JP2013220398A - Method for suppressing bacteria proliferation in ethanol fermentation of kitchen waste - Google Patents

Method for suppressing bacteria proliferation in ethanol fermentation of kitchen waste Download PDF

Info

Publication number
JP2013220398A
JP2013220398A JP2012094692A JP2012094692A JP2013220398A JP 2013220398 A JP2013220398 A JP 2013220398A JP 2012094692 A JP2012094692 A JP 2012094692A JP 2012094692 A JP2012094692 A JP 2012094692A JP 2013220398 A JP2013220398 A JP 2013220398A
Authority
JP
Japan
Prior art keywords
fermentation
simultaneous saccharification
temperature
waste
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012094692A
Other languages
Japanese (ja)
Other versions
JP6004321B2 (en
Inventor
Shunsuke Hayashi
俊介 林
Shinsuke Masunari
伸介 増成
Noriko Kira
典子 吉良
Kenichi Nakamori
研一 中森
Shigeo Tomiyama
茂男 冨山
Yutaka Sera
豊 世良
Kenji Kida
建次 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Kumamoto University NUC
Original Assignee
Hitachi Zosen Corp
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Kumamoto University NUC filed Critical Hitachi Zosen Corp
Priority to JP2012094692A priority Critical patent/JP6004321B2/en
Publication of JP2013220398A publication Critical patent/JP2013220398A/en
Application granted granted Critical
Publication of JP6004321B2 publication Critical patent/JP6004321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To efficiently suppress effect of bacteria, which exist in large amounts in kitchen waste derived from general waste, on simultaneous saccharification and fermentation reaction, to consequently improve ethanol yield in applying the kitchen waste existing in the general waste which is only incinerated conventionally to simultaneous saccharification and fermentation to achieve stable reaction, to further improve final ethanol concentration and reduce energy cost necessary for distillation, to reduce a ratio of a facility cost, and, as a result, to utilize organic resource, which is the kitchen waste existing in large amounts in the general waste, as raw material of bio-based fuel.SOLUTION: A method of suppressing bacteria proliferation is characterized by that an antibiotic is added to a simultaneous saccharification and fermentation reaction system in producing ethanol by heat-treating fermentation raw material formed of kitchen waste in general waste in a low-temperature range of 50-100°C, lowering a temperature of obtained heat treated product to a temperature range in which fermenting microorganisms can grow, and bringing the obtained treated material of which a temperature is lowered to the simultaneous saccharification and fermentation reaction system.

Description

本発明は、一般家庭などから収集されてきた厨芥類を用いたエタノール製造において、共存する雑菌の増殖を抑制して雑菌によるエタノール発酵への影響を極力及ぼさないようにする方法に関する。   The present invention relates to a method for suppressing the growth of coexisting bacteria to minimize the influence of the bacteria on ethanol fermentation in ethanol production using moss collected from general households.

産業廃棄物としての食品廃棄物は再利用が進められており、主に堆肥化、メタン発酵や、近年ではエタノール製造原料として利用されている。一方、現在焼却により処理されている一般廃棄物約3800万トンの内およそ15%程度を占める厨芥類(環境省HP上公開の平成19年度統計)は、水分を多く含んでいることから焼却処理時のカロリー低下の原因ともなっており、雑多な性状と他成分との混在状態のためにエタノール製造原料に適さない場合が多く、再利用率が極めて低いのが現状である。しかし、一般廃棄物を有機資源として再利用する試みは続けられており、例えば特許文献1および2には一般廃棄物を粉砕し粉砕物から夾雑物を機械選別により除去して、残った有機性成分をメタン発酵基質として利用方法が提案されている。しかし、この方法では発酵不適物の影響により安定的な反応が困難であり、滞留時間が長いことから砂や金属などの廃棄物由来の異物の残存と反応槽の損傷などの問題がある。一方でメタンの利用に関しても問題が多く、発酵で得たメタンは発電等に利用されずに燃やされていることが多い(特許文献3)。また、複合的な菌群で構成されるメタン発酵菌のバランスが変化することにより発酵に不具合が生じた場合、大量の未発酵残渣を処理しなければならず、また再立ち上げ時に多大なコストと時間が必要である。   Food waste as industrial waste is being reused, and mainly used as composting, methane fermentation, and in recent years as a raw material for producing ethanol. On the other hand, moss (approximately 15% published on the Ministry of the Environment's website in 2007), which accounts for approximately 15% of the approximately 38 million tons of general waste currently being processed by incineration, is incinerated because it contains a lot of water. It is also a cause of calorie reduction at the time, and is often unsuitable as a raw material for producing ethanol due to the mixed state of miscellaneous properties and other components, and the reuse rate is extremely low at present. However, attempts to recycle general waste as organic resources continue. For example, in Patent Documents 1 and 2, general waste is pulverized, and impurities are removed from the pulverized product by mechanical sorting. A method of using the component as a methane fermentation substrate has been proposed. However, this method makes it difficult to perform a stable reaction due to the influence of unsuitable fermentation materials, and has a long residence time. Therefore, there are problems such as residual foreign substances such as sand and metal and damage to the reaction tank. On the other hand, there are many problems regarding the use of methane, and methane obtained by fermentation is often burned without being used for power generation or the like (Patent Document 3). In addition, if fermentation fails due to a change in the balance of methane-fermenting bacteria composed of complex fungi, a large amount of unfermented residue must be processed, and a large amount of cost is required for restarting. And time is needed.

近年,ガソリン代替に活用が求められているバイオ燃料としてバイオエタノールが注目されている。エタノール発酵はメタン発酵と比較すると滞留時間が短く、液体燃料であるため取り扱いも容易である。しかし、食品廃棄物をエタノール発酵原料とする検討は行われているものの(特許文献4)、一般廃棄物中の厨芥類を対象としたエタノール製造に関する検討は今のところ報告されていない。その理由として、一般廃棄物中の厨芥類は食品廃棄物に比べて組成が安定せず、原料中のデンプン質が豊富でなく糖化技術が確立されていないことが挙げられる。   In recent years, bioethanol has attracted attention as a biofuel that is required to be used for gasoline replacement. Ethanol fermentation has a short residence time compared to methane fermentation and is easy to handle because it is a liquid fuel. However, although studies using food waste as a raw material for ethanol fermentation have been conducted (Patent Document 4), no studies have been reported on ethanol production targeting moss in general waste. The reason is that moss in general waste is not stable in composition as compared with food waste, starch is not abundant in raw materials, and saccharification technology has not been established.

特開2008−246461号公報JP 2008-246461 A 特開2008−246462号公報JP 2008-246462 A 特開2006−297210号公報JP 2006-297210 A 特開2009−112200号公報JP 2009-112200 A

このような一般廃棄物中の厨芥類の再資源化の一手段としてこれをエタノール発酵原料に適用することは産業上有益であるが、一般廃棄物由来の厨芥類には非常に多くの微生物(雑菌)が存在する。一方で、原料としてデンプン質が多い食品廃棄物は、高温でアミラーゼを作用させて流動化することで、結果的に雑菌が少ない糖液を作ることができ、発酵反応時の滞留時間も数時間から十数時間と比較的短いため、雑菌が残存したとしても、その影響を受けにくい状態でエタノールを製造することができる。   Although it is industrially beneficial to apply this to ethanol fermentation raw materials as a means of recycling moss in general waste, a great number of microorganisms ( Miscellaneous bacteria). On the other hand, food waste with a high starch content as a raw material can be made into a sugar solution with few miscellaneous bacteria by fluidizing it by the action of amylase at a high temperature, and the residence time during fermentation reaction is several hours. Therefore, even if miscellaneous bacteria remain, ethanol can be produced in a state where it is not easily affected.

一般廃棄物中の厨芥類を発酵原料とした場合にはデンプン質が少なく、一方で多くのセルロース成分が含まれ、セルラーゼを加えて同時糖化発酵反応によりエタノールを製造する方法が適していると考えられる。その場合反応期間が数日を要することもあり、単純な糖液の発酵より長くなることから雑菌の影響が危惧される。したがって雑菌が多く存在し反応期間が長くなるという特徴を持つ一般廃棄物由来の厨芥類を含む原料の同時糖化発酵反応における雑菌抑制方法が求められる。   When moss in general waste is used as a fermentation raw material, it is considered that a method of producing ethanol by simultaneous saccharification and fermentation by adding cellulase and containing a large amount of cellulose component while containing a large amount of cellulose is considered suitable. It is done. In this case, the reaction period may take several days, which is longer than the simple fermentation of sugar liquor, and there is concern about the effects of various bacteria. Therefore, there is a need for a method for suppressing germs in a simultaneous saccharification and fermentation reaction of raw materials containing moss derived from general waste, which has a feature that many germs exist and the reaction period becomes long.

本発明者らは、一般廃棄物中に含まれる厨芥類を用いた同時糖化発酵反応時に微生物の悪影響を抑制するという雑菌抑制方法について鋭意研究を重ねた結果、厨芥類を含む原料の低温熱処理を行ない、温度降下後に同時糖化発酵反応系に抗生剤を添加することで、雑菌の非存在下と同等のエタノール製造効率を得ることができる方法を発見した。   The inventors of the present invention have conducted extensive research on a method for suppressing the harmful effects of microorganisms during simultaneous saccharification and fermentation reactions using moss contained in general waste, and as a result, conducted low-temperature heat treatment of raw materials containing moss. In addition, the inventors discovered a method that can obtain an ethanol production efficiency equivalent to that in the absence of various bacteria by adding an antibiotic to the simultaneous saccharification and fermentation reaction system after the temperature drops.

本発明は、一般廃棄物中の厨芥類からなる発酵原料を50℃から100℃の低温領域で熱処理し、得られた熱処理物を発酵微生物の生育可能温度域まで降温させ、得られた降温処理物を同時糖化発酵反応に付してエタノールを製造するに当たり、同時糖化発酵反応系に抗生剤を添加することを特徴とする雑菌増殖抑制方法である。   This invention heat-processes the fermentation raw material which consists of moss in a general waste in the low temperature range of 50 to 100 degreeC, temperature-falls the obtained heat-treated material to the temperature range which can be fermented microorganisms, and obtained temperature-fall process In producing a ethanol by subjecting a product to a simultaneous saccharification and fermentation reaction, an antibiotic is added to the simultaneous saccharification and fermentation reaction system.

本明細書および特許請求の範囲を通して、一般廃棄物とは、廃棄物のうちで「廃棄物処理法(廃棄物の処理及び清掃に関する法律)」によって定義される産業廃棄物以外のものを指し、多くは一般家庭で通常の生活を営む上で排出されるごみ、すなわち家庭系一般廃棄物である。厨芥類とは、一般家庭等のから出るのくずやのなどのごみである厨芥が主構成をなすが、包装、容器、割り箸、捕集ネットなどが混在しているため、例えば厨芥が50%以上を占めるごみを指す。厨芥が主構成をなすように一般廃棄物に選別処理を施したものが好ましい。選別方法は特段限定されるものでなく、例えば重力選別や風力選別といった選別手段が適用でき、手選別でもよい。   Throughout this specification and claims, general waste refers to waste other than industrial waste as defined by the “Waste Disposal Act (Act on Waste Disposal and Cleaning)”, Most of them are garbage that is discharged in the ordinary life of ordinary households, that is, household waste. Garbage mainly consists of garbage such as litter and garbage from ordinary households, etc., but packaging, containers, disposable chopsticks, collection nets, etc. are mixed, so for example 50% It refers to garbage that occupies the above. It is preferable that the general waste is subjected to a sorting process so that the cocoon constitutes the main component. The sorting method is not particularly limited. For example, sorting means such as gravity sorting and wind sorting can be applied, and manual sorting may be used.

本発明では、一般廃棄物中の厨芥類をエタノール発酵原料として用いる。   In the present invention, moss in general waste is used as a raw material for ethanol fermentation.

低温領域での熱処理とは、一般的な滅菌処理が100℃以上の温度での蒸気滅菌で行われるのに対して、これより低温の温度領域での熱処理であって、好ましくは60℃以上、さらに好ましくは70℃以上である。低温熱処理中の熱分布は均一であることが望ましく、そのためには機械的な攪拌を伴うことが好ましい。低温熱処理の加熱手段として抽気蒸気を用いてもよい。   The heat treatment in the low temperature region is a heat treatment in a temperature region lower than this while the general sterilization treatment is performed by steam sterilization at a temperature of 100 ° C. or higher, preferably 60 ° C. or higher. More preferably, it is 70 degreeC or more. It is desirable that the heat distribution during the low-temperature heat treatment is uniform, and for this purpose, it is preferable to involve mechanical stirring. Extraction steam may be used as heating means for the low-temperature heat treatment.

低温熱処理時間は所定の温度に到達してから2時間以上が望ましく、さらに望ましくは4時間以上である。低温熱処理時間の上限は、特に定められないが、熱処理温度と関連し、経済性を考慮すると24時間程度である。   The low temperature heat treatment time is desirably 2 hours or more after reaching a predetermined temperature, and more desirably 4 hours or more. The upper limit of the low temperature heat treatment time is not particularly defined, but is related to the heat treatment temperature and is about 24 hours in consideration of economy.

ついで、低温熱処理で得られた熱処理物を発酵微生物の生育可能温度域まで降温させる。発酵微生物の生育可能温度域は好ましくは4から45℃、より好ましくは28から42℃であり、通常は常温である。   Next, the heat-treated product obtained by the low-temperature heat treatment is lowered to the temperature range where the fermentation microorganisms can grow. The viable temperature range of the fermenting microorganism is preferably 4 to 45 ° C, more preferably 28 to 42 ° C, and usually room temperature.

ついで、熱処理物の降温で得られた降温処理物を同時糖化発酵反応に付してエタノールを製造する。同時糖化発酵は、ノボザイムズ社製セルラーゼであるセリック、ジェネンコア社製セルラーゼであるアクセルレースなどの酵素と、サッカロマイセスセレビジエなどの酵母の存在下に、好ましくは28から42℃、2から7日間、常法に従って実施される。   Next, ethanol is produced by subjecting the temperature-lowered product obtained by the temperature-lowering of the heat-treated product to a simultaneous saccharification and fermentation reaction. The simultaneous saccharification and fermentation is preferably performed at 28 to 42 ° C. for 2 to 7 days in the presence of an enzyme such as Celic, a cellulase manufactured by Novozymes, and an accelerator such as Accel Race, a cellulase manufactured by Genencor, and a yeast such as Saccharomyces cerevisiae. Implemented according to law.

同時糖化発酵反応系に添加される抗生剤は、一般的に抗生物質といわれる物質である。抗生剤は、抗菌スペクトルが広いものほど好ましく、有効濃度が低いものほど好ましく、低コストで製造できるものほど好ましい。   The antibiotic added to the simultaneous saccharification and fermentation reaction system is a substance generally called an antibiotic. Antibiotics having a broad antibacterial spectrum are preferred, those having a low effective concentration are preferred, and those that can be produced at low cost are more preferred.

このような抗生剤として、例えばアクテノマイシン、アジスロマイシン、アスポキシシリン、アムホテリシン、アルベカシン、アンピシリン、エリスロマイシン、オキサシリン、オキシテトラサイクリン、カナマイシン、カルベニシリン、クリンダマイシン、クロラムフェニコール、クロルテトラサイクリン、ゲンタマイシン、シクロセリン、ジヒドロストレプトマイシン、ストレプトマイシン、スペクチノマイシン、セファロスポリン、セファロチン、セファロルジン、セフキノム、タイロシン、テトラサイクリン、ナイスタチン、ネオマイシン、バージニアマイシン、ハイグロマイシン、バシトラシン、パロモマイシン、バンコマイシン、ピューロマイシン、プラスチシジン、ブレオマイシン、ペニシリン、ポリミキシン、マイトマイシン、ミコフェノール酸、メチシリン、リンコマイシンとこれら薬剤の誘導体および塩のうち、少なくとも1つが適宜使用される。   Examples of such antibiotics include actinomycin, azithromycin, aspoxicillin, amphotericin, arbekacin, ampicillin, erythromycin, oxacillin, oxytetracycline, kanamycin, carbenicillin, clindamycin, chloramphenicol, chlortetracycline, gentamicin, cycloserine, dihydro Streptomycin, streptomycin, spectinomycin, cephalosporin, cephalothin, cephaloldin, cefquinome, tylosin, tetracycline, nystatin, neomycin, virginiamycin, hygromycin, bacitracin, paromomycin, vancomycin, puromycin, plastidin, bleomycin, penicillin, polymyxin Mitmaishi , Mycophenolic acid, methicillin, of lincomycin and these drugs derivatives and salts, at least one is appropriately used.

抗生剤の添加量は、同時糖化発酵反応物全体の重量に対して好ましくは2ppm以上である。この添加量の上限は特に定められないが、費用対効果から100ppm程度である。   The added amount of the antibiotic is preferably 2 ppm or more with respect to the weight of the entire simultaneous saccharification and fermentation reaction product. Although the upper limit of this addition amount is not specifically defined, it is about 100 ppm from the cost effectiveness.

抗生剤を同時糖化発酵反応の開始時に添加することも好ましい。   It is also preferable to add an antibiotic at the start of the simultaneous saccharification and fermentation reaction.

本発明により、一般廃棄物由来の厨芥類中に多く存在する雑菌が同時糖化発酵反応に及ぼす影響を効果的に抑制することができる。その結果、従来は焼却処分されるのみであった一般廃棄物中に存在する厨芥類を同時糖化発酵原料に適用する際にエタノール収率が向上し、安定的な反応を実現できる。さらに最終エタノール濃度を向上させ、蒸留に要するエネルギーコストを減少させる上に、設備コストの占める割合を減じることができる。結果として一般廃棄物中に多く存在する厨芥類という有機資源をバイオ燃料の原料として利用することができる。   According to the present invention, it is possible to effectively suppress the influence of miscellaneous bacteria present in moss derived from general waste on the simultaneous saccharification and fermentation reaction. As a result, the ethanol yield can be improved and stable reaction can be realized when the moss present in the general waste, which has been conventionally only incinerated, is applied to the raw material for simultaneous saccharification and fermentation. Furthermore, the final ethanol concentration can be improved, the energy cost required for distillation can be reduced, and the proportion of the equipment cost can be reduced. As a result, organic resources such as moss present in general waste can be used as raw materials for biofuels.

実施例における同時糖化発酵反応2日目の各サンプルのエタノール濃度を示すグラフである。It is a graph which shows the ethanol concentration of each sample of the simultaneous saccharification and fermentation reaction 2nd day in an Example. 実施例における同時糖化発酵反応5日目の各サンプルのエタノール濃度を示すグラフである。It is a graph which shows the ethanol concentration of each sample of the simultaneous saccharification and fermentation reaction 5th day in an Example. 参考例におけるフォトレコーダーによる抗生剤の濃度と雑菌増殖抑制効果を示すグラフである。It is a graph which shows the density | concentration of an antibiotic by the photo recorder in a reference example, and a germ growth inhibitory effect.

以下、実施例および図面に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples and drawings.

実施例
自治体で収集された一般廃棄物から手選別により厨芥を抽出し、これをマルチプロセッサー(CHUBU製PS−3000S)にて原型を留めなくなるまでミキシングし、得られた混合物約100kgを105℃で数時間乾燥させて乾燥重量%を求めたところ、30.39%であった。
[Example] Soot is extracted by hand sorting from municipal solid waste collected by the local government, and mixed with a multiprocessor (PS-3000S manufactured by CHUBU) until the prototype cannot be retained. About 100 kg of the resulting mixture is obtained at 105 ° C. When dried for several hours, the dry weight% was determined to be 30.39%.

得られた乾燥物に水を注ぎその割合を25重量%に調整し、複数のサンプルを得た。各サンプルに50,60,70,80℃で、それぞれ2,4時間、低温熱処理を施した。ついで常温まで冷却後、ジェネンコア社製のセルラーゼ「アクセルレース」と酵母「サッカロマイセスセレビシエ」をそれぞれ加え、同時糖化発酵反応の際に、各反応系に抗生剤としてクロラムフェニコールを反応物全体の重量に対し5ppm添加し、よく攪拌した後、同時糖化発酵反応を行った。   Water was poured into the obtained dried product and the ratio was adjusted to 25% by weight to obtain a plurality of samples. Each sample was subjected to low-temperature heat treatment at 50, 60, 70, and 80 ° C. for 2, 4 hours, respectively. Next, after cooling to room temperature, Cellulase “Accel Race” manufactured by Genencor and yeast “Saccharomyces cerevisiae” were added, and chloramphenicol was added to each reaction system as an antibiotic during the simultaneous saccharification and fermentation reaction. After adding 5 ppm to the mixture and stirring well, a simultaneous saccharification and fermentation reaction was performed.

比較例1
抗生剤の添加を行わなかった点を除いて、実施例と同じ条件で操作を行った。
Comparative Example 1
The operation was performed under the same conditions as in the Examples, except that no antibiotic was added.

比較例2
ポジティブコントロールとして低温熱処理を121℃、20分の条件で行った点を除いて、実施例と同じ条件で操作を行った。
Comparative Example 2
As a positive control, the operation was performed under the same conditions as in the examples except that low-temperature heat treatment was performed at 121 ° C. for 20 minutes.

比較例3
ネガティブコントロールとして低温熱処理を行わずに抗生剤を添加しなかった点を除いて、実施例と同じ条件で操作を行った。
Comparative Example 3
As a negative control, the operation was performed under the same conditions as in the Examples, except that no low temperature heat treatment was performed and no antibiotic was added.

比較例4
ネガティブコントロールとして低温熱処理を行わなかった点を除いて、実施例と同じ条件で操作を行った。
Comparative Example 4
As a negative control, the operation was performed under the same conditions as in Examples, except that low-temperature heat treatment was not performed.

実施例および比較例の処理条件および反応経過2日、5日後のエタノール濃度を表1にまとめて示す。また、反応2日後と5日後のエタノール濃度を図1および図2に示す。これら結果によると、60℃、4時間の低温熱処理を施した発酵原料に抗生物質を添加して行った同時透過発酵反応結果は、一般的な滅菌方法であるオートクレープ処理を行った発酵原料を用いた同時透過発酵反応結果とほぼ同等となり、また70℃、2時間以上の低温熱処理を施した結果は、ポジティブコントロールの結果とほぼ同等となった。   Table 1 summarizes the treatment conditions of Examples and Comparative Examples and ethanol concentrations after 2 days and 5 days of reaction. The ethanol concentrations after 2 days and 5 days after the reaction are shown in FIGS. According to these results, the results of the simultaneous permeation fermentation reaction that was performed by adding antibiotics to the fermented raw material that had been subjected to low-temperature heat treatment at 60 ° C. for 4 hours were obtained from the fermented raw material that had been subjected to autoclaving, which is a general sterilization method. The result of the simultaneous permeation fermentation reaction used was almost the same, and the result of the low temperature heat treatment at 70 ° C. for 2 hours or more was almost the same as the result of the positive control.

抗生剤の存在による効果は、特に厨芥類を60℃以下で熱処理した場合に顕著に現れた同時糖化発酵反応系への外部からの雑菌混入や、大規模にスケールアップした場合の機器の繋ぎ部分等での雑菌による汚染(コンタミネーション)を考慮すると、反応中の効果的な雑菌抑制のみならず、安定的な反応の継続に有効であることが分かる。   The effect of the presence of antibiotics, especially when moss is heat-treated at 60 ° C or less, is a remarkable part of the simultaneous saccharification and fermentation reaction system. In view of contamination (contamination) due to germs such as in the above, it can be seen that it is effective not only for effective suppression of germs during the reaction but also for the continuation of a stable reaction.

また、2日後のエタノール濃度(図1)に比べて5日後のエタノール濃度(図2)が低下しているサンプルがいくつかあった。これは雑菌がエタノールを資化したことや、生成した糖が雑菌により資化され、発酵用酵母がエタノールを資化したことが考えられるが、いずれにしても雑菌が存在したことが原因である。

Figure 2013220398
参考例
5mLの5%YPD液体培地に厨芥溶液0.1mLを加え、ここへ抗生剤としてクロラムフェニコールを0〜5ppm添加し、温度を60℃に調整した後、フォトレコーダーを用いてOD=600の吸収により雑菌の増殖を観察した。その結果、図3に示すように、2ppm以上の抗生剤濃度で良好な雑菌抑制効果が認められた。 In addition, there were some samples in which the ethanol concentration after 5 days (FIG. 2) was lower than the ethanol concentration after 2 days (FIG. 1). This may be because the miscellaneous bacteria assimilated ethanol, or the generated sugar was assimilated by the miscellaneous bacteria, and the yeast for fermentation assimilated ethanol, but in any case the miscellaneous bacteria existed. .
Figure 2013220398
Reference Example 0.1 mL of sputum solution was added to 5 mL of 5% YPD liquid medium, 0-5 ppm of chloramphenicol was added thereto as an antibiotic, the temperature was adjusted to 60 ° C., and then OD = The growth of miscellaneous bacteria was observed by absorption of 600. As a result, as shown in FIG. 3, a good bacteria suppression effect was observed at an antibiotic concentration of 2 ppm or more.

Claims (7)

一般廃棄物中の厨芥類からなる発酵原料を50℃から100℃の低温領域で熱処理し、得られた熱処理物を発酵微生物の生育可能温度域まで降温させ、得られた降温処理物を同時糖化発酵反応に付してエタノールを製造するに当たり、同時糖化発酵反応系に抗生剤を添加することを特徴とする雑菌増殖抑制方法。 Fermentation material consisting of moss in general waste is heat-treated in a low temperature range of 50 ° C to 100 ° C, and the resulting heat-treated product is cooled down to the temperature range where fermentation microorganisms can grow, and the resulting temperature-lowered processed product is simultaneously saccharified. A method for inhibiting the growth of miscellaneous bacteria, characterized in that an antibiotic is added to a simultaneous saccharification and fermentation reaction system in producing ethanol by fermentation. 低温熱処理の温度範囲が60℃以上である請求項1記載の方法。 The method according to claim 1, wherein the temperature range of the low-temperature heat treatment is 60 ° C or higher. 低温熱処理の時間が2時間以上である請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the low-temperature heat treatment time is 2 hours or more. 低温熱処理の加熱手段が抽気蒸気である請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the heating means of the low-temperature heat treatment is extracted steam. 抗生剤がアクチノマイシン、アジスロマイシン、アスポキシシリン、アムホテリシン、アルベカシン、アンピシリン、エリスロマイシン、オキサシリン、オキシテトラサイクリン、カナマイシン、カルベニシリン、クリンダマイシン、クロラムフェニコール、クロルテトラサイクリン、ゲンタマイシン、シクロセリン、ジヒドロストレプトマイシン、ストレプトマイシン、スペクチノマイシン、セファロスポリン、セファロチン、セファロルジン、セフキノム、タイロシン、テトラサイクリン、ナイスタチン、ネオマイシン、バージニアマイシン、ハイグロマイシン、バシトラシン、パロモマイシン、バンコマイシン、ピューロマイシン、ブラスチシジン、ブレオマイシン、ペニシリン、ポリミキシン、マイトマイシン、ミコフェノール酸、メチシリンおよびリンコマイシン、並びにこれらの誘導体および塩からなる群から選択される1種または複数種である請求項1〜4のいずれかに記載の方法。 Antibiotics are actinomycin, azithromycin, aspoxicillin, amphotericin, arbekacin, ampicillin, erythromycin, oxacillin, oxytetracycline, kanamycin, carbenicillin, clindamycin, chloramphenicol, chlortetracycline, gentamicin, cycloserine, dihydrostreptomycin, streptomycin, spectromycin Mycin, cephalosporin, cephalothin, cephalordin, cefquinome, tylosin, tetracycline, nystatin, neomycin, virginiamycin, hygromycin, bacitracin, paromomycin, vancomycin, puromycin, blasticidin, bleomycin, penicillin, polymyxin, mitomycin, mycophenolic acid Chishirin and lincomycin, and methods according to any one of claims 1 to 4 is one or more selected from the group consisting of derivatives and salts. 抗生剤を同時糖化発酵反応系物全体の重量に対して2ppm以上添加する、請求項1〜5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the antibiotic is added in an amount of 2 ppm or more with respect to the weight of the entire simultaneous saccharification and fermentation reaction system. 抗生剤を同時糖化発酵反応の開始時に添加する、請求項1〜6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein an antibiotic is added at the start of the simultaneous saccharification and fermentation reaction.
JP2012094692A 2012-04-18 2012-04-18 Methods for controlling the growth of miscellaneous bacteria in ethanol fermentation of moss Active JP6004321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094692A JP6004321B2 (en) 2012-04-18 2012-04-18 Methods for controlling the growth of miscellaneous bacteria in ethanol fermentation of moss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094692A JP6004321B2 (en) 2012-04-18 2012-04-18 Methods for controlling the growth of miscellaneous bacteria in ethanol fermentation of moss

Publications (2)

Publication Number Publication Date
JP2013220398A true JP2013220398A (en) 2013-10-28
JP6004321B2 JP6004321B2 (en) 2016-10-05

Family

ID=49591771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094692A Active JP6004321B2 (en) 2012-04-18 2012-04-18 Methods for controlling the growth of miscellaneous bacteria in ethanol fermentation of moss

Country Status (1)

Country Link
JP (1) JP6004321B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316794A (en) * 2016-08-22 2017-01-11 浦城正大生化有限公司 Method for recycling ethyl alcohol in chlortetracycline hydrochloride crystallization mother liquor
CN108142661A (en) * 2017-12-24 2018-06-12 吴豪 A kind of method that ethyl alcohol, soap, feed are produced using kitchen garbage
CN117185456A (en) * 2023-09-13 2023-12-08 同济大学 Method for removing kanamycin by utilizing abiotic humification

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500002A (en) * 1991-11-18 1996-01-09 ユニヨン・ナシオナル・デ・グルプマン・ドゥ・ディスティ ラトゥール・ダルコル(ユ・エヌ・ジェ・デ・ア) Use of polyether ionophore antibiotics to control bacterial growth in industrial alcohol fermentation.
JP2002102877A (en) * 2000-09-28 2002-04-09 Toto Ltd Wastewater treatment system
JP2002316132A (en) * 2001-04-24 2002-10-29 Tadao Okada Organic waste disposer
JP2005523689A (en) * 2002-02-08 2005-08-11 ジェネンコー・インターナショナル・インク Method for producing ethanol from a carbon substrate
JP2006504394A (en) * 2002-02-08 2006-02-09 ジェネンコー・インターナショナル・インク Method for producing a final product from a carbon substrate
CN1948498A (en) * 2006-10-24 2007-04-18 北京科技大学 Method of producing fuel alcohol by kitchen garbage fermentation
JP2008104452A (en) * 2006-09-29 2008-05-08 Kumamoto Univ Alcohol production system and alcohol production method
JP2008535524A (en) * 2005-04-12 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Treatment of biomass to obtain ethanol
JP2008253875A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Biogas system
WO2009044868A1 (en) * 2007-10-05 2009-04-09 National University Corporation Tottori University Bacterium capable of fermenting glucose, mannose and xylose simultaneously, and method for production of bioethanol using the bacterium
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
US20090233340A1 (en) * 2008-03-13 2009-09-17 North American Bioproducts Corp. Use of erythromycin as a selective antimicrobial agent in the production of alcohols
JP2009291782A (en) * 2008-05-08 2009-12-17 Asahikawa Poultry Kk Treatment method of organic substance
KR20100031887A (en) * 2008-09-16 2010-03-25 서울산업대학교 산학협력단 A bio-ethanol production system from food wastes with simultaneous saccharification and fermentation and the method thereof
JP2010110230A (en) * 2008-11-04 2010-05-20 Chubu Electric Power Co Inc Saccharification treatment method for herb biomass
JP2010527230A (en) * 2006-12-29 2010-08-12 ジェ パク,サン Method for producing fermented propolis
WO2010093832A2 (en) * 2009-02-11 2010-08-19 Xyleco, Inc. Saccharifying biomass
JP2010536368A (en) * 2007-08-23 2010-12-02 スティチング ディエンスト ランドボウクンディグ オンデルゾーク Weak alkaline pretreatment of lignocellulosic biomass and simultaneous saccharification and fermentation to organic acids
JP2011045263A (en) * 2009-08-25 2011-03-10 Toshiba Corp Apparatus for producing bioethanol
JP2011211973A (en) * 2010-03-31 2011-10-27 Hitachi Zosen Corp Method for producing bioethanol
JP2012050376A (en) * 2010-08-31 2012-03-15 Kansai Chemical Engineering Co Ltd Method for producing ethanol
JP2012179021A (en) * 2011-03-02 2012-09-20 Hitachi Zosen Corp Method for producing ethanol from waste

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500002A (en) * 1991-11-18 1996-01-09 ユニヨン・ナシオナル・デ・グルプマン・ドゥ・ディスティ ラトゥール・ダルコル(ユ・エヌ・ジェ・デ・ア) Use of polyether ionophore antibiotics to control bacterial growth in industrial alcohol fermentation.
JP2002102877A (en) * 2000-09-28 2002-04-09 Toto Ltd Wastewater treatment system
JP2002316132A (en) * 2001-04-24 2002-10-29 Tadao Okada Organic waste disposer
JP2005523689A (en) * 2002-02-08 2005-08-11 ジェネンコー・インターナショナル・インク Method for producing ethanol from a carbon substrate
JP2006504394A (en) * 2002-02-08 2006-02-09 ジェネンコー・インターナショナル・インク Method for producing a final product from a carbon substrate
JP2008535524A (en) * 2005-04-12 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Treatment of biomass to obtain ethanol
JP2008535523A (en) * 2005-04-12 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Biomass processing to obtain target chemicals
JP2008104452A (en) * 2006-09-29 2008-05-08 Kumamoto Univ Alcohol production system and alcohol production method
CN1948498A (en) * 2006-10-24 2007-04-18 北京科技大学 Method of producing fuel alcohol by kitchen garbage fermentation
JP2010527230A (en) * 2006-12-29 2010-08-12 ジェ パク,サン Method for producing fermented propolis
JP2008253875A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Biogas system
JP2010536368A (en) * 2007-08-23 2010-12-02 スティチング ディエンスト ランドボウクンディグ オンデルゾーク Weak alkaline pretreatment of lignocellulosic biomass and simultaneous saccharification and fermentation to organic acids
WO2009044868A1 (en) * 2007-10-05 2009-04-09 National University Corporation Tottori University Bacterium capable of fermenting glucose, mannose and xylose simultaneously, and method for production of bioethanol using the bacterium
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
US20090233340A1 (en) * 2008-03-13 2009-09-17 North American Bioproducts Corp. Use of erythromycin as a selective antimicrobial agent in the production of alcohols
JP2009291782A (en) * 2008-05-08 2009-12-17 Asahikawa Poultry Kk Treatment method of organic substance
KR20100031887A (en) * 2008-09-16 2010-03-25 서울산업대학교 산학협력단 A bio-ethanol production system from food wastes with simultaneous saccharification and fermentation and the method thereof
JP2010110230A (en) * 2008-11-04 2010-05-20 Chubu Electric Power Co Inc Saccharification treatment method for herb biomass
WO2010093832A2 (en) * 2009-02-11 2010-08-19 Xyleco, Inc. Saccharifying biomass
JP2011045263A (en) * 2009-08-25 2011-03-10 Toshiba Corp Apparatus for producing bioethanol
JP2011211973A (en) * 2010-03-31 2011-10-27 Hitachi Zosen Corp Method for producing bioethanol
JP2012050376A (en) * 2010-08-31 2012-03-15 Kansai Chemical Engineering Co Ltd Method for producing ethanol
JP2012179021A (en) * 2011-03-02 2012-09-20 Hitachi Zosen Corp Method for producing ethanol from waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316794A (en) * 2016-08-22 2017-01-11 浦城正大生化有限公司 Method for recycling ethyl alcohol in chlortetracycline hydrochloride crystallization mother liquor
CN108142661A (en) * 2017-12-24 2018-06-12 吴豪 A kind of method that ethyl alcohol, soap, feed are produced using kitchen garbage
CN117185456A (en) * 2023-09-13 2023-12-08 同济大学 Method for removing kanamycin by utilizing abiotic humification
CN117185456B (en) * 2023-09-13 2024-04-12 同济大学 Method for removing kanamycin by utilizing abiotic humification

Also Published As

Publication number Publication date
JP6004321B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
Bolado-Rodríguez et al. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse
CN100365099C (en) Novel technology for producing liquid fuel using biomass
JP5114782B2 (en) Non-pressure pre-treatment of waste fractions, enzymatic hydrolysis and fermentation
JP5233452B2 (en) Saccharification and fermentation system
Song et al. Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroides by mutant Enterobacter aerogenes ZJU1
Yadegary et al. Citric acid production from sugarcane bagasse through solid state fermentation method using Aspergillus niger mold and optimization of citric acid production by Taguchi method
Li et al. Dynamic microwave-assisted alkali pretreatment of cornstalk to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum
Ma et al. An innovative approach for reducing the water and alkali consumption in the lactic acid fermentation via the reuse of pretreated liquid
US20160348134A1 (en) Integrated Biorefinery
JP2006281024A (en) Adsorbent, its manufacturing method and method for producing alcohol or organic acid
Dey et al. An improved enzymatic pre-hydrolysis strategy for efficient bioconversion of industrial pulp and paper sludge waste to bioethanol using a semi-simultaneous saccharification and fermentation process
JP6004321B2 (en) Methods for controlling the growth of miscellaneous bacteria in ethanol fermentation of moss
CN110760447A (en) Livestock and poultry breeding waste digestion treatment method and application thereof
JP5867911B2 (en) Method for producing ethanol from waste
JP6002550B2 (en) Ethanol production facility and residue reduction method
WO2015176281A1 (en) Kitchen waste treatment process based on resourcelization, harmlessness and quantity reduction
JP2011045882A (en) Method for producing adsorbent and method for producing alcohol or organic acid
CN106554974B (en) Method for producing hydrogen by fermentation by using modified peanut shells as supplementary substrate
CA2724832C (en) Method and apparatus for processing waste containing fermentable raw material
Ghosh et al. Technological Advancement for Biohydrogen Production from Agricultural Waste
CN109913505B (en) Method for preparing fuel ethanol by utilizing kitchen waste
JP5938160B2 (en) Method for producing valuable materials by simultaneous saccharification and fermentation
Guan et al. Enhanced Degradation of Corn Straw for Methane Production Via a Novel Composite Fungal Agent
Massadeh et al. Acetone-Butanol-Ethanol (ABE) Production by Anaerobic Microflora Growing on Olive Mill Wastewater
Santoso et al. Effect H2SO4 and Zymomonas mobilis concentration to bioethanol production by bintaro fruit (cerbera manghas) substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160826

R150 Certificate of patent or registration of utility model

Ref document number: 6004321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250