JP2013217540A - Heat exchanger and hygienic cleaning toilet seat provided therewith - Google Patents

Heat exchanger and hygienic cleaning toilet seat provided therewith Download PDF

Info

Publication number
JP2013217540A
JP2013217540A JP2012087089A JP2012087089A JP2013217540A JP 2013217540 A JP2013217540 A JP 2013217540A JP 2012087089 A JP2012087089 A JP 2012087089A JP 2012087089 A JP2012087089 A JP 2012087089A JP 2013217540 A JP2013217540 A JP 2013217540A
Authority
JP
Japan
Prior art keywords
heater
heat
heat exchange
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012087089A
Other languages
Japanese (ja)
Other versions
JP5945717B2 (en
Inventor
Yasuhiro Kuniki
靖博 國木
Ryoichi Koga
良一 古閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012087089A priority Critical patent/JP5945717B2/en
Priority to PCT/JP2013/000416 priority patent/WO2013150696A1/en
Publication of JP2013217540A publication Critical patent/JP2013217540A/en
Application granted granted Critical
Publication of JP5945717B2 publication Critical patent/JP5945717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/103Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance with bare resistances in direct contact with the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Surface Heating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger with stable heat exchange performance and excellent scale resistance.SOLUTION: In a heat exchanger 10, a heat exchange conduit 25, for heat-exchanging water flowing from a water inlet port 23a by using a surface of a heater 20 incorporating a heating resistor as a heat transfer surface and directing the water to flow to a water outlet port 23b, is composed of a flow passage forming member in which an edge 45 of a partition rib 31 having spring properties and formed by bending a metal plate tightly contacting an inner wall surface of a casing 23 at a plurality of places contacts a surface of a heater 20 incorporating the heating resistor. This can prevent leakage from the edge of the partition rib which might block forcible convection heat exchange, does not generate local boiling on a surface of the heater, and can lower temperature of the heater surface, to provide a heat exchanger with stable heat exchange performance and excellent scale resistance and a hygienic cleaning device with long lifetime.

Description

本発明は、用便後に人体局部を温水により洗浄することのできる衛生洗浄装置に用いる瞬間加熱式の熱交換器に関する。   The present invention relates to an instantaneous heating type heat exchanger used in a sanitary washing apparatus that can wash a human body part with warm water after a stool.

衛生洗浄装置には、用便後の人体局部を水で洗浄する際に洗浄水を適温にするための熱交換器が備えられている。この熱交換器には様々のタイプがあり、そのうちの1つとして特許文献1に開示されているような平板状のものがある。これは、厚み寸法の小さい直方体形状のケーシング内に平板状のヒータを縦置きに収納し、該平板状ヒータの両伝熱面の夫々に沿って水平方向に蛇行させつつ上方へ向かう2つの流路が形成された構成となっている。そして、平板状ヒータを駆動している間に各流路に沿って洗浄水を通流させることにより、この洗浄水を適温にまで昇温させている。このような特許文献1に開示された熱交換器の場合、流路断面積が小さいため、洗浄水の流速を高速化且つ均一化できて熱伝達率を高めることができ、またコンパクト化を図ることができるという利点がある。   The sanitary washing device is provided with a heat exchanger for bringing the wash water to an appropriate temperature when washing the human body part after the toilet with water. There are various types of heat exchangers, and one of them is a flat plate as disclosed in Patent Document 1. This is because a flat heater is accommodated vertically in a rectangular parallelepiped casing having a small thickness dimension, and the two flow upwards while meandering horizontally along both the heat transfer surfaces of the flat heater. The road is formed. Then, the cleaning water is heated to an appropriate temperature by allowing the cleaning water to flow along each flow path while the flat heater is being driven. In the case of such a heat exchanger disclosed in Patent Document 1, since the cross-sectional area of the flow path is small, the flow rate of cleaning water can be increased and the heat transfer rate can be increased, and the heat transfer coefficient can be increased. There is an advantage that you can.

特開平10−220876号公報(特に、図2参照)Japanese Patent Laid-Open No. 10-220876 (refer to FIG. 2 in particular)

しかしながら、衛生洗浄装置の洗浄用の水を加熱する瞬間湯沸用の熱交換器は、最大流量が0.5L/min程度で、5℃入水で40℃出湯まで加熱するため、ヒータ入力としては1200W程度必要であり、ヒータのワット密度としては20W/cm〜50W/cm程度のワット密度が比較的大きなヒータが使用されている。
そして、前記従来のような熱交換器では、熱交換器を通過する最大流量が0.5L/min程度と少ないため、熱交換器内の動作の安定性や、さらに硬水地域で使用した場合のヒータ表面へのスケールの付着などの課題があった。
However, the heat exchanger for instantaneous water heating that heats the cleaning water of the sanitary cleaning device has a maximum flow rate of about 0.5 L / min and heats up to 40 ° C. hot water with 5 ° C. water input. It requires about 1200W, 20W / cm 2 ~50W / cm 2 of about watt density is relatively large heater is being used as a watt density of the heater.
And in the conventional heat exchanger, since the maximum flow rate passing through the heat exchanger is as low as about 0.5 L / min, the stability of the operation in the heat exchanger and further when used in a hard water area There were problems such as adhesion of scale to the heater surface.

また、熱交換条件を安定化させるためには、沸騰熱伝達を伴わない強制対流熱伝達にて熱交換を行う必要がある。このためには熱交換器内のヒータ表面上の流速を確保する方法として、平板状のヒータを用い、熱交換器の壁に仕切リブをこの平板状のヒータと近接して設け、仕切リブで仕切られて形成される蛇行した流路によって、流れる水の流速を増大することで、流水と平板状のヒータ表面との間で強制対流熱交換による熱伝達の促進を図る方法があった。   Moreover, in order to stabilize heat exchange conditions, it is necessary to perform heat exchange by forced convection heat transfer not involving boiling heat transfer. For this purpose, as a method of ensuring the flow velocity on the heater surface in the heat exchanger, a flat plate heater is used, and a partition rib is provided on the wall of the heat exchanger in the vicinity of the flat plate heater. There has been a method of promoting heat transfer by forced convection heat exchange between flowing water and a flat heater surface by increasing the flow rate of flowing water through meandering channels formed by partitioning.

この平板状ヒータを用いた前記従来の熱交換器は、ヒータ表面に強制対流を誘起し、流速を確保しつつ、ヒータ表面上に均一に流すことにより、ヒータ表面での熱伝達の促進を図る目的で構成されたものであるが、仕切リブとヒータ表面で構成される蛇行した熱交換流路である主流路と、隣接する蛇行流路に漏れるようにヒータ表面と仕切リブ先端との隙間部を流れる漏れ流によって、強制対流熱交換が阻害されるという課題があった。   The conventional heat exchanger using this flat heater promotes heat transfer on the heater surface by inducing forced convection on the heater surface and flowing uniformly on the heater surface while ensuring a flow velocity. The gap between the main surface which is a meandering heat exchange channel composed of the partition rib and the heater surface and the tip of the partition rib so as to leak into the adjacent meandering channel. There was a problem that forced convection heat exchange was hindered by the leakage flow flowing through the.

上記課題の具体例として前記従来のような熱交換器は、セラミックヒータの平板状ヒータと近接してなる仕切リブは、熱交換器のケーシングと一体に樹脂射出成型により形成されており、成型時の熱収縮や成型そりなどを含む寸法精度により、仕切リブの先端と平板状ヒータ表面との間のスキマは均一ではなく、熱交換時において平板状ヒータの表面に温度ムラが発生する。その結果、平板状ヒータの表面の局所的に熱い部分にスケールが発生
および付着しやすくなり、特に硬度の高い水質地域において、平板状ヒータの表面のスケール付着が多くなると、セラミックヒータ表面の温度差が大きくなり、セラミックヒータの割れを生じる恐れがある。
As a specific example of the above problem, in the conventional heat exchanger, the partition rib formed close to the flat plate heater of the ceramic heater is formed by resin injection molding integrally with the casing of the heat exchanger. Due to dimensional accuracy including heat shrinkage and molding warpage, the gap between the tip of the partition rib and the flat heater surface is not uniform, and temperature unevenness occurs on the flat heater surface during heat exchange. As a result, scale is likely to be generated and adhered to locally hot parts of the surface of the flat heater. Especially in the water quality area where the hardness is high, if the scale adheres to the surface of the flat heater, the temperature difference on the surface of the ceramic heater May increase and cause cracks in the ceramic heater.

また、前記した強制対流熱交換の阻害要因であるヒータ表面と仕切リブ先端との隙間部を流れる漏れ流を減少するために、仕切リブの先端をヒータ表面に密着させるような仕切リブ寸法にした場合、樹脂製の仕切リブの先端が密着した部分は、セラミックヒータ表面の熱が断熱されて局所高温となりやすく、セラミックヒータの割れがより助長される結果となる。しかもこの場合、高温に弱い樹脂製の仕切リブの先端は熱で損傷しかねない恐れもあることから課題解決にはならない。   In addition, in order to reduce the leakage flow flowing through the gap between the heater surface and the tip of the partition rib, which is an impediment to the forced convection heat exchange described above, the partition rib dimensions are set such that the tip of the partition rib is in close contact with the heater surface. In this case, the portion where the tips of the resin partition ribs are in close contact with each other is likely to be locally heated due to the heat of the surface of the ceramic heater being insulated, resulting in further promotion of cracking of the ceramic heater. In addition, in this case, the tips of the partition ribs made of resin that is vulnerable to high temperatures may be damaged by heat, and the problem cannot be solved.

本発明は、前記従来の課題を解決するもので、ヒータの表面で局部沸騰が発生せず、またヒータ表面の温度を低下させることにより、安定した熱交換性能と耐スケール性の優れた熱交換器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and local boiling does not occur on the surface of the heater, and by reducing the temperature of the heater surface, heat exchange with stable heat exchange performance and excellent scale resistance is achieved. The purpose is to provide a vessel.

前記従来の課題を解決するために、本発明の熱交換器は、
入水口と出水口を具備したケーシングと、
発熱抵抗体を内蔵するヒータと、
前記入水口から流入した流体が前記ヒータの表面を伝熱面として熱交換され前記出水口に流れるように案内する、熱交換流路と
を備え、
前記熱交換流路は前記ケーシングの内壁面に密着する金属板の複数箇所を曲げ加工して形成されたバネ性を有する仕切リブの先端部が前記ヒータの表面に当接した流路形成部材により構成されたことを特徴としている(請求項1)。
In order to solve the conventional problems, the heat exchanger of the present invention is
A casing having a water inlet and a water outlet;
A heater with a built-in heating resistor;
A heat exchange flow path that guides the fluid flowing in from the water inlet to heat exchange with the surface of the heater as a heat transfer surface and flows to the water outlet;
The heat exchange flow path is formed by a flow path forming member in which tips of partition ribs having a spring property formed by bending a plurality of portions of a metal plate in close contact with the inner wall surface of the casing are in contact with the surface of the heater. It is characterized by comprising (claim 1).

これによって、ケーシングの入水口から流入した水がヒータの表面を伝熱面として熱交換流路を流れながら加熱され、出水口に近付くにしたがって流体である洗浄水の温度が次第に上昇する。そして、熱交換流路はケーシングの内壁面に密着する金属板の複数箇所を曲げ加工して形成されたバネ性を有する仕切リブの先端部がヒータの表面に当接した流路形成部材により構成されていることにより、強制対流熱交換が阻害されるような仕切リブの先端部からの漏れ流を防止することができて、ヒータ表面で局部沸騰が発生せず、またヒータ表面の温度を低下させることができ、安定した熱交換性能と耐スケール性の優れた熱交換が可能となる。   As a result, the water flowing in from the water inlet of the casing is heated while flowing through the heat exchange channel with the surface of the heater as the heat transfer surface, and the temperature of the cleaning water, which is a fluid, gradually increases as it approaches the water outlet. The heat exchange flow path is constituted by a flow path forming member in which the tip end portion of a partition rib having a spring property formed by bending a plurality of portions of a metal plate in close contact with the inner wall surface of the casing is in contact with the surface of the heater. As a result, the leakage flow from the tip of the partition rib, which inhibits forced convection heat exchange, can be prevented, local boiling does not occur on the heater surface, and the temperature of the heater surface is reduced. Therefore, stable heat exchange performance and heat exchange excellent in scale resistance are possible.

この場合、流路形成部材は金属板なのでバネ性を有する仕切リブの先端部がヒータ表面の伝熱面と当接しても、熱伝導率が高くヒータの熱が金属の仕切リブに伝達され、さらに水に伝達される。したがって、樹脂の仕切リブのようにヒータ表面の熱が断熱されて局所高温となるような不具合がなく熱伝達効率を高められる。   In this case, since the flow path forming member is a metal plate, even if the tip of the partition rib having a spring property contacts the heat transfer surface of the heater surface, the heat conductivity is high and the heat of the heater is transmitted to the metal partition rib. Furthermore, it is transmitted to water. Therefore, there is no problem that the heat on the surface of the heater is insulated as in the case of resin partition ribs, and the heat transfer efficiency is increased.

また、流路形成部材は金属板でバネ性を有する仕切リブの先端部がヒータ表面の伝熱面と当接する構成なので、ヒータやケーシングの寸法に多少ばらつきがあっても、バネ性による撓みによって仕切リブの先端部がヒータ表面の伝熱面と確実に当接することができるとともに、バネ性によって仕切リブが撓むことによってヒータへの過大な荷重応力を防止できる。   In addition, the flow path forming member is a metal plate, and the tip of the partition rib having spring properties is in contact with the heat transfer surface of the heater surface, so even if there is some variation in the dimensions of the heater or casing, The leading end portion of the partition rib can surely contact the heat transfer surface of the heater surface, and excessive load stress to the heater can be prevented by bending the partition rib due to the spring property.

また、前記ヒータは平板状ヒータで、前記熱交換流路は、前記平板状ヒータの表裏の前記伝熱面に当接した流路形成部材の夫々に沿って下部の前記入水口から上部の前記出水口まで延設された2つの蛇行流路に形成されていてもよい(請求項2)。   Further, the heater is a flat plate heater, and the heat exchange flow path extends from the lower water inlet to the upper portion along each of the flow path forming members in contact with the heat transfer surfaces on the front and back of the flat plate heater. You may form in the two meandering flow paths extended to the water outlet (Claim 2).

これによって、平板状ヒータの熱が表裏の両面に接触して流れる洗浄水に伝熱され、放熱ロスの無駄がほとんどない熱効率の高い熱交換ができ、平板状ヒータの表裏両面とも伝熱面積として活用できるので小型コンパクトにでき、蛇行流路によって流路長を長くできるとともに流速が速められるので、ヒータ表面と洗浄水との境界層の厚みが、より薄くなるように作用して、熱伝達効率が向上するとともにヒータ表面の温度もより低下するので、さらに局所的な沸騰現象が抑制でき、スケールの生成付着を防止する効果をより高めることができる。   As a result, the heat of the flat heater is transferred to the washing water that flows in contact with both sides of the front and back, and heat exchange with high thermal efficiency is possible with almost no waste of heat loss. Because it can be used, it can be made compact and compact, and the length of the flow path can be increased by the meandering flow path and the flow velocity can be increased, so that the thickness of the boundary layer between the heater surface and washing water is made thinner, and the heat transfer efficiency Since the temperature of the heater surface is also lowered, the local boiling phenomenon can be further suppressed, and the effect of preventing the formation and adhesion of scale can be further enhanced.

また、前記流路形成部材は、ステンレス板の複数個所を曲げ加工して形成されてもよい(請求項3)。   The flow path forming member may be formed by bending a plurality of portions of a stainless steel plate.

ステンレス製の薄板はバネ性があるとともに耐食性に優れ、長寿命で長期間に亘り清潔な湯を供給できる。   A stainless steel thin plate has springiness and corrosion resistance, and can supply clean hot water over a long period of time.

また、本発明に係る熱交換器において、前記平板状ヒータは、前記出水口に近い側の熱交換流路に面した発熱密度が前記入水口に近い側の熱交換流路に面した発熱密度より小さく形成されていてもよい(請求項4)。   Further, in the heat exchanger according to the present invention, the flat plate heater has a heat generation density facing a heat exchange channel on the side close to the water inlet, and a heat generation density facing the heat exchange channel on the side close to the water inlet. It may be formed smaller (claim 4).

この場合、ケーシングの入水口から流入した流体は、平板状ヒータの表面を蛇行して流れる熱交換流路を流れながら、平板状ヒータ表面の伝熱面により加熱され、出水口に近づくに従って流体の温度が次第に上昇する。   In this case, the fluid flowing in from the water inlet of the casing is heated by the heat transfer surface on the surface of the flat heater while flowing through the heat exchange flow path meandering on the surface of the flat heater, and the fluid flows as it approaches the water outlet. The temperature gradually increases.

そして、入水口に近い側の熱交換流路に面した平板状ヒータの表面温度は、平板状ヒータの高い発熱密度によって高温になろうとするが、まだ加熱されていない低い温度の流体に熱を多く奪われる(すなわちサブクールの値が大きい)ためと、流路厚みが薄く流速が速いことから、熱伝達率が高く局所的な沸騰現象が生じるほどの高温にはならない。   The surface temperature of the flat heater facing the heat exchange channel near the water inlet tends to become high due to the high heat generation density of the flat heater, but heat is applied to the low-temperature fluid that has not yet been heated. Because many are deprived (that is, the value of the subcool is large) and the flow path is thin and the flow velocity is high, the heat transfer rate is high and the local boiling phenomenon does not occur.

一方、出水口に近い側の熱交換流路に面した平板状ヒータの表面温度は、平板状ヒータの表面に接触する流体が既に加熱されているため、入水口に近い側に比べて高い温度になりやすい。   On the other hand, the surface temperature of the flat heater facing the heat exchange channel on the side close to the water outlet is higher than that on the side close to the water inlet because the fluid in contact with the surface of the flat heater has already been heated. It is easy to become.

しかしながら、平板状ヒータの表面から流体に奪われる熱は少なくなりサブクールの値は小さくなるが、平板状ヒータは出水口に近い側の発熱密度が入水口に近い側の発熱密度より小さくなるように形成されているので、局所的な沸騰現象が生じるほどの高温にはならない。   However, the heat taken away by the fluid from the surface of the flat heater is reduced and the subcool value is reduced, but the flat heater has a lower heat generation density on the side near the water outlet than that on the side near the water inlet. Since it is formed, the temperature is not high enough to cause local boiling.

このように、平板状ヒータは出水口に近い側の熱交換流路に面した発熱密度が入水口に近い側の熱交換流路に面した発熱密度より小さく形成されていることによって、流体の温度が高くなる出水口に近い側の平板状ヒータと水との境界面においても、局所的な沸騰現象が生じるような高温になることが抑制されて、スケールの生成付着を防止でき、長寿命の熱交換器を提供することができる。   In this way, the flat heater is formed so that the heat generation density facing the heat exchange flow path on the side close to the water outlet is smaller than the heat generation density facing the heat exchange flow path on the side close to the water inlet. Even at the boundary surface between the flat heater and water near the outlet where the temperature rises, it is possible to prevent the formation and adhesion of scales by preventing high temperatures that cause local boiling, and long life Heat exchanger can be provided.

一方、流体(水)の温度が相対的に低く、また出水口に近い側の熱交換流路に比べて流速が速い入水口に近い側の熱交換流路に面した平板状ヒータの発熱密度を大きくしているため、該入水口に近い側の熱交換流路近傍での熱交換効率の向上が図れる。   On the other hand, the heat generation density of the flat heater facing the heat exchange channel on the side close to the water inlet where the temperature of the fluid (water) is relatively low and the flow velocity is higher than that on the side near the water outlet Therefore, the heat exchange efficiency in the vicinity of the heat exchange flow path near the water inlet can be improved.

なお、通常の平板状ヒータで発熱密度の局所的な分布が伝熱面の全面にわたって均一な場合にあっては、平板状ヒータの出水口に近い側が最高温度となり、この部分にまずスケールが生成される。   If the local distribution of heat generation density is uniform over the entire surface of the heat transfer surface with a normal flat heater, the temperature close to the water outlet of the flat heater is the highest temperature, and a scale is first generated in this area. Is done.

しかしながら、平板状ヒータの発熱密度分布は、出水口に近い側の熱交換流路付近が、入水口に近い側の熱交換流路付近よりも小さくなるように設定されており、その結果、熱交換器の熱流束は、ヒータの発熱密度の大きい箇所では高く、発熱密度が小さい箇所では低くなるため、伝熱面温度の均一化が図られ、局所的に温度が上昇してそこにスケールが付着することを抑制できる。   However, the heat generation density distribution of the flat heater is set so that the vicinity of the heat exchange channel near the water outlet is smaller than the vicinity of the heat exchange channel near the water inlet. The heat flux of the exchanger is high at locations where the heat generation density of the heater is high, and low at locations where the heat generation density is low.Therefore, the heat transfer surface temperature is made uniform, the temperature rises locally, and the scale appears there. It can suppress adhering.

このような構成とすることにより、平板状ヒータに接触して流れる洗浄水に伝熱され、放熱ロスの無駄がほとんどない熱効率の高い熱交換ができ、小型コンパクトにでき、かつスケールが付着することを抑制できる。   By adopting such a configuration, heat is transferred to the washing water flowing in contact with the flat heater, heat exchange with high thermal efficiency with almost no waste of heat dissipation can be achieved, a compact and compact scale can be attached. Can be suppressed.

また、本発明に係る熱交換器において、前記平板状ヒータは、セラミック基体と、該セラミック基体上に抵抗体をパターン印刷して形成された発熱抵抗体と、電極とから成るセラミックヒータであり、印刷パターンのヒータ線幅は、前記入水口に近い側の熱交換流路に面した部分より前記出水口に近い側の熱交換流路に面した部分の方が太く形成されていてもよい(請求項5)。   Further, in the heat exchanger according to the present invention, the flat heater is a ceramic heater including a ceramic base, a heating resistor formed by pattern printing a resistor on the ceramic base, and an electrode, The heater line width of the printed pattern may be formed so that the portion facing the heat exchange flow path on the side close to the water outlet is thicker than the portion facing the heat exchange flow path on the side close to the water inlet ( Claim 5).

このような構成とすることにより、発熱抵抗体である印刷パターンの線幅が太いほど、電流を流したときの電気抵抗が小さく発熱量が小さくなる。従って、印刷パターンの線幅が細い入水口に近い側の熱交換流路に面した部分は発熱量が大きく(即ち、発熱密度が大きく)、印刷パターンの線幅が太い出水口に近い側の熱交換流路に面した部分は発熱量が小さい(即ち、発熱密度が小さい)セラミックヒータとなる。   By adopting such a configuration, the larger the line width of the printed pattern as the heating resistor, the smaller the electrical resistance when a current is passed, and the smaller the amount of heat generated. Therefore, the portion facing the heat exchange channel on the side close to the water inlet with the narrow line width of the printed pattern has a large amount of heat generation (that is, the heat generation density is large), and the part near the water outlet with the large line width of the printed pattern. The portion facing the heat exchange flow path becomes a ceramic heater that generates a small amount of heat (that is, a low heat generation density).

そのため、流体の温度が高くなる出水口に近い側の熱交換流路に面した部分のセラミックヒータと流体との境界面においても、局所的な沸騰現象が生じるほどの高温になることが抑制され、スケールの生成及び付着を防止できる。その結果、高い熱交換効率を維持できるとともに、金属と比較して熱容量は小さい特長を有するが割れやすいとされるセラミックを用いたヒータにおいて、割れを防止できて長寿命の熱交換器を実現することができる。   Therefore, even at the boundary surface between the ceramic heater and the fluid in the portion facing the heat exchange flow path on the side close to the outlet where the temperature of the fluid becomes high, it is suppressed that the temperature becomes high enough to cause a local boiling phenomenon. , Scale formation and adhesion can be prevented. As a result, it is possible to maintain high heat exchange efficiency and to realize a long-life heat exchanger that can prevent cracking in a heater using ceramics that has a small heat capacity compared to metal but is easily cracked. be able to.

また、本発明に係る熱交換器において、前記平板状ヒータは、セラミック基体と、該セラミック基体上に抵抗体をパターン印刷して形成された発熱抵抗体と、電極とから成るセラミックヒータであり、前記印刷パターンの線間の隙間は、前記入水口に近い側の熱交換流路に面した部分より前記出水口に近い側の熱交換流路に面した部分の方が広く形成されていてもよい(請求項6)。   Further, in the heat exchanger according to the present invention, the flat heater is a ceramic heater including a ceramic base, a heating resistor formed by pattern printing a resistor on the ceramic base, and an electrode, The gap between the lines of the printed pattern may be formed so that the portion facing the heat exchange flow path closer to the water outlet is wider than the portion facing the heat exchange flow path closer to the water inlet. Good (Claim 6).

このような構成とすることにより、印刷パターンの線間の隙間が狭い入水口に近い側の熱交換流路に面した部分は発熱量が大きく(即ち、発熱密度が大きく)、印刷パターンの線間の隙間が広い出水口に近い側の熱交換流路に面した部分は発熱量が小さい(即ち、発熱密度が小さい)セラミックヒータとなる。そのため、上述したのと同様の理由から、スケールの生成及び付着を防止できると共に、セラミックヒータの割れを防止できて、長寿命の熱交換器を実現することができる。   By adopting such a configuration, the portion facing the heat exchange channel on the side close to the water inlet where the gap between the printed pattern lines is narrow generates a large amount of heat (that is, the heat generation density is large), and the printed pattern lines A portion facing the heat exchange channel on the side close to the water outlet with a wide gap between them becomes a ceramic heater with a small amount of heat generation (that is, a small heat generation density). Therefore, for the same reason as described above, scale generation and adhesion can be prevented, and cracking of the ceramic heater can be prevented, and a long-life heat exchanger can be realized.

また、請求項1から請求項6のいずれか1つの発明の熱交換器を備えた衛生洗浄装置は、熱交換器を小型で安定した熱交換性能と耐スケール性に優れ、長寿命化することで、衛生洗浄装置本体の小型化が実現でき、狭いトイレ空間にも容易に設置することができるとともに、熱交換器内のスケールの生成及び付着を防止することで、硬水地域で使用できる衛生洗浄装置を実現でき、洗浄ノズルにスケール破片が詰まることを防止でき、長寿命の衛生洗浄装置とすることができる(請求項7)。   Moreover, the sanitary washing apparatus provided with the heat exchanger according to any one of claims 1 to 6 is characterized in that the heat exchanger is small and stable, has excellent heat exchange performance and scale resistance, and has a long life. The sanitary washing device itself can be downsized, can be easily installed in a narrow toilet space, and can be used in hard water areas by preventing the formation and adhesion of scales in the heat exchanger. The apparatus can be realized, the cleaning nozzle can be prevented from being clogged with scale fragments, and a sanitary cleaning apparatus with a long life can be obtained (claim 7).

本発明によれば、ヒータ表面で局部沸騰が発生せず、またヒータ表面の温度を低下させることにより、安定した熱交換性能と耐スケール性の優れた熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the local boiling does not generate | occur | produce on a heater surface, and the heat exchanger excellent in the stable heat exchange performance and scale resistance can be provided by reducing the temperature of a heater surface.

本発明の実施の形態に係る熱交換器を備える衛生洗浄装置を示す外観斜視図The external appearance perspective view which shows the sanitary washing apparatus provided with the heat exchanger which concerns on embodiment of this invention 本発明の実施の形態1に係る熱交換器の外観構成を示す正面図The front view which shows the external appearance structure of the heat exchanger which concerns on Embodiment 1 of this invention. 図2に示す熱交換器の右側面図Right side view of the heat exchanger shown in FIG. 図2に示す熱交換器のA−A線での断面図Sectional drawing in the AA line of the heat exchanger shown in FIG. 図2に示す熱交換器の分解斜視図2 is an exploded perspective view of the heat exchanger shown in FIG. 図2に示す熱交換器の仕切リブを第一ケーシング部材にセットする前の正面図The front view before setting the partition rib of the heat exchanger shown in FIG. 2 to a 1st casing member 図2に示す熱交換器の仕切リブを第一ケーシング部材にセットした後の正面図The front view after setting the partition rib of the heat exchanger shown in FIG. 2 to the 1st casing member 図2に示す熱交換器の仕切リブを第二ケーシング部材にセットする前の正面図The front view before setting the partition rib of the heat exchanger shown in FIG. 2 to a 2nd casing member 図2に示す熱交換器の仕切リブを第二ケーシング部材にセットした後の正面図The front view after setting the partition rib of the heat exchanger shown in FIG. 2 to the 2nd casing member 図4に示す熱交換器の平板状ヒータに形成された抵抗体のパターン例を示す平面図The top view which shows the example of a pattern of the resistor formed in the flat heater of the heat exchanger shown in FIG. 図4に示す熱交換器の平板状ヒータに形成された抵抗体の別のパターン例を示す平面図The top view which shows another example of a pattern of the resistor formed in the flat heater of the heat exchanger shown in FIG. 図2に示す熱交換器の仕切リブを第二ケーシング部材にセットした後の斜視図The perspective view after setting the partition rib of the heat exchanger shown in FIG. 2 to the 2nd casing member 図12を部分拡大した斜視図12 is a partially enlarged perspective view of FIG. 本発明の実施の形態に係る熱交換器の仕切リブ形状を例示する斜視図The perspective view which illustrates the partition rib shape of the heat exchanger which concerns on embodiment of this invention 仕切リブの先端クリアランスの影響をシミュレーションした結果のグラフGraph of the result of simulating the effect of the tip clearance of the partition rib 仕切リブの先端クリアランスの影響をシミュレーションした結果のグラフGraph of the result of simulating the effect of the tip clearance of the partition rib 仕切リブの先端クリアランスの影響をシミュレーションした結果のグラフGraph of the result of simulating the effect of the tip clearance of the partition rib 仕切リブの先端クリアランスの影響をシミュレーションした結果のグラフGraph of the result of simulating the effect of the tip clearance of the partition rib 仕切リブの先端クリアランスの影響を実験した結果のグラフGraph of the results of experiments on the effect of the tip clearance of the partition rib 図13の実験結果を模式的に示したグラフA graph schematically showing the experimental results of FIG.

第1の発明は、入水口と出水口を具備したケーシングと、発熱抵抗体を内蔵するヒータと、前記入水口から流入した流体が前記ヒータの表面を伝熱面として熱交換され前記出水口に流れるように案内する、熱交換流路とを備え、前記熱交換流路は前記ケーシングの内壁面に密着する金属板の複数箇所を曲げ加工して形成されたバネ性を有する仕切リブの先端部が前記ヒータの表面に当接した流路形成部材により構成することにより、ケーシングの入水口から流入した水がヒータの表面を伝熱面として熱交換流路を流れながら加熱され、出水口に近付くにしたがって流体である洗浄水の温度が次第に上昇する。そして、熱交換流路はケーシングの内壁面に密着する金属板の複数箇所を曲げ加工して形成されたバネ性を有する仕切リブの先端部がヒータの表面に当接した流路形成部材により構成されていることにより、強制対流熱交換が阻害されるような仕切リブの先端部からの漏れ流を防止することができて、ヒータ表面で局部沸騰が発生せず、またヒータ表面の温度を低下させることができ、安定した熱交換性能と耐スケール性の優れた熱交換が可能となる。   In the first invention, a casing having a water inlet and a water outlet, a heater incorporating a heating resistor, and fluid flowing in from the water inlet are heat-exchanged with the surface of the heater as a heat transfer surface to the water outlet. A heat exchange flow path that guides the flow to flow, and the heat exchange flow path is formed by bending a plurality of portions of a metal plate that is in close contact with the inner wall surface of the casing, and the tip end portion of a partition rib having a spring property Is constituted by the flow path forming member in contact with the surface of the heater, so that water flowing in from the water inlet of the casing is heated while flowing through the heat exchange flow path with the surface of the heater as the heat transfer surface, and approaches the water outlet. Accordingly, the temperature of the washing water, which is a fluid, gradually increases. The heat exchange flow path is constituted by a flow path forming member in which the tip end portion of a partition rib having a spring property formed by bending a plurality of portions of a metal plate in close contact with the inner wall surface of the casing is in contact with the surface of the heater. As a result, the leakage flow from the tip of the partition rib, which inhibits forced convection heat exchange, can be prevented, local boiling does not occur on the heater surface, and the temperature of the heater surface is reduced. Therefore, stable heat exchange performance and heat exchange excellent in scale resistance are possible.

この場合、流路形成部材は金属板なのでバネ性を有する仕切リブの先端部がヒータ表面の伝熱面と当接しても、熱伝導率が高くヒータの熱が金属の仕切リブに伝達され、さらに水に伝達される。したがって、樹脂の仕切リブのようにヒータ表面の熱が断熱されて局所
高温となるような不具合がなく熱伝達効率を高められる。
In this case, since the flow path forming member is a metal plate, even if the tip of the partition rib having a spring property contacts the heat transfer surface of the heater surface, the heat conductivity is high and the heat of the heater is transmitted to the metal partition rib. Furthermore, it is transmitted to water. Therefore, there is no problem that the heat on the surface of the heater is insulated as in the case of resin partition ribs, and the heat transfer efficiency is increased.

また、流路形成部材は金属板でバネ性を有する仕切リブの先端部がヒータ表面の伝熱面と当接する構成なので、ヒータやケーシングの寸法に多少ばらつきがあっても、バネ性による撓みによって仕切リブの先端部がヒータ表面の伝熱面と確実に当接することができるとともに、バネ性によって仕切リブが撓むことによってヒータへの過大な荷重応力を防止できる。   In addition, the flow path forming member is a metal plate, and the tip of the partition rib having spring properties is in contact with the heat transfer surface of the heater surface, so even if there is some variation in the dimensions of the heater or casing, The leading end portion of the partition rib can surely contact the heat transfer surface of the heater surface, and excessive load stress to the heater can be prevented by bending the partition rib due to the spring property.

第2の発明は、特に第1の発明のヒータは平板状ヒータで、前記熱交換流路は、前記平板状ヒータの表裏の前記伝熱面に当接した流路形成部材の夫々に沿って下部の前記入水口から上部の前記出水口まで延設された2つの蛇行流路に形成されたことにより、平板状ヒータの熱が表裏の両面に接触して流れる洗浄水に伝熱され、放熱ロスの無駄がほとんどない熱効率の高い熱交換ができ、平板状ヒータの表裏両面とも伝熱面積として活用できるので小型コンパクトにでき、蛇行流路によって流路長を長くできるとともに流速が速められるので、ヒータ表面と洗浄水との境界層の厚みが、より薄くなるように作用して、熱伝達効率が向上するとともにヒータ表面の温度もより低下するので、さらに局所的な沸騰現象が抑制でき、スケールの生成付着を防止する効果をより高めることができる。   In the second invention, in particular, the heater of the first invention is a flat plate heater, and the heat exchange flow path is along each of the flow path forming members in contact with the heat transfer surfaces on the front and back of the flat plate heater. By being formed in two meandering channels extending from the lower water inlet to the upper water outlet, the heat of the flat heater is transferred to the wash water flowing in contact with both the front and back surfaces to dissipate heat. Heat exchange with high thermal efficiency with almost no loss is possible, and both the front and back sides of the flat heater can be used as the heat transfer area, so it can be made compact and compact, and the meandering flow path can increase the flow path length and speed. Since the thickness of the boundary layer between the heater surface and the cleaning water acts to be thinner, the heat transfer efficiency is improved and the temperature of the heater surface is also lowered. With generation It is possible to enhance the effect of preventing.

第3の発明は、特に第1の発明または第2の発明の流路形成部材は、ステンレス板の複数個所を曲げ加工して形成されたことにより、耐食性に優れ、長寿命で長期間に亘り清潔な湯を供給できる。   In the third invention, in particular, the flow path forming member of the first invention or the second invention is formed by bending a plurality of portions of a stainless steel plate, so that it has excellent corrosion resistance, a long life, and a long period of time. Can supply clean hot water.

第4の発明は、特に第2の発明または第3の発明の平板状ヒータは、前記出水口に近い側の熱交換流路に面した発熱密度が前記入水口に近い側の熱交換流路に面した発熱密度より小さい構成としたものである。   According to a fourth aspect of the present invention, in particular, the flat heater of the second aspect or the third aspect of the invention is a heat exchange flow path whose heat generation density facing the heat exchange flow path on the side close to the water outlet is on the side close to the water inlet. It is set as the structure smaller than the heat generation density which faced.

この場合、ケーシングの入水口から流入した流体は、平板状ヒータの表面を蛇行して流れる熱交換流路を流れながら、平板状ヒータ表面の伝熱面により加熱され、出水口に近づくに従って流体の温度が次第に上昇する。   In this case, the fluid flowing in from the water inlet of the casing is heated by the heat transfer surface on the surface of the flat heater while flowing through the heat exchange flow path meandering on the surface of the flat heater, and the fluid flows as it approaches the water outlet. The temperature gradually increases.

そして、入水口に近い側の熱交換流路に面した平板状ヒータの表面温度は、平板状ヒータの高い発熱密度によって高温になろうとするが、まだ加熱されていない低い温度の流体に熱を多く奪われる(すなわちサブクールの値が大きい)ためと、流路厚みが薄く流速が速いことから、熱伝達率が高く局所的な沸騰現象が生じるほどの高温にはならない。   The surface temperature of the flat heater facing the heat exchange channel near the water inlet tends to become high due to the high heat generation density of the flat heater, but heat is applied to the low-temperature fluid that has not yet been heated. Because many are deprived (that is, the value of the subcool is large) and the flow path is thin and the flow velocity is high, the heat transfer rate is high and the local boiling phenomenon does not occur.

一方、出水口に近い側の熱交換流路に面した平板状ヒータの表面温度は、平板状ヒータの表面に接触する流体が既に加熱されているため、入水口に近い側に比べて高い温度になりやすい。   On the other hand, the surface temperature of the flat heater facing the heat exchange channel on the side close to the water outlet is higher than that on the side close to the water inlet because the fluid in contact with the surface of the flat heater has already been heated. It is easy to become.

しかしながら、平板状ヒータの表面から流体に奪われる熱は少なくなりサブクールの値は小さくなるが、平板状ヒータは出水口に近い側の発熱密度が入水口に近い側の発熱密度より小さくなるように形成されているので、局所的な沸騰現象が生じるほどの高温にはならない。   However, the heat taken away by the fluid from the surface of the flat heater is reduced and the subcool value is reduced, but the flat heater has a lower heat generation density on the side near the water outlet than that on the side near the water inlet. Since it is formed, the temperature is not high enough to cause local boiling.

このように、平板状ヒータは出水口に近い側の熱交換流路に面した発熱密度が入水口に近い側の熱交換流路に面した発熱密度より小さく形成されていることによって、流体の温度が高くなる出水口に近い側の平板状ヒータと水との境界面においても、局所的な沸騰現象が生じるような高温になることが抑制されて、スケールの生成付着を防止でき、長寿命の熱交換器を提供することができる。   In this way, the flat heater is formed so that the heat generation density facing the heat exchange flow path on the side close to the water outlet is smaller than the heat generation density facing the heat exchange flow path on the side close to the water inlet. Even at the boundary surface between the flat heater and water near the outlet where the temperature rises, it is possible to prevent the formation and adhesion of scales by preventing high temperatures that cause local boiling, and long life Heat exchanger can be provided.

一方、流体の温度が相対的に低く、また出水口に近い側の熱交換流路に比べて流速が速い入水口に近い側の熱交換流路に面した平板状ヒータの発熱密度を大きくしているため、該入水口に近い側の熱交換流路近傍での熱交換効率の向上が図れる。   On the other hand, the heat generation density of the flat heater facing the heat exchange flow path on the side close to the water inlet is higher than the heat exchange flow path on the side close to the water outlet, where the fluid temperature is relatively low. Therefore, the heat exchange efficiency in the vicinity of the heat exchange flow path near the water inlet can be improved.

なお、通常の平板状ヒータで発熱密度の局所的な分布が伝熱面の全面にわたって均一な場合にあっては、平板状ヒータの出水口に近い側が最高温度となり、この部分にまずスケールが生成される。   If the local distribution of heat generation density is uniform over the entire surface of the heat transfer surface with a normal flat heater, the temperature close to the water outlet of the flat heater is the highest temperature, and a scale is first generated in this area. Is done.

しかしながら、平板状ヒータの発熱密度分布は、出水口に近い側の熱交換流路付近が、入水口に近い側の熱交換流路付近よりも小さくなるように設定されており、その結果、熱交換器の熱流束は、ヒータの発熱密度の大きい箇所では高く、発熱密度が小さい箇所では低くなるため、伝熱面温度の均一化が図られ、局所的に温度が上昇してそこにスケールが付着することを抑制できる。   However, the heat generation density distribution of the flat heater is set so that the vicinity of the heat exchange channel near the water outlet is smaller than the vicinity of the heat exchange channel near the water inlet. The heat flux of the exchanger is high at locations where the heat generation density of the heater is high, and low at locations where the heat generation density is low.Therefore, the heat transfer surface temperature is made uniform, the temperature rises locally, and the scale appears there. It can suppress adhering.

このような構成とすることにより、平板状ヒータに接触して流れる洗浄水に伝熱され、放熱ロスの無駄がほとんどない熱効率の高い熱交換ができ、小型コンパクトにでき、かつスケールが付着することを抑制できる。   By adopting such a configuration, heat is transferred to the washing water flowing in contact with the flat heater, heat exchange with high thermal efficiency with almost no waste of heat dissipation can be achieved, a compact and compact scale can be attached. Can be suppressed.

第5の発明は、特に第4の発明の平板状ヒータは、セラミック基体と、該セラミック基体上に抵抗体をパターン印刷して形成された発熱抵抗体と、電極とから成るセラミックヒータであり、印刷パターンのヒータ線幅は、前記入水口に近い側の熱交換流路に面した部分より前記出水口に近い側の熱交換流路に面した部分の方が太く形成されたものである。   The fifth invention is a ceramic heater comprising a ceramic substrate, a heating resistor formed by pattern printing a resistor on the ceramic substrate, and an electrode. The heater line width of the printed pattern is such that the portion facing the heat exchange flow path nearer to the water outlet is thicker than the portion facing the heat exchange flow path closer to the water inlet.

このような構成とすることにより、発熱抵抗体である印刷パターンの線幅が太いほど、電流を流したときの電気抵抗が小さく発熱量が小さくなる。従って、印刷パターンの線幅が細い入水口に近い側の熱交換流路に面した部分は発熱量が大きく(即ち、発熱密度が大きく)、印刷パターンの線幅が太い出水口に近い側の熱交換流路に面した部分は発熱量が小さい(即ち、発熱密度が小さい)セラミックヒータとなる。   By adopting such a configuration, the larger the line width of the printed pattern as the heating resistor, the smaller the electrical resistance when a current is passed, and the smaller the amount of heat generated. Therefore, the portion facing the heat exchange channel on the side close to the water inlet with the narrow line width of the printed pattern has a large amount of heat generation (that is, the heat generation density is large), and the part near the water outlet with the large line width of the printed pattern. The portion facing the heat exchange flow path becomes a ceramic heater that generates a small amount of heat (that is, a low heat generation density).

そのため、流体の温度が高くなる出水口に近い側の熱交換流路に面した部分のセラミックヒータと流体との境界面においても、局所的な沸騰現象が生じるほどの高温になることが抑制され、スケールの生成及び付着を防止できる。その結果、高い熱交換効率を維持できるとともに、金属と比較して熱容量は小さい特長を有するが割れやすいとされるセラミックを用いたヒータにおいて、割れを防止できて長寿命の熱交換器を実現することができる。   Therefore, even at the boundary surface between the ceramic heater and the fluid in the portion facing the heat exchange flow path on the side close to the outlet where the temperature of the fluid becomes high, it is suppressed that the temperature becomes high enough to cause a local boiling phenomenon. , Scale formation and adhesion can be prevented. As a result, it is possible to maintain high heat exchange efficiency and to realize a long-life heat exchanger that can prevent cracking in a heater using ceramics that has a small heat capacity compared to metal but is easily cracked. be able to.

第6の発明は、特に第4の発明の平板状ヒータは、セラミック基体と、該セラミック基体上に抵抗体をパターン印刷して形成された発熱抵抗体と、電極とから成るセラミックヒータであり、前記印刷パターンの線間の隙間は、前記入水口に近い側の熱交換流路に面した部分より前記出水口に近い側の熱交換流路に面した部分の方が広く形成されたものである。   The sixth invention is a ceramic heater comprising a ceramic substrate, a heating resistor formed by pattern printing a resistor on the ceramic substrate, and an electrode. The gap between the lines of the printed pattern is formed so that the portion facing the heat exchange channel closer to the water outlet is wider than the portion facing the heat exchange channel closer to the water inlet. is there.

このような構成とすることにより、印刷パターンの線間の隙間が狭い入水口に近い側の熱交換流路に面した部分は発熱量が大きく(即ち、発熱密度が大きく)、印刷パターンの線間の隙間が広い出水口に近い側の熱交換流路に面した部分は発熱量が小さい(即ち、発熱密度が小さい)セラミックヒータとなる。そのため、上述したのと同様の理由から、スケールの生成及び付着を防止できると共に、セラミックヒータの割れを防止できて、長寿命の熱交換器を実現することができる。   By adopting such a configuration, the portion facing the heat exchange channel on the side close to the water inlet where the gap between the printed pattern lines is narrow generates a large amount of heat (that is, the heat generation density is large), and the printed pattern lines A portion facing the heat exchange channel on the side close to the water outlet with a wide gap between them becomes a ceramic heater with a small amount of heat generation (that is, a small heat generation density). Therefore, for the same reason as described above, scale generation and adhesion can be prevented, and cracking of the ceramic heater can be prevented, and a long-life heat exchanger can be realized.

第6の発明は、特に、第1の発明から第6の発明の熱交換器を備えた衛生洗浄装置は、
熱交換器を小型で安定した熱交換性能と耐スケール性に優れ、長寿命化することで、衛生洗浄装置本体の小型化が実現でき、狭いトイレ空間にも容易に設置することができるとともに、熱交換器内のスケールの生成及び付着を防止することで、硬水地域で使用できる衛生洗浄装置を実現でき、洗浄ノズルにスケール破片が詰まることを防止でき、長寿命の衛生洗浄装置とすることができる。
The sixth aspect of the invention is particularly a sanitary washing apparatus provided with the heat exchanger of the first to sixth aspects of the invention.
The heat exchanger has a small and stable heat exchange performance and scale resistance, and has a long service life, so the sanitary washing device itself can be downsized and installed easily in a narrow toilet space. By preventing the generation and adhesion of scale in the heat exchanger, it is possible to realize a sanitary washing device that can be used in hard water areas, prevent clogging of scale debris into the washing nozzle, and make it a long-life sanitary washing device. it can.

以下、本発明の実施の形態に係る熱交換器について、衛生洗浄装置に適用したものを例にとり、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, a heat exchanger according to an embodiment of the present invention will be described with reference to the drawings, taking an example applied to a sanitary washing device. Note that the present invention is not limited to the embodiments.

(実施の形態1)
[衛生洗浄装置]
図1は、本発明の実施の形態に係る熱交換器を備える衛生洗浄装置を示す外観斜視図である。図1に示すように、衛生洗浄装置1は便器2の上面に配設されており、本体部3、便座部4、便蓋部5、および操作部6などを備えている。このうち本体部3は、便座部4の後側(着座した使用者から見て背後側)に配設されており、横長で中空の筐体3a内に、図示しない洗浄ユニット、乾燥ユニット、およびこれらの動作を制御する制御ユニットの他、本実施の形態に係る熱交換器10(破線で図示)などが収納されている。この熱交換器10には、便器2の設置建物に付随の水道設備から水道水(流体,液体,洗浄水)が導入され、内部で適温にまで暖められる。そして、使用者が操作部6を操作して所定の入力を行うと、洗浄ユニットが駆動して、該洗浄ユニットが有するノズルからシャワー状に人体局部に対して洗浄水が噴射されるようになっている。
(Embodiment 1)
[Sanitary washing equipment]
FIG. 1 is an external perspective view showing a sanitary washing apparatus including a heat exchanger according to an embodiment of the present invention. As shown in FIG. 1, the sanitary washing device 1 is disposed on the upper surface of the toilet 2, and includes a main body 3, a toilet seat 4, a toilet lid 5, an operation unit 6, and the like. Of these, the main body 3 is disposed on the rear side (back side as viewed from the seated user) of the toilet seat 4, and in a horizontally long and hollow housing 3a, a cleaning unit, a drying unit (not shown), and In addition to a control unit that controls these operations, a heat exchanger 10 (illustrated by a broken line) according to the present embodiment is accommodated. In this heat exchanger 10, tap water (fluid, liquid, washing water) is introduced from a water supply facility attached to the building where the toilet 2 is installed, and is heated to an appropriate temperature inside. When the user operates the operation unit 6 to perform a predetermined input, the cleaning unit is driven, and cleaning water is jetted from the nozzles of the cleaning unit to the human body part in a shower shape. ing.

[熱交換器]
図2〜図5は、熱交換器10(10)の構成を示す図面であり、図2は外観構成を示す正面図、図3は図2の右側面図、図4は図2のA−A線での断面図を夫々示している。図2〜図4に示すように、熱交換器10は厚み寸法が小さく正面視で略長方形状を成す平板状の外観形状に構成されており、図に示すように、矩形平板状を成す平板状ヒータ20と、その一方の面(第一伝熱面)20aに対向配置された第一ケーシング部材21と、他方の面(第二伝熱面)20bに対向配置された第二ケーシング部材22と、これらを収容して入水口23aおよび出水口23bを有するケーシング23とを備えている。このうち平板状ヒータ20はセラミック製であり、第一ケーシング部材21および第二ケーシング部材22は、ABS樹脂にガラス繊維をコンパウンドした強化ABS樹脂製としている。
[Heat exchanger]
2-5 is drawing which shows the structure of the heat exchanger 10 (10), FIG. 2 is a front view which shows an external appearance structure, FIG. 3 is a right view of FIG. 2, FIG. 4 is A- of FIG. Cross-sectional views along line A are shown. As shown in FIGS. 2 to 4, the heat exchanger 10 is configured to have a flat plate-like appearance having a small thickness and a substantially rectangular shape when viewed from the front. Shaped heater 20, first casing member 21 disposed opposite to one surface (first heat transfer surface) 20a, and second casing member 22 disposed opposite to the other surface (second heat transfer surface) 20b. And a casing 23 that accommodates these and has a water inlet 23a and a water outlet 23b. Of these, the flat heater 20 is made of ceramic, and the first casing member 21 and the second casing member 22 are made of reinforced ABS resin in which glass fiber is compounded with ABS resin.

なお、以下の説明では特に言及する場合を除き、このような熱交換器10を平板状ヒータ20の伝熱面が鉛直方向に平行になるように縦置きした状態について説明することとする。また、図2に示すように鉛直方向をZ方向とし、これに直交して平板状ヒータ20の伝熱面に平行な方向をX方向、そしてこれら2方向の何れにも直交する方向(第一伝熱面20aに垂直な方向)をY方向とする。   In the following description, unless otherwise specified, a state in which such a heat exchanger 10 is vertically placed so that the heat transfer surface of the flat heater 20 is parallel to the vertical direction will be described. Further, as shown in FIG. 2, the vertical direction is the Z direction, the direction perpendicular to this and parallel to the heat transfer surface of the flat plate heater 20 is the X direction, and the direction perpendicular to both of these two directions (the first direction) The direction perpendicular to the heat transfer surface 20a) is taken as the Y direction.

図3,4,5に示すように、熱交換流路25は、ケーシング23(第一ケーシング部材21,第二ケーシング部材22)の内壁面(30a,40a)に密着する金属板の複数箇所を曲げ加工して形成されたバネ性を有する仕切リブ31の先端部45が平板状ヒータ20の表面に当接した流路形成部材41によって形成されている。   As shown in FIGS. 3, 4, and 5, the heat exchange flow path 25 includes a plurality of portions of the metal plate that are in close contact with the inner wall surface (30 a, 40 a) of the casing 23 (first casing member 21, second casing member 22). A distal end portion 45 of a partition rib 31 having a spring property formed by bending is formed by a flow path forming member 41 in contact with the surface of the flat heater 20.

そして、これら複数の仕切リブ31によって、入口側流路25aから出口側流路25bに蛇行して流れる熱交換流路25が形成されている。   The plurality of partition ribs 31 form a heat exchange channel 25 that meanders from the inlet channel 25a to the outlet channel 25b.

また、第一ケーシング部材21のベース部30の周縁部には壁状のフランジ部32が周設されており、該フランジ部32は、第二ケーシング部材22に近接する方向へ向かって
所定寸法だけ延設されている。このフランジ部32の先端部には、該フランジ部32に沿って周回する係合溝33が形成されている。
In addition, a wall-like flange portion 32 is provided around the periphery of the base portion 30 of the first casing member 21, and the flange portion 32 has a predetermined dimension in a direction close to the second casing member 22. It is extended. An engaging groove 33 that circulates along the flange portion 32 is formed at the distal end portion of the flange portion 32.

一方、第二ケーシング部材22のベース部40の周縁部にも壁状のフランジ部42が周設されており、該フランジ部42は、第一ケーシング部材21から離隔する方向へ向かって所定寸法だけ延設されている。このフランジ部42の先端部は第一ケーシング部材21側へ折り返されており、その端部には、該フランジ部42に沿って周回する係合突起43が形成されている。   On the other hand, a wall-like flange portion 42 is also provided around the periphery of the base portion 40 of the second casing member 22, and the flange portion 42 has a predetermined dimension in a direction away from the first casing member 21. It is extended. The front end portion of the flange portion 42 is folded back toward the first casing member 21, and an engaging protrusion 43 that circulates along the flange portion 42 is formed at the end portion.

このような第一ケーシング部材21は、その内壁面30aが第二ケーシング部材22の内壁面40aに対向するようにして第二ケーシング部材22に外嵌装着される。より詳しく説明すると、第一ケーシング部材21のフランジ部32が、第二ケーシング部材22のフランジ部42に外嵌され、さらに、第一ケーシング部材21の係合溝33に第二ケーシング部材22の係合突起43が嵌入される(例えば、係合突起43は超音波溶着により係合溝33に固定される)。これにより、第一ケーシング部材21と第二ケーシング部材22とは液密的に接合され、内部の平板状ヒータ20と流路形成部材41によって熱交換流路25が形成される。   The first casing member 21 is externally fitted to the second casing member 22 such that the inner wall surface 30a faces the inner wall surface 40a of the second casing member 22. More specifically, the flange portion 32 of the first casing member 21 is externally fitted to the flange portion 42 of the second casing member 22, and the engagement of the second casing member 22 is further engaged with the engagement groove 33 of the first casing member 21. The mating protrusion 43 is inserted (for example, the engaging protrusion 43 is fixed to the engaging groove 33 by ultrasonic welding). As a result, the first casing member 21 and the second casing member 22 are joined in a liquid-tight manner, and the heat exchanger channel 25 is formed by the internal flat heater 20 and the channel forming member 41.

図5は、平板状ヒータ20,流路形成部材41および、第一ケーシング部材21と第二ケーシング部材22とが超音波溶着される前の部品の状態を示した分解斜視図である。第一ケーシング部材21と第二ケーシング部材22とを超音波溶着するときは、事前に図6〜図9に示したように、第一ケーシング部材21と第二ケーシング部材22の夫々に流路形成部材41を事前にセットした状態で、平板状ヒータ20をバネ性のある仕切リブ31を有する流路形成部材41間に挟んで超音波溶着を行い、その後、平板状ヒータ20とケーシング23との間をシール材でシールする組立て手順となる。   FIG. 5 is an exploded perspective view showing the state of the parts before the flat plate heater 20, the flow path forming member 41, and the first casing member 21 and the second casing member 22 are ultrasonically welded. When the first casing member 21 and the second casing member 22 are ultrasonically welded, flow paths are formed in the first casing member 21 and the second casing member 22, respectively, as shown in FIGS. With the member 41 set in advance, ultrasonic welding is performed by sandwiching the flat heater 20 between the flow path forming members 41 having the partition ribs 31 having a spring property, and thereafter, the flat heater 20 and the casing 23 are connected to each other. The assembly procedure is to seal the gap with a sealing material.

なお、図6,図7において、図6は第一ケーシング部材21に流路形成部材41をセット前の状態であり、図7は第一ケーシング部材21に流路形成部材41をセット後の状態である。   6 and 7, FIG. 6 shows a state before the flow path forming member 41 is set on the first casing member 21, and FIG. 7 shows a state after the flow path forming member 41 is set on the first casing member 21. It is.

図7のように第一ケーシング部材21の小突起21tと流路形成部材41の小孔41hとが嵌り合う位置が、セット後の状態である。   The position where the small protrusion 21t of the first casing member 21 and the small hole 41h of the flow path forming member 41 fit as shown in FIG.

また、図7のように第一ケーシング部材21に流路形成部材41がセットされた状態においては、流路形成部材41に形成されている複数の仕切リブ31の端部が、一つ置きに第一ケーシング部材21のサイドリブ21sの位置と合致して矢印で示したような熱交換流路25となる蛇行流路が形成される。   Further, in the state where the flow path forming member 41 is set in the first casing member 21 as shown in FIG. 7, the end portions of the plurality of partition ribs 31 formed in the flow path forming member 41 are alternately arranged. A meandering flow path that is the heat exchange flow path 25 as shown by the arrow is formed in alignment with the position of the side rib 21 s of the first casing member 21.

また、図8,図9において、図8は第二ケーシング部材22に流路形成部材41をセット前の状態であり、図9は第二ケーシング部材22に流路形成部材41をセット後の状態である。   8 and 9, FIG. 8 shows a state before setting the flow path forming member 41 on the second casing member 22, and FIG. 9 shows a state after setting the flow path forming member 41 on the second casing member 22. It is.

図8のように第二ケーシング部材22に流路形成部材41を置いた状態から、図9のように流路形成部材41をスライドさせることにより、第二ケーシング部材22の小突起22tと流路形成部材41の小孔41hとが嵌り合う位置で、第二ケーシング部材22の係止突起22kに流路形成部材41が嵌まり込んで係止される構成なので、前記した超音波溶着組立て時に流路形成部材41が下向き姿勢にされても、第二ケーシング部材22にセットされた流路形成部材41は落下しない。   From the state where the flow path forming member 41 is placed on the second casing member 22 as shown in FIG. 8, the small protrusion 22t of the second casing member 22 and the flow path are slid by sliding the flow path forming member 41 as shown in FIG. Since the flow path forming member 41 is fitted and locked to the locking protrusion 22k of the second casing member 22 at the position where the small hole 41h of the forming member 41 is fitted, the flow is not generated when the ultrasonic welding is assembled. Even if the path forming member 41 is in the downward posture, the flow path forming member 41 set in the second casing member 22 does not fall.

また、図9のように第二ケーシング部材22に流路形成部材41がセットされた状態に
おいては、流路形成部材41に形成されている複数の仕切リブ31の端部が、一つ置きに第二ケーシング部材22のサイドリブ22sの位置と合致して矢印で示したような熱交換流路25となる蛇行流路が形成される。
Further, in the state where the flow path forming member 41 is set in the second casing member 22 as shown in FIG. 9, the end portions of the plurality of partition ribs 31 formed on the flow path forming member 41 are alternately arranged. A meandering flow path is formed which becomes the heat exchange flow path 25 as indicated by the arrow in alignment with the position of the side rib 22s of the second casing member 22.

なお、図12には、図9の第二ケーシング部材22に流路形成部材41がセットされた状態を、よりわかりやすいように斜視図で示してある。さらに、図13には、図12の実線の丸で囲った部分を拡大した部分拡大図で示してある。   In addition, in FIG. 12, the state by which the flow-path formation member 41 was set to the 2nd casing member 22 of FIG. 9 is shown with the perspective view so that it may be understood more easily. Further, FIG. 13 is an enlarged partial enlarged view of a portion surrounded by a solid circle in FIG.

また、図2,図3に示すように、ケーシング23のX方向の一端下部には入水口23aが設けられ、一端上部には出水口23bが設けられている。そして、入水口23aから流入した液体は、図4および図7,図9,図12で示した蛇行して流れる熱交換流路25を通過する間に、平板状ヒータ20で加熱されて出水口23bから流出する構成である。   As shown in FIGS. 2 and 3, a water inlet 23a is provided at the lower end of the casing 23 in the X direction, and a water outlet 23b is provided at the upper end of the casing 23. The liquid flowing in from the water inlet 23a is heated by the flat heater 20 while passing through the meandering heat exchange passage 25 shown in FIGS. 4, 7, 9, and 12, and the water outlet. 23b flows out from 23b.

図10は、図4に示す熱交換器の平板状ヒータ20に形成された抵抗体のパターン例を示す平面図である。図10に示すように、平板状ヒータ20は、セラミック基体20kに抵抗体(ヒータ線)パターン20pが印刷された構成となっている。この抵抗体のパターン20pは、平板状ヒータ20の入水口23aに近い側の部分ではヒータ線幅20sが細く、出水口23bに近い側の部分ではヒータ線幅20sが太くなるように構成してある。   FIG. 10 is a plan view showing a pattern example of a resistor formed on the flat heater 20 of the heat exchanger shown in FIG. As shown in FIG. 10, the flat heater 20 has a structure in which a resistor (heater wire) pattern 20p is printed on a ceramic substrate 20k. The resistor pattern 20p is configured such that the heater line width 20s is narrow at the portion near the water inlet 23a of the flat heater 20 and the heater line width 20s is thick at the portion near the water outlet 23b. is there.

要するに、この抵抗体のパターン20pによれば、平板状ヒータ20の入水口23aに近い下部ほどヒータ線幅20sが細くなって抵抗値が高くなり、出水口23bに近い上部ほどヒータ線幅20sが太くなって抵抗値が低くなる。換言すれば、平板状ヒータ20は出水口23bに近い側の出口側流路に面する部分の発熱密度が、入水口23aに近い側の入口側流路に面する部分の発熱密度より低くなるように形成されている。   In short, according to the resistor pattern 20p, the heater line width 20s becomes narrower toward the lower part of the flat heater 20 near the water inlet 23a and the resistance value becomes higher, and the heater line width 20s becomes closer to the upper part near the water outlet 23b. The resistance value decreases as the thickness increases. In other words, in the flat heater 20, the heat generation density of the portion facing the outlet-side flow path on the side close to the water outlet 23b is lower than the heat generation density of the portion facing the inlet-side flow path on the side close to the water inlet 23a. It is formed as follows.

図11は、図4に示す熱交換器の平板状ヒータ20に形成された抵抗体の別のパターン例を示す平面図である。図11に示す抵抗体(ヒータ線)のパターン20pも図10に示したものと同様に、平板状ヒータ20は、セラミック基体20kに抵抗体(ヒータ線)のパターン20pが印刷された構成となっている。   FIG. 11 is a plan view showing another pattern example of the resistor formed on the flat heater 20 of the heat exchanger shown in FIG. As in the case of the resistor (heater wire) pattern 20p shown in FIG. 11, the flat plate heater 20 has a structure in which the resistor (heater wire) pattern 20p is printed on the ceramic substrate 20k. ing.

一方、図11に示す抵抗体のパターン20pの場合は、平板状ヒータ20の入水口23aに近い側の部分では隣接するヒータ線間隔20hが狭く、出水口23bに近い側の部分では該ヒータ線間隔20hが広くなるように構成してある。つまり、平板状ヒータ20は、入水口23aに近い下部ほどヒータ線間隔20hが狭くなって発熱密度が高くなり、出水口23bに近い上部ほどヒータ線間隔20hが広くなって発熱密度が低くなるように形成されている。   On the other hand, in the case of the resistor pattern 20p shown in FIG. 11, the adjacent heater wire interval 20h is narrow in the portion near the water inlet 23a of the flat heater 20, and the heater wire in the portion near the water outlet 23b. The interval 20h is configured to be wide. That is, in the flat heater 20, the heater line interval 20h is narrower and the heat generation density is higher at the lower part near the water inlet 23a, and the heater line interval 20h is wider and the heat generation density is lower at the upper part near the water outlet 23b. Is formed.

次に、上述した熱交換器10内で蛇行して流れる熱交換流路25とこの蛇行流路の隣接する流路間を横断するように仕切リブ31の先端と平板状ヒータ20との間のスキマを漏れて流れる漏れ量の流量の関係を解析した結果について説明する。まず図12のように蛇行する熱交換流路25を形成する仕切リブ31のリブピッチをP、仕切リブ31のリブ高さH1を4種類変えた場合の前記漏れ流量(Qleak)と熱交換流路25の流量(Qmain)の仕切リブ31の先端クリアランスの影響をシミュレーションした結果を図15,図16,図17,図18に示す。   Next, between the heat exchanger flow path 25 flowing meandering in the heat exchanger 10 and the flow path adjacent to the meander flow path between the tip of the partition rib 31 and the flat plate heater 20. The result of analyzing the relationship between the flow rate of the leakage amount flowing through the gap will be described. First, as shown in FIG. 12, the leakage flow rate (Qleak) and the heat exchange flow path when the rib pitch of the partition rib 31 forming the meandering heat exchange flow path 25 is changed to P and the rib height H1 of the partition rib 31 is changed to four types. The results of simulating the effect of the tip clearance of the partition rib 31 at a flow rate (Qmain) of 25 are shown in FIG. 15, FIG. 16, FIG. 17, and FIG.

ここで、通常使用する流量範囲となる熱交換流路25の流速を0.16mm/secから1.25mm/secの設定として、シミュレーションを行った。熱交換流路25の断面積が小さくなり、流速が速くなるにつれて前記漏れ流量(Qleak)の影響が大きくなる傾向にあり、漏れ流量を全流量500cc/minの10%である50cc/min以下とするためには、先端クリアランスが少なくとも0.15mm以下の設定が必要とな
る結果となった。
Here, the simulation was performed by setting the flow rate of the heat exchange flow path 25 which is a flow rate range to be normally used from 0.16 mm / sec to 1.25 mm / sec. The influence of the leakage flow rate (Qleak) tends to increase as the cross-sectional area of the heat exchange channel 25 decreases and the flow rate increases, and the leakage flow rate is 50 cc / min or less, which is 10% of the total flow rate of 500 cc / min. In order to achieve this, it was necessary to set the tip clearance to be at least 0.15 mm or less.

次に、実際の熱交換器で、この先端クリアランスの影響を把握するため、仕切リブ31のリブピッチP=7mm、仕切リブ31のリブ高さH1=1.9mmでの熱交換器で流量500cc/min、入水温度5℃でのヒータ線温度を測定し、かつ熱交換器を透明の材料で構成し熱交の状態を可視化して観察した。   Next, in order to grasp the influence of this tip clearance with an actual heat exchanger, the flow rate is 500 cc / s with the heat exchanger with the rib pitch P of the partition rib 31 = 7 mm and the rib height H1 of the partition rib 31 = 1.9 mm. The heater wire temperature was measured at a water inlet temperature of 5 ° C. for min, the heat exchanger was made of a transparent material, and the heat exchange state was visualized and observed.

この実験結果を図19に示す。実験結果から、隙間が0.2mm程度から隙間0.05mmまで小さくすると、ヒータ線温度が急激に低下する領域があり、漏れ流量がこの領域で大幅に低下していることを示している。   The experimental results are shown in FIG. From the experimental results, it is shown that when the gap is reduced from about 0.2 mm to 0.05 mm, there is a region where the heater wire temperature rapidly decreases, and the leakage flow rate is greatly decreased in this region.

図20は、ヒータ線温度から評価した熱交換器としての平均熱伝達率を示し、またそのなかで強制対流熱伝達と沸騰熱伝達の割合を模式的に示したものである。隙間が0.05mm付近では、熱交換器内の局部的な沸騰は認められず、ほぼ全域で強制対流熱伝達と想定され安定した出湯動作となる。   FIG. 20 shows the average heat transfer coefficient as a heat exchanger evaluated from the heater wire temperature, and schematically shows the ratio between forced convection heat transfer and boiling heat transfer. When the gap is around 0.05 mm, local boiling in the heat exchanger is not recognized, and forced convection heat transfer is assumed in almost the entire region, resulting in a stable hot water operation.

そして、隙間が0.15mm付近では、熱交換器内で一部、局所的な沸騰は認められるが、強制対流熱伝達のほかに沸騰熱伝達が発生しているが、出湯動作は安定しており安定した出湯が可能である。   When the gap is around 0.15 mm, some local boiling is observed in the heat exchanger, but boiling heat transfer occurs in addition to forced convection heat transfer, but the tapping operation is stable. Stable hot water is possible.

しかし、隙間が0.3mm付近では熱交換器内で沸騰が発生し、沸騰熱伝達の影響が大きくなり流れも不安定となる。   However, when the gap is around 0.3 mm, boiling occurs in the heat exchanger, the influence of boiling heat transfer is increased, and the flow becomes unstable.

したがって、仕切リブ先端の隙間の変化により、熱伝達の状態が変化し、少なくとも仕切リブ31の先端と平板状ヒータ20との隙間(先端クリアランス)を0.15mm以下に抑えることにより、安定した出湯が可能であり、さらに好ましくは0.05mm〜0.1mm程度に隙間(先端クリアランス)を抑えることにより、硬水地域での耐スケール性を高めることができる。   Therefore, the state of heat transfer changes due to the change in the gap at the tip of the partition rib, and at least the gap (tip clearance) between the tip of the partition rib 31 and the flat heater 20 is suppressed to 0.15 mm or less, thereby stabilizing the hot water supply. More preferably, by suppressing the gap (tip clearance) to about 0.05 mm to 0.1 mm, the scale resistance in the hard water region can be improved.

前記したように、仕切リブ31の先端と平板状ヒータ20との隙間(先端クリアランス)を0.05mm〜0.1mm程度にすることによって、平板状のヒータ表面で局部沸騰が発生せず、またヒータ表面の温度を低下させることにより、安定した熱交換性能と耐スケール性の優れた熱交換器を提供することができるわけであるが、熱交換器の外郭を構成するケーシング23を構成する樹脂成型品である第一ケーシング部材21、第二ケーシング部材22の成型ソリや、超音波溶着による溶着寸法ばらつき等により、仕切リブ31を従来のように第一ケーシング部材21、第二ケーシング部材22と一体樹脂成型で形成した場合は、仕切リブ31の先端と平板状ヒータ20との隙間(先端クリアランス)を0.05mm〜0.1mmに確保することは難しい。   As described above, by making the gap (tip clearance) between the tip of the partition rib 31 and the flat heater 20 about 0.05 mm to 0.1 mm, local boiling does not occur on the flat heater surface. By reducing the temperature of the heater surface, it is possible to provide a heat exchanger with stable heat exchange performance and excellent scale resistance, but the resin constituting the casing 23 constituting the outer shell of the heat exchanger Due to molding warpage of the first casing member 21 and the second casing member 22 which are molded products, welding dimension variations due to ultrasonic welding, and the like, the partition ribs 31 are connected to the first casing member 21 and the second casing member 22 in the conventional manner. When formed by integral resin molding, the clearance (tip clearance) between the tip of the partition rib 31 and the flat heater 20 is secured to 0.05 mm to 0.1 mm. It is difficult.

そこで、ケーシング23(第一ケーシング部材21,第二ケーシング部材22)の内壁面(30a,40a)に密着する金属板の複数箇所を曲げ加工して形成されたバネ性を有する仕切リブ31の先端部45が平板状ヒータ20の表面に当接した流路形成部材41によって熱交換流路25が形成される本願実施の形態の構成の検討を実施した。   Therefore, the tip of the partition rib 31 having a spring property formed by bending a plurality of portions of the metal plate in close contact with the inner wall surface (30a, 40a) of the casing 23 (first casing member 21, second casing member 22). The configuration of the present embodiment in which the heat exchange flow path 25 is formed by the flow path forming member 41 in which the portion 45 is in contact with the surface of the flat heater 20 was studied.

第一ケーシング部材21,第二ケーシング部材22と平板状ヒータ20との各々の間に、
金属板をプレス加工によって切り起こし曲げ加工し、バネ性を有する複数の仕切リブ31を形成した流路形成部材41を挟む構成にすることにより、第一ケーシング部材21、第二ケーシング部材22や平板状ヒータ20の寸法に多少ばらつきがあっても、バネ性による撓みによって仕切リブ31の先端部45がヒータ表面の伝熱面と確実に当接することが
できるとともに、バネ性によって仕切リブ31が撓むことによって、仕切リブ31の先端部45と平板状ヒータ20との隙間(先端クリアランス)をほとんど無くすることができる。
Between each of the first casing member 21, the second casing member 22, and the flat heater 20,
The first casing member 21, the second casing member 22 and the flat plate are formed by sandwiching the flow path forming member 41 in which a plurality of partition ribs 31 having spring properties are formed by cutting and bending the metal plate by press working. Even if there is some variation in the size of the heater 20, the tip 45 of the partition rib 31 can be surely brought into contact with the heat transfer surface of the heater surface by bending due to the spring property, and the partition rib 31 can be bent due to the spring property. As a result, almost no gap (tip clearance) between the tip 45 of the partition rib 31 and the flat heater 20 can be eliminated.

つまり、熱交換器は、仕切リブ31の先端と平板状ヒータ20の表面との間のクリアランス(隙間寸法)は、目標とする0.05mm〜0.1mmは十分に達成でき、0.05mm以下も可能となる。   In other words, the heat exchanger can sufficiently achieve a target clearance (gap size) of 0.05 mm to 0.1 mm between the tip of the partition rib 31 and the surface of the flat heater 20 and is 0.05 mm or less. Is also possible.

したがって、強制対流熱交換が阻害されるような仕切リブの先端部からの漏れ流を防止することができて、平板状のヒータ表面で局部沸騰が発生せず、またヒータ表面の温度を低下させることができ、安定した熱交換性能と耐スケール性の優れた熱交換器が可能となる。   Therefore, it is possible to prevent a leakage flow from the front end of the partition rib that obstructs forced convection heat exchange, so that local boiling does not occur on the flat heater surface and the temperature of the heater surface is reduced. Therefore, a heat exchanger having stable heat exchange performance and excellent scale resistance is possible.

さらに、流路形成部材41は金属板なのでバネ性を有する仕切リブ31の先端部45がヒータ表面の伝熱面と当接しても、熱伝導率が高くヒータの熱が金属の仕切リブ31に伝達され、さらに水に伝達される。したがって、従来の樹脂の仕切リブのようにヒータ表面の熱が断熱されて局所高温となるような不具合がなく、局所高温によるスケール付着およびスケール付着によるヒータ破損を防止でき、ヒータ表面の断熱部がなく水への熱伝達効率が高く優れた熱交換効率を実現して長期間維持することができる。   Furthermore, since the flow path forming member 41 is a metal plate, even if the tip 45 of the partition rib 31 having a spring property comes into contact with the heat transfer surface of the heater surface, the heat conductivity is high and the heat of the heater is applied to the metal partition rib 31. Is transmitted to the water. Therefore, unlike the conventional resin partition ribs, there is no problem that the heat on the heater surface is insulated and the local high temperature is generated, and scale damage due to the local high temperature and heater damage due to scale adhesion can be prevented. In addition, heat transfer efficiency to water is high and excellent heat exchange efficiency can be realized and maintained for a long time.

また、流路形成部材41は金属板でバネ性を有する仕切リブ31の先端部45がヒータ表面の伝熱面と当接する構成なので、ヒータやケーシングの寸法に多少ばらつきがあっても、バネ性による撓みによって仕切リブの先端部がヒータ表面の伝熱面と確実に当接することができるとともに、バネ性によって仕切リブが撓むことによってヒータへの過大な荷重応力を防止できる。したがって、過大な応力によるヒータ破損を防止できるとともに、安定した熱交換性能と耐スケール性の優れた熱交換器が可能となる。   Further, since the flow path forming member 41 is a metal plate and the tip 45 of the partition rib 31 having spring property is in contact with the heat transfer surface of the heater surface, even if there is some variation in the dimensions of the heater or casing, the spring property The leading edge of the partition rib can be surely brought into contact with the heat transfer surface of the heater surface by the bending due to the bending, and an excessive load stress on the heater can be prevented by the partition rib being bent by the spring property. Accordingly, it is possible to prevent a heater from being damaged by excessive stress, and to achieve a heat exchanger having stable heat exchange performance and excellent scale resistance.

また、望ましい仕切リブ31の形状の一例としては、図13の部分拡大図で示したように、金属板44をプレス加工によって切り起こし曲げ加工された仕切リブ31の先端部45に円弧を有する断面形状としてもよい。この円弧の撓みによるバネ性で、円弧の一部が平板状ヒータ20の表面に寸法バラツキを吸収しつつ当接して、仕切リブ31の先端と平板状ヒータ20との隙間をなくすることができる。なお、金属板44の平坦部から前記した円弧に繋がる切り起こし部は垂直に至らない角度、たとえば45度〜70度程度にすることによって、バネ性は円弧の撓みだけでなく斜め切り起こし部もバネ性撓み部として作用することができ、ケーシング部材や平板状ヒータに大きい寸法バラツキがあっても対応することが可能になる。   Moreover, as an example of the shape of the desirable partition rib 31, as shown in the partial enlarged view of FIG. 13, the cross section which has a circular arc in the front-end | tip part 45 of the partition rib 31 by which the metal plate 44 was cut and raised by press work and bent. It is good also as a shape. Due to the spring property due to the bending of the arc, a part of the arc abuts against the surface of the flat heater 20 while absorbing the dimensional variation, and the gap between the tip of the partition rib 31 and the flat heater 20 can be eliminated. . It should be noted that the cut-and-raised portion connected to the arc from the flat portion of the metal plate 44 is not perpendicular to the angle, for example, about 45 ° to 70 °, so that the spring property is not only the bending of the arc but also the diagonally-raised portion is also a spring. It can act as a flexible bending portion, and can cope with large dimensional variations in the casing member and the flat heater.

また、仕切リブ31の形状の他の一例として、図14の部分拡大図で示したように、略く字形の断面形状としてもよい。この場合、断面形状を略く字形とすることで屈曲部が撓みやすいバネ性を有することができ、先端部45が平板状ヒータ20の表面に寸法バラツキを吸収しつつ当接して、仕切リブ31の先端と平板状ヒータ20との隙間をなくすることができる。なお、略く字形は斜めの2辺が存在する断面形状であるが、斜め1辺だけの略ノ字形状でも、バネ性による撓みによって仕切リブの先端部がヒータ表面の伝熱面と確実に当接することができる効果は得ることができる。   Further, as another example of the shape of the partition rib 31, as shown in the partially enlarged view of FIG. In this case, the bent portion can have a spring property that allows the bent portion to bend easily by making the cross-sectional shape a substantially square shape, and the tip portion 45 abuts the surface of the flat heater 20 while absorbing the dimensional variation, and the partition rib 31. It is possible to eliminate a gap between the tip of the flat plate heater 20 and the flat heater 20. In addition, the substantially square shape is a cross-sectional shape with two diagonal sides, but even with a substantially square shape with only one diagonal side, the tip of the partition rib can be surely connected to the heat transfer surface of the heater surface by bending due to the spring property. The effect of being able to abut can be obtained.

以上のように、本実施の形態の熱交換器10は、入水口23aと出水口23bを具備したケーシング23と、発熱抵抗体を内蔵するヒータ20と、入水口23aから流入した流体がヒータ表面を伝熱面として熱交換され出水口23bに流れるように案内する熱交換流路25とを備え、熱交換流路25はケーシング23の内壁面30aに密着する金属板44の複数箇所を曲げ加工して形成されたバネ性を有する仕切リブ31の先端部45がヒータ
20の表面に当接した流路形成部材41により構成されたことにより、強制対流熱交換が阻害されるような仕切リブの先端部からの漏れ流を防止することができて、ヒータ表面で局部沸騰が発生せず、またヒータ表面の温度を低下させることができ、安定した熱交換性能と耐スケール性の優れた熱交換器を提供することができる。
As described above, the heat exchanger 10 according to the present embodiment includes the casing 23 provided with the water inlet 23a and the water outlet 23b, the heater 20 including the heating resistor, and the fluid flowing from the water inlet 23a on the heater surface. And a heat exchange channel 25 that guides the heat exchange surface to flow to the water outlet 23b. The heat exchange channel 25 bends a plurality of portions of the metal plate 44 that are in close contact with the inner wall surface 30a of the casing 23. The tip portion 45 of the partition rib 31 having spring property formed by the flow path forming member 41 in contact with the surface of the heater 20 makes it possible to prevent the partition rib from interfering with forced convection heat exchange. Leakage from the tip can be prevented, local boiling does not occur on the heater surface, the temperature on the heater can be lowered, and heat exchange with stable heat exchange performance and scale resistance is excellent. It is possible to provide a vessel.

さらに、流路形成部材41は金属板なのでバネ性を有する仕切リブ31の先端部45がヒータ表面の伝熱面と当接しても、熱伝導率が高くヒータの熱が金属の仕切リブに伝達され、さらに水に伝達される。したがって、樹脂の仕切リブのようにヒータ表面の熱が断熱されて局所高温となるような不具合がなく熱伝達効率を高められる。   Furthermore, since the flow path forming member 41 is a metal plate, even if the tip 45 of the partition rib 31 having spring properties contacts the heat transfer surface of the heater surface, the heat conductivity is high and the heat of the heater is transmitted to the metal partition rib. And further transmitted to water. Therefore, there is no problem that the heat on the surface of the heater is insulated as in the case of resin partition ribs, and the heat transfer efficiency is increased.

また、流路形成部材41は金属板でバネ性を有する仕切リブ31の先端部がヒータ表面の伝熱面と当接する構成なので、ヒータやケーシングの寸法に多少ばらつきがあっても、バネ性による撓みによって仕切リブの先端部がヒータ表面の伝熱面と確実に当接することができるとともに、バネ性によって仕切リブが撓むことによってヒータへの過大な荷重応力を防止できる。   In addition, since the flow path forming member 41 is a metal plate and the tip end portion of the partition rib 31 having spring property is in contact with the heat transfer surface of the heater surface, even if there is some variation in the dimensions of the heater or the casing, it depends on the spring property. The leading end portion of the partition rib can be surely brought into contact with the heat transfer surface of the heater surface by the bending, and an excessive load stress to the heater can be prevented by the partition rib being bent by the spring property.

また、ヒータ20は平板状ヒータで、熱交換流路25は、平板状ヒータ20の表裏の伝熱面に当接した流路形成部材41の夫々に沿って下部の入水口23aから上部の出水口23bまで延設された2つの蛇行流路に形成されたことにより、平板状ヒータ20の熱が表裏の両面に接触して流れる洗浄水に伝熱され、放熱ロスの無駄がほとんどない熱効率の高い熱交換ができ、平板状ヒータの表裏両面とも伝熱面積として活用できるので小型コンパクトにでき、蛇行流路によって流路長を長くできるとともに流速が速められるので、ヒータ表面と洗浄水との境界層の厚みが、より薄くなるように作用して、熱伝達効率が向上するとともにヒータ表面の温度もより低下するので、さらに局所的な沸騰現象が抑制でき、スケールの生成付着を防止する効果をより高めることができる。   Further, the heater 20 is a flat heater, and the heat exchange flow path 25 extends from the lower water inlet 23a along the flow path forming member 41 in contact with the heat transfer surfaces on the front and back of the flat heater 20. By forming the two meandering channels extending to the water port 23b, the heat of the flat heater 20 is transferred to the wash water flowing in contact with both the front and back surfaces, and the heat efficiency is almost free of heat loss. High heat exchange is possible, and both the front and back sides of the flat heater can be used as a heat transfer area, so it can be made compact and compact, and the meandering flow path can increase the flow length and increase the flow speed, so the boundary between the heater surface and cleaning water The thickness of the layer acts to become thinner, improving the heat transfer efficiency and lowering the temperature of the heater surface, thereby further suppressing the local boiling phenomenon and preventing the formation and adhesion of scale. Results can be further improved.

また、流路形成部材41は、ステンレス板の複数個所を曲げ加工して形成されたことにより、耐食性に優れ、長寿命で長期間に亘り清潔な湯を供給できる。なお、流路形成部材41を形成する金属板44は、ステンレス板に限らず、リン青銅やベリリウム銅などのバネ性と熱伝導性の優れた薄板で構成してもよい。   Further, the flow path forming member 41 is formed by bending a plurality of portions of the stainless steel plate, so that it has excellent corrosion resistance and can supply clean hot water over a long period of time. The metal plate 44 forming the flow path forming member 41 is not limited to a stainless steel plate, and may be formed of a thin plate having excellent spring properties and thermal conductivity, such as phosphor bronze and beryllium copper.

また、平板状ヒータ20は、出水口23bに近い側の熱交換流路25に面した発熱密度が入水口23aに近い側の熱交換流路25に面した発熱密度より小さい構成としたことにより、ケーシング23の入水口23aから流入した流体は、平板状ヒータ20の表面を蛇行して流れる熱交換流路25を流れながら、平板状ヒータ20の表面の伝熱面により加熱され、出水口23bに近づくに従って流体の温度が次第に上昇する。そして、入水口23aに近い側の熱交換流路に面した平板状ヒータの表面温度は、平板状ヒータの高い発熱密度によって高温になろうとするが、まだ加熱されていない低い温度の流体に熱を多く奪われる(すなわちサブクールの値が大きい)ためと、流路厚みが薄く流速が速いことから、熱伝達率が高く局所的な沸騰現象が生じるほどの高温にはならない。   Further, the flat heater 20 is configured such that the heat generation density facing the heat exchange channel 25 on the side near the water outlet 23b is smaller than the heat density facing the heat exchange channel 25 on the side near the water inlet 23a. The fluid flowing in from the water inlet 23a of the casing 23 is heated by the heat transfer surface on the surface of the flat heater 20 while flowing through the heat exchange flow path 25 that meanders through the surface of the flat heater 20, and the water outlet 23b. As the temperature approaches, the temperature of the fluid gradually increases. The surface temperature of the flat heater facing the heat exchange channel on the side close to the water inlet 23a tends to become high due to the high heat generation density of the flat heater, but is heated to a low temperature fluid that has not yet been heated. Because of the large loss of heat (that is, the value of the subcool is large) and the flow rate is thin and the flow velocity is high, the heat transfer rate is high and the local boiling phenomenon does not occur.

一方、出水口23bに近い側の熱交換流路に面した平板状ヒータの表面温度は、平板状ヒータの表面に接触する流体が既に加熱されているため、入水口23aに近い側に比べて高い温度になりやすい。しかしながら、平板状ヒータの表面から流体に奪われる熱は少なくなりサブクールの値は小さくなるが、平板状ヒータは出水口23bに近い側の発熱密度が入水口23aに近い側の発熱密度より小さくなるように形成されているので、局所的な沸騰現象が生じるほどの高温にはならない。   On the other hand, the surface temperature of the flat heater facing the heat exchange flow path on the side close to the water outlet 23b is higher than that on the side close to the water inlet 23a because the fluid in contact with the surface of the flat heater has already been heated. High temperature is likely to occur. However, although the heat deprived by the fluid from the surface of the flat heater is reduced and the subcool value is reduced, the flat heater has a lower heat generation density near the water outlet 23b than a heat generation density near the water inlet 23a. Thus, the temperature is not high enough to cause local boiling.

このように、平板状ヒータは出水口23bに近い側の熱交換流路に面した発熱密度が入水口23aに近い側の熱交換流路に面した発熱密度より小さく形成されていることによっ
て、流体の温度が高くなる出水口23bに近い側の平板状ヒータと水との境界面においても、局所的な沸騰現象が生じるような高温になることが抑制されて、スケールの生成付着を防止でき、長寿命の熱交換器を提供することができる。一方、流体の温度が相対的に低く、また出水口23bに近い側の熱交換流路に比べて流速が速い入水口23aに近い側の熱交換流路に面した平板状ヒータの発熱密度を大きくしているため、該入水口23aに近い側の熱交換流路近傍での熱交換効率の向上が図れる。
Thus, the flat heater is formed such that the heat generation density facing the heat exchange channel on the side close to the water outlet 23b is smaller than the heat generation density facing the heat exchange channel on the side close to the water inlet 23a. Even at the boundary surface between the flat heater and the water near the water outlet 23b where the temperature of the fluid becomes high, it is possible to prevent the formation and adhesion of scale by suppressing a high temperature that causes a local boiling phenomenon. A long-life heat exchanger can be provided. On the other hand, the heat generation density of the flat heater facing the heat exchange channel on the side close to the water inlet 23a, where the temperature of the fluid is relatively low and the flow velocity is higher than that on the side near the water outlet 23b, is Since it is enlarged, the heat exchange efficiency in the vicinity of the heat exchange flow path near the water inlet 23a can be improved.

なお、通常の平板状ヒータで発熱密度の局所的な分布が伝熱面の全面にわたって均一な場合にあっては、平板状ヒータの出水口23bに近い側が最高温度となり、この部分にまずスケールが生成される。しかしながら、平板状ヒータ20の発熱密度分布は、出水口23bに近い側の熱交換流路付近が、入水口23aに近い側の熱交換流路付近よりも小さくなるように設定されており、その結果、熱交換器の熱流束は、ヒータの発熱密度の大きい箇所では高く、発熱密度が小さい箇所では低くなるため、伝熱面温度の均一化が図られ、局所的に温度が上昇してそこにスケールが付着することを抑制できる。このような構成とすることにより、平板状ヒータに接触して流れる洗浄水に伝熱され、放熱ロスの無駄がほとんどない熱効率の高い熱交換ができ、小型コンパクトにでき、かつスケールが付着することを抑制できる。   When the local distribution of heat generation density is uniform over the entire surface of the heat transfer surface with a normal flat heater, the temperature close to the water outlet 23b of the flat heater is the maximum temperature, and the scale is first at this portion. Generated. However, the heat generation density distribution of the flat heater 20 is set so that the vicinity of the heat exchange flow path near the water outlet 23b is smaller than the vicinity of the heat exchange flow path near the water inlet 23a. As a result, the heat flux of the heat exchanger is high at locations where the heat generation density of the heater is high and low at locations where the heat generation density is low, so that the heat transfer surface temperature is made uniform and the temperature rises locally. The scale can be prevented from adhering to the surface. By adopting such a configuration, heat is transferred to the washing water flowing in contact with the flat heater, heat exchange with high thermal efficiency with almost no waste of heat dissipation can be achieved, a compact and compact scale can be attached. Can be suppressed.

また、平板状ヒータ20は、セラミック基体20kと、該セラミック基体20k上に抵抗体をパターン印刷して形成された発熱抵抗体と、電極とから成るセラミックヒータであり、前記印刷パターンのヒータ線幅20sは、入水口23aに近い側の熱交換流路に面した部分より出水口23bに近い側の熱交換流路に面した部分の方が太く形成された構成とすることにより、発熱抵抗体である印刷パターンの線幅20sが太いほど、電流を流したときの電気抵抗が小さく発熱量が小さくなる。従って、印刷パターンの線幅20sが細い入水口23aに近い側の熱交換流路に面した部分は発熱量が大きく(即ち、発熱密度が大きく)、印刷パターンの線幅が太い出水口23bに近い側の熱交換流路に面した部分は発熱量が小さい(即ち、発熱密度が小さい)セラミックヒータとなる。   The flat heater 20 is a ceramic heater comprising a ceramic substrate 20k, a heating resistor formed by pattern printing a resistor on the ceramic substrate 20k, and an electrode, and the heater line width of the printed pattern. 20s has a configuration in which a portion facing the heat exchange flow path on the side closer to the water outlet 23b is thicker than a portion facing the heat exchange flow path on the side close to the water inlet 23a. The larger the line width 20s of the printed pattern is, the smaller the electric resistance when a current is passed, and the smaller the amount of heat generated. Accordingly, the portion facing the heat exchange channel on the side close to the water inlet 23a where the line width 20s of the printed pattern is narrow has a large amount of heat generation (that is, the heat generation density is large), and the water outlet 23b where the line width of the printed pattern is large. The portion facing the heat exchange channel on the near side is a ceramic heater that generates a small amount of heat (that is, has a low heat generation density).

そのため、流体の温度が高くなる出水口23bに近い側の熱交換流路に面した部分のセラミックヒータと流体との境界面においても、局所的な沸騰現象が生じるほどの高温になることが抑制され、スケールの生成及び付着を防止できる。その結果、高い熱交換効率を維持できるとともに、金属と比較して熱容量は小さい特長を有するが割れやすいとされるセラミックを用いたヒータにおいて、割れを防止できて長寿命の熱交換器を実現することができる。   Therefore, even at the boundary surface between the ceramic heater and the fluid in the portion facing the heat exchange flow path on the side close to the water outlet 23b where the temperature of the fluid becomes high, it is suppressed that the temperature becomes high enough to cause a local boiling phenomenon. Therefore, scale generation and adhesion can be prevented. As a result, it is possible to maintain high heat exchange efficiency and to realize a long-life heat exchanger that can prevent cracking in a heater using ceramics that has a small heat capacity compared to metal but is easily cracked. be able to.

また、平板状ヒータ20は、セラミック基体20kと、該セラミック基体20k上に抵抗体をパターン印刷して形成された発熱抵抗体と、電極とから成るセラミックヒータであり、前記印刷パターンの線間の隙間20hは、入水口に近い側の熱交換流路に面した部分より出水口23bに近い側の熱交換流路に面した部分の方が広く形成された構成とすることにより、印刷パターンの線間の隙間20hが狭い入水口23aに近い側の熱交換流路に面した部分は発熱量が大きく(即ち、発熱密度が大きく)、印刷パターンの線間20hの隙間が広い出水口23bに近い側の熱交換流路に面した部分は発熱量が小さい(即ち、発熱密度が小さい)セラミックヒータとなる。そのため、上述したのと同様の理由から、スケールの生成及び付着を防止できると共に、セラミックヒータの割れを防止できて、長寿命の熱交換器を実現することができる。   The flat heater 20 is a ceramic heater comprising a ceramic substrate 20k, a heating resistor formed by pattern printing a resistor on the ceramic substrate 20k, and an electrode, and between the printed pattern lines. The gap 20h has a configuration in which a portion facing the heat exchange flow path on the side closer to the water outlet 23b is formed wider than a portion facing the heat exchange flow path on the side close to the water inlet. The portion facing the heat exchange channel on the side close to the water inlet 23a where the gap 20h between the lines is narrow generates a large amount of heat (that is, the heat generation density is large), and the gap between the lines 20h of the printed pattern is wide on the water outlet 23b. The portion facing the heat exchange channel on the near side is a ceramic heater that generates a small amount of heat (that is, has a low heat generation density). Therefore, for the same reason as described above, scale generation and adhesion can be prevented, and cracking of the ceramic heater can be prevented, and a long-life heat exchanger can be realized.

また、図1のような衛生洗浄装置において、洗浄用の水を加熱する熱交換器を小型で安定した熱交換性能と耐スケール性に優れ、長寿命化することで、衛生洗浄装置本体の小型化が実現でき、狭いトイレ空間にも容易に設置することができるとともに、熱交換器内のスケールの生成及び付着を防止することで、硬水地域で使用できる衛生洗浄装置を実現で
き、洗浄ノズルにスケール破片が詰まることを防止でき、長寿命の衛生洗浄装置とすることができる。
In addition, in the sanitary washing apparatus as shown in FIG. 1, the heat exchanger for heating the washing water is small and stable, has excellent heat exchange performance and scale resistance, and has a long service life. Can be easily installed in a narrow toilet space, and by preventing the generation and adhesion of scales in the heat exchanger, a sanitary washing device that can be used in hard water areas can be realized. Scale pieces can be prevented from clogging, and a long-life sanitary washing device can be obtained.

本発明は、ヒータ表面で局部沸騰が発生せず、またヒータ表面の温度を低下させることにより、安定した熱交換性能と耐スケール性に優れ、平板型のヒータを有する熱交換器に適用することができる。   The present invention does not cause local boiling on the heater surface, and lowers the temperature of the heater surface so that it has excellent stable heat exchange performance and scale resistance, and is applied to a heat exchanger having a flat plate heater. Can do.

1 衛生洗浄装置
10 熱交換器
20 ヒータ(平板状ヒータ)
20a 第一伝熱面
20b 第二伝熱面
20h ヒータ線間隔(線間の隙間)
20k セラミック基体
20p パターン
20s ヒータ線幅(線幅)
21 第一ケーシング部材
22 第二ケーシング部材
23 ケーシング
23a 入水口
23b 出水口
25 熱交換流路
25a 入口側流路
25b 出口側流路
30 ベース部
30a 内壁面
31 仕切リブ
32 フランジ部
33 係合溝
40 ベース部
40a 内壁面
41 流路形成部材
42 フランジ部
43 係合突起
44 金属板
45 先端部
1 Sanitary washing device 10 Heat exchanger 20 Heater (flat heater)
20a First heat transfer surface 20b Second heat transfer surface 20h Heater wire spacing (gap between wires)
20k Ceramic substrate 20p Pattern 20s Heater line width (line width)
DESCRIPTION OF SYMBOLS 21 1st casing member 22 2nd casing member 23 Casing 23a Water inlet 23b Water outlet 25 Heat exchange flow path 25a Inlet side flow path 25b Outlet side flow path 30 Base part 30a Inner wall surface 31 Partition rib 32 Flange part 33 Engagement groove 40 Base portion 40a Inner wall surface 41 Flow path forming member 42 Flange portion 43 Engaging projection 44 Metal plate 45 Tip portion

Claims (7)

入水口と出水口を具備したケーシングと、
発熱抵抗体を内蔵するヒータと、
前記入水口から流入した流体が前記ヒータの表面を伝熱面として熱交換され前記出水口に流れるように案内する熱交換流路と、
を備え、
前記熱交換流路は前記ケーシングの内壁面に密着する金属板の複数箇所を曲げ加工して形成されたバネ性を有する仕切リブの先端部が前記ヒータの表面に当接した流路形成部材により構成されたことを特徴とする熱交換器。
A casing having a water inlet and a water outlet;
A heater with a built-in heating resistor;
A heat exchange flow path for guiding the fluid flowing in from the water inlet to heat exchange with the surface of the heater as a heat transfer surface and flowing to the water outlet;
With
The heat exchange flow path is formed by a flow path forming member in which tips of partition ribs having a spring property formed by bending a plurality of portions of a metal plate in close contact with the inner wall surface of the casing are in contact with the surface of the heater. A heat exchanger characterized by being configured.
前記ヒータは平板状ヒータで、前記熱交換流路は、前記平板状ヒータの表裏の前記伝熱面に当接した流路形成部材の夫々に沿って下部の前記入水口から上部の前記出水口まで延設された2つの蛇行流路に形成されている
請求項1に記載の熱交換器。
The heater is a flat heater, and the heat exchange flow path is formed from a lower water inlet to an upper water outlet along each of the flow path forming members in contact with the heat transfer surfaces on the front and back of the flat heater. The heat exchanger according to claim 1, wherein the heat exchanger is formed in two meandering channels extending to the point.
前記流路形成部材は、ステンレス板の複数個所を曲げ加工して形成された
請求項1または2に記載の熱交換器。
The heat exchanger according to claim 1 or 2, wherein the flow path forming member is formed by bending a plurality of portions of a stainless steel plate.
前記平板状ヒータは、前記出水口に近い側の熱交換流路に面した発熱密度が前記入水口に近い側の熱交換流路に面した発熱密度より小さく形成されている
請求項2または3に記載の熱交換器。
4. The flat heater is formed such that a heat generation density facing a heat exchange channel on the side close to the water outlet is smaller than a heat generation density facing a heat exchange channel on the side close to the water inlet. The heat exchanger as described in.
前記平板状ヒータは、セラミック基体と、該セラミック基体上に抵抗体をパターン印刷して形成された発熱抵抗体と、電極とから成るセラミックヒータであり、印刷パターンのヒータ線幅は、前記入水口に近い側の熱交換流路に面した部分より前記出水口に近い側の熱交換流路に面した部分の方が太く形成されている
請求項4に記載の熱交換器。
The flat heater is a ceramic heater comprising a ceramic substrate, a heating resistor formed by pattern printing a resistor on the ceramic substrate, and an electrode, and the heater line width of the printed pattern is the water inlet The heat exchanger according to claim 4, wherein a portion facing the heat exchange flow path closer to the water outlet is formed thicker than a portion facing the heat exchange flow path closer to the water outlet.
前記平板状ヒータは、セラミック基体と、該セラミック基体上に抵抗体をパターン印刷して形成された発熱抵抗体と、電極とから成るセラミックヒータであり、前記印刷パターンの線間の隙間は、前記入水口に近い側の熱交換流路に面した部分より前記出水口に近い側の熱交換流路に面した部分の方が広く形成されている
請求項4に記載の熱交換器。
The flat heater is a ceramic heater comprising a ceramic substrate, a heating resistor formed by pattern printing of a resistor on the ceramic substrate, and an electrode, and a gap between lines of the printed pattern is the front. The heat exchanger according to claim 4, wherein a portion facing the heat exchange flow path on the side close to the water outlet is formed wider than a portion facing the heat exchange flow path on the side close to the entry water port.
請求項1〜6のいずれか1項に記載の熱交換器を備えた衛生洗浄装置。 The sanitary washing apparatus provided with the heat exchanger of any one of Claims 1-6.
JP2012087089A 2012-04-06 2012-04-06 Heat exchanger and sanitary washing toilet seat equipped with it Expired - Fee Related JP5945717B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012087089A JP5945717B2 (en) 2012-04-06 2012-04-06 Heat exchanger and sanitary washing toilet seat equipped with it
PCT/JP2013/000416 WO2013150696A1 (en) 2012-04-06 2013-01-28 Heat exchanger and hygienic cleaning device provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087089A JP5945717B2 (en) 2012-04-06 2012-04-06 Heat exchanger and sanitary washing toilet seat equipped with it

Publications (2)

Publication Number Publication Date
JP2013217540A true JP2013217540A (en) 2013-10-24
JP5945717B2 JP5945717B2 (en) 2016-07-05

Family

ID=49300206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087089A Expired - Fee Related JP5945717B2 (en) 2012-04-06 2012-04-06 Heat exchanger and sanitary washing toilet seat equipped with it

Country Status (2)

Country Link
JP (1) JP5945717B2 (en)
WO (1) WO2013150696A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104452928A (en) * 2014-10-17 2015-03-25 宁波市鄞州红杉树电器制造有限公司 Temperature regulating water tank for intelligent closestool and control method thereof
CN115013960A (en) * 2022-06-30 2022-09-06 芜湖美的智能厨电制造有限公司 Heating device and water heater
JP7554974B2 (en) 2020-02-21 2024-09-24 パナソニックIpマネジメント株式会社 Sanitary Cleaning Equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057090A1 (en) * 2003-12-10 2005-06-23 Matsushita Electric Industrial Co., Ltd. Heat exchanger and cleaning device with the same
JP2011214788A (en) * 2010-03-31 2011-10-27 Toto Ltd Heat exchanger and sanitary washing device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002491A (en) * 2009-09-07 2012-01-05 Panasonic Corp Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057090A1 (en) * 2003-12-10 2005-06-23 Matsushita Electric Industrial Co., Ltd. Heat exchanger and cleaning device with the same
JP2011214788A (en) * 2010-03-31 2011-10-27 Toto Ltd Heat exchanger and sanitary washing device including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104452928A (en) * 2014-10-17 2015-03-25 宁波市鄞州红杉树电器制造有限公司 Temperature regulating water tank for intelligent closestool and control method thereof
JP7554974B2 (en) 2020-02-21 2024-09-24 パナソニックIpマネジメント株式会社 Sanitary Cleaning Equipment
JP7554975B2 (en) 2020-02-21 2024-09-24 パナソニックIpマネジメント株式会社 Sanitary Cleaning Equipment
CN115013960A (en) * 2022-06-30 2022-09-06 芜湖美的智能厨电制造有限公司 Heating device and water heater
CN115013960B (en) * 2022-06-30 2024-01-23 芜湖美的智能厨电制造有限公司 Heating device and water heater

Also Published As

Publication number Publication date
WO2013150696A1 (en) 2013-10-10
JP5945717B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
KR20110020177A (en) Apparatus for heating fluids
JP5945722B2 (en) Heat exchanger and sanitary washing toilet seat equipped with it
JP5945717B2 (en) Heat exchanger and sanitary washing toilet seat equipped with it
CN104520980A (en) Heater for bonding device and method for cooling same
CN104903658A (en) Heating apparatus for instantaneous water heating
KR20030010676A (en) Electric water heater, liquid heater, steam generator
JP5534117B2 (en) Manufacturing method of heat exchanger
JP3675249B2 (en) Instant heating water heater
JP3633329B2 (en) Instant heating water heater
CN105167618A (en) Heating element and water boiler with same
KR101399717B1 (en) Sanitary washing device
CN218217708U (en) Thick film heating element and heating device
JP5747165B2 (en) Heat exchanger
JP2007271228A (en) Hot water storage type electric water heater
JP2009036397A (en) Hot water storage type electric water heater
JP3715785B2 (en) Liquid heating device
JP4423955B2 (en) Heat exchanger and sanitary washing device equipped with the same
CN115297573A (en) Thick film heating element and heating device
KR20100023729A (en) Hot water boiler
CN212544075U (en) PTC heater with anti-corrosion function
US20120148220A1 (en) Heat exchanger
CN215637980U (en) Instant heating type heating member
KR20100133120A (en) Hot water storage apparatus of water purifier
JPH116651A (en) Water flow heating device
CN210694725U (en) Heat dissipation runner structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5945717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees