JP2013217434A - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP2013217434A
JP2013217434A JP2012088006A JP2012088006A JP2013217434A JP 2013217434 A JP2013217434 A JP 2013217434A JP 2012088006 A JP2012088006 A JP 2012088006A JP 2012088006 A JP2012088006 A JP 2012088006A JP 2013217434 A JP2013217434 A JP 2013217434A
Authority
JP
Japan
Prior art keywords
torque
gear
transmission
cam
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012088006A
Other languages
Japanese (ja)
Other versions
JP5645313B2 (en
Inventor
Naoyoshi Shibata
尚佳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012088006A priority Critical patent/JP5645313B2/en
Publication of JP2013217434A publication Critical patent/JP2013217434A/en
Application granted granted Critical
Publication of JP5645313B2 publication Critical patent/JP5645313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Transmissions (AREA)
  • Retarders (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that an internal combustion engine is common as a driving force of an automobile or the like, however, it is expected that an automobile using an electric motor also prevails from now on, therefore, in either driving force, it has a tendency to improve fuel consumption and to achieve energy-saving of power consumption, accordingly, in order to attain them, there is one method of maintaining the rotational frequency of the driving force at a level as constant as possible, for example, if the frequency of opening/closing an accelerator is increased, the fuel consumption of the internal combustion engine deteriorates while the power consumption at the start of the electric motor is larger than the power consumption during normal traveling, thus, even if it is an electric vehicle, a transmission is needed for a medium-sized vehicle and a large-sized vehicle other than a small-sized vehicle.SOLUTION: A negative feedback continuously variable transmission is configured as follows. A transmission part in which gears, a sprocket, a roller chain, a pulley, and a belt are freely combined with each other is provided between a primary differential, becoming the input side and including a synchronous torque transmission mechanism, and a secondary differential becoming the output side. The synchronous torque transmission mechanism and the transmission part are configured to work as a negative feedback mechanism such that an output torque load is fed back to always maintain input torque at a constant level.

Description

本発明は差動装置と同期式トルク伝達機構と備え、トルク不可による負帰還型の無段変速機に関する。 The present invention relates to a negative feedback continuously variable transmission that includes a differential device and a synchronous torque transmission mechanism and that is not capable of torque.

特許文献第4039366号公報の無段変速機は強靱な特殊鋼を数枚を重ね合わせて形成したスチールベルトに、金属製のコマをびっしりと填め込んだもので、プーリからの駆動力は隣り合ったコマからコマへの圧力として伝達され、スチールベルトは従属的なガイドとして動作する。 The continuously variable transmission of Japanese Patent No. 4039366 is a steel belt formed by superposing several sheets of tough special steel, and a metal frame is tightly fitted, and the driving force from the pulley is adjacent. The steel belt acts as a subordinate guide.

特許文献第4875732号公報の無段変速機は出力側であるセカンダリープーリに遊星歯車式の副変速機を設置している。この副変速機は前進2段の変速機能と前後進切替機能を持ち、従来のスチールベルト式無段変速機では入力側であるプライマリープーリと動力断続用のクラッチ機構との間に設置されていた前後進切替用遊星歯車の役割も有している。 In the continuously variable transmission of Japanese Patent No. 4875732, a planetary gear type auxiliary transmission is installed on a secondary pulley on the output side. This sub-transmission has a two-speed forward shifting function and a forward / reverse switching function. In the conventional steel belt type continuously variable transmission, it is installed between the primary pulley on the input side and the clutch mechanism for power interruption. It also serves as a planetary gear for forward / reverse switching.

特許文献第4145707号公報の無段変速機はスチールベルト式よりも、低速側・高速側の変速比における伝達効率が良く、またプーリ巻きかけ半径を小さく出来るため、プーリ径を小型化し、同じ体格で変速比を拡大できる。ただし、ピンとプーリが点接触して動力を伝達するため、面で接触するスチールベルト式よりも更に騒音が大きくなりがちである。 The continuously variable transmission of Japanese Patent No. 4145707 has better transmission efficiency at the low speed / high speed gear ratio than the steel belt type, and the pulley winding radius can be reduced, so the pulley diameter is reduced and the same physique Can increase the gear ratio. However, since the pin and the pulley are in point contact to transmit power, the noise tends to be larger than that of the steel belt type that contacts the surface.

特許文献第4035317号公報のトロイダル無段変速機はフリクションドライブを高度に発展させた形態である。入力側と出力側の2枚のディスクが平行に配置され、その間に複数のコマ型のパワーローラが強い力で挟まれている。パワーローラの傾斜角を変化させるとそれに応じて2枚のディスクの回転数の比も変化し、可変変速比が得られる。 The toroidal continuously variable transmission disclosed in Japanese Patent No. 4035317 is a form in which a friction drive is highly developed. Two disks on the input side and the output side are arranged in parallel, and a plurality of frame-type power rollers are sandwiched between them with a strong force. When the inclination angle of the power roller is changed, the ratio of the rotational speeds of the two disks is changed accordingly, and a variable gear ratio is obtained.

特許文献第4686899号公報の無段階変速機はエンジンの動力増幅を、一般的な機械式減速機構と発電機とモータの電気制御によって行い、変速は1組の遊星歯車のみによって実現される。発電機、エンジン、モータの回転数は共線図上では直線で表され、エンジンのクランクシャフトはプラネタリーキャリアに発電機はサンギヤにそれぞれ接続されており、モータと車輪は機械的に直結されアウトプットギアに接続されている。このため、車輪が回転している時は常にモータも回転し、車輪と直結であることから発進時の駆動力を確保するために必然的に高トルク仕様のモータを必要とする。 The continuously variable transmission of Japanese Patent No. 4686899 performs power amplification of the engine by electric control of a general mechanical reduction mechanism, a generator and a motor, and the speed change is realized by only one set of planetary gears. The rotation speed of the generator, engine, and motor is represented by a straight line on the nomograph, the engine crankshaft is connected to the planetary carrier, the generator is connected to the sun gear, and the motor and wheels are mechanically connected directly to the output. Connected to the gear. For this reason, the motor always rotates when the wheel is rotating, and since it is directly connected to the wheel, a motor with a high torque specification is inevitably required to ensure the driving force at the start.

特許文献第4762588号公報の無段変速機はエンジンで油圧ポンプを駆動して発生させた油圧を油圧モータで再び回転力に変換する方式で、油圧ポンプのピストンの作動ストロークをそのピストンに接する斜板の角度を変化させることによって、作動油の流量を連続的に増減させて速度の調節を行う。 The continuously variable transmission disclosed in Japanese Patent No. 4762588 is a system in which the hydraulic pressure generated by driving a hydraulic pump with an engine is converted again into rotational force by a hydraulic motor, and the operating stroke of the piston of the hydraulic pump is in contact with the piston. By changing the angle of the plate, the flow rate of hydraulic oil is continuously increased or decreased to adjust the speed.

特許文献第4012401号公報の無段変速機は駆動する動力の全てを一旦油圧に変換する静油圧式無段変速機とは異なり、遊星歯車と静油圧式無段変速機を組み合わせて構成されている。例えばサンギヤを入力軸、プラネタリギヤを出力軸とし、リングギヤの回転を静油圧式無段変速機で無段階にコントロールすることによって自在に減速比を制御することができ、静油圧式無段変速機の無段変速のメリットを生かしつつも変速機全体での伝達効率を高めている。 Unlike the hydrostatic continuously variable transmission in which all of the driving power is temporarily converted into hydraulic pressure, the continuously variable transmission of Japanese Patent No. 401241 is configured by combining a planetary gear and a hydrostatic continuously variable transmission. Yes. For example, the reduction gear ratio can be controlled freely by using the sun gear as the input shaft and the planetary gear as the output shaft, and controlling the rotation of the ring gear continuously with a hydrostatic continuously variable transmission. The transmission efficiency of the entire transmission is improved while taking advantage of the continuously variable transmission.

特許文献第3658663号公報の無段変速機は、摺動可能なクラッチとプラネタリギヤとで構成さ無段階な自動変速機である。トルクコンバータ及びカップリングを備えクラッチ機能に加えトルクが蓄力機能も兼ねている。油圧機構やブレーキバンド等は一切不要であるため、部品数が極端に少なくて済み、車速とエンジン回転数に応じ変速比が変る。又、トルクコンバータ、ポンプとタービンの回転比が高い状態でのみ使用されるのでストール状態とならず燃費が良い。 The continuously variable transmission of Japanese Patent No. 3658663 is a continuously variable automatic transmission that includes a slidable clutch and a planetary gear. A torque converter and coupling are provided, and in addition to the clutch function, the torque also serves as a power storage function. Since no hydraulic mechanism, brake band, etc. are required, the number of parts is extremely small, and the gear ratio changes according to the vehicle speed and the engine speed. Further, since it is used only in a state where the torque converter, pump and turbine have a high rotation ratio, it does not become a stalled state and has good fuel efficiency.

特許文献第3689020号公報の無段変速機は遊星歯車機構を組込んで、その旋回運動を干渉しあう台座側で制御して、変速比を変える変速機である。 The continuously variable transmission of Japanese Patent Publication No. 3689020 is a transmission that incorporates a planetary gear mechanism and controls the turning movement to interfere with each other to change the gear ratio.

特許第4039366号公報Japanese Patent No. 4039366 特許第4875732号公報Japanese Patent No. 4875732 特許第4145707号公報Japanese Patent No. 4145707 特許第4035317号公報Japanese Patent No. 4035317 特許第4686899号公報Japanese Patent No. 4686899 特許第4762588号公報Japanese Patent No. 4762588 特許第4012401号公報Japanese Patent No. 4012401 特許第3658663号公報Japanese Patent No. 3658663 特許第3689020号公報Japanese Patent No. 3689020 特許第4012940号公報Japanese Patent No. 4012940

自動車などの駆動力として内燃機関が一般的であるが電気モータを使った自動車も今後普及が予想される。いずれの駆動力においても燃費の向上や消費電力の省エネ化の傾向にあり、そのために一つは駆動力の回転数をなるべく一定に保つ方法が挙げられる。例えば内燃機関はアクセルの開閉の頻度が増せば燃費が悪くなり、電気モータは開始時の消費電力は通常走行時消費電力に比べて大きい事があげられ、電気自動車であっても小型車以外の中・大型車には変速機が必要になってくる。
一般的に停止状態から通常走行に入るまでの始動時は車両の重量による慣性力が働き、駆動軸に掛かるトルク負荷は大きくなる。その為、駆動力の回転数をなるべく一定に保つ変速機が望まれるが、駆動軸に掛かるトルク負荷に応じて減速していけば上記課題は解決できると考えられる。そこで出力トルクの負荷に応じてギヤ比を自動で無段変速する事が可能な変速機を備えることにより入力側の回転数を一定に保ち、且つギヤ比を定常走行時まで理想的な比率で変速させる事を提供する。
An internal combustion engine is generally used as a driving force for automobiles, but automobiles using electric motors are expected to become popular in the future. In any driving force, there is a tendency to improve fuel consumption and save power consumption. For this purpose, one method is to keep the rotational speed of the driving force as constant as possible. For example, if the frequency of opening and closing the accelerator is increased for an internal combustion engine, the fuel efficiency will deteriorate, and the electric motor will start to consume more power than the normal driving power.・ Transmissions are required for large vehicles.
In general, an inertial force due to the weight of the vehicle acts at the start from the stop state to the normal running, and the torque load applied to the drive shaft increases. Therefore, a transmission that keeps the rotational speed of the driving force as constant as possible is desired, but it is considered that the above problem can be solved if the speed is reduced according to the torque load applied to the drive shaft. Therefore, by providing a transmission that can automatically change the gear ratio continuously in accordance with the output torque load, the rotational speed on the input side is kept constant, and the gear ratio is kept at an ideal ratio until steady running. Provide shifting.

入力側になる同期式トルク伝達機構を備えた一次差動装置と出力側になる二次差動装置の間にギヤ、スプロケット、ローラーチェーン、プーリ、ベルトなどを自由に組み合わせた変速部を設け、前記同期式トルク伝達機構と前記変速部が負帰還機構として働き、出力トルク負荷がフィードバックされ入力トルクを常に一定に保とうとする負帰還型の無段変速機。 A transmission unit that freely combines gears, sprockets, roller chains, pulleys, belts, etc. is provided between the primary differential device equipped with a synchronous torque transmission mechanism on the input side and the secondary differential device on the output side, A negative feedback continuously variable transmission in which the synchronous torque transmission mechanism and the transmission unit function as a negative feedback mechanism, and the output torque load is fed back to keep the input torque constant.

同期式トルク伝達機構は本願独自の機構であり、軸を有する駆動カムと従動カムの間にカムボールを配置し、駆動カムに形成されたボール保持部が一定の範囲でカムボールが動く事を許容し、また従動カムに円周線上に正弦波を合成した溝を形成し、駆動カムが回転すると従動カムのトルク負荷に応じて従動カムの溝をカムボールが動き、従動カムのトルク負荷が小さくなっていくと、従動カムが回転し始める。
従動軸のトルク負荷に応じて駆動軸がトルクを伝達していく機能はトルクコンバータと同じ関係にあり、その意味でポンプインペラは駆動カム、タービンランナは従動カム、流体はカムボールと変換でき、従動カムの溝をボールが動くのが止まると、駆動カムと従動カムは同期し回転数が同じになる。
The synchronous torque transmission mechanism is a mechanism unique to the present application. A cam ball is arranged between a drive cam having a shaft and a driven cam, and the ball holding portion formed on the drive cam allows the cam ball to move within a certain range. In addition, a groove in which the sine wave is synthesized on the circumferential line is formed in the driven cam, and when the drive cam rotates, the cam ball moves in the groove of the driven cam according to the torque load of the driven cam, and the torque load of the driven cam decreases. The driven cam begins to rotate as it goes.
The function that the drive shaft transmits torque according to the torque load of the driven shaft is the same as that of the torque converter. In this sense, the pump impeller can be converted into a drive cam, the turbine runner can be converted into a driven cam, and the fluid can be converted into a cam ball. When the ball stops moving in the cam groove, the drive cam and the driven cam are synchronized and the rotation speed is the same.

差動装置は公知の技術であり、デフケース内に自在に軸支されたピニオンギヤと前記ピニオンギヤを介して、同一軸上にある一対のサイドギヤが噛み合い、前記デフケースにリングギヤを形成もしくは取り付け、リングギヤへトルクを入力する事によって、前記両サイドギヤへトルクを配分する。 The differential is a known technology, and a pair of side gears on the same shaft mesh with each other through a pinion gear supported freely in a differential case and the pinion gear to form or attach a ring gear to the differential case, and torque to the ring gear. The torque is distributed to the both side gears.

遊星歯車機構の場合には前記差動装置のピニオンギヤをプラネタリギヤ(遊星歯車)、デフケースをキャリア(遊星キャリア)、サイドギヤの一つをサンギヤ(太陽歯車)、もう一つをサンギヤと同一軸上に対置された第二のサンギヤ或いは径の異なるアウタギヤ(内歯車)と置き換える事により、さまざまなタイプの差動装置が可能であり、本件の差動装置は自動車の左右車輪へトルクを配分するのが目的ではない為、前記サンギヤと前記アウタギヤの径比を利用して小型化が可能である。 In the case of a planetary gear mechanism, the differential pinion gear is a planetary gear (planetary gear), the differential case is a carrier (planetary carrier), one side gear is a sun gear (sun gear), and the other is on the same axis as the sun gear. By replacing it with the second sun gear or the outer gear (internal gear) of different diameter, various types of differential gears are possible, and the purpose of this differential gear is to distribute the torque to the left and right wheels of the car. Therefore, it is possible to reduce the size by utilizing the diameter ratio of the sun gear and the outer gear.

遊星歯車機構は公知の技術であり、特に特許文献第4012940号公報では遊星歯車機構に関する体系的な分類と解説がなされている。 The planetary gear mechanism is a known technique, and in particular, Japanese Patent No. 4012940 discloses systematic classification and explanation regarding the planetary gear mechanism.

二つの差動装置の間にギヤ、スプロケット、ローラーチェーン、プーリ、ベルトなどを自由に組み合わせた変速部を設けることにより、トルクの大小や、回転速度の高低、変速比の大小と自由に無段変速機を設計でき、且つ同期式トルク伝達機構は少ない部品で構成され小型であっても大きなトルクを伝達できる。 By providing a speed changer that freely combines gears, sprockets, roller chains, pulleys, belts, etc. between the two differential gears, you can freely adjust the torque, rotation speed, and gear ratio. The transmission can be designed, and the synchronous torque transmission mechanism is configured with a small number of parts and can transmit a large torque even if it is small.

実施例1〜4の同期式トルク伝達機構の概略図Schematic of synchronous torque transmission mechanism of Examples 1 to 4 実施例1の無段変速機のスケルトン図Skeleton diagram of continuously variable transmission of embodiment 1 実施例4の無段変速機のスケルトン図Skeleton diagram of continuously variable transmission of embodiment 4

実施例1の無段変速機は一次差動装置10と二次差動装置20と第一変速部30と第二変速部40と同期式トルク伝達機構1で構成され、前記一次差動装置のリングギヤ12へトルクを入力させ、前記差動装置の第一サイドギヤ14a、第二サイドギヤ14bでトルクを配分し、前記第一変速部と前記第二変速部によりそれぞれが回転比を変え、前記二次差動装置の第一サイドギヤ24a、第二サイドギヤ24bへトルクを伝え、前記差動装置が合成したトルクをリングギヤ22から出力する。 The continuously variable transmission according to the first embodiment includes a primary differential device 10, a secondary differential device 20, a first transmission unit 30, a second transmission unit 40, and a synchronous torque transmission mechanism 1. Torque is input to the ring gear 12, the torque is distributed between the first side gear 14a and the second side gear 14b of the differential, and the first transmission unit and the second transmission unit change the rotation ratio, respectively. Torque is transmitted to the first side gear 24 a and the second side gear 24 b of the differential device, and the torque synthesized by the differential device is output from the ring gear 22.

一次差動装置10は同期式トルク伝達機構1と第一サイドギヤ14a、第二サイドギヤ14bとピニオンギヤ13を内設した保持体11と前記保持体の外周に形成されたリングギヤ12で構成され、且つ、前記リングギヤの回転と同時に前記保持体が回転する。
前記保持体軸と同一軸を持つ前記サイドギヤ14a、14bとの間に、前記保持体の回転軸と直角をなす軸の前記ピニオンギヤは前記保持体に回転自在に軸支され、前記ピニオンギヤが前記サイドギヤ14a、14bの間に介在し噛み合う。
前記リングギヤの回転に伴い前記サイドギヤ14a、14bのトルク負荷が同じであれば、前記ピニオンギヤは差動装置の原理により回転せず、前記サイドギヤ14a、14bは同じ回転数でトルクを伝える。
前記サイドギヤ14a、14bのトルク負荷が同じでなければ、前記ピニオンギヤは差動装置の原理によりトルク負荷の小さいサイドギヤを高回転比でトルクを伝える。
The primary differential device 10 is composed of a synchronous torque transmission mechanism 1, a first side gear 14a, a second side gear 14b and a pinion gear 13, and a ring gear 12 formed on the outer periphery of the holder. The holding body rotates simultaneously with the rotation of the ring gear.
Between the side gears 14a, 14b having the same axis as the holding body shaft, the pinion gear having an axis perpendicular to the rotation axis of the holding body is rotatably supported by the holding body, and the pinion gear is supported by the side gear. 14a and 14b are intervening and meshing.
If the torque loads of the side gears 14a and 14b are the same as the ring gear rotates, the pinion gear does not rotate according to the principle of the differential gear, and the side gears 14a and 14b transmit torque at the same rotational speed.
If the torque loads of the side gears 14a and 14b are not the same, the pinion gear transmits torque at a high rotation ratio to the side gear with a small torque load according to the principle of the differential.

同期式トルク伝達機構1は駆動カム2、従動カム5、カムボール8で構成され、前記駆動カムには放射上に6つの長穴の保持部4が形成され、前記保持部に前記カムボールが保持され、前記駆動カムが回転すると前記保持部の中を前記カムボールは自由に各放射線上を移動できる。
前記従動カムには円周線上に正弦波を合成した前記カムボールの案内溝7が形成され、前記カムボールは必要に応じて自由に前記溝内を周期的に移動できる。
前記駆動カムが回転すると前記カムボールは回転軸を中心に軌道角運動するが、必要に応じて前記保持部を直線運動できるので、前記カムボールは二つの運動の合成となり円周上で正弦波運動するが、前記合成運動の許容範囲内に前記案内溝があることが条件となる。
角運動量保存の法則により前記カムボールは正円運動(等角運動)をしようとし前記法則の作用により、前記カムボールは前記溝内を移動するより前記従動カムを回転させようとする。前記法則の作用より前記従動カムのトルク負荷が小さくなると、前記カムボールは前記案内溝内の運動距離を次第に短くし、前記従動カムは回転し始める。
回転し始めた前記従動カムは前記案内溝内の運動を停止した時、前記駆動カムと前記従動カムは角運動が同期し、同じ回転数になる。
The synchronous torque transmission mechanism 1 includes a drive cam 2, a driven cam 5, and a cam ball 8. The drive cam is formed with six long hole holding portions 4 on the radiation, and the cam ball is held by the holding portion. When the drive cam rotates, the cam ball can freely move on each radiation in the holding portion.
The follower cam is formed with a guide ball guide groove 7 in which a sine wave is synthesized on a circumferential line, and the cam ball can freely freely move in the groove as needed.
When the drive cam rotates, the cam ball moves in an orbital angle around the rotation axis, but if necessary, the holding portion can move linearly, so the cam ball is a combination of two movements and moves in a sine wave on the circumference. However, it is a condition that the guide groove is within an allowable range of the combined motion.
According to the law of conservation of angular momentum, the cam ball tries to make a circular motion (conformal motion), and the cam ball tries to rotate the driven cam rather than moving in the groove by the action of the law. When the torque load of the driven cam is reduced by the action of the law, the cam ball gradually shortens the moving distance in the guide groove, and the driven cam starts to rotate.
When the driven cam, which has started rotating, stops moving in the guide groove, the driving cam and the driven cam are synchronized in angular motion and have the same rotational speed.

二次差動装置は第一サイドギヤ24a、第二サイドギヤ24bとピニオンギヤ23とを内設した保持体21と前記保持体の外周に形成されたリングギヤ22で構成され、出力ギヤである前記差動装置の前記リングギヤ22のトルク負荷により、前記負荷を前記サイドギヤ24a,24bへ前記トルク負荷を配分し、負帰還機構の作用で前記リングギヤは再び合成された回転数で出力する。 The secondary differential device includes a holding body 21 in which a first side gear 24a, a second side gear 24b, and a pinion gear 23 are provided, and a ring gear 22 formed on the outer periphery of the holding body, and the differential device that is an output gear. According to the torque load of the ring gear 22, the load is distributed to the side gears 24 a and 24 b, and the ring gear outputs again at the combined rotational speed by the action of the negative feedback mechanism.

第一変速部30はピニオンギヤ31とスパギヤ32とで構成され、一次差動装置10の第一サイドギヤ14aの軸に前記ピニオンギヤは固定され、二次差動装置の第一サイドギヤ24aの軸に前記スパギヤは固定され、前記ピニオンギヤと前記スパギヤの径の組み合わせにより前記変速部の回転比mが決まる。 The first transmission unit 30 includes a pinion gear 31 and a spa gear 32. The pinion gear is fixed to the shaft of the first side gear 14a of the primary differential device 10, and the spa gear is mounted on the shaft of the first side gear 24a of the secondary differential device. Is fixed, and a rotation ratio m of the transmission unit is determined by a combination of the diameters of the pinion gear and the spa gear.

第二変速部40はピニオンギヤ42とスパギヤ41とで構成され、一次差動装置10の第二サイドギヤ14bの軸に前記ピニオンギヤは固定され、二次差動装置の第二サイドギヤ24bの軸に前記スパギヤは固定され、前記ピニオンギヤと前記スパギヤの径の組み合わせにより前記変速部の回転比nが決まる。 The second transmission unit 40 includes a pinion gear 42 and a spa gear 41. The pinion gear is fixed to the shaft of the second side gear 14b of the primary differential 10, and the spa gear is fixed to the shaft of the second side gear 24b of the secondary differential. Is fixed, and the rotation ratio n of the transmission unit is determined by the combination of the diameters of the pinion gear and the spa gear.

第一内部トルク負荷は負帰還機構の一要因で、一次差動装置10のリングギヤ12で入力されたトルクが第一変速部30を経て、二次差動装置のリングギヤ22へ回転を伝達する際の負荷であり、第一変速部30のギヤ比と第二変速部40のギヤ比と一次差動装置への入力トルクと二次差動装置からの出力トルク負荷とを同期式トルク伝達機構1が調整する事によって第一内部トルク負荷の値は変動する。 The first internal torque load is a factor of the negative feedback mechanism. When the torque input from the ring gear 12 of the primary differential device 10 is transmitted to the ring gear 22 of the secondary differential device via the first transmission unit 30, the first internal torque load is transmitted. The synchronous torque transmission mechanism 1 includes a gear ratio of the first transmission unit 30, a gear ratio of the second transmission unit 40, an input torque to the primary differential device, and an output torque load from the secondary differential device. The value of the first internal torque load varies as a result of adjustment.

第二内部トルク負荷は負帰還機構の一要因で、一次差動装置10のリングギヤ12で入力されたトルクが第二変速部40を経て、二次差動装置のリングギヤ22へ回転を伝達する際の負荷であり、第一変速部30のギヤ比と第二変速部40のギヤ比と一次差動装置への入力トルクと二次差動装置からの出力トルク負荷とを同期式トルク伝達機構1が調整する事によって第一内部トルク負荷の値は変動する。 The second internal torque load is a factor of the negative feedback mechanism. When the torque input from the ring gear 12 of the primary differential device 10 is transmitted to the ring gear 22 of the secondary differential device via the second transmission 40, the second internal torque load is transmitted. The synchronous torque transmission mechanism 1 includes a gear ratio of the first transmission unit 30, a gear ratio of the second transmission unit 40, an input torque to the primary differential device, and an output torque load from the secondary differential device. The value of the first internal torque load varies as a result of adjustment.

次に、本願無段変速機にトルクを入力した時の出力までの装置内の回転数の関係を示すと、一次差動装置のリングギヤ12への回転数の入力をxとした時、二次差動装置のリングギヤ22からの回転数の出力をyとし、第一変速部30の回転数をm、第二変速部40の回転数をnとすれば、y=f(x)となり以下の関係になる。 Next, the relationship of the number of rotations in the device up to the output when torque is input to the continuously variable transmission of the present application is shown. When x is the input of the number of rotations to the ring gear 12 of the primary differential, If the output of the number of rotations from the ring gear 22 of the differential gear is y, the number of rotations of the first transmission unit 30 is m, and the number of rotations of the second transmission unit 40 is n, y = f (x). Become a relationship.

m<nの時、二次差動装置の出力トルク負荷によりm≦y≦(m+n)/2の間の値となる。ここで一次差動装置への入力トルクは、始動時に慣性モーメントの作用とm<nのギヤ比の関係により、内部トルク負荷の小さい第一変速部30をmで回転させようとする。この時nは回転しない。mの回転によりyが回転するが、その値はy=mである。次にyの回転に伴い出力トルク負荷は次第に小さくなっていく。出力トルク負荷の減少に従い第一変速部30及び第二変速部40の内部トルク負荷も小さくなっていく。ここで初期設定としてm<nの関係から、第一内部トルク負荷をt1、第二内部トルク負荷をt2とすれば、t1<t2の関係になっている。
また、出力負荷が零になると一次差動装置に組み込まれている同期式トルク伝達機構の調整の作用により、前記差動装置のサイドギヤ14a,14bを同じ回転数で動き始める。この時、出力トルクはy=(m+n)/2になる。
When m <n, the value is between m ≦ y ≦ (m + n) / 2 depending on the output torque load of the secondary differential. Here, the input torque to the primary differential device tries to rotate the first transmission unit 30 having a small internal torque load at m based on the relationship between the action of the moment of inertia and the gear ratio of m <n at the time of starting. At this time, n does not rotate. The rotation of m rotates y, and the value is y = m. Next, the output torque load gradually decreases with the rotation of y. As the output torque load decreases, the internal torque loads of the first transmission unit 30 and the second transmission unit 40 also decrease. Here, from the relationship of m <n as an initial setting, if the first internal torque load is t1, and the second internal torque load is t2, the relationship is t1 <t2.
Further, when the output load becomes zero, the side gears 14a and 14b of the differential device start to move at the same rotation speed by the adjustment of the synchronous torque transmission mechanism incorporated in the primary differential device. At this time, the output torque is y = (m + n) / 2.

ギヤ比の設定については、入力回転数を1とし出力回転を1から1/5の範囲で変速するには、yの値をmの時にx/5とし(m+n)/2の時にxとなるようにギヤ比を設定すればよい。従ってm=x/5、x=(m+n)/2となり、これよりm=x/5、n=9x/5となるようにギヤ比を設定すればよい。 Regarding the setting of the gear ratio, in order to change the input rotation speed to 1 and the output rotation in the range of 1 to 1/5, x is set to x / 5 when the value of y is m and becomes x when (m + n) / 2. The gear ratio may be set as follows. Accordingly, the gear ratio may be set so that m = x / 5 and x = (m + n) / 2, and m = x / 5 and n = 9x / 5.

実施例2の無段変速機は変速部をスプロケットとローラーチェーンで構成し、その他は実施例1に同じ構造の無段変速機であり、スプロケットとローラーチェーンの機能と構造は公知の技術であり、説明を省略する。 The continuously variable transmission of the second embodiment is a continuously variable transmission having the same structure as that of the first embodiment except that the transmission portion is composed of a sprocket and a roller chain, and the functions and structures of the sprocket and the roller chain are known techniques. The description is omitted.

実施例3の無段変速機は変速部をプーリとベルトで構成し、その他は実施例1に同じ構造の無段変速機であり、プーリとベルトの機能と構造は公知の技術であり、説明を省略する。 The continuously variable transmission of the third embodiment is a continuously variable transmission having the same structure as that of the first embodiment except that the transmission portion is constituted by a pulley and a belt. The functions and structures of the pulley and the belt are well-known techniques. Is omitted.

実施例4の無段変速機は一次遊星歯車機構50と二次遊星歯車機構60と変速部70と同期式トルク伝達機構1で構成され、一次遊星歯車機構のキャリア52へトルクを入力させ、前記遊星歯車機構のプラネタリギヤ53がサンギヤ51とアウタギヤ54へトルクを配分する。
アウタギヤ54と二次遊星歯車機構のアウタギヤ64は直結し、サンギヤ51と二次遊星歯車機構のサンギヤ61の間に同期式トルク伝達機構1を接続させ、サンギヤ51は変速部70の変速ギヤ74に回転を伝え、前記変速ギヤの同軸上に固定したプラネタリギヤ43はキャリア72に回転自在に軸支され、出力のトルク負荷に応じて変速する。
The continuously variable transmission of the fourth embodiment includes a primary planetary gear mechanism 50, a secondary planetary gear mechanism 60, a transmission unit 70, and a synchronous torque transmission mechanism 1, and inputs torque to the carrier 52 of the primary planetary gear mechanism. The planetary gear 53 of the planetary gear mechanism distributes torque to the sun gear 51 and the outer gear 54.
The outer gear 54 and the outer gear 64 of the secondary planetary gear mechanism are directly connected, and the synchronous torque transmission mechanism 1 is connected between the sun gear 51 and the sun gear 61 of the secondary planetary gear mechanism. The sun gear 51 is connected to the transmission gear 74 of the transmission unit 70. The planetary gear 43 that transmits the rotation and is fixed on the same axis of the transmission gear is rotatably supported by the carrier 72 and shifts according to the output torque load.

一次遊星歯車機構は同期式トルク伝達機構1とサンギヤ51とアウタギヤ54と第一キャリア52とプラネタリギヤ53で構成され、且つ、前記キャリアに前記プラネタリギヤは回転自在に軸支され、前記プラネタリギヤが前記サンギヤ及び前記アウタギヤの間に介在し噛み合う。
前記キャリア軸のトルクは前記サンギヤと前記アウタギヤのトルク負荷の差と前記プラネタリギヤとの関係で二次遊星歯車機構の第二キャリアの出力トルク負荷に応じて、前記サンギヤ及び前記アウタギヤにトルクを配分する。
The primary planetary gear mechanism includes a synchronous torque transmission mechanism 1, a sun gear 51, an outer gear 54, a first carrier 52, and a planetary gear 53, and the planetary gear is rotatably supported on the carrier, and the planetary gear is connected to the sun gear and the planetary gear. It intervenes and meshes between the outer gears.
The torque of the carrier shaft distributes the torque to the sun gear and the outer gear according to the output torque load of the second carrier of the secondary planetary gear mechanism in relation to the difference in torque load between the sun gear and the outer gear and the planetary gear. .

二次遊星歯車機構はサンギヤ61とアウタギヤ64とキャリア62とプラネタリギヤ63で構成され、出力ギヤである前記キャリアのトルク負荷に応じて、前記負荷を前記サンギヤ及び前記アウタギヤへ配分し、負帰還機構の作用で前記リングギヤは回転数を合成し出力する。 The secondary planetary gear mechanism is composed of a sun gear 61, an outer gear 64, a carrier 62, and a planetary gear 63, and distributes the load to the sun gear and the outer gear according to the torque load of the carrier that is an output gear. As a result, the ring gear synthesizes and outputs the rotational speed.

自動車の無段変速機。 Automobile continuously variable transmission.

産業用工作機械、特にドリルを使用する機械などで摩擦によりドリル折れや熱による加工品の変形が生じそうな時、変速機固有の性能の範囲で出力トルク負荷に応じて出力回転数を少なくなるように作用する。 When industrial machine tools, especially machines that use drills, are likely to cause drill breakage or deformation of the workpiece due to heat, the output speed will be reduced according to the output torque load within the range of performance inherent to the transmission. Acts as follows.

縫製機械に内設若しくは電動機の間に設置する事により、始動時のスピードを小さくし、また通常回転時において、縫製生地の厚さや硬さの変動に対して、自動で針の抵抗に応じてスピードを小さくする事で針折れが減少できる。 By installing it in the sewing machine or between the motors, the speed at the time of starting is reduced, and the resistance of the needle automatically responds to fluctuations in the thickness and hardness of the sewing fabric during normal rotation. Needle breakage can be reduced by reducing the speed.

1 同期式トルク伝達機構
2 駆動カム
3 駆動カム軸
4 カムボール保持部
5 従動カム
6 従動カム軸
7 案内溝
8 カムボール
10 一次差動装置
11 保持体
12 リングギヤ
13 ピニオンギヤ
14a 第一サイドギヤ
14b 第二サイドギヤ
20 二次差動装置
21 保持体
22 リングギヤ
23 ピニオンギヤ
24a 第一サイドギヤ
24b 第二サイドギヤ
30 第一変速部
31 ピニオンギヤ
32 スパギヤ
40 第二変速部
41 スパギヤ
42 ピニオンギヤ
50 一次遊星歯車機構
51 サンギヤ
52 キャリア
53 プラネタリギヤ
54 アウタギヤ
60 ニ次遊星歯車機構
61 サンギヤ
62 キャリア
63 プラネタリギヤ
64 アウタギヤ
70 変速部
71 サンギヤ
72 キャリア
73 プラネタリギヤ
74 変速ギヤ
DESCRIPTION OF SYMBOLS 1 Synchronous torque transmission mechanism 2 Drive cam 3 Drive cam shaft 4 Cam ball holding part 5 Drive cam 6 Drive cam shaft 7 Guide groove 8 Cam ball 10 Primary differential 11 Holding body 12 Ring gear 13 Pinion gear 14a First side gear 14b Second side gear 20 Secondary differential device 21 Holding body 22 Ring gear 23 Pinion gear 24a First side gear 24b Second side gear 30 First transmission unit 31 Pinion gear 32 Spa gear 40 Second transmission unit 41 Spa gear 42 Pinion gear 50 Primary planetary gear mechanism 51 Sun gear 52 Carrier 53 Planetary gear 54 Outer gear 60 Secondary planetary gear mechanism 61 Sun gear 62 Carrier 63 Planetary gear 64 Outer gear 70 Transmission unit 71 Sun gear 72 Carrier 73 Planetary gear 74 Transmission gear

Claims (3)

一次差動装置(一次遊星歯車機構)、二次差動装置(二次遊星歯車機構)、同期式トルク伝達機構、変速部で構成し、一次差動装置にトルクを入力すると前記差動装置は二つにトルクを分解し、変速部で回転数をm対nに変速し、二次差動装置へトルクを伝達し、前記差動装置でトルクを合成し、且つ、出力トルク負荷の大きさにより回転数の比率を自動で無段階に変速させる事を特徴とする無段変速機。 It consists of a primary differential device (primary planetary gear mechanism), a secondary differential device (secondary planetary gear mechanism), a synchronous torque transmission mechanism, and a transmission unit. When torque is input to the primary differential device, the differential device The torque is divided into two parts, the rotational speed is changed from m to n by the transmission unit, the torque is transmitted to the secondary differential, the torque is synthesized by the differential, and the magnitude of the output torque load A continuously variable transmission characterized in that the speed ratio is automatically and continuously variable. 入力側になる同期式トルク伝達機構を備えた一次差動装置と出力側になる二次差動装置の間にギヤ、スプロケット、ローラーチェーン、プーリ、ベルトなどを自由に組み合わせた変速部を設ける事で、前記同期式トルク伝達機構と前記変速部が負帰還機構として働き、出力トルク負荷がフィードバックされ入力トルクを常に一定に保とうとする負帰還型の請求項1に記載の無段変速機。 Provide a transmission that freely combines gears, sprockets, roller chains, pulleys, belts, etc. between the primary differential equipped with a synchronous torque transmission mechanism on the input side and the secondary differential on the output side. 2. The continuously variable transmission according to claim 1, wherein the synchronous torque transmission mechanism and the transmission unit function as a negative feedback mechanism, and an output torque load is fed back to keep the input torque constant. 同期式トルク伝達機構は駆動カム、従動カム、カムボールで構成され、前記駆動カムは前記カムボールを保持し、前記従動カムには円周線上に正弦波を合成した案内溝が形成され、前記駆動カムが回転すると前記カムボールは前記案内溝を周期的に移動する。
トルク負荷が小さくなっていくと前記カムボールは前記溝内を移動する距離が短くなり従動カムが回転を始め、前記カムボールが前記案内溝内で静止すると、前記駆動カムと前記従動カムは角運動が同期し、同じ回転数になる事を特徴とする請求項1記載の無段変速機の構成要素となる同期式トルク伝達機構。
The synchronous torque transmission mechanism includes a drive cam, a driven cam, and a cam ball. The drive cam holds the cam ball, and the driven cam is formed with a guide groove that combines a sine wave on a circumferential line. When is rotated, the cam ball periodically moves in the guide groove.
As the torque load becomes smaller, the distance that the cam ball moves in the groove becomes shorter, the driven cam starts to rotate, and when the cam ball stops in the guide groove, the drive cam and the driven cam undergo angular motion. 2. A synchronous torque transmission mechanism as a component of a continuously variable transmission according to claim 1, wherein the synchronous torque transmission is synchronized and has the same rotational speed.
JP2012088006A 2012-04-09 2012-04-09 Continuously variable transmission Expired - Fee Related JP5645313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012088006A JP5645313B2 (en) 2012-04-09 2012-04-09 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088006A JP5645313B2 (en) 2012-04-09 2012-04-09 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2013217434A true JP2013217434A (en) 2013-10-24
JP5645313B2 JP5645313B2 (en) 2014-12-24

Family

ID=49589769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088006A Expired - Fee Related JP5645313B2 (en) 2012-04-09 2012-04-09 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5645313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664194A (en) * 2016-07-28 2018-02-06 钟跃荣 A kind of mechanical stepless speed change method and buncher

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108317230A (en) * 2018-02-06 2018-07-24 董博 With multichain CVT speed changers and the transmission ratio adjusting of differential mechanism and detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1915606A (en) * 1932-06-27 1933-06-27 Jr Samuel A B Hamilton Differential for motor vehicles and the like
FR836807A (en) * 1937-04-13 1939-01-26 Deutsche Werke Kiel Ag Power transmission device applicable, in particular, to motor vehicles and comprising a normal gear change mechanism and a planetary gear mechanism
JPS5844551U (en) * 1981-09-14 1983-03-25 トヨタ自動車株式会社 Automotive gear transmission
JPS6235141A (en) * 1985-08-05 1987-02-16 Mitsubishi Motors Corp Differential limiting device of differential mechanism
JP2009019726A (en) * 2007-07-13 2009-01-29 Miwa Lock Co Ltd Clutch mechanism with torque limiter
JP2009132189A (en) * 2007-11-28 2009-06-18 Toyota Motor Corp Controller for hybrid vehicle
JP2009143348A (en) * 2007-12-13 2009-07-02 Toyota Motor Corp Drive device for hybrid vehicle
JP2010121658A (en) * 2008-11-17 2010-06-03 Toyota Motor Corp Torque limiter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1915606A (en) * 1932-06-27 1933-06-27 Jr Samuel A B Hamilton Differential for motor vehicles and the like
FR836807A (en) * 1937-04-13 1939-01-26 Deutsche Werke Kiel Ag Power transmission device applicable, in particular, to motor vehicles and comprising a normal gear change mechanism and a planetary gear mechanism
JPS5844551U (en) * 1981-09-14 1983-03-25 トヨタ自動車株式会社 Automotive gear transmission
JPS6235141A (en) * 1985-08-05 1987-02-16 Mitsubishi Motors Corp Differential limiting device of differential mechanism
JP2009019726A (en) * 2007-07-13 2009-01-29 Miwa Lock Co Ltd Clutch mechanism with torque limiter
JP2009132189A (en) * 2007-11-28 2009-06-18 Toyota Motor Corp Controller for hybrid vehicle
JP2009143348A (en) * 2007-12-13 2009-07-02 Toyota Motor Corp Drive device for hybrid vehicle
JP2010121658A (en) * 2008-11-17 2010-06-03 Toyota Motor Corp Torque limiter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664194A (en) * 2016-07-28 2018-02-06 钟跃荣 A kind of mechanical stepless speed change method and buncher

Also Published As

Publication number Publication date
JP5645313B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP4151607B2 (en) Belt type continuously variable transmission
US7632201B2 (en) Hybrid drive apparatus
CN100557271C (en) Automatic transmission
US10384529B2 (en) Power transmission apparatus for hybrid electric vehicle
CN101408244B (en) Mechanical hydraulic stepless speed changer and method and vehicle mechanical hydraulic stepless speed changer
JP5596842B2 (en) Continuously variable transmission
JP5645313B2 (en) Continuously variable transmission
JP2016070479A (en) Vehicular stepless speed change device
KR101591278B1 (en) Compound transmission of combining differential-gear and cvt and shifting method using thereof
JPWO2015045771A1 (en) Automatic transmission for electric vehicles
JP2015031312A (en) Power transmission mechanism
JP2007051720A (en) Oil pump drive mechanism for vehicular power unit
US6921349B2 (en) Transmission arrangement
WO2007079694A1 (en) Gear type steeping stepless speed change device
JP4685603B2 (en) Gearbox for work vehicle
KR101809257B1 (en) Regenerative breaking hybrid transmission using differential-gear and operating method thereof
JP4862643B2 (en) Belt type continuously variable transmission
JP6365246B2 (en) Automatic transmission
JP2010048399A (en) Oil pump driving device
JP2016188690A (en) Automatic transmission
JP4792791B2 (en) Torque cam device and belt type continuously variable transmission
JP2006291999A (en) Torque cam device and belt type continuously variable transmission
JP3903605B2 (en) Toroidal continuously variable transmission
JP2005172179A (en) Fully mechanical type continuously variable transmission having clutch function
JP5816952B2 (en) Continuously variable transmission for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140708

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140708

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5645313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees