JP2013221875A - Saturation degree measuring system - Google Patents

Saturation degree measuring system Download PDF

Info

Publication number
JP2013221875A
JP2013221875A JP2012094312A JP2012094312A JP2013221875A JP 2013221875 A JP2013221875 A JP 2013221875A JP 2012094312 A JP2012094312 A JP 2012094312A JP 2012094312 A JP2012094312 A JP 2012094312A JP 2013221875 A JP2013221875 A JP 2013221875A
Authority
JP
Japan
Prior art keywords
power
antenna
saturation
unit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012094312A
Other languages
Japanese (ja)
Other versions
JP5935474B2 (en
Inventor
Kenichi Ando
賢一 安藤
Chiaki Nagai
千明 長井
Kazuya Watanabe
和哉 渡辺
Takehiro Imura
岳広 居村
Yoichi Hori
洋一 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
University of Tokyo NUC
Original Assignee
Obayashi Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, University of Tokyo NUC filed Critical Obayashi Corp
Priority to JP2012094312A priority Critical patent/JP5935474B2/en
Publication of JP2013221875A publication Critical patent/JP2013221875A/en
Application granted granted Critical
Publication of JP5935474B2 publication Critical patent/JP5935474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid a locally measuring range and to enable monitoring for a long period without requiring labor and time for an installing work.SOLUTION: A saturation degree measuring system 1 includes: a power transmission section 2 configured by connecting a transmission antenna 6 to an AC power source 5; a power reception section 3 including a reception antenna 7; and an arithmetic processing section 4 performing data processing on power values measured by the power transmission section 2 and the power reception section 3. Each of the transmission antenna 6 and the reception antenna 7 is buried into a ground 8 and power is transmitted from the power transmission section 2 to the power reception section 3 by magnetic field resonant coupling. The arithmetic processing section 4 includes a transmission efficiency calculation section 11 calculating power transmission efficiency using the power values of the transmission antenna 6 and the reception antenna 7, and a saturation degree estimation section 12 estimating a saturation degree in an area 13 of the ground 8 interposed between the transmission antenna 6 and the reception antenna 7 using the power transmission efficiency.

Description

本発明は、主として地盤における水分飽和度を計測する飽和度計測システムに関する。   The present invention relates to a saturation measurement system that mainly measures moisture saturation in the ground.

放射性廃棄物を最終処分するにあたり、高レベル放射性廃棄物は、ガラス固化体、オーバーパック及び緩衝材からなる人工バリアに閉じ込められた状態で地下数百mの岩盤内に深地層処分することが予定されており、低レベル放射性廃棄物は、セメント等で固化された廃棄体をドラム缶等の形でコンクリートピットに載置しその周囲を緩衝材からなる人工バリアで囲んだ状態で比較的浅い地盤内に地層処分することが予定されているが、その運用にあたっては、人工バリアを構成する緩衝材の物性を長期間にわたってモニタリングする必要がある。   In the final disposal of radioactive waste, high-level radioactive waste is planned to be disposed deep in a bedrock of several hundred meters below ground in a state of being confined in an artificial barrier made of vitrified material, overpack and cushioning material. The low-level radioactive waste is placed in a relatively shallow ground in a state where waste solidified with cement or the like is placed in a concrete pit in the form of a drum can and surrounded by an artificial barrier made of cushioning material. However, it is necessary to monitor the physical properties of the cushioning material that constitutes the artificial barrier over a long period of time.

緩衝材を構成する材料は、膨潤による吸水性が発揮されることで地下水移動を遅らせる機能に優れたベントナイトが有力となっており、かかるベントナイトについては、間隙中を水が占める割合、すなわち水分飽和度(以下、単に飽和度と呼ぶ)に代表される水理特性が重要な監視指標となる。   The material that constitutes the buffer material is bentonite that has the ability to delay the movement of groundwater by exhibiting water absorption due to swelling, and for such bentonite, the proportion of water in the gap, that is, water saturation Hydraulic characteristics represented by degrees (hereinafter simply referred to as saturation) are important monitoring indicators.

ベントナイトの飽和度は、比抵抗法やRI法のほか、TDR(Time-Domain Reflectometry)と呼ばれる時間領域測定法や、FDR(Frequency-Domain Reflectometry)と呼ばれる周波数領域測定法で計測することが可能である。   Bentonite saturation can be measured by the time domain measurement method called TDR (Time-Domain Reflectometry) and the frequency domain measurement method called FDR (Frequency-Domain Reflectometry) in addition to the resistivity method and RI method. is there.

これらの方法は、地盤構成材料や空気の誘電率と水の誘電率との違いに着目したものであって、装置の小型化が可能であることから、広く採用されるようになってきた(特許文献1)。   These methods pay attention to the difference between the dielectric constant of the ground constituent material and air and the dielectric constant of water, and since the apparatus can be miniaturized, it has been widely adopted ( Patent Document 1).

特開2010−139246号公報JP 2010-139246 A 特開2011−160496号公報JP 2011-160496 A

しかしながら、上述したTDRやFDRでは、計測範囲がプローブ近傍の局所的な地盤領域に限られてしまうおそれがあり、プローブから離れた地盤領域を計測することは難しいという問題を生じていた。   However, in the above-described TDR and FDR, there is a possibility that the measurement range may be limited to a local ground region in the vicinity of the probe, which causes a problem that it is difficult to measure a ground region away from the probe.

また、TDRやFDRのプローブを地盤に埋設するにあたっては、プローブへの電力供給ケーブルも併せて地盤に埋設する必要があるため、計測深度が深い場合や計測範囲が大きい場合には設置作業に手間がかかるという問題や、それを回避すべく、バッテリーによる電源供給を採用しようとすると、長期間にわたるモニタリングが困難になるという問題を生じていた。   In addition, when TDR or FDR probes are embedded in the ground, it is necessary to embed the power supply cable to the probe together with the ground, so that it is troublesome to install when the measurement depth is deep or the measurement range is large. In order to avoid this problem, and trying to adopt a battery power supply to avoid it, there has been a problem that monitoring over a long period of time becomes difficult.

本発明は、上述した事情を考慮してなされたもので、計測範囲が局所的となるのを回避するとともに、設置作業に手間がかからずなおかつ長期間にわたるモニタリングも可能な飽和度計測システムを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances. A saturation measurement system that avoids the measurement range from becoming local, does not require labor for installation work, and can be monitored over a long period of time. The purpose is to provide.

上記目的を達成するため、本発明に係る飽和度計測システムは請求項1に記載したように、交流電源に送信アンテナが接続されてなる送電部と、前記送信アンテナと電磁界共振結合する受信アンテナが設けられ該受信アンテナを介して前記送電部から電力が伝送されるようになっている受電部と、前記送信アンテナの電力値に対する前記受信アンテナの電力値の比率を電力伝送効率として算出する伝送効率算出部と、該電力伝送効率を、前記媒体の飽和度と該飽和度での電力伝送効率との関係を示す飽和度―伝送効率特性に適用することで前記電力伝送効率に相当する飽和度を求めこれを前記送信アンテナと前記受信アンテナとの間に介在する媒体の飽和度として推定する飽和度推定部とを備えたものである。   In order to achieve the above object, a saturation measurement system according to the present invention includes a power transmission unit in which a transmission antenna is connected to an AC power source, and a reception antenna that is electromagnetically resonantly coupled to the transmission antenna. And a power receiving unit configured to transmit power from the power transmitting unit via the receiving antenna, and a transmission that calculates a ratio of a power value of the receiving antenna to a power value of the transmitting antenna as power transmission efficiency Applying the efficiency calculation unit and the power transmission efficiency to the saturation-transmission efficiency characteristic indicating the relationship between the saturation of the medium and the power transmission efficiency at the saturation, the saturation corresponding to the power transmission efficiency And a saturation estimation unit that estimates this as the saturation of a medium interposed between the transmission antenna and the reception antenna.

また、本発明に係る飽和度計測システムは、前記送電部及び前記受電部にそれぞれ無線送信部を設けるとともに、該各無線送信部を介してデータ送信されてきた電力値をデータ受信できるように前記伝送効率算出部を構成したものである。   Further, the saturation measurement system according to the present invention includes a wireless transmission unit in each of the power transmission unit and the power reception unit, and the power value transmitted through each wireless transmission unit can be received. A transmission efficiency calculation unit is configured.

また、本発明に係る飽和度計測システムは、交流電源に送信アンテナが接続されてなる送電部と、受信アンテナがそれぞれ設けられた複数の受電部とを備えた飽和度計測システムであって、前記各受電部を、その受信アンテナが前記送信アンテナと電磁界共振結合することで前記送電部から電力が伝送され又はその受信アンテナが他の受電部に属する受信アンテナと電磁界共振結合することで前記送電部から間接的に電力が伝送されるようにそれぞれ構成するとともに、前記送信アンテナ及び前記複数の受信アンテナのうち、互いに電磁界共振結合する少なくとも一組のアンテナ対を構成する2つのアンテナの電力値から該アンテナ対の電力値の比率を電力伝送効率として算出する伝送効率算出部と、該電力伝送効率を、前記媒体の飽和度と該飽和度での電力伝送効率との関係を示す飽和度―伝送効率特性に適用することで前記電力伝送効率に相当する飽和度を求めこれを前記アンテナ対の間に介在する媒体の飽和度として推定する飽和度推定部とを備えたものである。   The saturation measurement system according to the present invention is a saturation measurement system including a power transmission unit in which a transmission antenna is connected to an AC power source, and a plurality of power reception units each provided with a reception antenna, Each power receiving unit has its receiving antenna electromagnetically coupled to the transmitting antenna so that power is transmitted from the power transmitting unit, or the receiving antenna is electromagnetically resonantly coupled to a receiving antenna belonging to another power receiving unit. The power of two antennas that constitute at least one pair of antennas that are electromagnetically resonantly coupled to each other among the transmitting antenna and the plurality of receiving antennas are configured so that power is indirectly transmitted from the power transmission unit. A transmission efficiency calculation unit that calculates the ratio of the power value of the antenna pair from the value as power transmission efficiency, and the power transmission efficiency is calculated with the saturation of the medium. The saturation corresponding to the power transmission efficiency is obtained by applying it to the saturation-transmission efficiency characteristic indicating the relationship with the power transmission efficiency in the saturation, and this is estimated as the saturation of the medium interposed between the antenna pair. And a saturation estimation unit.

また、本発明に係る飽和度計測システムは、前記送信アンテナ及び前記複数の受信アンテナを列状に配置したものである。   In the saturation measurement system according to the present invention, the transmission antenna and the plurality of reception antennas are arranged in a line.

また、本発明に係る飽和度計測システムは、前記送信アンテナ及び前記複数の受信アンテナのうち、隣り合う2つのアンテナからなるアンテナ対を互いに電磁界共振結合させるとともに、該各アンテナの電力値をそれぞれ計測するように構成したものである。   In addition, the saturation measurement system according to the present invention is configured to electromagnetically resonance-couple antenna pairs each including two adjacent antennas of the transmission antenna and the plurality of reception antennas, and to set power values of the respective antennas. It is configured to measure.

また、本発明に係る飽和度計測システムは、前記送信アンテナ及び前記複数の受信アンテナのうち、電力値が計測されるアンテナが設けられた前記送電部又は前記受電部に該電力値をデータ送信する無線送信部をそれぞれ設けるとともに、該各無線送信部を介してデータ送信されてきた電力値をデータ受信できるように前記伝送効率算出部を構成したものである。   In addition, the saturation measurement system according to the present invention transmits the power value to the power transmission unit or the power reception unit provided with an antenna from which the power value is measured among the transmission antenna and the plurality of reception antennas. Each of the transmission efficiency calculation units is configured so that a wireless transmission unit is provided and the power value transmitted through each wireless transmission unit can be received.

また、本発明に係る飽和度計測システムは、前記媒体を、放射性廃棄物を地層処分する際の人工バリアの緩衝材としたものである。   Moreover, the saturation measuring system which concerns on this invention uses the said medium as a buffer material of the artificial barrier at the time of carrying out geological disposal of radioactive waste.

非接触で電力を伝送するいわゆるワイヤレス電力伝送は、マイクロ波やレーザを使った放射型と電磁誘導等を使った非放射型に分類されるが、電磁誘導方式は、伝送可能な離間距離(エアギャップ)が数cm〜数十cmと小さいため、適用範囲には限度がある。   The so-called wireless power transmission that transmits power without contact is classified into a radiation type using microwaves and lasers and a non-radiation type using electromagnetic induction. Since the gap) is as small as several centimeters to several tens of centimeters, the application range is limited.

一方、最近においては、非放射型ワイヤレス伝送方式の一つとして電磁界共振結合(電磁共鳴)の研究が進められており、送信アンテナと受信アンテナとの電磁界共振結合を利用することによって、エアギャップが数mであっても送信アンテナから受信アンテナへ50%以上の効率で電力を伝送することが可能であり、今後、広範囲な応用が期待されている(特許文献2)。   Recently, research on electromagnetic resonance coupling (electromagnetic resonance) as one of non-radiation type wireless transmission systems has been conducted. By using electromagnetic resonance coupling between a transmitting antenna and a receiving antenna, Even if the gap is several meters, it is possible to transmit power from the transmitting antenna to the receiving antenna with an efficiency of 50% or more, and a wide range of applications is expected in the future (Patent Document 2).

本出願人らは、電磁界共振結合によって送信アンテナから受信アンテナへ電力を伝送する際、送信アンテナと受信アンテナとの間に拡がる媒体の飽和度によって伝送効率が異なる点に着目し、これを利用して地盤の飽和度を計測することができないか研究開発を行ったところ、本願発明をなすに至ったものである。   When transmitting power from a transmitting antenna to a receiving antenna by electromagnetic resonance coupling, the present applicants pay attention to the fact that the transmission efficiency differs depending on the degree of saturation of the medium spreading between the transmitting antenna and the receiving antenna. As a result of research and development on whether the saturation of the ground can be measured, the present invention has been made.

すなわち、本発明に係る飽和度計測システムにおいては、まず、送信アンテナ及び受信アンテナを計測対象の媒体内に埋設する。なお、送信アンテナは、場合によっては媒体の表面に当接するように配置してもかまわない。   That is, in the saturation measurement system according to the present invention, first, the transmission antenna and the reception antenna are embedded in the medium to be measured. In some cases, the transmission antenna may be arranged so as to contact the surface of the medium.

ここで、受信アンテナは、送電部の送信アンテナと電磁界共振結合することで該送電部から電力が伝送されるか、あるいは他の受電部に属する受信アンテナと電磁界共振結合することで、該送電部から間接的に電力が伝送されるように構成する。   Here, the reception antenna transmits electromagnetic power from the power transmission unit by electromagnetic resonance coupling with the transmission antenna of the power transmission unit, or electromagnetic resonance coupling with reception antennas belonging to other power reception units. The power is transmitted from the power transmission unit indirectly.

一方、計測対象となる媒体については、飽和度とそのときの電力伝送効率との関係を飽和度―伝送効率特性として予め求めておく。   On the other hand, for the medium to be measured, the relationship between the saturation and the power transmission efficiency at that time is obtained in advance as the saturation-transmission efficiency characteristic.

飽和度―伝送効率特性を求めるにあたっては、砂質土、粘性土、ベントナイト混合土、ベントナイトといった媒体の種類を定めた上、その媒体についてさまざまな含水状態のものを用意し、該媒体内に、飽和度計測を行う際と同じ構成でアンテナを埋設し、かかる状態で各アンテナの電力値を計測するとともに、計測された電力値からアンテナ間の電力伝送効率を算出する一方、そのときの媒体の飽和度を例えば比抵抗法で計測し、それらから電力伝送効率と飽和度との関係を求めるようにすればよい。   In determining the saturation-transmission efficiency characteristics, the types of media such as sandy soil, cohesive soil, bentonite mixed soil, and bentonite are determined, and various water-containing conditions are prepared for the media. The antenna is embedded in the same configuration as when the saturation measurement is performed, and the power value of each antenna is measured in this state, and the power transmission efficiency between the antennas is calculated from the measured power value. For example, the saturation may be measured by a specific resistance method, and the relationship between the power transmission efficiency and the saturation may be obtained therefrom.

なお、媒体の誘電率や透磁率が飽和度の大きさで変化することを利用して該飽和度を求めることが知られているが、本発明においては、電磁界共振結合における電力伝送時の電力伝送効率を求めることで飽和度を推定するという点で従来の飽和度推定方法とは異なるものである。   Although it is known that the saturation is obtained by utilizing the change in the dielectric constant and permeability of the medium depending on the magnitude of the saturation, in the present invention, at the time of power transmission in electromagnetic resonance coupling. This is different from the conventional saturation estimation method in that the saturation is estimated by obtaining the power transmission efficiency.

次に、送電部の交流電源を作動させるとともに、送電部の電力を、該送電部の送信アンテナと電磁界共振結合する受信アンテナ、場合によってはさらにその受信アンテナと電磁界共振結合する別の受信アンテナを介して受電部に順次伝送するとともに、そのときの各アンテナの電力値を計測し、さらに該電力値を用いて各アンテナ間における電力伝送効率を伝送効率算出部で算出する。   Next, the AC power supply of the power transmission unit is activated, and the power of the power transmission unit is received by a reception antenna that is electromagnetically resonantly coupled to the transmission antenna of the power transmission unit, and in some cases, another reception that is electromagnetically resonantly coupled to the reception antenna. The power is sequentially transmitted to the power reception unit via the antenna, the power value of each antenna at that time is measured, and the power transmission efficiency between the antennas is calculated by the transmission efficiency calculation unit using the power value.

電力伝送効率を算出するにあたっては、例えば地上の管理施設に設置されたコンピュータに演算処理部の一つとして伝送効率算出部を構成しておき、各アンテナで計測された電力値を有線又は無線でデータ送信した後、該電力値を伝送効率算出部に入力すればよい。   In calculating the power transmission efficiency, for example, a transmission efficiency calculation unit is configured as one of the arithmetic processing units in a computer installed in a management facility on the ground, and the power value measured by each antenna is wired or wireless. After data transmission, the power value may be input to the transmission efficiency calculation unit.

電力伝送効率は、受電部が単一の受電部として構成される場合には、送信アンテナの電力値に対する受信アンテナの電力値の比率として算出されるが、複数の受電部として構成される場合には、送信アンテナ及び複数の受信アンテナのうち、互いに電磁界共振結合する少なくとも一組のアンテナ対における電力値の比率として算出される。   The power transmission efficiency is calculated as the ratio of the power value of the receiving antenna to the power value of the transmitting antenna when the power receiving unit is configured as a single power receiving unit, but when it is configured as a plurality of power receiving units Is calculated as a ratio of power values in at least one pair of antenna pairs that are electromagnetically coupled to each other among the transmission antenna and the plurality of reception antennas.

例えば送電部と2つの受電部とで本発明に係る飽和度計測システムを構成した場合には、送信アンテナ及び2つの受信アンテナの中から最大3組のアンテナ対を電磁界共振結合可能に構成し、それらから例えば2組のアンテナ対の電力伝送効率を算出するように構成することが想定されるとともに、送電部と3つの受電部とで構成した場合には、送信アンテナ及び3つの受信アンテナの中から最大6組のアンテナ対を電磁界共振結合可能に構成し、それらから例えば3組のアンテナ対の電力伝送効率を算出するように構成することが想定される。   For example, when a saturation measurement system according to the present invention is configured by a power transmission unit and two power reception units, a maximum of three antenna pairs from among a transmission antenna and two reception antennas are configured to be capable of electromagnetic resonance coupling. For example, it is assumed that the power transmission efficiency of two pairs of antennas is calculated from them, and when the power transmission unit and the three power reception units are configured, the transmission antenna and the three reception antennas It is assumed that a maximum of six antenna pairs are configured so as to be capable of electromagnetic resonance coupling, and the power transmission efficiency of, for example, three antenna pairs is calculated from them.

このように複数の受電部が備えられる場合においては、電力伝送効率は、互いに電磁界共振結合しておりかつ送電部からの電力が伝送可能なアンテナ対においてのみ算出が可能である一方、電力伝送可能でかつ電磁界共振結合しているアンテナ対に対し、電力伝送効率がすべて算出される必要はない。   When a plurality of power receiving units are provided as described above, the power transmission efficiency can be calculated only in the antenna pair that is electromagnetically coupled to each other and can transmit power from the power transmitting unit. It is not necessary to calculate all the power transmission efficiencies for antenna pairs that are capable of electromagnetic resonance coupling.

次に、伝送効率算出部で算出された電力伝送効率を上述した飽和度―伝送効率特性に適用することで該電力伝送効率に相当する飽和度を求める演算を飽和度推定部で行い、該飽和度を、受電部が単一の受電部で構成されている場合には、送信アンテナと受信アンテナとの間に介在する媒体の飽和度と推定し、複数の受電部で構成されている場合には、アンテナ対の間に介在する媒体の飽和度と推定する。   Next, by applying the power transmission efficiency calculated by the transmission efficiency calculation unit to the above-described saturation-transmission efficiency characteristic, the saturation estimation unit performs an operation for obtaining the saturation corresponding to the power transmission efficiency, When the power receiving unit is configured with a single power receiving unit, the degree of saturation of the medium interposed between the transmission antenna and the receiving antenna is estimated, and when the power receiving unit is configured with a plurality of power receiving units. Is estimated as the saturation of the medium interposed between the antenna pair.

このようにすると、電磁界共振結合を用いた電力伝送が数m程度のエアギャップがあっても可能であることから、媒体の飽和度を局所的ではなく、平均的な値として推定することが可能となる。   In this way, power transmission using electromagnetic resonance coupling is possible even with an air gap of about several meters, so that the saturation of the medium can be estimated as an average value rather than a local value. It becomes possible.

また、受電部の受信アンテナで計測された電力値をデータ送信する際、無線にしろ有線にしろ、そのデータ送信に必要な電力を電磁界共振結合で伝送されてきた電力でまかなうことができるので、電力供給ケーブルの敷設やそれに代わるバッテリーの設置、さらにはそれらの保守点検作業が不要となり、かくして長期間にわたるモニタリングを確実かつ低コストで実現することができるほか、受電部への電力供給ケーブルを媒体内に埋設する必要がないため、初期設置作業が従来よりも大幅に簡素化される。   Also, when transmitting the power value measured by the receiving antenna of the power receiving unit, whether it is wireless or wired, the power required for the data transmission can be covered by the power transmitted by electromagnetic resonance coupling. In addition, it is not necessary to install a power supply cable or install a battery to replace it, and to perform maintenance and inspection work for them.Thus, long-term monitoring can be realized reliably and at low cost, and a power supply cable to the power receiving unit Since it is not necessary to embed in the medium, the initial installation work is greatly simplified as compared with the prior art.

本発明では、電磁界共振結合によって電力を伝送する際の電力伝送効率が飽和度推定の基礎データとなるものであって、受電部における負荷の構成は任意であるが、後述するように無線送信部を設けた場合においては、該無線送信部が受電部における負荷になるとともに、それらの無線送信部は、伝送された電力でそれぞれ作動させることができる。   In the present invention, the power transmission efficiency when power is transmitted by electromagnetic resonance coupling is the basic data for estimating the saturation, and the configuration of the load in the power receiving unit is arbitrary. In the case where the unit is provided, the wireless transmission unit becomes a load in the power reception unit, and the wireless transmission unit can be operated with the transmitted power.

送信アンテナ及び受信アンテナは、それらが電磁界共振結合によって電力伝送が可能である限り、どのように構成するかは任意であるとともに、磁界による共振結合か電界による共振結合かも問わないが、磁界による共振結合の場合には、磁界型アンテナであるヘリカルアンテナで、電界による共振結合の場合には、電界型アンテナであるメアンダラインアンテナでそれぞれ構成することが可能である。   The transmitting antenna and the receiving antenna may be configured in any manner as long as they can transmit power by electromagnetic resonance coupling, and may be resonance coupling by a magnetic field or resonance coupling by an electric field. In the case of resonance coupling, a helical antenna that is a magnetic field type antenna can be used, and in the case of resonance coupling by an electric field, a meander line antenna that is an electric field type antenna can be used.

受電部を複数の受電部で構成する場合において、送信アンテナ及び複数の受信アンテナをどのように相対配置するかは任意であるが、これらを列状に配置したならば、より遠方の領域、あるいはより深い領域を計測対象とする場合に適した構成となる。   In the case where the power receiving unit is composed of a plurality of power receiving units, it is arbitrary how the transmitting antenna and the plurality of receiving antennas are arranged relative to each other, but if these are arranged in a row, a farther region, or The configuration is suitable when a deeper region is to be measured.

ここで、送信アンテナ及び複数の受信アンテナのうち、隣り合う2つのアンテナからなるアンテナ対を互いに電磁界共振結合させるとともに、該各アンテナの電力値をそれぞれ計測するように構成したならば、送信アンテナ及び複数の受信アンテナの列状配置経路に沿った媒体の飽和度をすべてのアンテナ間でかつ一括して計測することが可能となる。   Here, among the transmission antenna and the plurality of reception antennas, if the antenna pair composed of two adjacent antennas is electromagnetically coupled to each other and the power value of each antenna is measured, the transmission antenna In addition, it is possible to measure the degree of saturation of the medium along the array arrangement path of the plurality of receiving antennas between all the antennas at once.

計測された電力値は、媒体内に埋設されたデータ送信ケーブルを介して地上にデータ送信するようにしてもかまわないが、これに代えて、受電部が単一の受電部で構成される場合であれば、送電部及び受電部にそれぞれ無線送信部を設けるとともに、該各無線送信部を介してデータ送信されてきた電力値をデータ受信できるように伝送効率算出部を構成することが可能であり、受電部が複数の受電部で構成される場合であれば、送信アンテナ及び複数の受信アンテナのうち、電力値が計測されるアンテナが設けられた送電部又は受電部に該電力値をデータ送信する無線送信部をそれぞれ設けるとともに、該各無線送信部を介してデータ送信されてきた電力値をデータ受信できるように伝送効率算出部を構成することが可能である。   The measured power value may be transmitted to the ground via a data transmission cable embedded in the medium. Alternatively, when the power receiving unit is configured by a single power receiving unit If so, the power transmission unit and the power receiving unit can each be provided with a radio transmission unit, and the transmission efficiency calculation unit can be configured to receive data of the power value transmitted through each radio transmission unit. If the power receiving unit is composed of a plurality of power receiving units, the power value is transmitted to the power transmitting unit or the power receiving unit provided with the antenna from which the power value is measured among the transmitting antenna and the plurality of receiving antennas. It is possible to configure a transmission efficiency calculation unit so that a wireless transmission unit for transmission is provided, and a power value transmitted through each wireless transmission unit can be received.

かかる構成によれば、電力供給ケーブルのみならず、データ送信ケーブルの敷設作業も軽減されるため、初期設置作業がさらに容易となる。なお、無線送信部は、電力値が計測されるアンテナだけに設ければ足り、電力伝送専用あるいは電力中継専用のアンテナには設ける必要はない。   According to such a configuration, the installation work of not only the power supply cable but also the data transmission cable is reduced, so that the initial installation work is further facilitated. Note that it is sufficient that the wireless transmission unit is provided only for the antenna whose power value is measured, and it is not necessary to provide the wireless transmission unit for the antenna dedicated for power transmission or power relay.

本発明を適用するにあたっては、地盤構成材料をはじめ、さまざまな物質や材料を飽和度の計測対象である媒体とすることができるが、放射性廃棄物を地層処分する際の人工バリアの緩衝材を媒体とし、該媒体の飽和度の計測に本発明を適用したならば、確実なモニタリングを長期間にわたってかつ低コストで実現できるという本発明によって、放射性廃棄物の地層処分を健全に運用管理することが可能となる。   In applying the present invention, various materials and materials including ground constituent materials can be used as a medium for measuring the degree of saturation, but a buffer material for an artificial barrier when geological disposal of radioactive waste is performed. If the present invention is applied to the measurement of the degree of saturation of the medium as a medium and the present invention is capable of realizing reliable monitoring over a long period of time and at low cost, the geological disposal of radioactive waste can be soundly managed and managed. Is possible.

第1実施形態に係る飽和度計測システムの図であり、(a)はブロック図、(b)は配置図。It is a figure of the saturation measuring system which concerns on 1st Embodiment, (a) is a block diagram, (b) is a layout. 送信アンテナと受信アンテナとの磁界共振結合を示す等価回路図。The equivalent circuit diagram which shows the magnetic field resonance coupling of a transmitting antenna and a receiving antenna. 飽和度―伝送効率特性を示したグラフ。A graph showing the saturation-transmission efficiency characteristics. 第2実施形態に係る飽和度計測システムのブロック図。The block diagram of the saturation measuring system which concerns on 2nd Embodiment. 第2実施形態に係る飽和度計測システムの配置図。The arrangement plan of the saturation measuring system concerning a 2nd embodiment. 第2実施形態の変形例に係る飽和度計測システムの配置図。The arrangement plan of the saturation measuring system concerning the modification of a 2nd embodiment.

以下、本発明に係る飽和度計測システムの実施の形態について、添付図面を参照して説明する。   Embodiments of a saturation measurement system according to the present invention will be described below with reference to the accompanying drawings.

[第1実施形態]
図1(a)は、第1実施形態に係る飽和度計測システムを示したブロック図である。同図(a)に示すように、本実施形態に係る飽和度計測システム1は、本発明に係る飽和度計測システムを地盤8の飽和度推定に適用した例であって、送電部2と受電部3と該送電部及び受電部で計測された電力値をデータ処理する演算処理部4と該演算処理部で必要なデータが記憶保存された記憶部15とで構成してあり、送電部2は、交流電源5と該交流電源に接続された送信アンテナ6とを備え、受電部3には受信アンテナ7を設けてある。
[First Embodiment]
FIG. 1A is a block diagram showing a saturation measuring system according to the first embodiment. As shown in FIG. 2A, a saturation measurement system 1 according to this embodiment is an example in which the saturation measurement system according to the present invention is applied to saturation estimation of the ground 8, and includes a power transmission unit 2 and a power reception unit. Unit 3, an arithmetic processing unit 4 for data processing of power values measured by the power transmission unit and the power reception unit, and a storage unit 15 in which data necessary for the arithmetic processing unit is stored and saved. Includes an AC power supply 5 and a transmission antenna 6 connected to the AC power supply, and the power reception unit 3 is provided with a reception antenna 7.

送信アンテナ6は同図(b)の配置図に示すように、媒体としての地盤8の地表面近傍に埋設してあるとともに、受信アンテナ7は、同じく地盤8内であって送信アンテナ6の下方に埋設してある。   The transmission antenna 6 is embedded in the vicinity of the ground surface of the ground 8 as a medium, and the reception antenna 7 is also in the ground 8 and below the transmission antenna 6 as shown in the layout diagram of FIG. It is buried in

図2は、送信アンテナ6と受信アンテナ7との磁界共振結合を示す等価回路図である。同図に示すように、送信アンテナ6及び受信アンテナ7は、互いに磁界共振結合(磁界共鳴)しているとともに、かかる磁界共振結合によって送電部2から受電部3に電力が伝送されるように構成してある。   FIG. 2 is an equivalent circuit diagram showing magnetic resonance coupling between the transmitting antenna 6 and the receiving antenna 7. As shown in the figure, the transmitting antenna 6 and the receiving antenna 7 are configured to be magnetically coupled to each other (magnetic field resonance) and to transmit power from the power transmitting unit 2 to the power receiving unit 3 by the magnetic field resonant coupling. It is.

送信アンテナ6及び受信アンテナ7は、磁界共鳴に適するよう、螺旋状に形成されたヘリカルコイルでそれぞれ構成するのがよい。   The transmitting antenna 6 and the receiving antenna 7 are each preferably composed of helical coils formed in a spiral shape so as to be suitable for magnetic field resonance.

一方、送電部2には送信アンテナ6の電力値を計測する電力計測部9を、受電部3には受信アンテナ7の電力値を計測する電力計測部10をそれぞれ設けてあるとともに、演算処理部4には、計測された電力値を用いて送信アンテナ6の電力値に対する受信アンテナ7の電力値の比率を電力伝送効率として算出する伝送効率算出部11と、該電力伝送効率を用いて送信アンテナ6と受信アンテナ7との間に介在する地盤8の領域13における飽和度を推定する飽和度推定部12とを設けてある。   On the other hand, the power transmission unit 2 is provided with a power measurement unit 9 that measures the power value of the transmission antenna 6, and the power reception unit 3 is provided with a power measurement unit 10 that measures the power value of the reception antenna 7. 4 includes a transmission efficiency calculation unit 11 that calculates the ratio of the power value of the reception antenna 7 to the power value of the transmission antenna 6 using the measured power value as power transmission efficiency, and the transmission antenna using the power transmission efficiency. 6 and a reception antenna 7 are provided with a saturation estimation unit 12 for estimating the saturation in the region 13 of the ground 8 interposed.

ここで、飽和度推定部12は、伝送効率算出部11で算出された電力伝送効率を、記憶部15から読み出された飽和度―伝送効率特性に適用することで該電力伝送効率に相当する飽和度を求め、これを領域13の飽和度として推定するようになっている。   Here, the saturation estimation unit 12 corresponds to the power transmission efficiency by applying the power transmission efficiency calculated by the transmission efficiency calculation unit 11 to the saturation-transmission efficiency characteristic read from the storage unit 15. The saturation is obtained and estimated as the saturation of the region 13.

演算処理部4は、地上の管理施設(図示せず)に設置されたパソコン14のマザーボード、CPU、メモリー、内蔵ハードディスクといったハードウェアと該ハードウェア上で動作するソフトウェアとで構成してあり、上述した記憶部15は、該パソコンの内蔵ハードディスクで構成することが可能である。   The arithmetic processing unit 4 includes hardware such as a motherboard, a CPU, a memory, and a built-in hard disk of a personal computer 14 installed in a ground management facility (not shown), and software that operates on the hardware. The storage unit 15 can be configured by a built-in hard disk of the personal computer.

本実施形態に係る飽和度計測システム1を用いて地盤8における領域13の飽和度を推定するには、飽和度推定に先立ち、まず、領域13の構成材料である土について飽和度とそのときの電力伝送効率との関係を飽和度―伝送効率特性として予め作成する。   In order to estimate the saturation of the region 13 in the ground 8 using the saturation measurement system 1 according to the present embodiment, first, prior to the saturation estimation, the saturation of the soil that is a constituent material of the region 13 and the current level The relationship with the power transmission efficiency is created in advance as saturation-transmission efficiency characteristics.

図3は、作成された飽和度―伝送効率特性を示したグラフである。同図に示すように、飽和度―伝送効率特性は、横軸に電力伝送効率を、縦軸に飽和度をとって両者の関係を示したものであり、電力伝送効率が大きくなるほど、飽和度は概ね低下する傾向にある。   FIG. 3 is a graph showing the created saturation-transmission efficiency characteristics. As shown in the figure, the saturation-transmission efficiency characteristic shows the relationship between the horizontal axis with the power transmission efficiency and the vertical axis with the saturation. The higher the power transmission efficiency, the higher the saturation level. Tends to decline.

飽和度―伝送効率特性を求めるにあたっては、領域13を構成する土と同じ土質材料についてさまざまな含水状態のものを用意し、これを例えば室内試験土槽に投入するとともにその中に送信アンテナ6及び受信アンテナ7を図1(b)で示した構成と同一の相対位置関係で埋設し、かかる状態で送信アンテナ6及び受信アンテナ7の電力値を計測するとともに、計測された電力値からアンテナ間の電力伝送効率を算出する一方、そのときの土質材料の飽和度を例えば比抵抗法で計測し、それらから電力伝送効率と飽和度との関係を求めればよい。   In obtaining saturation-transmission efficiency characteristics, the same soil material as the soil constituting the region 13 is prepared in various water-containing states, and this is put into, for example, an indoor test soil tank and the transmitting antenna 6 and The receiving antenna 7 is embedded in the same relative positional relationship as the configuration shown in FIG. 1B, and the power values of the transmitting antenna 6 and the receiving antenna 7 are measured in this state, and the measured power value is used between the antennas. While calculating the power transmission efficiency, the degree of saturation of the soil material at that time may be measured by, for example, a specific resistance method, and the relationship between the power transmission efficiency and the degree of saturation may be obtained therefrom.

作成された飽和度―伝送効率特性は、演算処理部4から読出すことができるように記憶部15にデータ保存しておく。   The created saturation-transmission efficiency characteristics are stored in the storage unit 15 so that they can be read from the arithmetic processing unit 4.

地盤8における領域13の飽和度は以下の手順で推定する。すなわち、まず、送電部2の交流電源5を作動させるとともに、送電部2の電力を、該送電部の送信アンテナ6と磁界共振結合する受信アンテナ7を介して受電部3に伝送するとともに、そのときの送信アンテナ6と受信アンテナ7の各電力値を電力計測部9,10でそれぞれ計測し、これらを地上のパソコン14に転送する。   The degree of saturation of the region 13 in the ground 8 is estimated by the following procedure. That is, first, the AC power source 5 of the power transmission unit 2 is activated, and the power of the power transmission unit 2 is transmitted to the power reception unit 3 via the reception antenna 7 that is magnetically coupled to the transmission antenna 6 of the power transmission unit. Each power value of the transmitting antenna 6 and the receiving antenna 7 is measured by the power measuring units 9 and 10 and transferred to the personal computer 14 on the ground.

次に、電力計測部9,10で計測された送信アンテナ6と受信アンテナ7の各電力値を用いて、次式、
電力伝送効率=受信アンテナ7の電力値/送信アンテナ6の電力値
により、各アンテナ間における電力伝送効率を伝送効率算出部11で算出する。
Next, using each power value of the transmitting antenna 6 and the receiving antenna 7 measured by the power measuring units 9 and 10, the following equation:
Power transmission efficiency = power value of receiving antenna 7 / power value of transmitting antenna 6
Thus, the power transmission efficiency between the antennas is calculated by the transmission efficiency calculation unit 11.

次に、予めデータ保存してある飽和度―伝送効率特性を記憶部15から読み出し、該飽和度―伝送効率特性に伝送効率算出部11で算出された電力伝送効率を適用することで該電力伝送効率に相当する飽和度を飽和度推定部12で演算し、該飽和度を、地盤8における領域13の飽和度と推定する。   Next, the saturation-transmission efficiency characteristic stored in advance is read from the storage unit 15 and the power transmission efficiency calculated by the transmission efficiency calculation unit 11 is applied to the saturation-transmission efficiency characteristic. The saturation corresponding to the efficiency is calculated by the saturation estimation unit 12, and the saturation is estimated as the saturation of the region 13 in the ground 8.

以上説明したように、本実施形態に係る飽和度計測システム1によれば、磁界共振結合を用いた電力伝送が数m程度のエアギャップがあっても可能であることから、地盤8における領域13の飽和度を局所的ではなく、平均的な値として推定することが可能となる。   As described above, according to the saturation measurement system 1 according to the present embodiment, power transmission using magnetic field resonance coupling is possible even with an air gap of about several meters. Can be estimated not as a local value but as an average value.

また、受電部3で計測された受信アンテナ7の電力値をデータ送信する際、無線にしろ有線にしろ、そのデータ送信に必要な電力を磁界共振結合で送信部2から伝送されてきた電力でまかなうことができるので、電力供給ケーブルの敷設やそれに代わるバッテリーの設置、さらにはそれらの保守点検作業が不要となり、かくして長期間にわたるモニタリングを確実かつ低コストで実現することができるほか、受電部3への電力供給ケーブルを地盤8内に埋設する必要がないため、初期設置作業が従来よりも大幅に簡素化される。   Further, when transmitting the power value of the receiving antenna 7 measured by the power receiving unit 3, whether it is wireless or wired, the power required for the data transmission is the power transmitted from the transmitting unit 2 by magnetic resonance coupling. Therefore, it is not necessary to install a power supply cable, install a battery to replace it, and maintain and inspect them. Thus, long-term monitoring can be realized reliably and at low cost. Since it is not necessary to embed a power supply cable to the ground 8, the initial installation work is greatly simplified as compared with the prior art.

本実施形態では特に言及しなかったが、送電部2及び受電部3にそれぞれ無線送信部を設けるとともに、該各無線送信部を介してデータ送信されてきた電力値をデータ受信できるように伝送効率算出部11を構成したならば、電力供給ケーブルのみならず、データ送信ケーブルの敷設作業も軽減されるため、初期設置作業がさらに容易となる。   Although not particularly mentioned in the present embodiment, the power transmission unit 2 and the power receiving unit 3 are each provided with a wireless transmission unit, and the transmission efficiency is such that the power value transmitted through the wireless transmission unit can be received. If the calculation part 11 is comprised, since not only a power supply cable but the installation work of a data transmission cable is also reduced, initial installation work becomes still easier.

また、本実施形態では、磁界共振結合によって電力伝送を行うようにしたが、これに代えて電界共振結合を利用するようにしてもかまわない。   In the present embodiment, power transmission is performed by magnetic field resonance coupling, but electric field resonance coupling may be used instead.

[第2実施形態]
次に、第2実施形態について説明する。なお、第1実施形態と実質的に同一の部品等については同一の符号を付してその説明を省略する。
[Second Embodiment]
Next, a second embodiment will be described. Note that components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図4は、第2実施形態に係る飽和度計測システムを示したブロック図、図5は同じくその配置図である。これらの図に示すように、本実施形態に係る飽和度計測システム41は、本発明に係る飽和度計測システムを地盤8内に形成された放射性廃棄物の人工バリアであって該人工バリアを構成する緩衝材としてのベントナイト48の飽和度推定に適用した例であって、送電部2、受電部3a、受電部3b及び受電部3cを備えるとともに、受電部3a、受電部3b及び受電部3cにはそれぞれ受信アンテナ7a,7b,7cを設けてあり、演算処理部4は、送電部2及び受電部3a,3b,3cで計測された電力値をデータ処理するように構成してある。   FIG. 4 is a block diagram showing a saturation measuring system according to the second embodiment, and FIG. 5 is a layout diagram thereof. As shown in these drawings, the saturation measurement system 41 according to the present embodiment is a radioactive waste artificial barrier formed in the ground 8 of the saturation measurement system according to the present invention, and constitutes the artificial barrier. It is an example applied to the saturation estimation of bentonite 48 as a buffer material, and includes a power transmission unit 2, a power reception unit 3a, a power reception unit 3b, and a power reception unit 3c, and a power reception unit 3a, a power reception unit 3b, and a power reception unit 3c. Are provided with receiving antennas 7a, 7b, and 7c, respectively, and the arithmetic processing unit 4 is configured to perform data processing on the power values measured by the power transmitting unit 2 and the power receiving units 3a, 3b, and 3c.

送信アンテナ6は、媒体としてのベントナイト48に当接するように該ベントナイト近傍の地盤8に埋設してあるとともに、受信アンテナ7a,7b,7cは、ベントナイト48内であって送信アンテナ6の下方に深さ方向に沿って列状に順次埋設してある。ここで、受信アンテナ7a,7b,7cは、受信アンテナ7と同様の構成であり、それらの説明を省略する。   The transmitting antenna 6 is embedded in the ground 8 in the vicinity of the bentonite so as to contact the bentonite 48 as a medium, and the receiving antennas 7a, 7b, 7c are deep inside the bentonite 48 and below the transmitting antenna 6. It is sequentially embedded in a row along the direction. Here, the receiving antennas 7a, 7b, and 7c have the same configuration as the receiving antenna 7, and the description thereof is omitted.

送信アンテナ6と受信アンテナ7aとは図2で説明したと同様、互いに磁界共振結合しており、かかる磁界共振結合によって送電部2から受電部3aに電力が伝送されるようになっているとともに、同様の磁界共振結合により、受信アンテナ7a,7b及び受信アンテナ7b,7cはそれぞれ互いに磁界共振結合しており、かかる磁界共振結合によって受電部3aから受電部3bに、さらには受電部3bから受電部3cへと電力が順次伝送されるようになっている。   As described with reference to FIG. 2, the transmitting antenna 6 and the receiving antenna 7a are magnetically coupled to each other, and power is transmitted from the power transmitting unit 2 to the power receiving unit 3a by the magnetic field resonant coupling. By the same magnetic field resonance coupling, the receiving antennas 7a and 7b and the receiving antennas 7b and 7c are magnetic field resonance coupled to each other, and the magnetic field resonance coupling causes the power receiving unit 3a to the power receiving unit 3b, and further from the power receiving unit 3b to the power receiving unit. Electric power is sequentially transmitted to 3c.

すなわち、送信アンテナ6と受信アンテナ7a、受信アンテナ7aと受信アンテナ7b、受信アンテナ7bと受信アンテナ7cは、それぞれ本発明でいうアンテナ対を構成する。なお、上記以外の組み合わせからなる3組のアンテナ対は、本実施形態では、互いに磁界共振結合していないものとする。   That is, the transmitting antenna 6 and the receiving antenna 7a, the receiving antenna 7a and the receiving antenna 7b, and the receiving antenna 7b and the receiving antenna 7c respectively constitute an antenna pair in the present invention. In the present embodiment, it is assumed that the three antenna pairs having combinations other than those described above are not magnetically coupled to each other.

受電部3a,3b,3cは、第1実施形態の受電部3と同様、受信アンテナ7a,7b,7cの電力値を計測する電力計測部10a,10b,10cを備えるとともに、それらに加え、計測された各電力値をデータ送信する無線送信部42a,42b,42cをそれぞれ備える。   The power receiving units 3a, 3b, and 3c include power measuring units 10a, 10b, and 10c that measure the power values of the receiving antennas 7a, 7b, and 7c as well as the power receiving unit 3 of the first embodiment. Wireless transmission units 42a, 42b, and 42c that transmit data of the respective power values are provided.

伝送効率算出部11は、無線送信部42a,42b,42cからの各電力値を、図示しない無線受信部を介してデータ受信するとともに、これらの電力値から、送信アンテナ6の電力値に対する受信アンテナ7aの電力値の比率、受信アンテナ7aの電力値に対する受信アンテナ7bの電力値の比率及び受信アンテナ7bの電力値に対する受信アンテナ7cの電力値の比率を電力伝送効率としてそれぞれ算出するようになっている。   The transmission efficiency calculation unit 11 receives data of each power value from the radio transmission units 42a, 42b, and 42c via a radio reception unit (not shown), and receives a reception antenna for the power value of the transmission antenna 6 from these power values. The ratio of the power value of 7a, the ratio of the power value of the receiving antenna 7b to the power value of the receiving antenna 7a, and the ratio of the power value of the receiving antenna 7c to the power value of the receiving antenna 7b are respectively calculated as power transmission efficiency. Yes.

飽和度推定部12は、伝送効率算出部11で算出された各電力伝送効率を、記憶部15から読み出された飽和度―伝送効率特性に適用することで該各電力伝送効率に相当する飽和度をそれぞれ求め、これらを、送信アンテナ6と受信アンテナ7aとの間、受信アンテナ7a,7bの間及び受信アンテナ7b,7cの間に介在するベントナイト48における領域13a,13b,13cの飽和度としてそれぞれ推定するようになっている。   The saturation estimation unit 12 applies each power transmission efficiency calculated by the transmission efficiency calculation unit 11 to the saturation-transmission efficiency characteristic read from the storage unit 15, so that the saturation corresponding to each power transmission efficiency is obtained. The degree of saturation is determined as the degree of saturation of the regions 13a, 13b, and 13c in the bentonite 48 interposed between the transmitting antenna 6 and the receiving antenna 7a, between the receiving antennas 7a and 7b, and between the receiving antennas 7b and 7c. Each is supposed to be estimated.

本実施形態に係る飽和度計測システム41を用いてベントナイト48の領域13a,13b,13cの飽和度を推定するには、飽和度推定に先立ち、まず、計測対象であるベントナイト48の飽和度とそのときの電力伝送効率との関係を、第1実施形態と同様に飽和度―伝送効率特性として予め作成する。   In order to estimate the saturation of the regions 13a, 13b, and 13c of the bentonite 48 using the saturation measurement system 41 according to the present embodiment, first, prior to the saturation estimation, the saturation of the bentonite 48 to be measured and its The relationship with the current power transmission efficiency is created in advance as saturation-transmission efficiency characteristics as in the first embodiment.

飽和度―伝送効率特性を求めるにあたっては、ベントナイト48と同じベントナイト材料についてさまざまな含水状態のものを用意し、これを例えば室内試験土槽に投入するとともにその中に送信アンテナ6及び受信アンテナ7a,7b,7cを図5で示した構成と同一の相対位置関係で埋設し、かかる状態で送信アンテナ6及び受信アンテナ7a,7b,7cの電力値を計測するとともに、計測された電力値からアンテナ間の電力伝送効率を算出する一方、そのときのベントナイトの飽和度を例えば比抵抗法で計測し、それらから電力伝送効率と飽和度との関係を求めればよい。   In obtaining the saturation-transmission efficiency characteristics, the same bentonite material as the bentonite 48 is prepared in various water-containing states, which are put into, for example, an indoor test soil tank, and the transmitting antenna 6 and the receiving antenna 7a, 7b and 7c are embedded in the same relative positional relationship as the configuration shown in FIG. 5, and the power values of the transmitting antenna 6 and the receiving antennas 7a, 7b, and 7c are measured in this state, and between the antennas based on the measured power values On the other hand, the degree of saturation of bentonite at that time is measured by, for example, a specific resistance method, and the relationship between the power transmission efficiency and the degree of saturation may be obtained therefrom.

作成されたベントナイトの飽和度―伝送効率特性は、演算処理部4から読出すことができるように記憶部15にデータ保存しておく。   The created bentonite is stored in the storage unit 15 so that the saturation-transmission efficiency characteristic can be read from the arithmetic processing unit 4.

ベントナイト48内の領域13a,13b,13cの飽和度は以下の手順で推定する。すなわち、まず、送電部2の交流電源5を作動させるとともに、送電部2の電力を、該送電部の送信アンテナ6と磁界共振結合する受信アンテナ7aを介して受電部3aに伝送するとともに、受電部3aに伝送された電力を、その受信アンテナ7aと磁界共振結合する受信アンテナ7bを介して受電部3bに伝送し、さらに受電部3bに伝送された電力を、その受信アンテナ7bと磁界共振結合する受信アンテナ7cを介して受電部3cへと順次伝送する。   The degree of saturation of the regions 13a, 13b, and 13c in the bentonite 48 is estimated by the following procedure. That is, first, the AC power supply 5 of the power transmission unit 2 is activated, and the power of the power transmission unit 2 is transmitted to the power reception unit 3a via the reception antenna 7a that is magnetically coupled to the transmission antenna 6 of the power transmission unit. The power transmitted to the unit 3a is transmitted to the power receiving unit 3b via the receiving antenna 7b that is magnetically resonantly coupled to the receiving antenna 7a, and the power transmitted to the power receiving unit 3b is coupled to the receiving antenna 7b and the magnetic field resonant coupling Are sequentially transmitted to the power receiving unit 3c via the receiving antenna 7c.

一方、磁界共振結合によって送電部2の電力が受電部3a,3b,3cへと次々に伝送されるときの送信アンテナ6と受信アンテナ7a,7b,7cの各電力値を電力計測部9及び電力計測部10a,10b,10cでそれぞれ計測し、これらを通信ケーブル(図示せず)及び無線送信部42a,42b,42cを介して地上のパソコン14に転送する。   On the other hand, the power values of the transmitting antenna 6 and the receiving antennas 7a, 7b, and 7c when the power of the power transmitting unit 2 is successively transmitted to the power receiving units 3a, 3b, and 3c by the magnetic field resonance coupling are represented by the power measuring unit 9 and the power. The measurement units 10a, 10b, and 10c respectively measure and transfer these to the personal computer 14 on the ground via a communication cable (not shown) and the wireless transmission units 42a, 42b, and 42c.

次に、電力計測部9及び電力計測部10aで計測された送信アンテナ6と受信アンテナ7aの各電力値を用いて、次式、
電力伝送効率=受信アンテナ7aの電力値/送信アンテナ6の電力値
により、送信アンテナ6と受信アンテナ7aとの間における電力伝送効率を伝送効率算出部11で算出するとともに、電力計測部10a,10b,10cで計測された受信アンテナ7a,7b、及び受信アンテナ7b,7cの各電力値を用いて、上記各アンテナ間における電力伝送効率を伝送効率算出部11で同様に算出する。
Next, using each power value of the transmitting antenna 6 and the receiving antenna 7a measured by the power measuring unit 9 and the power measuring unit 10a,
Power transmission efficiency = power value of receiving antenna 7a / power value of transmitting antenna 6
Thus, the power transmission efficiency between the transmission antenna 6 and the reception antenna 7a is calculated by the transmission efficiency calculation unit 11, and the reception antennas 7a and 7b and the reception antennas 7b, which are measured by the power measurement units 10a, 10b, and 10c. The power transmission efficiency between the antennas is similarly calculated by the transmission efficiency calculation unit 11 using each power value of 7c.

次に、予めデータ保存してある飽和度―伝送効率特性を記憶部15から読み出し、該飽和度―伝送効率特性に伝送効率算出部11で算出された各電力伝送効率を適用することで該各電力伝送効率に相当する飽和度を飽和度推定部12で演算し、該各飽和度を、ベントナイト48内の領域13a,13b,13cの飽和度と推定する。   Next, the saturation-transmission efficiency characteristics stored in advance are read from the storage unit 15 and each power transmission efficiency calculated by the transmission efficiency calculation unit 11 is applied to the saturation-transmission efficiency characteristics. The saturation level corresponding to the power transmission efficiency is calculated by the saturation level estimation unit 12, and each saturation level is estimated as the saturation level of the regions 13 a, 13 b, and 13 c in the bentonite 48.

以上説明したように、本実施形態に係る飽和度計測システム41によれば、磁界共振結合を用いた電力伝送が数m程度のエアギャップがあっても可能であることから、ベントナイト48の飽和度を局所的ではなく、平均的な値として推定することが可能となる。   As described above, according to the saturation measurement system 41 according to the present embodiment, power transmission using magnetic field resonance coupling is possible even with an air gap of about several meters. Can be estimated as an average value rather than a local value.

また、受電部3a,3b,3cで計測された受信アンテナ7a,7b,7cの電力値をデータ送信する際、それに必要な電力を磁界共振結合で送信部2から順次伝送されてきた電力でまかなうことができるので、電力供給ケーブルの敷設やそれに代わるバッテリーの設置、さらにはそれらの保守点検作業が不要となり、かくして長期間にわたるモニタリングを確実かつ低コストで実現することができるほか、受電部3a,3b,3cへの電力供給ケーブルをベントナイト48内に埋設する必要がないため、初期設置作業が従来よりも大幅に簡素化される。   In addition, when data is transmitted from the power values of the receiving antennas 7a, 7b, and 7c measured by the power receiving units 3a, 3b, and 3c, the necessary power is covered by the power sequentially transmitted from the transmitting unit 2 by magnetic resonance coupling. Therefore, it is not necessary to install a power supply cable, install a battery to replace it, and to perform maintenance and inspection work for them. Thus, long-term monitoring can be realized reliably and at low cost, and the power receiving unit 3a, Since it is not necessary to embed the power supply cable to 3b and 3c in the bentonite 48, the initial installation work is greatly simplified as compared with the conventional case.

また、本実施形態に係る飽和度計測システム41によれば、複数の受電部3a,3b,3cにそれぞれ設けられた受信アンテナ7a,7b,7cを送信アンテナ6とともに深さ方向に沿って列状に配置したので、より深い領域を計測することが可能となる。   Further, according to the saturation measuring system 41 according to the present embodiment, the receiving antennas 7a, 7b, and 7c provided in the plurality of power receiving units 3a, 3b, and 3c are arranged in a row along the depth direction together with the transmitting antenna 6. Since it is arranged in a deeper area, a deeper region can be measured.

また、本実施形態に係る飽和度計測システム41によれば、送信アンテナ6及び受信アンテナ7a,7b,7cのうち、隣り合う2つのアンテナからなるアンテナ対を互いに電磁界共振結合させるとともに、該各アンテナの電力値をそれぞれ計測するように構成したので、送信アンテナ6及び受信アンテナ7a,7b,7cの列状配置経路に沿ったベントナイト48の飽和度をすべてのアンテナ間でかつ一括して計測することが可能となる。   In addition, according to the saturation measurement system 41 according to the present embodiment, the antenna pair composed of two adjacent antennas among the transmission antenna 6 and the reception antennas 7a, 7b, and 7c is electromagnetically resonantly coupled to each other. Since the antenna power values are respectively measured, the saturation of the bentonite 48 along the columnar arrangement path of the transmission antenna 6 and the reception antennas 7a, 7b, and 7c is measured between all the antennas and collectively. It becomes possible.

また、本実施形態に係る飽和度計測システム41によれば、計測された電力値をデータ送信するための無線送信部42a,42b,42cを受電部3a,3b,3cにそれぞれ設けるようにしたので、電力供給ケーブルのみならず、データ送信ケーブルの敷設作業も軽減されるため、初期設置作業がさらに容易となる。   In addition, according to the saturation measurement system 41 according to the present embodiment, the wireless transmission units 42a, 42b, and 42c for transmitting data of the measured power values are provided in the power receiving units 3a, 3b, and 3c, respectively. The installation work of not only the power supply cable but also the data transmission cable is reduced, so that the initial installation work is further facilitated.

また、本実施形態に係る飽和度計測システム41によれば、放射性廃棄物を地層処分する際の人工バリアの緩衝材であるベントナイト48を飽和度計測の対象媒体としたので、長期間にわたる確実かつ低コストなモニタリングによって、放射性廃棄物の地層処分を健全に運用管理することが可能となる。   In addition, according to the saturation measurement system 41 according to the present embodiment, since the bentonite 48, which is a buffer material for an artificial barrier when geologically disposing radioactive waste, is used as a saturation measurement target medium, Low-cost monitoring makes it possible to operate and manage geological disposal of radioactive waste in a sound manner.

加えて、受信アンテナ7a,7b,7cに電力供給ケーブルを接続する必要がなく、なおかつ無線送信部42a,42b,42cを設けたことによって電力計測部10a,10b,10cにデータ送信ケーブルを接続する必要がないことから、ベントナイト48を貫通するケーブル類が一切敷設されないこととなり、かくして地盤8に連通する水ミチがベントナイト48内に形成されるのを未然に防止することが可能となる。   In addition, it is not necessary to connect the power supply cable to the receiving antennas 7a, 7b, and 7c, and the data transmission cables are connected to the power measuring units 10a, 10b, and 10c by providing the wireless transmission units 42a, 42b, and 42c. Since it is not necessary, no cables penetrating the bentonite 48 are laid, and thus it is possible to prevent the water mist communicating with the ground 8 from being formed in the bentonite 48 in advance.

本実施形態では、放射性廃棄物を地層処分する際の人工バリアの緩衝材に適用した例を説明したが、これに代えて、一般的な地盤に適用することができることは言うまでもない。   In the present embodiment, the example in which the radioactive waste is applied to the buffer material of the artificial barrier when the geological disposal is performed has been described, but it goes without saying that it can be applied to a general ground instead.

また、本実施形態では、磁界共振結合によって電力伝送を行うようにしたが、これに代えて電界共振結合を利用するようにしてもかまわない。   In the present embodiment, power transmission is performed by magnetic field resonance coupling, but electric field resonance coupling may be used instead.

また、本実施形態では、送信アンテナ6及び受信アンテナ7a,7b,7cを深さ方向に沿って列状となるようにベントナイト48に埋設し、それらのうち、隣り合うアンテナ対、すなわち送信アンテナ6と受信アンテナ7a、受信アンテナ7aと受信アンテナ7b、受信アンテナ7bと受信アンテナ7cがそれぞれ磁界共振結合されるように構成するとともに、送信アンテナ6及び受信アンテナ7a,7b,7cのそれぞれについて電力値を計測するようにしたが、これら4つのアンテナについてすべて電力値を計測する必要はなく、上述の実施形態に代えて例えば図6(a)に示すように、受信アンテナ7a,7bでの電力値の計測を省略し、送信アンテナ6及び受信アンテナ7cの電力値のみを計測するようにしてもよいし、図6(b)に示すように、送信アンテナ6及び受信アンテナ7aでの電力値の計測を省略し、受信アンテナ7b,7cの電力値のみを計測するようにしてもよい。   In this embodiment, the transmitting antenna 6 and the receiving antennas 7a, 7b, and 7c are embedded in the bentonite 48 so as to form a line along the depth direction, and among them, adjacent antenna pairs, that is, the transmitting antenna 6 And the receiving antenna 7a, the receiving antenna 7a and the receiving antenna 7b, the receiving antenna 7b and the receiving antenna 7c are respectively coupled by magnetic field resonance, and the power values of the transmitting antenna 6 and the receiving antennas 7a, 7b, and 7c are set. However, it is not necessary to measure the power values for all these four antennas. Instead of the above-described embodiment, for example, as shown in FIG. 6A, the power values at the receiving antennas 7a and 7b are measured. Measurement may be omitted, and only the power values of the transmission antenna 6 and the reception antenna 7c may be measured, as shown in FIG. Sea urchin, omit the measurement of the power value of the transmitting antenna 6 and the receiving antenna 7a, the receiving antenna 7b, may be measured only power values of 7c.

かかる変形例の場合、同図(a)のケースでは、送信アンテナ6と受信アンテナ7cとの間に拡がる比較的広い範囲にわたる領域13dの飽和度が、同図(b)のケースでは、受信アンテナ7b,7cとの間に拡がる領域13dの飽和度がそれぞれ計測されることとなる。なお、同図(a)の受信アンテナ7a,7bや同図(b)の送信アンテナ6及び受信アンテナ7aは、電力送電専用あるいは電力中継専用のアンテナとなる。   In the case of such a modification, in the case of FIG. 9A, the saturation of the region 13d over a relatively wide range extending between the transmission antenna 6 and the reception antenna 7c is different from that of the reception antenna in the case of FIG. The saturation level of the region 13d extending between 7b and 7c is measured. In addition, the receiving antennas 7a and 7b in FIG. 6A and the transmitting antenna 6 and the receiving antenna 7a in FIG.

また、本実施形態では、送信アンテナ6及び受信アンテナ7a,7b,7cを深さ方向に沿って列状となるようにベントナイト48に埋設し、それらのうち、隣り合うアンテナ対、すなわち送信アンテナ6と受信アンテナ7a、受信アンテナ7aと受信アンテナ7b、受信アンテナ7bと受信アンテナ7cがそれぞれ磁界共振結合されるように構成したが、送信アンテナや受信アンテナの相対配置構成は任意であって、それらのうち、どのアンテナ対を電磁界共振結合させるかも任意である。   In this embodiment, the transmitting antenna 6 and the receiving antennas 7a, 7b, and 7c are embedded in the bentonite 48 so as to form a line along the depth direction, and among them, adjacent antenna pairs, that is, the transmitting antenna 6 And the receiving antenna 7a, the receiving antenna 7a and the receiving antenna 7b, and the receiving antenna 7b and the receiving antenna 7c are configured to be magnetically coupled to each other, but the relative arrangement configuration of the transmitting antenna and the receiving antenna is arbitrary, Of these, it is arbitrary which antenna pair is electromagnetically resonantly coupled.

1,41 飽和度計測システム
2 送電部
3,3a,3b,3c 受電部
4 演算処理部
5 交流電源
6 送信アンテナ
7,7a,7b,7c 受信アンテナ
8 地盤(媒体)
11 伝送効率算出部
12 飽和度推定部
42a,42b,42c 無線送信部
DESCRIPTION OF SYMBOLS 1,41 Saturation measurement system 2 Power transmission part 3, 3a, 3b, 3c Power reception part 4 Arithmetic processing part 5 AC power supply 6 Transmitting antenna 7, 7a, 7b, 7c Reception antenna 8 Ground (medium)
11 Transmission efficiency calculation unit 12 Saturation degree estimation unit 42a, 42b, 42c Wireless transmission unit

Claims (7)

交流電源に送信アンテナが接続されてなる送電部と、前記送信アンテナと電磁界共振結合する受信アンテナが設けられ該受信アンテナを介して前記送電部から電力が伝送されるようになっている受電部と、前記送信アンテナの電力値に対する前記受信アンテナの電力値の比率を電力伝送効率として算出する伝送効率算出部と、該電力伝送効率を、前記媒体の飽和度と該飽和度での電力伝送効率との関係を示す飽和度―伝送効率特性に適用することで前記電力伝送効率に相当する飽和度を求めこれを前記送信アンテナと前記受信アンテナとの間に介在する媒体の飽和度として推定する飽和度推定部とを備えたことを特徴とする飽和度計測システム。 A power transmission unit in which a transmission antenna is connected to an AC power supply, and a power reception unit that is provided with a reception antenna that is electromagnetically resonantly coupled to the transmission antenna, and through which the power is transmitted from the power transmission unit A transmission efficiency calculation unit that calculates a ratio of the power value of the reception antenna to the power value of the transmission antenna as power transmission efficiency; and the power transmission efficiency as the degree of saturation of the medium and the power transmission efficiency at the degree of saturation. Is applied to the transmission efficiency characteristics, and the saturation corresponding to the power transmission efficiency is obtained, and this is estimated as the saturation of the medium interposed between the transmitting antenna and the receiving antenna. A saturation measurement system comprising a degree estimation unit. 前記送電部及び前記受電部にそれぞれ無線送信部を設けるとともに、該各無線送信部を介してデータ送信されてきた電力値をデータ受信できるように前記伝送効率算出部を構成した請求項1記載の飽和度計測システム。 2. The transmission efficiency calculation unit according to claim 1, wherein a wireless transmission unit is provided in each of the power transmission unit and the power reception unit, and the transmission efficiency calculation unit is configured to receive data of a power value transmitted through each wireless transmission unit. Saturation measurement system. 交流電源に送信アンテナが接続されてなる送電部と、受信アンテナがそれぞれ設けられた複数の受電部とを備えた飽和度計測システムであって、前記各受電部を、その受信アンテナが前記送信アンテナと電磁界共振結合することで前記送電部から電力が伝送され又はその受信アンテナが他の受電部に属する受信アンテナと電磁界共振結合することで前記送電部から間接的に電力が伝送されるようにそれぞれ構成するとともに、前記送信アンテナ及び前記複数の受信アンテナのうち、互いに電磁界共振結合する少なくとも一組のアンテナ対を構成する2つのアンテナの電力値から該アンテナ対の電力値の比率を電力伝送効率として算出する伝送効率算出部と、該電力伝送効率を、前記媒体の飽和度と該飽和度での電力伝送効率との関係を示す飽和度―伝送効率特性に適用することで前記電力伝送効率に相当する飽和度を求めこれを前記アンテナ対の間に介在する媒体の飽和度として推定する飽和度推定部とを備えたことを特徴とする飽和度計測システム。 A saturation measurement system comprising a power transmission unit in which a transmission antenna is connected to an AC power source and a plurality of power reception units each provided with a reception antenna, wherein each power reception unit is connected to the transmission antenna. Power is transmitted from the power transmission unit by electromagnetic resonance coupling with the power transmission unit, or power is indirectly transmitted from the power transmission unit by electromagnetic resonance coupling of the reception antenna with a reception antenna belonging to another power reception unit. And the ratio of the power value of the antenna pair to the power value of at least one pair of antenna pairs that are electromagnetically coupled to each other among the transmitting antenna and the plurality of receiving antennas. A transmission efficiency calculation unit that calculates the transmission efficiency, and the power transmission efficiency, which indicates the relationship between the saturation of the medium and the power transmission efficiency at the saturation. A saturation degree estimation unit that obtains a saturation degree corresponding to the power transmission efficiency by applying to a degree-transmission efficiency characteristic, and estimates this as a saturation degree of a medium interposed between the antenna pairs. Saturation measurement system. 前記送信アンテナ及び前記複数の受信アンテナを列状に配置した請求項3記載の飽和度計測システム。 The saturation measurement system according to claim 3, wherein the transmission antenna and the plurality of reception antennas are arranged in a line. 前記送信アンテナ及び前記複数の受信アンテナのうち、隣り合う2つのアンテナからなるアンテナ対を互いに電磁界共振結合させるとともに、該各アンテナの電力値をそれぞれ計測するように構成した請求項4記載の飽和度計測システム。 5. The saturation according to claim 4, wherein among the transmitting antenna and the plurality of receiving antennas, an antenna pair composed of two adjacent antennas is electromagnetically coupled to each other and a power value of each antenna is measured. Degree measurement system. 前記送信アンテナ及び前記複数の受信アンテナのうち、電力値が計測されるアンテナが設けられた前記送電部又は前記受電部に該電力値をデータ送信する無線送信部をそれぞれ設けるとともに、該各無線送信部を介してデータ送信されてきた電力値をデータ受信できるように前記伝送効率算出部を構成した請求項3乃至請求項5のいずれか一記載の飽和度計測システム。 Among the transmission antenna and the plurality of reception antennas, a radio transmission unit that transmits data of the power value is provided in the power transmission unit or the power reception unit provided with an antenna for measuring a power value, and each of the radio transmissions The saturation measurement system according to any one of claims 3 to 5, wherein the transmission efficiency calculation unit is configured so that the power value transmitted through the unit can be received. 前記媒体を、放射性廃棄物を地層処分する際の人工バリアの緩衝材とした請求項1乃至請求項6のいずれか一記載の飽和度計測システム。 The saturation measuring system according to any one of claims 1 to 6, wherein the medium is used as a buffer material for an artificial barrier when the radioactive waste is disposed of.
JP2012094312A 2012-04-18 2012-04-18 Saturation measurement system Active JP5935474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094312A JP5935474B2 (en) 2012-04-18 2012-04-18 Saturation measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094312A JP5935474B2 (en) 2012-04-18 2012-04-18 Saturation measurement system

Publications (2)

Publication Number Publication Date
JP2013221875A true JP2013221875A (en) 2013-10-28
JP5935474B2 JP5935474B2 (en) 2016-06-15

Family

ID=49592937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094312A Active JP5935474B2 (en) 2012-04-18 2012-04-18 Saturation measurement system

Country Status (1)

Country Link
JP (1) JP5935474B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727311A (en) * 1986-03-06 1988-02-23 Walker Charles W E Microwave moisture measurement using two microwave signals of different frequency and phase shift determination
JPH05176483A (en) * 1991-12-25 1993-07-13 Shinko Electric Co Ltd Antenna for inductive radio communication
JP2008096287A (en) * 2006-10-12 2008-04-24 Nobuyuki Suzuki Wireless type soil humidity measurement instrument and automatic water supply device for plants
JP2008164313A (en) * 2006-12-27 2008-07-17 Ace Giken:Kk Moisture detection method
JP2012075304A (en) * 2010-08-30 2012-04-12 Univ Of Tokyo Wireless power transmission device
WO2012046453A1 (en) * 2010-10-08 2012-04-12 パナソニック株式会社 Wireless power transmission device, and power generation device provided with wireless power transmission device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727311A (en) * 1986-03-06 1988-02-23 Walker Charles W E Microwave moisture measurement using two microwave signals of different frequency and phase shift determination
JPH05176483A (en) * 1991-12-25 1993-07-13 Shinko Electric Co Ltd Antenna for inductive radio communication
JP2008096287A (en) * 2006-10-12 2008-04-24 Nobuyuki Suzuki Wireless type soil humidity measurement instrument and automatic water supply device for plants
JP2008164313A (en) * 2006-12-27 2008-07-17 Ace Giken:Kk Moisture detection method
JP2012075304A (en) * 2010-08-30 2012-04-12 Univ Of Tokyo Wireless power transmission device
WO2012046453A1 (en) * 2010-10-08 2012-04-12 パナソニック株式会社 Wireless power transmission device, and power generation device provided with wireless power transmission device

Also Published As

Publication number Publication date
JP5935474B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
US9287936B2 (en) Wireless power transfer to embedded sensors
Kulkarni et al. Smart city wireless connectivity considerations and cost analysis: Lessons learnt from smart water case studies
Bennett et al. Wireless sensor network for monitoring transport tunnels
JP2010213277A (en) Wireless communication system for managing underground facility
KR101493231B1 (en) Integration system for interworking seismic instrumentation and electrical resistivity monit0ring and hydraulic structure monitoring method using the same
US20120130930A1 (en) Method for detection of tunnel excavation by brillouin optical time domain reflectometry
Abbas et al. Key factors involved in pipeline monitoring techniques using robots and WSNs: Comprehensive survey
Cataldo et al. Enhancement of leak detection in pipelines through time‐domain reflectometry/ground penetrating radar measurements
Tsakiris et al. Identification of the burial depth of radio frequency identification transponders in riverine applications
CN110110834A (en) Passive and wireless RFID displacement sensor and sensor-based system based on inverse-F antenna
Müller et al. Temperatures in shallow marine sediments: Influence of thermal properties, seasonal forcing, and man-made heat sources
JP2004234335A (en) Embedded type measuring instrument and structure measuring system
Salam et al. Signals in the soil: an introduction to wireless underground communications
JP5935474B2 (en) Saturation measurement system
CN102324188A (en) Buried parking space detector
Sadeghikhah et al. Towards a decentralized solution for sewer leakage detection–a review
US20220341295A1 (en) Systems and methods for wireless transmission of power in deep subsurface monitoring
Radchenko et al. Real time bridge scour monitoring with magneto-inductive field coupling
KR101540186B1 (en) Radio communication module containing self generating system, and detection and management system of underground facilities using the same
Qu et al. Analysis of signal transmission for use of logging while drilling
KR101038094B1 (en) magnetic communication system
Pena Carreno et al. Propagation loss and apparent conductivity models for through‐the‐earth communication in sedimentary soil
Shi et al. Refined numerical simulation of signal propagation in soils for wireless underground sensor networks
Han et al. Application of ultra-weak FBG technology in real-time monitoring of landslide shear displacement
KR101783813B1 (en) Sensor and system for detecting underground environment change using magnetic induction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150