JP2013221070A - Hollow polymer minute particle and method for producing the same - Google Patents

Hollow polymer minute particle and method for producing the same Download PDF

Info

Publication number
JP2013221070A
JP2013221070A JP2012093174A JP2012093174A JP2013221070A JP 2013221070 A JP2013221070 A JP 2013221070A JP 2012093174 A JP2012093174 A JP 2012093174A JP 2012093174 A JP2012093174 A JP 2012093174A JP 2013221070 A JP2013221070 A JP 2013221070A
Authority
JP
Japan
Prior art keywords
fine particles
polymer fine
organic solvent
hollow
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012093174A
Other languages
Japanese (ja)
Other versions
JP5727962B2 (en
Inventor
Koji Murata
晃二 村田
Naoki Komiya
直城 小宮
Takao Kihara
崇雄 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Co Ltd
Original Assignee
Sanko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Co Ltd filed Critical Sanko Co Ltd
Priority to JP2012093174A priority Critical patent/JP5727962B2/en
Priority to KR1020130040962A priority patent/KR101774079B1/en
Priority to CN201310129892.0A priority patent/CN103372409B/en
Publication of JP2013221070A publication Critical patent/JP2013221070A/en
Application granted granted Critical
Publication of JP5727962B2 publication Critical patent/JP5727962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerisation Methods In General (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing hollow polymer minute particles by which the formation of crushed concave-shaped minute particles having low percentages of hollowness is reduced, and the minute particles having high percentages of the hollowness are increased.SOLUTION: A method for producing hollow polymer minute particles including emulsifying and dispersing a mixture containing a polymerizable monomer for forming shells of the polymer minute particles, and an organic solvent in an aqueous medium, subjecting the polymerizable monomer to suspension polymerization in the presence of a polymerization initiator to afford polymer minute particles including the organic solvent, and removing the organic solvent included in the polymer minute particles through the shells of the minute particles by evaporating the organic solvent, is characterized by carrying out the step for making the minute particles hollow by evaporating and removing the organic solvent included in the polymer minute particles, in a state of the polymer minute particles dispersed in an aqueous medium.

Description

本発明は、非膨張型で高中空率の中空ポリマー微粒子を製造可能な中空ポリマー微粒子の製造方法と、該製造方法により得られた非膨張型で高中空率の中空ポリマー微粒子に関する。本発明の中空ポリマー微粒子は、例えば軽量化材、光散乱性向上材、更には感熱記録体の記録感度を高めるため支持体と感熱発色層との間に形成する中間層に含有させる断熱材等として使用される。本発明の中空ポリマー微粒子の製造方法は、非膨張型で高中空率の微粒子の生成を増加させると共に、水分散性が良く塗料調製が容易で、ハンドリング時も飛散しない、環境に優しいことを特徴としている。   The present invention relates to a method for producing a hollow polymer fine particle capable of producing a non-expandable and high hollow ratio hollow polymer fine particle, and a non-expandable and high hollow ratio hollow polymer fine particle obtained by the production method. The hollow polymer fine particles of the present invention include, for example, a weight reducing material, a light scattering improver, and a heat insulating material contained in an intermediate layer formed between the support and the thermosensitive coloring layer in order to increase the recording sensitivity of the thermosensitive recording medium. Used as. The method for producing hollow polymer fine particles of the present invention increases the generation of non-expandable and high hollowness fine particles, has good water dispersibility, is easy to prepare paints, and does not scatter during handling, and is environmentally friendly. It is said.

従来、中空ポリマー微粒子の製造方法としては特許文献1及び特許文献2が知られている。これら文献に記載の中空ポリマー微粒子は膨張型中空微粒子が対象である。つまり熱可塑性重合体の外殻を有し内部に揮発性発泡剤を内包した微小球体を懸濁重合法によって形成した後、該微小球体を加熱することで内包する発泡剤を揮発させ微小球体の内部圧を高め外殻を膨張(拡張)させるものである。   Conventionally, Patent Document 1 and Patent Document 2 are known as methods for producing hollow polymer fine particles. The hollow polymer fine particles described in these documents are expanded hollow fine particles. That is, after forming a microsphere having an outer shell of a thermoplastic polymer and containing a volatile foaming agent therein by suspension polymerization, the foaming agent contained therein is volatilized by heating the microsphere to form a microsphere. The internal pressure is increased to expand (expand) the outer shell.

特許文献1及び特許文献2に記載の方法で製造される膨張型中空ポリマー微粒子は、膨張後の粒子径がまちまちで不揃いとなる欠点がある。粒子径が不揃いの場合、中空ポリマー微粒子を使用した塗料組成物の安定性が要求される分野、或いは制御された粒子径が求められる分野(例えば、記録感度の安定性が求められる感熱記録体)には使用適性に欠ける難点がある。   The expanded hollow polymer fine particles produced by the methods described in Patent Document 1 and Patent Document 2 have a drawback that the particle diameters after expansion are different and uneven. When the particle diameters are not uniform, the field where the stability of the coating composition using the hollow polymer fine particles is required, or the field where the controlled particle diameter is required (for example, the thermal recording material where the stability of the recording sensitivity is required). Has a drawback that lacks suitability for use.

粒子径が揃った中空ポリマー微粒子を製造する方法としては特許文献3が知られている。この文献に記載の中空微粒子は、所謂シード重合法と称されている。シード重合法の基本的技術は、最初に水中に重合性モノマー(例:スチレン)を乳化剤の存在下で乳化して微粒子を形成し重合させシード(核)を形成することから始まる。次いで、このシードに他の重合性モノマー(例:アクリル酸エステル)を吸着させ、然る後に当該シードの周りに他の重合性モノマーによる外殻層を形成する。次いで、系中に該外殻層を通過し内部のシードを膨潤・溶解させる物質(例:アンモニア水溶液)を加えることで、シードを溶解させ、その溶解物と外部の水と置換させ、更に加熱乾燥して内部の水を除去し中空化する方法である。   Patent Document 3 is known as a method for producing hollow polymer fine particles having a uniform particle diameter. The hollow fine particles described in this document are called a so-called seed polymerization method. The basic technique of the seed polymerization method starts by first emulsifying a polymerizable monomer (eg, styrene) in water in the presence of an emulsifier to form fine particles and polymerize to form seeds (nuclei). Next, another polymerizable monomer (eg, acrylate ester) is adsorbed on the seed, and thereafter, an outer shell layer made of the other polymerizable monomer is formed around the seed. Next, a substance that passes through the outer shell layer and swells and dissolves the inner seed (eg, aqueous ammonia solution) is added to the system to dissolve the seed, replace the dissolved substance with external water, and further heat. It is a method of drying and removing the internal water to make it hollow.

このシード重合法による中空ポリマー微粒子は一般的には、乳化剤の存在下で乳化し微粒子を形成する為に粒子径が1μm乃至それ以下と小さく、中空率がせいぜい50%程度のものしか得られない。この中空微粒子を例えば感熱記録体用の断熱材として使用する場合、断熱効果は充分なものとはならない難点がある。このためシード重合法は如何にして粒子径を数μmにして且つ中空率を高めるかが課題である。   In general, hollow polymer fine particles by this seed polymerization method are obtained by emulsifying in the presence of an emulsifier to form fine particles, and the particle diameter is as small as 1 μm or less and the hollow ratio is only about 50%. . For example, when the hollow fine particles are used as a heat insulating material for a heat-sensitive recording material, there is a drawback that the heat insulating effect is not sufficient. For this reason, the problem with the seed polymerization method is how to increase the hollow ratio by setting the particle diameter to several μm.

特許文献4には、平均粒子径が0.1〜20μm(好ましくは2〜10μm)、中空率が60(好ましくは90)%以上の非発泡型ポリマー中空微粒子を、支持体と感熱発色層との間に形成する中空層に含有させた感熱記録体が記載されている。しかしこの文献には、このような条件を満たす非発泡型中空ポリマー微粒子を如何にして製造するかについての技術的開示はない。   In Patent Document 4, non-foamed polymer hollow fine particles having an average particle diameter of 0.1 to 20 μm (preferably 2 to 10 μm) and a hollow ratio of 60 (preferably 90)% or more, a support, a thermosensitive coloring layer, and Describes a heat-sensitive recording material contained in a hollow layer formed between the two. However, this document has no technical disclosure on how to produce non-foamed hollow polymer fine particles satisfying such conditions.

特許文献5には、中空ポリマー微粒子の製造方法について、揮発性炭化水素、親水性モノマー及び架橋性モノマーとが共存する懸濁液を調製し、この懸濁液において前記モノマー成分を重合させ、該揮発性炭化水素を内包するポリマー微粒子の分散液を得た後、この分散液よりポリマー微粒子を分離して乾燥処理するか、或いは分離せずに分散体に空気、窒素ガス、スチーム等を吹き込むこと、或いはこれらを併用することによりポリマー微粒子内部の揮発性炭化水素を蒸散分離し中空粒子を製造する方法が開示されている。   Patent Document 5 discloses a method for producing hollow polymer fine particles by preparing a suspension in which a volatile hydrocarbon, a hydrophilic monomer, and a crosslinkable monomer coexist, polymerizing the monomer component in the suspension, After obtaining a dispersion of polymer fine particles containing volatile hydrocarbons, the polymer fine particles are separated from this dispersion and dried, or air, nitrogen gas, steam, etc. are blown into the dispersion without separation. Alternatively, a method for producing hollow particles by evaporating and separating volatile hydrocarbons in polymer fine particles by using them together is disclosed.

しかし、特許文献5に記載の方法で製造される中空ポリマー微粒子は、ポリマー壁(外殻)の一部もしくは数カ所が大きく陥没し、ひしゃげた凹状微粒子となる欠点がある。これは包含される揮発性炭化水素の気化蒸散分離に伴い、粒子内部が減圧となること、つまり、球状粒子を構成する重合膜(外殻)が内部減圧に抗し切れずに引き込まれて生じる現象で、当該重合膜の硬さ、強度が不足していることが原因と考えられる。ひしゃげた凹形状のポリマー微粒子は、中空率が減少し、感熱記録体の中間層に断熱剤として使用しても期待する断熱効果が充分に発揮されない。   However, the hollow polymer fine particles produced by the method described in Patent Document 5 have a drawback in that a part or a part of the polymer wall (outer shell) is greatly depressed, resulting in a lazy concave fine particle. This is caused by the vaporized transpiration separation of the volatile hydrocarbons included, and the inside of the particles is depressurized, that is, the polymer film (outer shell) constituting the spherical particles is drawn in without resisting the internal depressurization. This phenomenon is thought to be due to the lack of hardness and strength of the polymer film. The hollow concave polymer fine particles have a reduced hollowness and do not sufficiently exhibit the expected heat insulating effect even when used as a heat insulating agent in the intermediate layer of the heat-sensitive recording material.

特公昭42−26524号公報Japanese Examined Patent Publication No. 42-26524 特公平5−86746号公報Japanese Patent Publication No. 5-86746 特開昭56−32513号公報JP-A-56-32513 特開平5−169818号公報JP-A-5-169818 特開昭61−87734号公報JP-A-61-87734

前記のように既に公知の、膨張型タイプの中空ポリマー微粒子は、粒子径がバラツキ、均一なものにすることが難しい。シード重合法による中空ポリマー微粒子は、粒子径が数μmで且つ高中空率のものを期待する場合には適合しない。非膨張型中空ポリマー微粒子は微粒子の一部若しくは数カ所が陥没してひしゃげた凹状微粒子となり中空率の低いものとなる等の問題がある。なお、ここで記載する中空率とは、中空粒子における中空部分の体積と中空粒子の体積の比であり、下記式(1)で表される。
中空率(%)=[(中空部分の半径)/(中空粒子の半径)]×100 ・・・(1)
As described above, the already known expansion type hollow polymer fine particles are difficult to have a uniform and uniform particle diameter. The hollow polymer fine particles produced by the seed polymerization method are not suitable when a particle having a particle diameter of several μm and a high hollow ratio is expected. The non-expandable hollow polymer fine particles have a problem that a part of the fine particles or some of the fine particles are depressed and become concave concave fine particles with a low hollow ratio. In addition, the hollow rate described here is the ratio of the volume of the hollow part in the hollow particles to the volume of the hollow particles, and is represented by the following formula (1).
Hollow ratio (%) = [(radius of hollow part) 3 / (radius of hollow particles) 3 ] × 100 (1)

本発明は、有機溶剤を内包する非膨張型ポリマー微粒子から有機溶剤を気化・除去して微粒子を中空化する際、中空率の低いひしゃげた凹状微粒子の生成を減らし、高中空率の微粒子が増加する中空ポリマー微粒子の製造方法を提供することを主たる課題とする。更に本発明は、かかる課題に加えて、水性塗料組成物を構成する場合は、水への馴染み性及び分散性が良くて塗料調製が容易で、ハンドリング時にも飛散しない、環境に優しい非膨張型中空ポリマー微粒子の製造方法を提供することを課題とする。   The present invention reduces the generation of clogged concave fine particles with a low hollow ratio and increases the fine particles with a high hollow ratio when the organic solvent is vaporized and removed from the non-expandable polymer fine particles encapsulating the organic solvent to hollow out the fine particles. The main object is to provide a method for producing hollow polymer fine particles. Furthermore, in addition to such problems, the present invention provides an environment-friendly non-expandable type that forms a water-based coating composition, has good water compatibility and dispersibility, is easy to prepare a coating, and does not scatter during handling. It is an object to provide a method for producing hollow polymer fine particles.

本発明者等は、前記課題の解決手段につき鋭意検討を重ねた結果、従来法(熱可塑性樹脂を外殻とするポリマー微粒子分散体からポリマー微粒子を濾過分離し、例えばコニカルドライヤーのような乾燥装置で加熱乾燥して粉末化する際に、有機溶剤を気化蒸散除去し中空化する方法)は採らず、非膨張型ポリマー微粒子に内包する有機溶剤の気化・除去・中空化を該ポリマー微粒子が分散する水分散液中で行う(液中脱溶剤)という新たな方法を着想・検討し本発明を完成した。   As a result of intensive investigations on the means for solving the above problems, the present inventors have conducted a conventional method (filtering and separating polymer fine particles from a polymer fine particle dispersion having a thermoplastic resin as an outer shell, and, for example, a drying apparatus such as a conical dryer. When the powder is dried by heating in a vacuum, the organic solvent is not vaporized and removed by evaporation, and the polymer fine particles are dispersed to vaporize, remove and hollow the organic solvent contained in the non-expandable polymer fine particles. The present invention was completed by conceiving and investigating a new method of performing in an aqueous dispersion (solvent removal in liquid).

本発明は、非膨張型ポリマー微粒子の製造において、かかる新たな方法の導入により高中空率の中空ポリマー微粒子を増やすところに特徴があり、従来法の有機溶剤を内包するポリマー微粒子を水分散液から一旦取り出し、これを乾燥し粉末化と同時に中空化する従来法とは構成・効果において根本的に相違するものである。   The present invention is characterized in that, in the production of non-expandable polymer fine particles, the introduction of such a new method increases the number of hollow polymer fine particles having a high hollow ratio, and the polymer fine particles encapsulating the organic solvent of the conventional method are obtained from the aqueous dispersion. This is fundamentally different from the conventional method in which it is once taken out and dried and then hollowed out at the same time as the powder.

本発明は、水媒体中で、ポリマー微粒子の外殻形成用重合性モノマーと、有機溶剤とを含む混合物を乳化分散させ、重合開示剤の存在下で前記重合性モノマーを懸濁重合させ、有機溶剤を内包するポリマー微粒子を形成し、当該ポリマー微粒子に内包する有機溶剤を気化させ該微粒子の外殻を通して除去し、中空ポリマー微粒子を製造する方法において、前記ポリマー微粒子の内包する有機溶剤を気化、除去して微粒子を中空化する工程を、ポリマー微粒子が水媒体中に分散している状態で行うことを特徴とする中空ポリマー微粒子の製造方法を提供する。   The present invention emulsifies and disperses a mixture of a polymer monomer for forming the outer shell of polymer fine particles and an organic solvent in an aqueous medium, suspension polymerizes the polymerizable monomer in the presence of a polymerization disclosure agent, Forming polymer fine particles encapsulating the solvent, evaporating the organic solvent encapsulated in the polymer fine particles and removing it through the outer shell of the fine particles, in the method for producing hollow polymer fine particles, vaporizing the organic solvent encapsulated in the polymer fine particles, There is provided a method for producing hollow polymer fine particles, wherein the step of removing and hollowing the fine particles is performed in a state where the polymer fine particles are dispersed in an aqueous medium.

本発明の中空ポリマー微粒子の製造方法において、前記重合性モノマーを懸濁重合させる際に、水媒体中に架橋剤、分散剤、分散助剤からなる群から選択される1種又は2種以上の添加剤を加えることが好ましい。   In the method for producing hollow polymer fine particles of the present invention, when the polymerizable monomer is subjected to suspension polymerization, one or more selected from the group consisting of a crosslinking agent, a dispersing agent, and a dispersing aid in an aqueous medium. It is preferable to add an additive.

本発明の中空ポリマー微粒子の製造方法において、前記ポリマー微粒子の内包する有機溶剤を気化、除去させる際に、前記ポリマー微粒子が分散している水分散液中の該ポリマー微粒子の体積濃度を20〜65%の範囲内とすることが好ましい。   In the method for producing hollow polymer fine particles of the present invention, when the organic solvent encapsulated in the polymer fine particles is vaporized and removed, the volume concentration of the polymer fine particles in the aqueous dispersion in which the polymer fine particles are dispersed is 20 to 65. % Is preferable.

本発明の中空ポリマー微粒子の製造方法において、前記ポリマー微粒子の内包する有機溶剤を気化、除去させる際に、前記ポリマー微粒子が分散している水分散液の液温を、水媒体と有機溶剤との共沸点よりも高い温度に設定した条件下で行うことが好ましい。   In the method for producing hollow polymer fine particles of the present invention, when the organic solvent encapsulated in the polymer fine particles is vaporized and removed, the liquid temperature of the aqueous dispersion in which the polymer fine particles are dispersed is changed between the aqueous medium and the organic solvent. It is preferable to carry out under conditions set at a temperature higher than the azeotropic point.

本発明の中空ポリマー微粒子の製造方法において、前記ポリマー微粒子の内包する有機溶剤を気化、除去して微粒子を中空化して得られた中空ポリマー微粒子の水分散液を、固形分濃度が12〜70質量%の範囲内となるよう水を分離することが好ましい。   In the method for producing hollow polymer fine particles of the present invention, an aqueous dispersion of hollow polymer fine particles obtained by vaporizing and removing the organic solvent encapsulated in the polymer fine particles to hollow out the fine particles has a solid content concentration of 12 to 70 mass. It is preferable to separate water so that it is within the range of%.

本発明の中空ポリマー微粒子の製造方法において、水媒体中で、ポリマー微粒子の外殻形成用重合性モノマーと、有機溶剤とを含む混合物を乳化分散させる際に、ポリマー微粒子の外殻形成用重合性モノマーと、有機溶剤とを含む混合物の体積濃度を20〜65%の範囲内として乳化分散させることが好ましい。   In the method for producing hollow polymer fine particles of the present invention, when the mixture containing a polymer monomer for forming the outer shell of polymer fine particles and an organic solvent is emulsified and dispersed in an aqueous medium, the polymerizability for forming the outer shell of the polymer fine particles is obtained. The volume concentration of the mixture containing the monomer and the organic solvent is preferably emulsified and dispersed within a range of 20 to 65%.

本発明の中空ポリマー微粒子の製造方法において、有機溶剤を内包するポリマー微粒子を形成した後に、該ポリマー微粒子の水分散液の体積濃度が20〜65%の範囲内となるように希釈液を加えて希釈することが好ましい。   In the method for producing hollow polymer fine particles of the present invention, after forming the polymer fine particles encapsulating the organic solvent, a diluent is added so that the volume concentration of the aqueous dispersion of the polymer fine particles is in the range of 20 to 65%. It is preferred to dilute.

本発明の中空ポリマー微粒子の製造方法において、前記希釈液として常温水を用い、該常温水を加えて前記水分散液を希釈した後に、液温を水媒体と有機溶剤との共沸点よりも高い温度に昇温してポリマー微粒子の内包する有機溶剤を気化、除去させることが好ましい。   In the method for producing hollow polymer fine particles of the present invention, room temperature water is used as the diluent, and after adding the room temperature water to dilute the aqueous dispersion, the liquid temperature is higher than the azeotropic point of the aqueous medium and the organic solvent. It is preferable to evaporate and remove the organic solvent encapsulated in the polymer fine particles by raising the temperature.

また、前記希釈液として水媒体と有機溶剤との共沸点よりも高い温度の温水を用い、前記水分散液を前記共沸点よりも高い温度に昇温してポリマー微粒子の内包する有機溶剤を気化、除去させる構成としてもよい。   Further, as the diluent, warm water having a temperature higher than the azeotropic point of the aqueous medium and the organic solvent is used, and the temperature of the aqueous dispersion is raised to a temperature higher than the azeotropic point to vaporize the organic solvent encapsulating the polymer fine particles. Alternatively, it may be configured to be removed.

また本発明は、前述した中空ポリマー微粒子の製造方法により得られた中空ポリマー微粒子を提供する。   The present invention also provides hollow polymer fine particles obtained by the above-described method for producing hollow polymer fine particles.

本発明の中空ポリマー微粒子の製造方法は、水媒体中で、ポリマー微粒子の外殻形成用重合性モノマーと、有機溶剤とを含む混合物を乳化分散させ、重合開示剤の存在下で前記重合性モノマーを懸濁重合させ、有機溶剤を内包するポリマー微粒子を形成し、当該ポリマー微粒子に内包する有機溶剤を気化させ該微粒子の外殻を通して除去し、中空ポリマー微粒子を製造する方法において、前記ポリマー微粒子の内包する有機溶剤を気化、除去して微粒子を中空化する工程を、ポリマー微粒子が水媒体中に分散している状態で行うことによって、ひしゃげた凹状微粒子の生成を減らし、非発泡性で高中空率の中空ポリマー微粒子の生成を増加させる効果がある。
また、本発明の中空ポリマー微粒子の製造方法によれば、ひしゃげた凹状微粒子の生成を減少させ、高中空率の湿潤中空ポリマー微粒子の生成を増加させ得ることに加えて、得られる湿潤中空ポリマー微粒子は、水への馴染み性及び分散性に優れるため塗料調製が容易であり、ハンドリング時には飛散しないため、取扱い作業員の健康を害する吸引の恐れがなく、環境に優しい効果がある。
The method for producing hollow polymer fine particles of the present invention comprises emulsifying and dispersing a mixture of a polymer fine particle-forming polymerizable monomer and an organic solvent in an aqueous medium, and the polymerizable monomer in the presence of a polymerization disclosure agent. In the method for producing hollow polymer fine particles, the polymer fine particles encapsulating the organic solvent are formed, polymer fine particles encapsulating the organic solvent are vaporized, and the organic solvent encapsulated in the polymer fine particles is vaporized and removed through the outer shell of the fine particles. The process of vaporizing and removing the encapsulated organic solvent to hollow out the fine particles is performed in a state where the polymer fine particles are dispersed in the aqueous medium, thereby reducing the formation of crunchy concave fine particles, non-foaming and highly hollow This has the effect of increasing the production of hollow polymer fine particles.
Further, according to the method for producing hollow polymer fine particles of the present invention, in addition to reducing the formation of crunchy concave fine particles and increasing the production of high hollow ratio wet hollow polymer fine particles, the obtained wet hollow polymer fine particles Since it is excellent in water compatibility and dispersibility, it is easy to prepare paints, and since it does not scatter during handling, there is no fear of aspiration that impairs the health of handling workers and has an environmentally friendly effect.

本発明によって得られる中空ポリマー微粒子は、高中空率のポリマー微粒子が多く含まれるため、これを例えば感熱記録体の中間層に断熱材として含有させると、記録時にサーマルヘッドから付与されるジュール熱を受け止め断熱効果が向上し、記録感度を飛躍的に向上させ得る効果がある。   Since the hollow polymer fine particles obtained by the present invention contain a large amount of polymer fine particles having a high hollow ratio, for example, if this is contained as a heat insulating material in the intermediate layer of the heat-sensitive recording material, Joule heat applied from the thermal head during recording can be reduced. The heat insulating effect is improved, and the recording sensitivity can be remarkably improved.

有機溶剤を内包するポリマー微粒子の水分散液から、当該ポリマー微粒子を分離し、これを乾燥すると同時に中空化させる従来法に基づき、比較例1で製造したポリマー微粒子群の電子顕微鏡拡大画像である。It is an electron microscope enlarged image of the polymer fine particle group manufactured in Comparative Example 1 based on a conventional method in which the polymer fine particles are separated from an aqueous dispersion of polymer fine particles encapsulating an organic solvent, and then dried and hollowed. 本発明(希釈液に常温水使用)に基づく、実施例1で製造した中空ポリマー微粒子群の電子顕微鏡拡大画像である。It is an electron microscope enlarged image of the hollow polymer fine particle group manufactured in Example 1 based on the present invention (use of room temperature water as a diluent). 本発明(希釈液に水媒体と当該有機溶剤の共沸点よりも高い温度に昇温し得る温水使用)に基づく、実施例2で製造した非膨張型中空ポリマー微粒子群の電子顕微鏡拡大画像である。It is an electron microscope enlarged image of the non-expandable hollow polymer fine particle group manufactured in Example 2 based on the present invention (use of warm water capable of raising the temperature to a temperature higher than the azeotropic point of the aqueous medium and the organic solvent in the diluent). .

本発明において用いられる、ポリマー微粒子の外殻形成用重合性モノマーとしては、ビニルピリジン、グリシジルアクリレート、グリシジルメタクリレート、(メタ)アクリル酸エステル、(メタ)アクリル酸、アクリロニトリル、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、イタコン酸、フマル酸、ジメチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、スチレンから選ばれ、中でも(メタ)アクリル酸、(メタ)アクリル酸エステル又は(メタ)アクリロニトリルは、内包させる有機溶剤よりも水への溶解性が高く内包溶剤の外周に重合膜の形成に優れることからより好適である。   As the polymerizable monomer for forming the outer shell of polymer fine particles used in the present invention, vinylpyridine, glycidyl acrylate, glycidyl methacrylate, (meth) acrylic acid ester, (meth) acrylic acid, acrylonitrile, acrylamide, methacrylamide, N- Selected from methylol acrylamide, N-methylol methacrylamide, itaconic acid, fumaric acid, dimethylaminoethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, styrene, among others (meth) Acrylic acid, (meth) acrylic acid ester or (meth) acrylonitrile is more soluble in water than the organic solvent to be encapsulated. It is more preferred because of excellent formation of polymerization film.

これらの重合性モノマーは、単独で使用してもよいし、例えば(メタ)アクリル酸と(メタ)アクリル酸エステル、(メタ)アクリル酸とアクリロニトリルを組合わせて使用してもよい。   These polymerizable monomers may be used alone or, for example, (meth) acrylic acid and (meth) acrylic acid ester, or (meth) acrylic acid and acrylonitrile may be used in combination.

前記重合性モノマーの単独又は組合わせ使用によって有機溶剤を内包するポリマー微粒子を形成するには、他に架橋剤、重合開始剤、分散剤、分散助剤の併用が好ましい。   In order to form polymer fine particles encapsulating an organic solvent by using the polymerizable monomers alone or in combination, a cross-linking agent, a polymerization initiator, a dispersant, and a dispersion aid are preferably used in combination.

本発明において用いられる、有機溶剤としては、ジエチルエーテル、ネオヘキサン、ペンタン、ヘキサン、へプタン、イソオクタン、オクタン、シクロヘキサン、メチルシクロヘキサンの何れかから選択することを特徴とし、重合性モノマーの重合中及び重合が終了した後は微粒子に内包された状態では気化せず、当該微粒子の分散液を60〜130℃に加温することによって気化し微粒子の重合膜(外殻)からスムーズに除去できるヘキサン、ヘプタン、オクタン等が好ましく使用し得る。   The organic solvent used in the present invention is selected from diethyl ether, neohexane, pentane, hexane, heptane, isooctane, octane, cyclohexane, methylcyclohexane, during polymerization of the polymerizable monomer and Hexane that does not evaporate in the state of being encapsulated in the fine particles after the polymerization is completed, and can be smoothly removed from the polymerized film (outer shell) of the fine particles by evaporating by heating the dispersion of the fine particles to 60 to 130 ° C., Heptane, octane and the like can be preferably used.

有機溶剤の使用量は、重合性モノマー100質量部に対し400質量部〜2000質量部、好ましくは800質量部〜1700質量部、更に好ましくは1200質量部〜1400質量部を使用する。因みに、400質量部未満では、形成される微粒子に於ける外殻の厚味が相対的に増大して中空率が低下し、高中空率のポリマー微粒子を形成することができない。一方、2000質量部以上を使用しても、超えた量に対応する技術的効果は期待し難く、経済的にも得策ではない。   The organic solvent is used in an amount of 400 to 2000 parts by mass, preferably 800 to 1700 parts by mass, and more preferably 1200 to 1400 parts by mass with respect to 100 parts by mass of the polymerizable monomer. Incidentally, when the amount is less than 400 parts by mass, the thickness of the outer shell of the fine particles to be formed is relatively increased, the hollowness is lowered, and polymer fine particles having a high hollowness cannot be formed. On the other hand, even if 2000 parts by mass or more are used, it is difficult to expect a technical effect corresponding to the excess amount, and this is not economical.

前記ポリマー微粒子の外殻形成用重合性モノマーと、前記有機溶媒との混合物は、水媒体中で乳化分散させる。
前記水媒体中には、前記重合性モノマーと有機溶媒の他に、各種の添加剤を加えることができる。該添加剤としては、架橋剤、分散剤、分散助剤からなる群から選択される1種又は2種以上の添加剤を加えることが好ましい。また、前記重合性モノマーの懸濁重合に際しては、前記重合性モノマーの重合開始剤が添加される。
The mixture of the polymerizable monomer for forming the outer shell of the polymer fine particles and the organic solvent is emulsified and dispersed in an aqueous medium.
Various additives can be added to the aqueous medium in addition to the polymerizable monomer and the organic solvent. As the additive, it is preferable to add one or more additives selected from the group consisting of a crosslinking agent, a dispersant, and a dispersion aid. In the suspension polymerization of the polymerizable monomer, a polymerization initiator for the polymerizable monomer is added.

前記架橋剤は、重合膜の硬さ、強度にも影響することから重合性モノマーとの関連において選択することになる。具体的にはジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメタクリル酸トリメチロールプロパン、1,3−ブチレンジ(メタ)アクリレート及びアリル(メタ)アクリレート等が挙げられるが、重合性モノマーに(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリル酸、アクリロニトリル又はこれらの組合わせを選択する場合、架橋剤としては、エチレングリコールジ(メタ)アクリレート又はトリ(メタ)アクリル酸トリメチロールプロパンが好適である。   The crosslinking agent is selected in relation to the polymerizable monomer because it affects the hardness and strength of the polymerized film. Specific examples include divinylbenzene, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane trimethacrylate, 1,3-butylene (meth) acrylate, and allyl (meth) acrylate. However, when (meth) acrylic acid, (meth) acrylic acid ester, (meth) acrylic acid, acrylonitrile or a combination thereof is selected as the polymerizable monomer, the crosslinking agent may be ethylene glycol di (meth) acrylate or (Meth) trimethylolpropane acrylate is preferred.

架橋剤の使用量は、使用する重合性モノマーとの関連で検討されるが、重合性モノマー100質量部に対し10質量部〜200質量部、好ましく40質量部〜150質量部、更に好ましくは60質量部〜100質量部で使用する。因みに、10質量部未満では硬く強度に優れた非膨張型中空性ポリマー微粒子を形成することが難しく、また200質量部以上を使用しても超えた量に対応する技術的効果は期待し難く、経済的にも得策ではない。   Although the usage-amount of a crosslinking agent is examined in relation to the polymerizable monomer to be used, it is 10 mass parts-200 mass parts with respect to 100 mass parts of polymerizable monomers, Preferably it is 40 mass parts-150 mass parts, More preferably, it is 60. Used in parts by mass to 100 parts by mass. Incidentally, if it is less than 10 parts by mass, it is difficult to form non-expandable hollow polymer fine particles that are hard and excellent in strength, and it is difficult to expect a technical effect corresponding to the amount exceeding 200 parts by mass, It is not economically advantageous.

分散剤は、有機溶剤を内包する微粒子の分散体を形成した後、微粒子の安定した分散性を維持する為に必要である。このような機能を有する物質であれば分散剤として使用可能であるが、本発明者等はリン系分散剤、水溶性高分子系分散剤、コロイド状シリカ等について効果を調べた結果、中でもコロイド状シリカが、それ自体プラス電荷を有し、微粒子の重合膜外周に付着して各微粒子を互いに反発させて凝集を阻止する優れた分散効果を発揮することを確認した。   The dispersant is necessary for maintaining a stable dispersibility of the fine particles after forming the fine particle dispersion containing the organic solvent. Any substance having such a function can be used as a dispersant, but the present inventors have investigated the effects of phosphorus dispersants, water-soluble polymer dispersants, colloidal silica, etc. It was confirmed that the silica-like silica itself has a positive charge and adheres to the outer periphery of the polymer film of the fine particles to exert an excellent dispersion effect that repels each other and prevents aggregation.

本発明において、コロイド状シリカが優れた分散効果を発揮する理由は、酸性条件で重合性モノマーを重合反応させることで、コロイド状シリカはそれ自体プラスの電荷を帯びる。プラス電荷を帯びたシリカは微粒子の重合膜に組み込まれて各微粒子がプラス電荷を持つ粒子となる。プラスに帯電した各微粒子は互い反発し合い凝集を防いでいることが考えられる。   In the present invention, the reason why colloidal silica exhibits an excellent dispersion effect is that the colloidal silica is positively charged by polymerizing a polymerizable monomer under acidic conditions. The positively charged silica is incorporated into a fine particle polymer film, and each fine particle becomes a positively charged particle. It can be considered that the positively charged fine particles repel each other and prevent aggregation.

分散剤の使用量は、分散剤がコロイド状シリカの場合、重合性モノマー100質量部に対し30質量部〜100質量部、好ましくは40質量部〜80質量部、更に好ましくは50質量部〜70質量部を使用する。因みに、30質量部未満では、分散効果が得られない。また、100質量部以上を使用しても、超えた量に対応する技術的効果は期待し難く、経済的にも得策ではない。   When the dispersant is colloidal silica, the amount of the dispersant used is 30 to 100 parts by weight, preferably 40 to 80 parts by weight, and more preferably 50 to 70 parts by weight with respect to 100 parts by weight of the polymerizable monomer. Use parts by mass. Incidentally, if it is less than 30 parts by mass, the dispersion effect cannot be obtained. Moreover, even if it uses 100 mass parts or more, it is hard to expect the technical effect corresponding to the excess amount, and it is not economically advantageous.

分散助剤は、分散剤と併用することによって、より安定した分散液の形成・維持に相乗効果を発揮するもので、例えばアジピン酸とジエタノールアミンの縮合物、アジピン酸と2−アミノ−2−メチル−1,3−プロパンジオールの縮合物、アジピン酸とモノエタノールアミンの縮合物等が好適である。   Dispersing aids exhibit a synergistic effect in the formation and maintenance of more stable dispersions when used in combination with dispersants, such as condensates of adipic acid and diethanolamine, adipic acid and 2-amino-2-methyl, for example. A condensate of -1,3-propanediol, a condensate of adipic acid and monoethanolamine, and the like are preferable.

分散助剤の使用量は、分散助剤がアジピン酸とジエタノールアミンの縮合物の場合は、重合性モノマー100質量部に対し1質量部〜10質量部、好ましくは2質量部〜7質量部、更に好ましくは3質量部〜5質量部を使用する。因みに、1質量部未満では、分散助剤の効果が得られない。また10質量部以上を使用しても、超えた量に対応する技術的効果は期待し難く、経済的にも得策ではない。   When the dispersion aid is a condensate of adipic acid and diethanolamine, the amount of the dispersion aid used is 1 to 10 parts by weight, preferably 2 to 7 parts by weight, more preferably 100 parts by weight of the polymerizable monomer. Preferably 3 to 5 parts by weight are used. Incidentally, if it is less than 1 part by mass, the effect of the dispersion aid cannot be obtained. Moreover, even if it uses 10 mass parts or more, it is hard to expect the technical effect corresponding to the excess amount, and it is not economically advantageous.

重合開始剤は、油溶性であり、かつ、ラジカルを発生させるものであれば使用可能であり、内包させる有機溶剤が気化しない温度範囲下で、重合性モノマーが最適な時間で重合反応を完了させるものが良く、例えば2,2’−アゾビスイソブチロニトリル、クメンヒドロペルオキシド、t−ブチルヒドロペルオキシド、ジクミルペルオキシド、ジ−t−ブチルヒドロペルオキシド、過酸化ベンゾイル、過酸化ラウロイル等が使用可能である。有機溶剤にn−ヘプタンを用いた場合は、60℃における半減期が10時間である2,2’−アゾビスイソブチロニトリルが良い。   The polymerization initiator can be used as long as it is oil-soluble and generates radicals, and the polymerizable monomer completes the polymerization reaction in an optimal time under a temperature range in which the organic solvent to be included does not vaporize. For example, 2,2′-azobisisobutyronitrile, cumene hydroperoxide, t-butyl hydroperoxide, dicumyl peroxide, di-t-butyl hydroperoxide, benzoyl peroxide, lauroyl peroxide, etc. can be used. It is. When n-heptane is used as the organic solvent, 2,2'-azobisisobutyronitrile having a half-life at 60 ° C of 10 hours is preferable.

本発明により中空ポリマー微粒子を得るには、前記各材料を含む混合物を乳化分散、懸濁重合させて有機溶剤を内包するポリマー微粒子を形成するが、各材料の配合割合は、どのような特徴の中空ポリマー微粒子を得るかとの関連において決まるもので特定されない。   In order to obtain hollow polymer fine particles according to the present invention, the mixture containing each material is emulsified, dispersed, and suspension-polymerized to form polymer fine particles that enclose an organic solvent. It depends on whether hollow polymer fine particles are obtained, and is not specified.

前記の乳化分散方法は、まずホモミキサーの様な乳化用攪拌機を使用する。懸濁重合は、乳化分散液を所定の温度に昇温させた状態で別の攪拌機によって攪拌を続行する間に進行する。   In the emulsification dispersion method, first, an emulsification stirrer such as a homomixer is used. Suspension polymerization proceeds while stirring is continued by another stirrer in a state where the temperature of the emulsified dispersion is raised to a predetermined temperature.

懸濁重合が進行し形成されたポリマー微粒子は、次いで微粒子に内包する有機溶剤を気化・除去・中空化させるが、本発明の特徴は、有機溶剤の気化・除去・中空化を、該ポリマー微粒子が分散している水分散液中で、且つ当該分散液の液温が水媒体と当該有機溶剤の共沸点よりも高い温度に設定されている条件下で行う(液中脱溶剤)処にある。   The polymer fine particles formed by suspension polymerization proceed to vaporize / remove / hollow the organic solvent contained in the fine particles. The feature of the present invention is to vaporize / remove / hollow the organic solvent. In an aqueous dispersion in which the liquid is dispersed and the temperature of the dispersion is set to a temperature higher than the azeotropic point of the aqueous medium and the organic solvent (desolvation in liquid). .

その際の該ポリマー微粒子が分散する水分散液の体積濃度は20〜65%、好ましくは30〜50%、更に好ましくは40〜45%の範囲内である。因みに、体積濃度が20%以下の場合は、低濃度に伴う製造効率の極端な低下、一方65%以上の場合は、分散液の粘度が高くなり、気化した有機溶剤が分散液中に除去され、系外への留出する際に泡立ちを起こし易くするため除去効率が悪くなり製造効率が極端に低下するからである。   The volume concentration of the aqueous dispersion in which the polymer fine particles are dispersed is 20 to 65%, preferably 30 to 50%, more preferably 40 to 45%. Incidentally, when the volume concentration is 20% or less, the production efficiency is drastically reduced due to the low concentration. On the other hand, when the volume concentration is 65% or more, the viscosity of the dispersion becomes high and the vaporized organic solvent is removed in the dispersion. This is because the removal efficiency is deteriorated and the production efficiency is extremely lowered to facilitate foaming when distilling out of the system.

体積濃度が20〜65%のポリマー微粒子水分散液とするには、水媒体、ポリマー微粒子形成用重合性モノマー、架橋剤、有機溶剤、分散剤及び分散助剤からなる混合物の体積濃度が20〜65%となる配合条件下で乳化分散する方法と、ポリマー微粒子を形成した後に、当該ポリマー微粒子が分散する水分散液の体積濃度が20〜65%になるように希釈液を加えて調節する方法とがある。何れの方法を採用することも可能であるが、混合物の乳化分散効率を考慮に入れると後者の方法が有利となる。   In order to obtain an aqueous dispersion of polymer fine particles having a volume concentration of 20 to 65%, the volume concentration of a mixture comprising an aqueous medium, a polymerizable monomer for forming fine polymer particles, a crosslinking agent, an organic solvent, a dispersant and a dispersion aid is 20 to 20%. A method of emulsifying and dispersing under a blending condition of 65%, and a method of adjusting by adding a diluent so that the volume concentration of an aqueous dispersion in which the polymer fine particles are dispersed is 20 to 65% after the polymer fine particles are formed. There is. Any method can be adopted, but the latter method is advantageous when the emulsification and dispersion efficiency of the mixture is taken into consideration.

前記の通りポリマー微粒子を形成した後に、希釈液を加える方法の場合、その希釈液は、常温水と、温水が対象となるが、中空率の低い凹状微粒子の生成を減少させ、中空率の高い微粒子の生成を増加させには温水の使用がより効果的である。   In the case of the method of adding a diluent after forming polymer fine particles as described above, the diluent is for normal temperature water and hot water, but reduces the formation of concave fine particles with a low hollow ratio and has a high hollow ratio. The use of warm water is more effective for increasing the production of fine particles.

因みに、有機溶剤を内包する微粒子を懸濁重合させる場合の温度は、内包させる有機溶剤を基準に設定される。例えば当該有機溶剤にn−ヘプタンを使用する場合は79℃以下に設定することになる。   Incidentally, the temperature for suspension polymerization of the fine particles encapsulating the organic solvent is set based on the organic solvent to be encapsulated. For example, when n-heptane is used as the organic solvent, the temperature is set to 79 ° C. or lower.

ここに希釈液として常温水を使用すると、架橋が完了の域に達しない状態の外殻膜は硬さ及び強度が充分でないため急冷で収縮する。そして内包する有機溶剤を気化・除去・中空化させることによって微粒子の内部圧は更に低下する。これらの要因が重なることにより外殻は内部に引き込まれ微粒子はひしゃげた凹状微粒子が出来易い状態となる。   When room temperature water is used as the diluent here, the outer shell film in a state where the crosslinking does not reach the completion range does not have sufficient hardness and strength, and thus shrinks by rapid cooling. The internal pressure of the fine particles is further reduced by evaporating, removing and hollowing out the organic solvent contained therein. When these factors overlap, the outer shell is drawn into the interior, and the fine particles are likely to be crushed concave fine particles.

しかし、中空率の高い微粒子の生成を増やすという本発明の課題に関しては、ポリマー微粒子に内包される有機溶剤の気化・除去・中空化を、ポリマー微粒子が分散している水分散液中で行うことにより、その効果は、従来法に基づき製造した中空ポリマー微粒子(図1)に比べ、改良されることは(図2)から明らかである。   However, regarding the problem of the present invention to increase the generation of fine particles having a high hollow ratio, the organic solvent encapsulated in the polymer fine particles is vaporized, removed, and hollowed in an aqueous dispersion in which the polymer fine particles are dispersed. Therefore, it is clear from (FIG. 2) that the effect is improved as compared with the hollow polymer fine particles (FIG. 1) produced based on the conventional method.

一方、希釈液として当該懸濁重合液の液温が水媒体と当該有機溶剤の共沸点よりも高い温度に設定し得る温水を使用する場合は、微粒子を形成する重合膜(外殻)の架橋は連続的に進行し、その硬度、強度がより向上し、微粒子の内部圧が低下して外殻が内部に引き込まれようとする力に耐え得るものとなり、ひしゃげた凹状微粒子は減り、高中空率の微粒子がより増えるのである。これは、(図3)を、従来法に基づき製造した中空ポリマー微粒子(図1)及び常温水を使用して製造した中空ポリマー微粒子(図2)と比べても明らかである。   On the other hand, in the case of using warm water in which the liquid temperature of the suspension polymerization solution can be set to a temperature higher than the azeotropic point of the aqueous medium and the organic solvent, the polymer film (outer shell) that forms fine particles is crosslinked. Progresses continuously, its hardness and strength are further improved, the internal pressure of the fine particles is reduced and it can withstand the force of the outer shell being pulled inside, the number of lazy concave fine particles is reduced, and the high hollow The rate of fine particles increases. This is also evident when comparing (FIG. 3) with hollow polymer particles (FIG. 1) produced according to the conventional method and with hollow polymer particles (FIG. 2) produced using room temperature water.

この様に、従来法に基づき製造したポリマー微粒子群は、ほぼ全てがひしゃげた凹状微粒子化しており、中空率の高い球状微粒子は殆ど見られない。一方、本発明に基づき製造した中空ポリマー微粒子群(図2)、(図3)は、中空率の高い微粒子が多く生成されていることが(図1)と比較して見ると明らかである。   As described above, almost all the polymer fine particle groups produced based on the conventional method are formed into concave fine particles, and spherical fine particles having a high hollow ratio are hardly seen. On the other hand, it is clear that the hollow polymer fine particle group (FIG. 2) and (FIG. 3) produced based on the present invention produces a large amount of fine particles having a high hollow ratio as compared with FIG.

因みに、前記の効果が得られる理由について本発明者等は以下の様に考える。本発明による中空ポリマー微粒子は、ポリマー微粒子に内包される有機溶剤の気化・除去・中空化を、当該微粒子が分散する水分散液中で体積濃度が20〜65%、当該分散液の液温が水媒体と当該有機溶剤の共沸点よりも高い温度に設定された条件下で行うことと密接に関係している。   Incidentally, the present inventors consider the reason why the above effect is obtained as follows. The hollow polymer fine particle according to the present invention has a volume concentration of 20 to 65% in an aqueous dispersion in which the fine particle is dispersed, and the liquid temperature of the dispersion is low. This is closely related to performing under conditions set at a temperature higher than the azeotropic point of the aqueous medium and the organic solvent.

有機溶剤の気化・除去・中空化を、前記条件で行う場合、微粒子に内包される有機溶剤は気化して微粒子の外殻を通じて外部に抜け出るが、その出方は、外部を覆う水分散液の水圧で抑制され緩慢である。そのため微粒子は気化した有機溶剤の滞留により内圧が上昇し、その圧力は微粒子の内壁にかかる。この時は、気化した有機溶剤が抜け出ることに伴う内部の減圧よりも、気化した有機溶剤の滞留による内部の圧力上昇が勝ることとなる。
そして経時的に気化した有機溶剤が抜け出ることによって内圧は次第に減少する。しかし、その間、微粒子の外殻は架橋も進み、内部の減圧に耐え球状を維持し得る硬度・強度の微粒子が増えるものと考える。
When the organic solvent is vaporized / removed / hollowed under the above conditions, the organic solvent contained in the fine particles is vaporized and escapes to the outside through the outer shell of the fine particles. Slow with water pressure. Therefore, the internal pressure of the fine particles increases due to the residence of the vaporized organic solvent, and the pressure is applied to the inner walls of the fine particles. At this time, the internal pressure increase due to the residence of the vaporized organic solvent is superior to the internal pressure reduction accompanying the escape of the vaporized organic solvent.
The internal pressure gradually decreases as the organic solvent evaporated with time escapes. In the meantime, however, the outer shell of the fine particles also undergoes cross-linking, and it is thought that the number of fine particles of hardness and strength that can withstand the internal decompression and maintain a spherical shape increases.

一方、従来法は、有機溶剤を内包するポリマー微粒子を水分散液から一旦取り出し、これを加熱乾燥し同時に中空化する。この時、気化した有機溶剤が微粒子の外殻を通じて外部に抜け出る際に抑制される要因がない。そのため微粒子内の有機溶剤は気化しながら順次抜け出て内圧は低下し、外殻は内部に引き込められ、その結果、微粒子の殆どがひしゃげた凹状微粒子となってしまうものと考える。   On the other hand, in the conventional method, the polymer fine particles encapsulating the organic solvent are once taken out from the aqueous dispersion, dried by heating and simultaneously hollowed. At this time, there is no factor that is suppressed when the vaporized organic solvent escapes to the outside through the outer shell of the fine particles. Therefore, it is considered that the organic solvent in the fine particles gradually escapes while vaporizing, the internal pressure is reduced, and the outer shell is drawn into the inside, and as a result, most of the fine particles become cramped concave fine particles.

次いで、ポリマー微粒子に内包する有機溶剤を気化・除去・中空化させる際の分散液の液温は、水媒体と当該有機溶剤の共沸点よりも高い温度に設定されることが重要である。具体的には使用する有機溶剤の種類によって決まることになる。   Next, it is important that the liquid temperature of the dispersion when the organic solvent encapsulated in the polymer fine particles is vaporized / removed / hollowed is set to a temperature higher than the azeotropic point of the aqueous medium and the organic solvent. Specifically, it depends on the type of organic solvent used.

有機溶剤に例えば、オクタンを使用した場合は89.6℃以上、ヘプタンを使用した場合は79.2℃以上、シクロヘキサンを使用した場合は69.5℃以上、ヘキサンを使用した場合は61.6℃以上に分散体の液温を設定することになる。   For example, when octane is used as the organic solvent, 89.6 ° C. or higher, when heptane is used, 79.2 ° C. or higher, when cyclohexane is used, 69.5 ° C. or higher, and when hexane is used, 61.6 ° C. or higher. The liquid temperature of the dispersion is set to be equal to or higher than ° C.

有機溶剤を内包するポリマー微粒子分散液の液温を前記のように設定することにより、ポリマー微粒子に内包されている有機溶剤は気化し、ポリマー微粒子の外殻から外部に抜け出てポリマー微粒子は中空化する。   By setting the liquid temperature of the polymer fine particle dispersion containing the organic solvent as described above, the organic solvent contained in the polymer fine particles is vaporized and escapes from the outer shell of the polymer fine particles to make the polymer fine particles hollow. To do.

得られた高中空率の球状粒子が増加した中空ポリマー微粒子分散液は、用途に適合する形態に整えることが出来る。例えば、水分を分離した後に乾燥して粉末中空ポリマー微粒子とすることも出来るし、或いは湿潤中空ポリマー微粒子とすることも可能である。例えば、湿潤中空ポリマー微粒子の形態にすれば、取扱い時に外部へ飛散しない環境に優しく、水への馴染み性及び分散性に優れることから、塗料調製が容易となる。因みに、湿潤中空ポリマー微粒子とするには、固形分濃度が12〜70%、好ましくは20〜50%、更に好ましくは30〜40%になるように水を分離除去すればよい。因みに12%以下だと水分散状態であり湿潤状態とはならない。一方、70%以上にすると中空ポリマー微粒子は飛散し易くなり、取扱い作業員の健康を害する吸引の恐れがあって取り扱い難くなる。   The obtained hollow polymer fine particle dispersion in which spherical particles having a high hollow ratio are increased can be arranged in a form suitable for the application. For example, after separating water, it can be dried to form powdered hollow polymer particles, or wet hollow polymer particles. For example, in the form of wet hollow polymer fine particles, it is easy to prepare a coating because it is gentle to the environment that does not scatter to the outside during handling, and is excellent in water compatibility and dispersibility. Incidentally, in order to obtain wet hollow polymer fine particles, water may be separated and removed so that the solid content concentration is 12 to 70%, preferably 20 to 50%, more preferably 30 to 40%. Incidentally, if it is 12% or less, it is in a water dispersed state and does not become a wet state. On the other hand, if it is 70% or more, the hollow polymer fine particles are likely to be scattered, and there is a fear of sucking that is harmful to the health of the handling worker, which makes it difficult to handle.

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these Examples.

[実施例1]
脱イオン水201.2gを入れた1000mlの4口フラスコに、分散助剤としてアジピン酸とジエタノールアミンの縮合物0.6gを溶解し、分散剤としてコロイダルシリカ8.5gを加えた。この水溶液を3%希硫酸水溶液4.5gを用いてpH3.0に調整して水相とした。
[Example 1]
In a 1000 ml four-necked flask containing 201.2 g of deionized water, 0.6 g of a condensate of adipic acid and diethanolamine was dissolved as a dispersing aid, and 8.5 g of colloidal silica was added as a dispersing agent. This aqueous solution was adjusted to pH 3.0 with 4.5 g of 3% dilute sulfuric acid aqueous solution to obtain an aqueous phase.

重合性モノマーとしてメタアクリル酸メチル11.2g、アクリロニトリル1.3g、架橋剤としてトリメタクリル酸トリメチロールプロパン12.5g、有機溶剤としてn−ヘプタン150.0gを混合し油相とした。   An oil phase was prepared by mixing 11.2 g of methyl methacrylate as a polymerizable monomer, 1.3 g of acrylonitrile, 12.5 g of trimethylolpropane trimethacrylate as a crosslinking agent, and 150.0 g of n-heptane as an organic solvent.

水相と油相を混合し、T.KオートホモミキサーM型(特殊機化工業(株)製)で回転数12000rpmにて6分間攪拌し、粒子径を1〜10μmに調整した後、重合開始剤として2,2’−アゾビスイソブチロニトリル0.1gを加え、窒素置換し、反応温度78℃、回転数180rpmで攪拌しながら4時間かけて重合させた。   A water phase and an oil phase are mixed. The mixture was stirred for 6 minutes at 12000 rpm with a K auto homomixer M type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and the particle size was adjusted to 1 to 10 μm, and then 2,2′-azobisiso as a polymerization initiator. 0.1 g of butyronitrile was added, the atmosphere was replaced with nitrogen, and polymerization was performed for 4 hours while stirring at a reaction temperature of 78 ° C. and a rotation speed of 180 rpm.

重合を終えた水系重合分散体に常温水385.0gを加え、攪拌しながら分散体を常圧条件下で79〜100℃まで加温し8時間かけてポリマー微粒子に内包させたn−ヘプタンの気化・除去を行いポリマー微粒子の中空化を行った(液中脱溶剤)。この時、常温水を加えることで分散体は重合反応を行った際の温度78℃から40℃まで一度冷却された。   To the aqueous polymer dispersion after the polymerization, 385.0 g of room temperature water was added, and the dispersion was heated to 79-100 ° C. under normal pressure while stirring and n-heptane encapsulated in polymer fine particles over 8 hours. Vaporization and removal were performed to hollow out the polymer fine particles (desolvation in liquid). At this time, the dispersion was cooled once from 78 ° C. to 40 ° C. when the polymerization reaction was performed by adding room temperature water.

ポリマー微粒子から除去したn−ヘプタンの量は141gで、仕込み量とほぼ同等量のn−ヘプタンがポリマー微粒子内で気化し外殻から除去されたことが確認された。   The amount of n-heptane removed from the polymer fine particles was 141 g, and it was confirmed that n-heptane in an amount almost equal to the charged amount was vaporized in the polymer fine particles and removed from the outer shell.

n−ヘプタンを気化・除去した後、当該水性系重合分散体を吸引濾過し、固形分18.7%の湿潤状態のポリマー微粒子155.3gを得た。得られたポリマー微粒子の粒子径は4.0μmであった。(粒子径は、レーザー回析式粒度分布測定器「SALD−2000(島津製作所(株)製)」により測定し、体積粒度分布の累積50%となる粒子径をいう。)   After evaporating and removing n-heptane, the aqueous polymer dispersion was subjected to suction filtration to obtain 155.3 g of wet polymer fine particles having a solid content of 18.7%. The obtained polymer fine particles had a particle size of 4.0 μm. (The particle size is a particle size measured by a laser diffraction particle size distribution measuring device “SALD-2000 (manufactured by Shimadzu Corporation)” and means a particle size of 50% of the cumulative volume particle size distribution.)

得られた非膨張型である中空ポリマー微粒子を電子顕微鏡で撮影した拡大画像を図2に示す。この画像から、得られたポリマー微粒子は、従来法に基づき製造した中空ポリマー微粒子(図1)に比べても、ひしゃげた凹状微粒子は減り、高中空率の微粒子が増えていることが確認された。   FIG. 2 shows an enlarged image of the obtained non-expandable hollow polymer fine particles taken with an electron microscope. From this image, it was confirmed that the obtained polymer fine particles had fewer hollow fine particles and higher high hollow rate fine particles than the hollow polymer fine particles produced according to the conventional method (FIG. 1). .

得られた非膨張型中空ポリマー微粒子は、湿潤状態であるため、水への馴染み性及び分散性が良く塗料調製が容易で、ハンドリング時にも飛散しない、環境に優しい微粒子であった。   Since the obtained non-expandable hollow polymer fine particles were in a wet state, they were environmentally friendly fine particles having good water compatibility and dispersibility, easy preparation of a paint, and no scattering during handling.

実施例1で得られた微粒子の目視形状は表1に、この微粒子を断熱材として使用したときの感熱記録体の記録感度を表2に記載した。   The visual shape of the fine particles obtained in Example 1 is shown in Table 1, and the recording sensitivity of the thermosensitive recording material when the fine particles are used as a heat insulating material is shown in Table 2.

[実施例2]
n−ヘプタンを内包し重合を終えた微粒子分散体の希釈液として、n−ヘプタンと水の共沸点である79℃以上の温水(85℃)385.0gを加えた以外は、実施例1と同様にして湿潤状態の高中空率のポリマー微粒子を製造した。
[Example 2]
Example 1 except that 385.0 g of warm water (85 ° C.) of 79 ° C. or higher, which is the azeotropic point of n-heptane and water, was added as a dilute dispersion of the fine particle dispersion encapsulating n-heptane and finishing polymerization. Similarly, polymer particles having a high hollow ratio in a wet state were produced.

重合反応から有機溶剤の気化・除去まで分散体の温度を一度も冷却させない状態を維持し、実施例1と同様にして微粒子に内包させたn−ヘプタンの気化・除去を行い中空化した湿潤状態の微粒子を得た。   Maintaining a state in which the temperature of the dispersion is never cooled from the polymerization reaction to vaporization / removal of the organic solvent, and in a wet state in which n-heptane encapsulated in the fine particles is vaporized / removed in the same manner as in Example 1. Fine particles were obtained.

得られたポリマー微粒子を電子顕微鏡で撮影した拡大画像を図3に示す。この図3から、得られたポリマー微粒子は、従来法に基づき製造した中空ポリマー微粒子(図1)に比べても、また希釈液に常温水を使用して製造した実施例1による中空ポリマー微粒子(図2)に比べても、ひしゃげた凹状微粒子は減り、高中空率の中空ポリマー微粒子が更に増えていることが確認された。   An enlarged image of the obtained polymer fine particles taken with an electron microscope is shown in FIG. From FIG. 3, the obtained polymer fine particles were compared with the hollow polymer fine particles produced according to the conventional method (FIG. 1), and the hollow polymer fine particles according to Example 1 produced using room temperature water as the diluent (FIG. 1). Compared to FIG. 2), it was confirmed that the number of hollow concave fine particles decreased and the hollow polymer fine particles having a high hollow ratio further increased.

また、得られた粒子をエポキシ樹脂で包埋して、電子顕微鏡で断面図を観察すると粒子の形状は従来法で得られるひしゃげた凹状微粒子と比べて球状微粒子が多く生成されており、平均粒子径が4.0μmで外殻膜の厚さが0.05μm程度であり、中空率が90%を超える高い中空率を有していた。得られた中空ポリマー微粒子の嵩比重は0.1g/mlであった。   In addition, when the obtained particles are embedded with an epoxy resin, and a cross-sectional view is observed with an electron microscope, the shape of the particles is larger than that of the lazy concave fine particles obtained by the conventional method, and the average particle size The diameter was 4.0 μm, the thickness of the outer shell membrane was about 0.05 μm, and the hollow rate was high, exceeding 90%. The resulting hollow polymer fine particles had a bulk specific gravity of 0.1 g / ml.

この効果は、温水を使用することにより、分散体の温度を重合反応から有機溶剤の気化・除去・中空化までに一度も冷却させない状態を維持することができるため、収縮を与えずに微粒子を形成する重合膜の架橋は連続的に進行して該ポリマー微粒子の硬度、強度が向上することに起因するものと考える。   This effect is achieved by using warm water to maintain the dispersion temperature in a state where it is never cooled from the polymerization reaction to the vaporization / removal / hollowization of the organic solvent. It is considered that the cross-linking of the formed polymer film proceeds continuously and the hardness and strength of the polymer fine particles are improved.

実施例2で得られた微粒子の目視形状は表1に、この微粒子を断熱材として使用した感熱記録体の記録感度を表2に記載した。   The visual shape of the fine particles obtained in Example 2 is shown in Table 1, and the recording sensitivity of the thermal recording material using the fine particles as a heat insulating material is shown in Table 2.

[実施例3]
水相を調製する際に使用する脱イオン水を586.2gとし、乳化分散、懸濁重合させた後は希釈液を使用しない以外は実施例2と同様にして微粒子に内包させたn−ヘプタンの気化・除去を行い中空化した湿潤状態の微粒子を得た。
[Example 3]
N-heptane encapsulated in microparticles in the same manner as in Example 2 except that 586.2 g of deionized water used for preparing the aqueous phase was prepared, and after emulsion dispersion and suspension polymerization, no diluent was used. Vaporization and removal were performed to obtain hollow fine particles.

得られたポリマー微粒子は、ひしゃげた凹状微粒子は減り、高中空率の中空ポリマー微粒子が更に増えていることが確認され、その程度は実施例2とほぼ同程度であった。   It was confirmed that the obtained fine polymer particles were reduced in the number of hollow concave fine particles and the hollow polymer fine particles having a high hollow ratio were further increased, and the degree thereof was almost the same as in Example 2.

実施例3で得られた微粒子の目視形状は表1に、この微粒子を断熱材として使用した感熱記録体の記録感度を表2に記載した。   The visual shape of the fine particles obtained in Example 3 is shown in Table 1, and the recording sensitivity of the thermal recording material using the fine particles as a heat insulating material is shown in Table 2.

[比較例1]
実施例1と同じ水相と油相を混合し、T.KオートホモミキサーM型(特殊機化工業(株)製)で回転数12000rpmにて6分間攪拌し、粒子径を1〜10μmに調整した後、重合開始剤として2,2’−アゾビスイソブチロニトリル0.1gを加え、窒素置換し、反応温度78℃、回転数180rpmで攪拌しながら4時間かけて重合させた。
[Comparative Example 1]
The same water phase and oil phase as in Example 1 were mixed. The mixture was stirred for 6 minutes at 12000 rpm with a K auto homomixer M type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and the particle size was adjusted to 1 to 10 μm. 0.1 g of butyronitrile was added, the atmosphere was replaced with nitrogen, and polymerization was performed for 4 hours while stirring at a reaction temperature of 78 ° C. and a rotation speed of 180 rpm.

重合を終えたn−ヘプタンを含むポリマー微粒子水分散体から、当該ポリマー微粒子を吸引濾過にて固液分離を行い、n−ヘプタンを含むポリマー微粒子を得た。   From the polymer fine particle aqueous dispersion containing n-heptane after polymerization, the polymer fine particles were subjected to solid-liquid separation by suction filtration to obtain polymer fine particles containing n-heptane.

このポリマー微粒子を常圧条件下、40℃で24時間かけて微粒子に内包されているn−ヘプタンを気化・除去して乾燥状態のポリマー微粒子を得た。   N-heptane contained in the fine particles of the polymer was vaporized and removed under normal pressure at 40 ° C. for 24 hours to obtain dry polymer fine particles.

得られたポリマー微粒子を電子顕微鏡で撮影した拡大画像を図1に示す。この画像からも明らかなように、このポリマー微粒子群は、ほぼ全ての粒子がひしゃげた凹状微粒子であった。   An enlarged image of the obtained polymer fine particles taken with an electron microscope is shown in FIG. As is apparent from this image, this polymer fine particle group was concave fine particles in which almost all the particles were crushed.

比較例1で得られた微粒子の目視形状は表1に、この微粒子を断熱材として使用した感熱記録体の記録感度を2に記載した。   The visual shape of the fine particles obtained in Comparative Example 1 is shown in Table 1, and the recording sensitivity of the thermal recording material using the fine particles as a heat insulating material is shown in 2.

[比較例2]
水相を調製する際に使用する脱イオン水を72.6gとした以外は、実施例2と同様にして乳化分散、懸濁重合させ、体積濃度70%のn−ヘプタン包含ポリマー微粒子の分散体を得た。
[Comparative Example 2]
A dispersion of fine particles of n-heptane-containing polymer having a volume concentration of 70% by emulsion dispersion and suspension polymerization in the same manner as in Example 2 except that 72.6 g of deionized water used for preparing the aqueous phase was used. Got.

この分散体を攪拌しながら常圧条件下で79〜100℃まで加温しポリマー微粒子に内包させたn−ヘプタンを気化・除去しようと試みたが、分散助剤の濃度が高くなり、界面活性剤としての能力が上がり、内包されたn−ヘプタンがポリマー微粒子の外殻から分散液中に除去され、系外に留出する際にフラスコ内が激しく泡立ち、n−ヘプタンの気化・除去が困難であった。   Attempts were made to vaporize and remove n-heptane encapsulated in polymer fine particles by heating to 79-100 ° C. under atmospheric pressure while stirring this dispersion. However, the concentration of the dispersion aid increased and the surface activity was increased. The ability as an agent is increased, and the encapsulated n-heptane is removed from the outer shell of the polymer fine particles into the dispersion, and when distilling out of the system, the inside of the flask is bubbling vigorously, making it difficult to vaporize and remove n-heptane. Met.

[比較例3]
実施例1と同様にして、n−ヘプタン包含ポリマー微粒子を得た。n−ヘプタンと水の共沸点である79℃以上の温水(85℃)385.0gを加え、この分散体を300mmHgの減圧条件下でポリマー微粒子に内包させたn−ヘプタンを気化・除去させようと試みたが、フラスコ内の温度が79℃以上に上がらず、分散体中の水が気化・除去されるのみでn−ヘプタンの気化・除去は困難であった。
この理由は、分散体を300mmHgの減圧条件下においたことにより、水の蒸気圧が下がり、フラスコ内の温度が79℃よりも下廻ったためである。本組成で形成された微粒子において、n−ヘプタンをポリマー微粒子の外殻から除去させるためにはn−ヘプタンを気化させる必要がある。このとき、n−ヘプタンはポリマー微粒子に内包されているため、減圧によって蒸気圧の低下を受けにくくなる。減圧条件でもn−ヘプタンの沸点近くまでフラスコ内を加温しなければ気化・除去することができないため、減圧条件で水の蒸気圧を下げ、フラスコ内の温度を内包させたn−ヘプタンの沸点よりも著しく下げたためn−ヘプタンの気化・除去が困難であったと考えられる。
[Comparative Example 3]
In the same manner as in Example 1, n-heptane-containing polymer fine particles were obtained. Add 385.0 g of warm water (85 ° C.) of 79 ° C. or higher, which is the azeotropic point of n-heptane and water, and vaporize and remove n-heptane encapsulated in polymer fine particles under a reduced pressure of 300 mmHg. However, the temperature in the flask did not rise to 79 ° C. or higher, and only the water in the dispersion was vaporized and removed, making it difficult to vaporize and remove n-heptane.
The reason for this is that the vapor pressure of water was lowered and the temperature in the flask was lower than 79 ° C. by placing the dispersion under a reduced pressure condition of 300 mmHg. In the fine particles formed with this composition, it is necessary to vaporize n-heptane in order to remove n-heptane from the outer shell of the fine polymer particles. At this time, since n-heptane is encapsulated in the polymer fine particles, it is difficult for the vapor pressure to decrease due to the reduced pressure. Even under reduced pressure conditions, the boiling point of n-heptane containing the temperature inside the flask is reduced by lowering the vapor pressure of water under reduced pressure conditions because it cannot be vaporized and removed unless the inside of the flask is heated to near the boiling point of n-heptane. It is thought that it was difficult to vaporize and remove n-heptane.

[中空率と断熱効果]
実施例1〜3で得た湿潤微粒子、比較例1で得た乾燥微粒子及びシード重合法で得た中空微粒子をそれぞれ感熱記録体の中間層に断熱材として混ぜ、感熱記録体の発色感度を調べた。
[Hollow rate and thermal insulation effect]
The wet microparticles obtained in Examples 1 to 3, the dry microparticles obtained in Comparative Example 1 and the hollow microparticles obtained by the seed polymerization method were each mixed as a heat insulating material in the intermediate layer of the thermal recording body, and the color development sensitivity of the thermal recording body was examined. It was.

感熱記録体の構成は、下記の配合で下塗り層用塗料及び感熱記録層用の塗料を調製した。
(下塗り層用塗料の調製)
実施例1〜3で得た中空ポリマー微粒子、比較例1で得られた中空ポリマー微粒子及び
市販のシード重合法で合成された中空微粒子(ローム&ハース(株)製「商品名:ローペイク SN−1055:粒子径1μm、中空率約50%)のそれぞれについて、下記の配合組成で下塗り層用塗料を調製した。
The composition of the thermal recording material was prepared by preparing the coating composition for the undercoat layer and the coating composition for the thermal recording layer with the following composition.
(Preparation of paint for undercoat layer)
Hollow polymer fine particles obtained in Examples 1 to 3, hollow polymer fine particles obtained in Comparative Example 1, and hollow fine particles synthesized by a commercially available seed polymerization method (Rohm & Haas Co., Ltd., “trade name: Ropaque SN-1055 : For each of the particle diameter 1 μm and the hollow ratio of about 50%, an undercoat paint was prepared with the following composition.

(組成) (質量部)
中空微粒子 100
ゴーセランL−3266(日本合成(株)製) 5
ラテックスL−1571(旭化成(株)製) 7
王子エースC(王子コーンスターチ(株)製) 5
脱イオン水 800
(Composition) (Mass)
Hollow fine particles 100
Gocelan L-3266 (Nihon Gosei Co., Ltd.) 5
Latex L-1571 (manufactured by Asahi Kasei Corporation) 7
Oji Ace C (Oji Cornstarch Co., Ltd.) 5
Deionized water 800

(記録層用塗料の調製)
記録層用塗料として下記の配合組成で塗料を調製した。
(Preparation of recording layer paint)
As a recording layer coating material, a coating material having the following composition was prepared.

(組成) (質量部)
炭酸カルシウム 50
ステアリン酸亜鉛 10
3−ブチルアミノ−6−メチル−N−アニリノフルオラン 10
4,4’−ジフェニルスルホン 20
王子エースC(王子コーンスターチ(株)製) 10
PVA−105 5
脱イオン水 395
(Composition) (Mass)
Calcium carbonate 50
Zinc stearate 10
3-butylamino-6-methyl-N-anilinofluorane 10
4,4′-diphenylsulfone 20
Oji Ace C (Oji Cornstarch Co., Ltd.) 10
PVA-105 5
Deionized water 395

(感熱記録体の作製)
坪量64g/mの上質の中性紙片面に、各下塗り層用塗料を乾燥重量で4g/m、更に当該下塗り層上に記録層用塗料を乾燥重量で3g/mとなるように塗布・乾燥して感熱記録体を得た。なお、各層を形成した後、スーパーカレンダー処理した。
(Preparation of thermal recording material)
On one side of high-quality neutral paper with a basis weight of 64 g / m 2, the coating for the undercoat layer is 4 g / m 2 by dry weight, and the coating for the recording layer on the undercoat layer is 3 g / m 2 by dry weight. And dried to obtain a heat-sensitive recording material. In addition, after forming each layer, the super calendar process was carried out.

(発色性試験)
得られた各感熱記録体について、以下のような発色性試験を行った。
大倉電気(株)製の商品名「TH−PMD(感熱ヘッド1653Ω)」を用い、24V、 0.6msec、0.8msec及び1.6msecで感熱記録体を発色させ、記録濃度をマクベス濃度計「RD−914」で測定した。その結果を表2に示す。
(Color development test)
The following color developability test was performed on each of the obtained thermal recording materials.
Using the product name “TH-PMD (thermal head 1653Ω)” manufactured by Okura Electric Co., Ltd., the thermal recording medium was colored at 24 V, 0.6 msec, 0.8 msec and 1.6 msec, and the recording density was set to Macbeth densitometer “ RD-914 ". The results are shown in Table 2.

(評価)
表2からも、「ローペイク」のようなシード重合法によって作製された中空微粒子と比較して本発明によって得られる非発泡性の中空ポリマー微粒子は、断熱効果が高く、感熱記録体の発色感度の向上に効果的に寄与すること、また非発泡性の中空ポリマー微粒子においても、ひしゃげた凹状微粒子が減り、高中空率の中空ポリマー微粒子が増えるに伴い断熱効果が高くなり、感熱記録体の発色感度の向上により効果的に寄与することがデーターから明らかである。
(Evaluation)
Table 2 also shows that the non-foaming hollow polymer fine particles obtained by the present invention have a higher heat insulating effect than the hollow fine particles produced by the seed polymerization method such as “Ropeke”, and the color development sensitivity of the heat-sensitive recording material. Contributes effectively to improvement, and even in non-foaming hollow polymer particles, the number of hollow concave fine particles decreases, and as the number of hollow polymer particles with high hollowness increases, the heat insulation effect increases, and the color sensitivity of the thermal recording medium It is clear from the data that the improvement contributes effectively.

本発明の非膨張型で高中空率の粒子が増加する中空ポリマー微粒子の製造方法は、中空率の低いひしゃげた凹状微粒子の生成を極力減らし、中空率の高い中空ポリマー微粒子の生成を増やす非膨張型中空ポリマー微粒子を製造する方法として有用であり、本発明によって得られる非膨張型中空ポリマー微粒子は、軽量化材、光散乱性向上材、或いは液体成分含有保持剤、更には感熱記録体の記録感度を高めるため支持体と感熱発色層との間に形成する中間層に含有させる断熱材等として有用であり、更に本発明によって得られる湿潤非膨張型中空ポリマー微粒子は水への馴染み性及び水分散性が良くて塗料調製が容易で、ハンドリング時にも飛散することなく、環境にも優しく利用するのに有用である。   The non-expandable type of hollow polymer fine particle production method according to the present invention in which particles with a high hollow ratio increase increases the production of hollow polymer fine particles with a low hollow ratio as much as possible and reduces the production of hollow polymer fine particles with a high hollow ratio. The non-expandable hollow polymer fine particles obtained by the present invention are useful as a method for producing a fine hollow polymer fine particle. In order to enhance the sensitivity, it is useful as a heat insulating material or the like contained in an intermediate layer formed between the support and the thermosensitive coloring layer. Further, the wet non-expandable hollow polymer fine particles obtained by the present invention are compatible with water and water. It has good dispersibility, is easy to prepare paint, and does not scatter during handling and is useful for environmentally friendly use.

Claims (10)

水媒体中で、ポリマー微粒子の外殻形成用重合性モノマーと、有機溶剤とを含む混合物を乳化分散させ、重合開示剤の存在下で前記重合性モノマーを懸濁重合させ、有機溶剤を内包するポリマー微粒子を形成し、当該ポリマー微粒子に内包する有機溶剤を気化させ該微粒子の外殻を通して除去し、中空ポリマー微粒子を製造する方法において、
前記ポリマー微粒子の内包する有機溶剤を気化、除去して微粒子を中空化する工程を、ポリマー微粒子が水媒体中に分散している状態で行うことを特徴とする中空ポリマー微粒子の製造方法。
In a water medium, a mixture containing a polymerizable monomer for forming the outer shell of polymer fine particles and an organic solvent is emulsified and dispersed, and the polymerizable monomer is subjected to suspension polymerization in the presence of a polymerization disclosure agent to enclose the organic solvent. In a method for producing hollow polymer fine particles by forming polymer fine particles, evaporating an organic solvent encapsulated in the polymer fine particles and removing the vapor through an outer shell of the fine particles,
A method for producing hollow polymer fine particles, wherein the step of vaporizing and removing the organic solvent contained in the polymer fine particles to hollow the fine particles is performed in a state where the polymer fine particles are dispersed in an aqueous medium.
前記重合性モノマーを懸濁重合させる際に、水媒体中に架橋剤、分散剤、分散助剤からなる群から選択される1種又は2種以上の添加剤を加えることを特徴とする請求項1に記載の中空ポリマー微粒子の製造方法。   The one or more additives selected from the group consisting of a crosslinking agent, a dispersing agent, and a dispersing aid are added to the aqueous medium when the polymerizable monomer is subjected to suspension polymerization. 2. The method for producing hollow polymer fine particles according to 1. 前記ポリマー微粒子の内包する有機溶剤を気化、除去させる際に、前記ポリマー微粒子が分散している水分散液中の該ポリマー微粒子の体積濃度を20〜65%の範囲内とすることを特徴とする請求項1又は2に記載の中空ポリマー微粒子の製造方法。   When the organic solvent encapsulated in the polymer fine particles is vaporized and removed, the volume concentration of the polymer fine particles in the aqueous dispersion in which the polymer fine particles are dispersed is in the range of 20 to 65%. The manufacturing method of the hollow polymer microparticles of Claim 1 or 2. 前記ポリマー微粒子の内包する有機溶剤を気化、除去させる際に、前記ポリマー微粒子が分散している水分散液の液温を、水媒体と有機溶剤との共沸点よりも高い温度に設定した条件下で行うことを特徴とする請求項1〜3のいずれか1項に記載の中空ポリマー微粒子の製造方法。   When the organic solvent contained in the polymer fine particles is vaporized and removed, the temperature of the aqueous dispersion in which the polymer fine particles are dispersed is set to a temperature higher than the azeotropic point of the aqueous medium and the organic solvent. The method for producing hollow polymer fine particles according to any one of claims 1 to 3, wherein 前記ポリマー微粒子の内包する有機溶剤を気化、除去して微粒子を中空化して得られた中空ポリマー微粒子の水分散液を、固形分濃度が12〜70質量%の範囲内となるよう水を分離することを特徴とする請求項1〜4のいずれか1項に記載の中空ポリマー微粒子の製造方法。   Water is separated from the aqueous dispersion of the hollow polymer fine particles obtained by vaporizing and removing the organic solvent encapsulated in the fine polymer particles to hollow out the fine particles so that the solid concentration is in the range of 12 to 70% by mass. The method for producing hollow polymer fine particles according to any one of claims 1 to 4. 水媒体中で、ポリマー微粒子の外殻形成用重合性モノマーと、有機溶剤とを含む混合物を乳化分散させる際に、ポリマー微粒子の外殻形成用重合性モノマーと、有機溶剤とを含む混合物の体積濃度を20〜65%の範囲内として乳化分散させることを特徴とする請求項1〜5のいずれか1項に記載の中空ポリマー微粒子の製造方法。   The volume of the mixture containing the polymerizable monomer for forming the outer shell of the polymer fine particle and the organic solvent when emulsifying and dispersing the mixture containing the polymerizable monomer for forming the outer shell of the polymer fine particle and the organic solvent in an aqueous medium. The method for producing hollow polymer fine particles according to any one of claims 1 to 5, wherein the concentration is emulsified and dispersed within a range of 20 to 65%. 有機溶剤を内包するポリマー微粒子を形成した後に、該ポリマー微粒子の水分散液の体積濃度が20〜65%の範囲内となるように希釈液を加えて希釈することを特徴とする請求項1〜6のいずれか1項に記載の中空ポリマー微粒子の製造方法。   The polymer fine particles encapsulating the organic solvent are formed, and then diluted by adding a diluent so that the volume concentration of the aqueous dispersion of the polymer fine particles is within the range of 20 to 65%. 6. The method for producing hollow polymer fine particles according to any one of 6 above. 前記希釈液として常温水を用い、該常温水を加えて前記水分散液を希釈した後に、液温を水媒体と有機溶剤との共沸点よりも高い温度に昇温してポリマー微粒子の内包する有機溶剤を気化、除去させることを特徴とする請求項7に記載の中空ポリマー微粒子の製造方法。   After using room temperature water as the diluent and diluting the aqueous dispersion by adding the room temperature water, the liquid temperature is raised to a temperature higher than the azeotropic point of the aqueous medium and the organic solvent to enclose the polymer fine particles. The method for producing fine hollow polymer particles according to claim 7, wherein the organic solvent is vaporized and removed. 前記希釈液として水媒体と有機溶剤との共沸点よりも高い温度の温水を用い、前記水分散液を前記共沸点よりも高い温度に昇温してポリマー微粒子の内包する有機溶剤を気化、除去させることを特徴とする請求項7に記載の中空ポリマー微粒子の製造方法。   As the diluent, warm water having a temperature higher than the azeotropic point of the aqueous medium and the organic solvent is used, and the temperature of the aqueous dispersion is raised to a temperature higher than the azeotropic point to vaporize and remove the organic solvent contained in the polymer fine particles. The method for producing hollow polymer fine particles according to claim 7, wherein: 請求項1〜9のいずれか1項に記載の中空ポリマー微粒子の製造方法により得られた中空ポリマー微粒子。   Hollow polymer fine particles obtained by the method for producing hollow polymer fine particles according to any one of claims 1 to 9.
JP2012093174A 2012-04-16 2012-04-16 Method for producing non-expandable hollow polymer fine particles Active JP5727962B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012093174A JP5727962B2 (en) 2012-04-16 2012-04-16 Method for producing non-expandable hollow polymer fine particles
KR1020130040962A KR101774079B1 (en) 2012-04-16 2013-04-15 Hollow polymer particle and method for manufacturing the same
CN201310129892.0A CN103372409B (en) 2012-04-16 2013-04-15 Non-expansion type Hollow polymer particle and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093174A JP5727962B2 (en) 2012-04-16 2012-04-16 Method for producing non-expandable hollow polymer fine particles

Publications (2)

Publication Number Publication Date
JP2013221070A true JP2013221070A (en) 2013-10-28
JP5727962B2 JP5727962B2 (en) 2015-06-03

Family

ID=49458621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093174A Active JP5727962B2 (en) 2012-04-16 2012-04-16 Method for producing non-expandable hollow polymer fine particles

Country Status (3)

Country Link
JP (1) JP5727962B2 (en)
KR (1) KR101774079B1 (en)
CN (1) CN103372409B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033503A (en) * 2018-08-31 2020-03-05 三井化学株式会社 Resin particle
WO2020162300A1 (en) * 2019-02-06 2020-08-13 日本ゼオン株式会社 Method for producing hollow resin particles
WO2020261926A1 (en) * 2019-06-27 2020-12-30 日本ゼオン株式会社 Production method for hollow resin particles
WO2022092076A1 (en) * 2020-10-30 2022-05-05 日本ゼオン株式会社 Method for prducing hollow particles, and hollow particles
CN116695262A (en) * 2023-05-04 2023-09-05 湖北民族大学 Micro-nano fiber with bead structure and preparation method and application thereof
US11760857B2 (en) 2017-08-01 2023-09-19 Zeon Corporation Method for producing latex and method for producing hollow resin particles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741808A (en) * 2018-02-22 2020-10-02 阿科玛股份有限公司 Water void resistant polymeric particles
CN111868119B (en) 2018-03-30 2023-07-07 日本瑞翁株式会社 Hollow resin particles and sheet
US11707722B2 (en) * 2018-09-28 2023-07-25 Zeon Corporation Inorganic nanoparticle-coated hollow particles, method for producing the same, and aqueous dispersion containing the hollow particles
CN111978441B (en) * 2020-08-07 2021-09-10 华东师范大学 Hollow polystyrene nano-particles and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586746B2 (en) * 1986-02-28 1993-12-14 Matsumoto Yushi Seiyaku Kk
JP2006089648A (en) * 2004-09-24 2006-04-06 Sekisui Chem Co Ltd Method for producing hollow resin fine particle, hollow resin fine particle, coating agent for reflection-preventing film and reflection-preventing film
JP2008231241A (en) * 2007-03-20 2008-10-02 Sanyo Chem Ind Ltd Hollow resin particle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583162A (en) * 1994-06-06 1996-12-10 Biopore Corporation Polymeric microbeads and method of preparation
CN1284802C (en) * 2001-03-14 2006-11-15 积水化学工业株式会社 Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
JP2003181274A (en) * 2001-12-18 2003-07-02 Sekisui Chem Co Ltd Method for manufacturing hollow polymer particles
JP2006326501A (en) * 2005-05-26 2006-12-07 Casio Electronics Co Ltd Hollow microcapsule and its production method
MX338278B (en) * 2006-11-14 2016-04-11 Basf Se Method for production of a mini suspoemulsion or suspension of sub-micron core/shell particles.
CN101920180A (en) * 2009-06-09 2010-12-22 中国科学院理化技术研究所 Preparation method of millimeter-sized hollow polymer microsphere

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586746B2 (en) * 1986-02-28 1993-12-14 Matsumoto Yushi Seiyaku Kk
JP2006089648A (en) * 2004-09-24 2006-04-06 Sekisui Chem Co Ltd Method for producing hollow resin fine particle, hollow resin fine particle, coating agent for reflection-preventing film and reflection-preventing film
JP2008231241A (en) * 2007-03-20 2008-10-02 Sanyo Chem Ind Ltd Hollow resin particle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11760857B2 (en) 2017-08-01 2023-09-19 Zeon Corporation Method for producing latex and method for producing hollow resin particles
JP2020033503A (en) * 2018-08-31 2020-03-05 三井化学株式会社 Resin particle
WO2020162300A1 (en) * 2019-02-06 2020-08-13 日本ゼオン株式会社 Method for producing hollow resin particles
JP7476804B2 (en) 2019-02-06 2024-05-01 日本ゼオン株式会社 Method for producing hollow resin particles
WO2020261926A1 (en) * 2019-06-27 2020-12-30 日本ゼオン株式会社 Production method for hollow resin particles
JP7468529B2 (en) 2019-06-27 2024-04-16 日本ゼオン株式会社 Method for producing hollow resin particles
WO2022092076A1 (en) * 2020-10-30 2022-05-05 日本ゼオン株式会社 Method for prducing hollow particles, and hollow particles
CN116695262A (en) * 2023-05-04 2023-09-05 湖北民族大学 Micro-nano fiber with bead structure and preparation method and application thereof
CN116695262B (en) * 2023-05-04 2024-04-12 湖北民族大学 Micro-nano fiber with bead structure and preparation method and application thereof

Also Published As

Publication number Publication date
KR101774079B1 (en) 2017-09-01
KR20130116817A (en) 2013-10-24
CN103372409A (en) 2013-10-30
JP5727962B2 (en) 2015-06-03
CN103372409B (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5727962B2 (en) Method for producing non-expandable hollow polymer fine particles
JP7318531B2 (en) Method for producing latex and method for producing hollow resin particles
JP7310797B2 (en) Hollow resin particles and sheets
WO2020261926A1 (en) Production method for hollow resin particles
BR112020004306B1 (en) THERMALLY EXPANDABLE MICROSPHERES MANUFACTURING PROCESS OF MICROSPHERES, PREPARATION PROCESS OF EXPANDED MICROSPHERES AND EXPANDED MICROSPHERES
WO2021172402A1 (en) Method for producing hollow resin particles
WO2020066623A1 (en) Hollow particles, production method therefor, and aqueous dispersion containing hollow particles
Yao et al. Efficient preparation and formation mechanism of polymer/SiO 2 nanocomposite particles in miniemulsions
JP6419948B2 (en) Thermal foaming microsphere
JP4986124B2 (en) Method for producing vinyl resin particles
Fu et al. Preparation of single-hole silica hollow microspheres by precipitation-phase separation method
US20220153881A1 (en) Method for producing hollow resin particles
JP7468120B2 (en) Method for producing hollow particles
JP6123156B2 (en) True spherical cross-linked polyacrylonitrile fine particles with large surface area
JP6813227B1 (en) Method for manufacturing resin dispersion, resin particles, and resin dispersion
JP2021172770A (en) Method for producing hollow particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5727962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250