衝部材31を介して間接的に固定されている。緩衝部材31が電池セル10内の発電要素の外縁にほぼ沿うように、緩衝部材31に対して電池セル10は位置決めされて固定される。かくして、複数の電池セル10、複数の板材20、及び電池セル10と板材20との間の緩衝部材31は一体化されている。   Each battery cell 10 is indirectly fixed to the adjacent plate member 20 via a buffer member 31. The battery cell 10 is positioned and fixed with respect to the buffer member 31 so that the buffer member 31 is substantially along the outer edge of the power generation element in the battery cell 10. Thus, the plurality of battery cells 10, the plurality of plate members 20, and the buffer member 31 between the battery cell 10 and the plate member 20 are integrated.

電池セル10と緩衝部材31との固定方法は特に制限はないが、電池セル10の正面又は裏面と緩衝部材31との間に、両面粘着テープや接着剤を介在させて電池セル10を緩衝部材31に固定することができる。特に、両面粘着テープにより固定する方法は、電池積層体1の積層工程を簡単且つ迅速に行うことができるので好ましい。   The method for fixing the battery cell 10 and the buffer member 31 is not particularly limited, but the battery cell 10 is buffered by interposing a double-sided adhesive tape or an adhesive between the front or back surface of the battery cell 10 and the buffer member 31. 31 can be fixed. In particular, the method of fixing with a double-sided pressure-sensitive adhesive tape is preferable because the stacking process of the battery stack 1 can be performed easily and quickly.

図5は、電池積層体1を積層方向に沿って見た平面図である。電池積層体1を構成する全ての板材20は、その積層方向に沿った投影図形が略一致するように、位置合わせされている。   FIG. 5 is a plan view of the battery stack 1 as viewed in the stacking direction. All the plate members 20 constituting the battery stack 1 are aligned so that the projected figures along the stacking direction substantially coincide with each other.

図5において、二点鎖線25は、板材20を内包する最小面積の長方形を示す。以下、二点鎖線25で示したこの長方形を、板材20の「輪郭長方形」と呼ぶ。本実施形態では、輪郭長方形25は、切り欠き21が形成された部分を除いて、板材20の外形線と一致している。図5に示されているように、電池セル10は、その正極タブ11p及び負極タブ11nを含めて、輪郭長方形25に内包されている。即ち、電池セル10のいずれの部分も、板材20の輪郭長方形25から外にはみ出していない。   In FIG. 5, an alternate long and two short dashes line 25 indicates a rectangle with the smallest area that encloses the plate material 20. Hereinafter, this rectangle indicated by a two-dot chain line 25 is referred to as a “contour rectangle” of the plate member 20. In the present embodiment, the outline rectangle 25 coincides with the outline of the plate member 20 except for the portion where the notch 21 is formed. As shown in FIG. 5, the battery cell 10 is enclosed in a contour rectangle 25 including the positive electrode tab 11 p and the negative electrode tab 11 n. That is, none of the battery cells 10 protrudes from the outline rectangle 25 of the plate material 20.

上記の本実施形態の電池積層体1は、一般に、略直方体形状を有する内壁で囲まれた空間(収納空間)を有する容器内に収納され使用される。   The battery stack 1 according to the present embodiment is generally housed and used in a container having a space (housing space) surrounded by an inner wall having a substantially rectangular parallelepiped shape.

以上のように構成された本発明の電池積層体1の効果を説明する。   The effects of the battery stack 1 of the present invention configured as described above will be described.

充放電を繰り返すことにより発生する電池セル10の厚みの増加は、電池セル10の正面及び裏面の発電要素に対応する領域が、ドーム状に膨らむことにより生じることが多い。   The increase in the thickness of the battery cell 10 caused by repeated charging / discharging often occurs when the areas corresponding to the power generation elements on the front surface and the back surface of the battery cell 10 swell in a dome shape.

上述したように、本実施形態1の電池積層体1では、板材20の電池セル10が対向する領域内には貫通穴27が形成され、貫通穴27の開口の端縁に沿って、圧縮変形可能な緩衝部材31が板材20に固定されている。電池セル10は緩衝部材31を介して板材20に間接的に固定されている。従って、電池セル10の正面及び裏面がドーム状に膨らむと、電池セル10の膨らみは枠状の緩衝部材31の中央の開口及び板材20の貫通穴27内に進入し、また、緩衝部材31が適宜圧縮変形する。このように、板材20の貫通穴27と緩衝部材31とが電池セル10の厚みの増加を吸収する厚み増加吸収手段として機能するので、電池セル10の厚みが増加したとしても、電池積層体1の厚み(積層方向の寸法)の増加はほとんどない。   As described above, in the battery stack 1 of the first embodiment, the through hole 27 is formed in the region of the plate member 20 facing the battery cell 10, and compression deformation is performed along the edge of the opening of the through hole 27. A possible buffer member 31 is fixed to the plate member 20. The battery cell 10 is indirectly fixed to the plate member 20 via the buffer member 31. Accordingly, when the front and back surfaces of the battery cell 10 swell in a dome shape, the bulge of the battery cell 10 enters the central opening of the frame-shaped buffer member 31 and the through hole 27 of the plate member 20, and the buffer member 31 Compress and deform appropriately. Thus, since the through hole 27 and the buffer member 31 of the plate member 20 function as a thickness increase absorbing unit that absorbs the increase in the thickness of the battery cell 10, even if the thickness of the battery cell 10 increases, the battery stack 1 There is almost no increase in the thickness (dimension in the stacking direction).

しかも、本実施形態1によれば、板材20に貫通穴27を形成し、その端縁に沿って設けた緩衝部材31に電池セル10を固定するという極めて簡単な方法で、電池積層体の厚みの増加を抑制することができる。   Moreover, according to the first embodiment, the thickness of the battery stack is formed by an extremely simple method of forming the through hole 27 in the plate member 20 and fixing the battery cell 10 to the buffer member 31 provided along the edge. Can be suppressed.

また、本実施形態1では、図5に示したように、積層方向に沿って見たとき、板材20の輪郭長方形25は、当該板材20に固定された電池セル10を内包している。従って、電池積層体1を収納した容器を落下したり振動させたりすることにより、容器内で電池積層体1が、積層方向と直交する方向に移動したとしても、電池セル10が容器の内壁に直接衝突するのを板材20が防止する。このように、電池セル10に外力が直接加えられる可能性が低減するので、電池セル10の変形や、それに起因して電池セル10が発火したり破裂したりする可能性を低減することができる。これは、電池積層体1の安全性の向上に有利である。   In the first embodiment, as shown in FIG. 5, when viewed along the stacking direction, the outline rectangle 25 of the plate member 20 includes the battery cell 10 fixed to the plate member 20. Therefore, even if the battery stack 1 is moved in a direction perpendicular to the stacking direction by dropping or vibrating the container containing the battery stack 1, the battery cell 10 is placed on the inner wall of the container. The plate member 20 prevents direct collision. Thus, since possibility that an external force will be directly applied to the battery cell 10 reduces, the deformation | transformation of the battery cell 10 and the possibility that the battery cell 10 will ignite or burst due to it can be reduced. . This is advantageous for improving the safety of the battery stack 1.

電池セル10が、容器の内壁に衝突する可能性をより確実に低減するためには、図5に示したように、板材20の輪郭長方形25の各辺の電池セル10からのはみ出し量(換言すれば、輪郭長方形25の各辺からの電池セル10の後退量)Dが大きい方が好ましい。はみ出し量Dは、板材20の強度などに応じて適宜設定しうるが、一般には、1mm以上、更には1.5mm以上、特に2mm以上であることが好ましい。但し、はみ出し量Dが大きすぎると、電池積層体1の安全性のさらなる向上が得られないばかりか、電池積層体1の外寸法が大きくなる。一般には、はみ出し量Dは、4mm以下、更には3mm以下であることが好ましい。なお、輪郭長方形25の各辺のはみ出し量Dは全ての辺で同一であってもよいが、異なっていてもよい。   In order to more reliably reduce the possibility of the battery cell 10 colliding with the inner wall of the container, as shown in FIG. 5, the amount of protrusion from the battery cell 10 on each side of the outline rectangle 25 of the plate member 20 (in other words, In this case, it is preferable that the retreat amount D of the battery cell 10 from each side of the outline rectangle 25 is large. The amount of protrusion D can be appropriately set according to the strength of the plate member 20 and the like, but in general, it is preferably 1 mm or more, more preferably 1.5 mm or more, and particularly preferably 2 mm or more. However, if the protruding amount D is too large, not only the safety of the battery stack 1 can be further improved, but also the outer dimension of the battery stack 1 becomes large. In general, the protruding amount D is preferably 4 mm or less, and more preferably 3 mm or less. The protruding amount D of each side of the outline rectangle 25 may be the same on all sides or may be different.

上記の例では、板材20を挟んで隣り合う2つの電池セル10が、板材20の貫通穴27を介して直接対向する。従って、電池セル10の膨らみ量が大きいときには、隣り合う電池セル10同士が貫通穴27内で接触し、有害な短絡が生じる可能性がある。これを防ぐため、例えば、絶縁性を有する薄いシートで貫通穴27を塞いでもよい。このシートは、板材20の片面に、貫通穴27を塞ぐように固定することができる。その後、緩衝部材31を板材20に固定すればよい。このシートの材料としては、絶縁性を有していれば特に制限はないが、樹脂又は紙など任意の材料を選択しうる。   In the above example, two battery cells 10 that are adjacent to each other with the plate member 20 interposed therebetween are directly opposed to each other through the through hole 27 of the plate member 20. Therefore, when the bulge amount of the battery cell 10 is large, adjacent battery cells 10 may come into contact with each other in the through hole 27 and a harmful short circuit may occur. In order to prevent this, for example, the through hole 27 may be closed with a thin sheet having insulating properties. This sheet can be fixed to one surface of the plate member 20 so as to close the through hole 27. Thereafter, the buffer member 31 may be fixed to the plate member 20. The material of this sheet is not particularly limited as long as it has insulating properties, but any material such as resin or paper can be selected.

(実施形態2)
図6Aは、本実施形態2の電池積層体を構成する板材20の正面図である。図6Bは、図6Aの6B−6B線を含む面に沿った板材20の矢視断面図である。本実施形態2は、板材20に貫通穴27が形成されていない点で、実施形態1と異なる。実施形態1と同様に、略長方形の枠状の緩衝部材31が、板材20の両面に固定されている。
(Embodiment 2)
FIG. 6A is a front view of the plate member 20 constituting the battery stack of the second embodiment. 6B is a cross-sectional view of the plate member 20 taken along the plane including the line 6B-6B in FIG. 6A. The second embodiment is different from the first embodiment in that the through hole 27 is not formed in the plate material 20. Similar to the first embodiment, substantially rectangular frame-shaped buffer members 31 are fixed to both surfaces of the plate member 20.

本実施形態2の電池積層体は、上記を除いて実施形態1の電池積層体1と同じである。   The battery stack of the second embodiment is the same as the battery stack 1 of the first embodiment except for the above.

本実施形態2では、電池セル10の正面及び裏面がドーム状に膨らむと、電池セル10の膨らみが枠状の緩衝部材31の中央の開口内に進入し、また、緩衝部材31が適宜圧縮変形する。このように、緩衝部材31が電池セル10の厚みの増加を吸収する厚み増加吸収手段として機能するので、電池セル10の厚みが増加したとしても、電池積層体1の厚み(積層方向の寸法)の増加はほとんどない。   In the second embodiment, when the front and back surfaces of the battery cell 10 swell in a dome shape, the bulge of the battery cell 10 enters the central opening of the frame-shaped buffer member 31, and the buffer member 31 is appropriately compressed and deformed. To do. Thus, since the buffer member 31 functions as a thickness increase absorption unit that absorbs the increase in the thickness of the battery cell 10, even if the thickness of the battery cell 10 increases, the thickness of the battery stack 1 (dimension in the stacking direction). There is almost no increase.

本実施形態2では、実施形態1と異なり、板材20に貫通穴27が形成されていない。従って、電池セル10が膨らんだときに、電池セル10と板材20とが衝突し、厚み増加吸収能が制限されるかも知れない。しかしながら、そのような場合には、緩衝部材31の厚みを厚くすることにより、所望する厚み増加吸収能を確保することが可能である。   In the second embodiment, unlike the first embodiment, the through hole 27 is not formed in the plate material 20. Therefore, when the battery cell 10 swells, the battery cell 10 and the plate member 20 may collide, and the thickness increase absorption capability may be limited. However, in such a case, it is possible to ensure the desired thickness increase absorbability by increasing the thickness of the buffer member 31.

あるいは、図7A及び図7Bに示すように、板材20の両面のうち、枠状の緩衝部材31で囲まれた領域を凹状に窪ませて、他に比べて薄い薄肉部28を形成してもよい。これにより、緩衝部材31の厚みの増加を回避しながら、所望する厚み増加吸収能を確保することが可能である。   Alternatively, as shown in FIGS. 7A and 7B, the region surrounded by the frame-shaped buffer member 31 on both surfaces of the plate member 20 may be recessed to form a thin portion 28 that is thinner than the others. Good. Thereby, it is possible to ensure a desired thickness increase absorbability while avoiding an increase in the thickness of the buffer member 31.

本実施形態2では、板材20に貫通穴27が形成されていないために、貫通穴27を形成することによる板材20の機械的強度の低下や絶縁特性の低下を回避することができる。   In the second embodiment, since the through hole 27 is not formed in the plate material 20, it is possible to avoid a decrease in mechanical strength and a decrease in insulation characteristics of the plate material 20 due to the formation of the through hole 27.

本実施形態2は、上記を除いて実施形態1と同じである。   The second embodiment is the same as the first embodiment except for the above.

(実施形態3)
図8Aは、本実施形態3の電池積層体を構成する板材20の正面図である。図8Bは、図8Aの8B−8B線を含む面に沿った板材20の矢視断面図である。本実施形態3は、板材20に貫通穴27が形成されていない点、及び、中央が開口していない略長方形の緩衝部材32を用いる点で、実施形態1と異なる。緩衝部材32は、実施形態1と同様に、板材20の両面に固定されている。
(Embodiment 3)
FIG. 8A is a front view of the plate member 20 constituting the battery stack of the third embodiment. FIG. 8B is a cross-sectional view of the plate member 20 along the plane including the line 8B-8B in FIG. 8A. The third embodiment is different from the first embodiment in that a through hole 27 is not formed in the plate member 20 and a substantially rectangular buffer member 32 having an open center is used. The buffer member 32 is fixed to both surfaces of the plate member 20 as in the first embodiment.

本実施形態3の電池積層体は、上記を除いて実施形態1の電池積層体1と同じである。   The battery stack of Embodiment 3 is the same as the battery stack 1 of Embodiment 1 except for the above.

本実施形態3では、電池セル10の正面及び裏面がドーム状に膨らむと、電池セル10の膨らみに応じて緩衝部材31が適宜圧縮変形する。このように、緩衝部材31が電池セル10の厚みの増加を吸収する厚み増加吸収手段として機能するので、電池セル10の厚みが増加したとしても、電池積層体1の厚み(積層方向の寸法)の増加はほとんどない。   In the third embodiment, when the front and back surfaces of the battery cell 10 swell in a dome shape, the buffer member 31 is appropriately compressed and deformed according to the bulge of the battery cell 10. Thus, since the buffer member 31 functions as a thickness increase absorption unit that absorbs the increase in the thickness of the battery cell 10, even if the thickness of the battery cell 10 increases, the thickness of the battery stack 1 (dimension in the stacking direction). There is almost no increase.

本実施形態3では、実施形態1と異なり、板材20に貫通穴27が形成されていない。従って、厚み増加吸収能が制限されるかも知れない。しかしながら、そのような場合には、緩衝部材32の厚みを厚くすることにより、所望する厚み増加吸収能を確保することが可能である。   In the third embodiment, unlike the first embodiment, the through hole 27 is not formed in the plate material 20. Therefore, the increased thickness absorption capacity may be limited. However, in such a case, it is possible to ensure a desired thickness increase absorbability by increasing the thickness of the buffer member 32.

本実施形態3では、板材20に貫通穴27が形成されていないために、貫通穴27を形成することによる板材20の機械的強度の低下や絶縁特性の低下を回避することができる。   In the third embodiment, since the through hole 27 is not formed in the plate material 20, it is possible to avoid a decrease in mechanical strength and a decrease in insulation characteristics of the plate material 20 due to the formation of the through hole 27.

また、緩衝部材32の中央が開口していないので、緩衝部材32の板材20及び電池セル10に対する固定強度を向上させることができる。   Moreover, since the center of the buffer member 32 is not open, the fixing strength of the buffer member 32 with respect to the plate member 20 and the battery cell 10 can be improved.

本実施形態3は、上記を除いて実施形態1と同じである。   The third embodiment is the same as the first embodiment except for the above.

(実施形態4)
図9Aは、本実施形態4の電池積層体を構成する板材20の正面図である。図9Bは、図9Aの9B−9B線を含む面に沿った板材20の矢視断面図である。本実施形態4は、緩衝部材を用いない点で実施形態1と異なる。板材20には、実施形態1と同様に、略長方形の貫通穴27が形成されている。電池セル10は、貫通穴27の端縁にて板材20に直接的に固定される。電池セル10を板材20に固定する方法は特に制限はなく、例えば、両面粘着テープや接着剤を用いることができる。特に、両面粘着テープにより固定する方法は、電池積層体1の積層工程を簡単且つ迅速に行うことができるので好ましい。
(Embodiment 4)
FIG. 9A is a front view of the plate member 20 constituting the battery stack of the fourth embodiment. FIG. 9B is a cross-sectional view of the plate member 20 along the plane including the line 9B-9B in FIG. 9A. The fourth embodiment is different from the first embodiment in that no buffer member is used. As in the first embodiment, a substantially rectangular through hole 27 is formed in the plate member 20. The battery cell 10 is directly fixed to the plate member 20 at the edge of the through hole 27. There is no restriction | limiting in particular in the method of fixing the battery cell 10 to the board | plate material 20, For example, a double-sided adhesive tape and an adhesive agent can be used. In particular, the method of fixing with a double-sided pressure-sensitive adhesive tape is preferable because the stacking process of the battery stack 1 can be performed easily and quickly.

本実施形態4の電池積層体は、上記を除いて実施形態1の電池積層体1と同じである。   The battery stack of Embodiment 4 is the same as the battery stack 1 of Embodiment 1 except for the above.

本実施形態4では、電池セル10の正面及び裏面がドーム状に膨らむと、電池セル10の膨らみは板材20の貫通穴28内に進入する。このように、板材20の貫通穴28が電池セル10の厚みの増加を吸収する厚み増加吸収手段として機能するので、電池セル10の厚みが増加したとしても、電池積層体1の厚み(積層方向の寸法)の増加はほとんどない。   In the fourth embodiment, when the front and back surfaces of the battery cell 10 swell in a dome shape, the bulge of the battery cell 10 enters the through hole 28 of the plate member 20. Thus, since the through hole 28 of the plate material 20 functions as a thickness increase absorbing means that absorbs the increase in the thickness of the battery cell 10, even if the thickness of the battery cell 10 increases, the thickness (stacking direction) of the battery stack 1 is increased. There is almost no increase in dimensions.

板材20に貫通穴27を形成するのではなく、図10A及び図10Bに示すように、板材20の両面の電池セル10が対向する領域内の所定領域を窪ませて、図7A及び図7Bと同様の薄肉部28を形成してもよい。電池セル10は、薄肉部28の周囲にて板材20に直接的に固定される。この場合には、電池セル10の正面及び裏面がドーム状に膨らむと、電池セル10の膨らみは板材20の薄肉部28により形成された凹部内に進入する。このように、板材20の薄肉部28が電池セル10の厚みの増加を吸収する厚み増加吸収手段として機能するので、電池セル10の厚みが増加したとしても、電池積層体1の厚み(積層方向の寸法)の増加はほとんどない。更に、図10A及び図10Bの板材20には貫通穴27が形成されていないために、貫通穴27を形成することによる板材20の機械的強度の低下や絶縁特性の低下を回避することができる。   Instead of forming the through hole 27 in the plate member 20, as shown in FIGS. 10A and 10B, a predetermined region in the region where the battery cells 10 on both sides of the plate member 20 face each other is recessed, and FIGS. 7A and 7B A similar thin portion 28 may be formed. The battery cell 10 is directly fixed to the plate member 20 around the thin portion 28. In this case, when the front surface and the back surface of the battery cell 10 swell in a dome shape, the bulge of the battery cell 10 enters a recess formed by the thin portion 28 of the plate member 20. Thus, since the thin portion 28 of the plate member 20 functions as a thickness increase absorbing means that absorbs the increase in the thickness of the battery cell 10, even if the thickness of the battery cell 10 increases, the thickness of the battery stack 1 (stacking direction) There is almost no increase in dimensions. Furthermore, since the through hole 27 is not formed in the plate material 20 of FIGS. 10A and 10B, it is possible to avoid a decrease in mechanical strength and a decrease in insulation characteristics due to the formation of the through hole 27. .

更に、本実施形態4では、電池セル10は緩衝部材を介することなく板材20に固定されるので、電池セル10の板材20に対する固定強度が向上する。緩衝部材を用いないので、電池積層体を構成する部品数が減少し、電池積層体の製造工程を簡単化することができる。   Furthermore, in this Embodiment 4, since the battery cell 10 is fixed to the board | plate material 20 without passing through a buffer member, the fixed strength with respect to the board | plate material 20 of the battery cell 10 improves. Since no buffer member is used, the number of parts constituting the battery stack is reduced, and the manufacturing process of the battery stack can be simplified.

本実施形態4は、上記を除いて実施形態1と同じである。   The fourth embodiment is the same as the first embodiment except for the above.

上記の実施形態1〜4は一例に過ぎない。本発明は、上記の実施形態1〜4に限定されず、適宜変更することができる。   The above-described first to fourth embodiments are merely examples. The present invention is not limited to Embodiments 1 to 4 above, and can be modified as appropriate.

本発明の電池セル10は、図1A及び図1Bに示した構成に限定されず、任意の薄型の電池セルであってもよい。例えば、上記の電池セル10では、1枚のラミネートシート13が下辺14bで二つ折りにされて、下辺14bを除く3辺に沿ってラミネートシート13がシールされた三方シールタイプの電池セルであったが、図11に示すように、同一サイズの長方形の2枚のラミネートシート13で発電要素を挟み、下辺14bを含む4辺に沿ってシールした四方シールタイプの電池セル10であってもよい。   The battery cell 10 of the present invention is not limited to the configuration shown in FIGS. 1A and 1B, and may be any thin battery cell. For example, the battery cell 10 is a three-side sealed type battery cell in which one laminate sheet 13 is folded in two at the lower side 14b and the laminate sheet 13 is sealed along three sides except the lower side 14b. However, as shown in FIG. 11, a battery cell 10 of a four-sided seal type in which a power generation element is sandwiched between two rectangular laminate sheets 13 of the same size and sealed along four sides including the lower side 14b may be used.

上記の電池セル10では、共通する短辺14aから正極タブ11p及び負極タブ11nが導出されていたが、正極タブ11p及び負極タブ11nが一対の側辺(長辺)14sのいずれか一方から導出されていてもよい。あるいは、正極タブ11p及び負極タブ11nが異なる辺からそれぞれ導出されていてもよい。正極タブ11p及び負極タブ11nの導出位置にかかわらず、板材20の大きさは、当該板材20の輪郭長方形25が正極タブ11p及び負極タブ11nを含む電池セル10を内包するように設定されることが好ましい。また、隣り合う電池セル間で正極タブ11pと負極タブ11nとを電気的に接続できるように、正極タブ11p及び負極タブ11nが対向する板材20の領域に切り欠きが形成されることが好ましい。   In the battery cell 10 described above, the positive electrode tab 11p and the negative electrode tab 11n are derived from the common short side 14a. However, the positive electrode tab 11p and the negative electrode tab 11n are derived from either one of the pair of side sides (long sides) 14s. May be. Alternatively, the positive electrode tab 11p and the negative electrode tab 11n may be derived from different sides. Regardless of the lead-out position of the positive electrode tab 11p and the negative electrode tab 11n, the size of the plate material 20 is set so that the outline rectangle 25 of the plate material 20 includes the battery cell 10 including the positive electrode tab 11p and the negative electrode tab 11n. Is preferred. Moreover, it is preferable that a notch is formed in the region of the plate member 20 where the positive electrode tab 11p and the negative electrode tab 11n face each other so that the positive electrode tab 11p and the negative electrode tab 11n can be electrically connected between adjacent battery cells.

板材20の平面視形状も上記の実施形態1〜4に限定されない。例えば、図12Aに示すように、電池セル10の正極タブ11p及び負極タブ11nが対向する領域のみに2つの切り欠き22a,22bを形成し、板材20の上側の端縁を略W字状に形成してもよい。   The planar view shape of the plate member 20 is not limited to the above-described first to fourth embodiments. For example, as shown in FIG. 12A, two notches 22a and 22b are formed only in a region where the positive electrode tab 11p and the negative electrode tab 11n of the battery cell 10 face each other, and the upper edge of the plate member 20 is formed in a substantially W shape. It may be formed.

あるいは、図12Bに示すように、板材20の上側の短辺の両端の、電池セル10の正極タブ11p及び負極タブ11nが対向する領域に2つの切り欠き23a,23bを形成してもよい。   Or as shown to FIG. 12B, you may form two notches 23a and 23b in the area | region where the positive electrode tab 11p of the battery cell 10 and the negative electrode tab 11n oppose both ends of the short side of the upper side of the board | plate material 20. As shown in FIG.

あるいは、図13Aに示すように、隣り合う2つの電池セル10の電気的に接続される正極タブ11p及び負極タブ11nが対向する板材20の領域のみに切り欠き24を形成してもよい。この例では、上側の短辺の一方の端部のみに切り欠き24を形成した板材20を、一つおきに裏返して電池セル10と積層する。図13Bは、このようにして形成された電池積層体1の正面図である。   Alternatively, as illustrated in FIG. 13A, the notch 24 may be formed only in the region of the plate member 20 where the positive electrode tab 11p and the negative electrode tab 11n that are electrically connected to each other between the two adjacent battery cells 10 face each other. In this example, every other plate member 20 having notches 24 formed in only one end of the upper short side is turned over and stacked with the battery cell 10. FIG. 13B is a front view of the battery stack 1 formed as described above.

板材20を挟んで隣り合う2つの電池セル10間で正極タブ11pと負極タブ11nとを電気的に接続するために、当該板材20の辺の一部を切り落とした切り欠きを形成するのではなく、当該板材20に貫通穴を形成してもよい。   In order to electrically connect the positive electrode tab 11p and the negative electrode tab 11n between two battery cells 10 adjacent to each other with the plate material 20 interposed therebetween, a notch formed by cutting off a part of the side of the plate material 20 is not formed. A through hole may be formed in the plate member 20.

板材20の角部を直線状又は円弧状に切り落として、いわゆる面取りを形成してもよい。また、板材20に、必要に応じて更に貫通穴を形成してもよい。   A so-called chamfer may be formed by cutting off the corners of the plate member 20 in a straight line shape or an arc shape. Moreover, you may form a through-hole in the board | plate material 20 further as needed.

接続されないが積層方向に対向する正極タブ11pと負極タブ11nとが短絡するのを防止するための措置を施してもよい。このような短絡防止措置としては、特に制限はないが、例えば互いに接続された正極タブ11pと負極タブ11nとを絶縁材料で覆うなどの公知の方法を採用しうる。   Measures may be taken to prevent short-circuiting between the positive electrode tab 11p and the negative electrode tab 11n that are not connected but are opposed in the stacking direction. Such a short-circuit prevention measure is not particularly limited, and for example, a known method such as covering the positive electrode tab 11p and the negative electrode tab 11n connected to each other with an insulating material may be employed.

電池積層体を構成する電池セルの数及び板材の数は、上記の実施形態に限定されず、任意に設定することができる。   The number of battery cells and the number of plate members constituting the battery stack are not limited to the above embodiment, and can be arbitrarily set.

本発明の利用分野は特に制限はなく、自動車、バイク、電動アシスト自転車等の各種移動機器、携帯情報端末、無停電電源装置(UPS)等の電源に使用される電池積層体として広範囲に利用することができる。特に、衝撃や振動を受けやすい各種移動機器に搭載される電池積層体として好ましく利用することができる。   The field of application of the present invention is not particularly limited, and is widely used as a battery laminate used for power sources of various mobile devices such as automobiles, motorcycles, and electrically assisted bicycles, personal digital assistants, and uninterruptible power supplies (UPS). be able to. In particular, it can be preferably used as a battery laminate mounted on various mobile devices that are susceptible to shock and vibration.

1 電池積層体
10 電池セル
11p 正極タブ
11n 負極タブ
20 板材
21,22a,22b,23a,23b,24 切り欠き
25 板材を内包する最小面積の長方形(輪郭長方形)
27 板材に形成された貫通穴(厚み増加吸収手段)
28 板材に形成された薄肉部(厚み増加吸収手段)
31,32 緩衝部材(厚み増加吸収手段)
DESCRIPTION OF SYMBOLS 1 Battery laminated body 10 Battery cell 11p Positive electrode tab 11n Negative electrode tab 20 Plate material 21,22a, 22b, 23a, 23b, 24 Notch 25 The rectangle of the minimum area which encloses a plate material (contour rectangle)
27 Through-hole formed in plate material (thickness increase absorption means)
28 Thin-walled part (thickness increase absorption means) formed on the plate material
31, 32 Buffer member (thickness increase absorption means)

Claims (4)

複数の薄板状の電池セルと複数の板材とが、電池セルと板材とが交互に配置されて積み重ねられた電池積層体であって、
前記複数の電池セルのそれぞれは、隣接する板材に直接的に又は間接的に固定されており、
前記板材には、前記電池セルの厚みの増加を吸収することができる厚み増加吸収手段が設けられていることを特徴とする電池積層体。
A plurality of thin plate-like battery cells and a plurality of plate materials are battery stacks in which battery cells and plate materials are alternately arranged and stacked,
Each of the plurality of battery cells is directly or indirectly fixed to an adjacent plate material,
The battery laminate, wherein the plate member is provided with a thickness increasing absorption means capable of absorbing an increase in thickness of the battery cell.
前記厚み増加吸収手段が、前記板材の前記電池セルが対向する領域内に形成された貫通穴又は薄肉部を含む請求項1に記載の電池積層体。   The battery stack according to claim 1, wherein the thickness increase absorption means includes a through hole or a thin portion formed in a region of the plate material facing the battery cell. 前記厚み増加吸収手段が、前記板材と前記電池セルとの間に設けられた、圧縮変形可能な緩衝部材を含む請求項1に記載の電池積層体。   The battery stack according to claim 1, wherein the thickness increase absorbing means includes a compression-deformable buffer member provided between the plate member and the battery cell. 隣り合う電池セル間において正極タブと負極タブとを電気的に接続できるように、正極タブ及び/又は負極タブが対向する前記板材の領域に切り欠きが形成されている請求項1に記載の電池積層体。   The battery according to claim 1, wherein a notch is formed in a region of the plate material facing the positive electrode tab and / or the negative electrode tab so that the positive electrode tab and the negative electrode tab can be electrically connected between adjacent battery cells. Laminated body.
JP2012094884A 2012-04-18 2012-04-18 Battery stack Active JP5988669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094884A JP5988669B2 (en) 2012-04-18 2012-04-18 Battery stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094884A JP5988669B2 (en) 2012-04-18 2012-04-18 Battery stack

Publications (2)

Publication Number Publication Date
JP2013222656A true JP2013222656A (en) 2013-10-28
JP5988669B2 JP5988669B2 (en) 2016-09-07

Family

ID=49593481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094884A Active JP5988669B2 (en) 2012-04-18 2012-04-18 Battery stack

Country Status (1)

Country Link
JP (1) JP5988669B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186410A (en) * 2014-03-26 2015-10-22 日立マクセル株式会社 Power supply having non-contact power transmission means
JP2017041429A (en) * 2015-08-21 2017-02-23 日産自動車株式会社 Battery cell housing device
CN110828727A (en) * 2019-09-29 2020-02-21 东莞新能源科技有限公司 Battery module
CN113764796A (en) * 2021-09-07 2021-12-07 深圳市富兰瓦时技术有限公司 Battery module
WO2023226199A1 (en) * 2022-05-25 2023-11-30 宁德时代新能源科技股份有限公司 Battery and electrical device
WO2024032255A1 (en) * 2022-08-12 2024-02-15 蔚来电池科技(安徽)有限公司 Battery pack and vehicle comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108520925A (en) * 2018-04-16 2018-09-11 合肥国轩高科动力能源有限公司 A kind of high life power battery pack and power battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165698A (en) * 2005-12-15 2007-06-28 Mitsubishi Electric Corp Electric power storage device
JP2007207668A (en) * 2006-02-03 2007-08-16 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and solid electrolyte fuel cell stack
JP2008078350A (en) * 2006-09-21 2008-04-03 Meidensha Corp Stacked electric double-layer capacitor module
WO2011045000A1 (en) * 2009-10-12 2011-04-21 Li-Tec Battery Gmbh Cell block having lateral support of the cells
JP2011096465A (en) * 2009-10-28 2011-05-12 Tokyo R & D Co Ltd Cooling plate, and battery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165698A (en) * 2005-12-15 2007-06-28 Mitsubishi Electric Corp Electric power storage device
JP2007207668A (en) * 2006-02-03 2007-08-16 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and solid electrolyte fuel cell stack
JP2008078350A (en) * 2006-09-21 2008-04-03 Meidensha Corp Stacked electric double-layer capacitor module
WO2011045000A1 (en) * 2009-10-12 2011-04-21 Li-Tec Battery Gmbh Cell block having lateral support of the cells
JP2011096465A (en) * 2009-10-28 2011-05-12 Tokyo R & D Co Ltd Cooling plate, and battery system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186410A (en) * 2014-03-26 2015-10-22 日立マクセル株式会社 Power supply having non-contact power transmission means
JP2018191508A (en) * 2014-03-26 2018-11-29 マクセルホールディングス株式会社 Power supply having non-contact power transmission means
JP2017041429A (en) * 2015-08-21 2017-02-23 日産自動車株式会社 Battery cell housing device
CN110828727A (en) * 2019-09-29 2020-02-21 东莞新能源科技有限公司 Battery module
CN113764796A (en) * 2021-09-07 2021-12-07 深圳市富兰瓦时技术有限公司 Battery module
WO2023035430A1 (en) * 2021-09-07 2023-03-16 深圳市富兰瓦时技术有限公司 Battery module
WO2023226199A1 (en) * 2022-05-25 2023-11-30 宁德时代新能源科技股份有限公司 Battery and electrical device
WO2024032255A1 (en) * 2022-08-12 2024-02-15 蔚来电池科技(安徽)有限公司 Battery pack and vehicle comprising same

Also Published As

Publication number Publication date
JP5988669B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5988668B2 (en) Battery stack
JP5988669B2 (en) Battery stack
KR101392799B1 (en) Battery Module Having Structure of Improved Stability and High Cooling Efficiency
KR100866767B1 (en) Safety Kit for Secondary Battery
JP6346084B2 (en) Battery pack
KR20070099068A (en) Pouch-typed secondary battery
JP6876964B2 (en) Battery module
EP3486967B1 (en) Battery cell comprising electrode lead facing outer surface of electrode assembly
KR20170062845A (en) Battery Module Comprising Unit Module Having Simple Structure
JP2013093225A (en) Storage element, electric cell, and battery pack
KR20150000090A (en) Battery Module with Pressing Bracket
KR20140110136A (en) Battery Cell Having Lead-Tap Joint of Improved Coupling Force
JP2022551238A (en) Battery modules and battery packs containing the same
WO2013168490A1 (en) Cell stack
JPH1145689A (en) Packaged battery device
KR101472882B1 (en) Battery Module Having Cell Cover Coupling Portion and Receiving Part Coupling Portion
WO2013094168A1 (en) Secondary battery
JP2019125564A (en) Power storage module
KR100873309B1 (en) Safety Kit for Secondary Battery Providing Excellent Safety against External Impact
JP2013131371A5 (en)
JP2022501765A (en) Battery module and battery pack containing it
KR20170073856A (en) Battery Cell Comprising Integrated Support Member Provided at Edge Sealing Part
EP4109653A1 (en) Battery module and battery pack including same
KR101735805B1 (en) Battery Cell Comprising the Cell Case Having a Thermally-Welded Portion Bent
JP2014120700A (en) Power storage module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5988669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350