JP2013215653A - Fresh water production apparatus and fresh water production method - Google Patents

Fresh water production apparatus and fresh water production method Download PDF

Info

Publication number
JP2013215653A
JP2013215653A JP2012086981A JP2012086981A JP2013215653A JP 2013215653 A JP2013215653 A JP 2013215653A JP 2012086981 A JP2012086981 A JP 2012086981A JP 2012086981 A JP2012086981 A JP 2012086981A JP 2013215653 A JP2013215653 A JP 2013215653A
Authority
JP
Japan
Prior art keywords
water
ammonia
carbon dioxide
fresh water
induction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012086981A
Other languages
Japanese (ja)
Other versions
JP5907340B2 (en
Inventor
Norihito Uetake
規人 植竹
Koji Fuchigami
浩司 渕上
Akira Kunugi
亮 功刀
Tsuyoshi Mizukami
剛志 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012086981A priority Critical patent/JP5907340B2/en
Priority to US14/355,050 priority patent/US20140319056A1/en
Priority to PCT/JP2012/006970 priority patent/WO2013065293A1/en
Publication of JP2013215653A publication Critical patent/JP2013215653A/en
Application granted granted Critical
Publication of JP5907340B2 publication Critical patent/JP5907340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means which distills a diluted draw solution efficiently and separates fresh water.SOLUTION: A fresh water producing apparatus includes: a forward osmosis means in which a liquid whose solvent is water is brought into contact with a draw solution in which a prescribed amount of ammonia and carbon dioxide is dissolved in water, via a semi-permeable membrane, and then water in the liquid is moved to the draw solution via the semi-permeable membrane; a distillation column which distills a diluted draw solution which is diluted with water obtained in the above means; a cooling/regeneration means which cools a gas that comprises carbon dioxide, ammonia and water vapor which can be obtained from the top part of the column of the distillation column, and which regenerates the draw solution; and a recovery means for fresh water, which substantially does not include carbon dioxide and ammonia obtained from the top part of the column of the distillation column. The fresh water production apparatus has a water vapor generating device, which generates water vapor by making use of solar energy that is collected by a light collecting device, disposed as a heating means in the distillation column.

Description

この発明は、例えば海水を太陽熱と半透膜を用いて浄化し、淡水を製造する装置と淡水製造方法に関するものである。   The present invention relates to an apparatus for producing fresh water and a method for producing fresh water, for example, by purifying seawater using solar heat and a semipermeable membrane.

太陽熱を利用して海水を淡水化する装置としては、例えば特許文献1に記載のものがある。この装置は、ソーラーポンドで海水を加熱した後、フラッシュ蒸発させて得た水蒸気を凝縮することにより淡水を製造するものである。   As an apparatus which desalinates seawater using solar heat, there exists a thing of patent document 1, for example. This apparatus produces fresh water by condensing water vapor obtained by flash evaporation after heating seawater with a solar pond.

また、太陽熱と半透膜を利用して淡水を製造する装置も知られている(特許文献2)。この装置は、図5に示すように、太陽光を反射する反射部21と、反射された太陽光の熱を受け、その内部に供給された鉱物油または溶融煙を加熱する集熱部22と、集熱部22により加熱された鉱物油または溶融煙を熱源として、水を蒸発させる蒸気発生器(蒸発部)23と、蒸発した蒸気により駆動される蒸気タービン(タービン部)24と、蒸気タービン24により駆動され発電する発電機(発電部)25と、塩水から淡水を造水する逆浸透膜淡水化装置(淡水生成部)26と、蒸気タービン24を駆動した蒸気の排熱から淡水を造水する多段効用型淡水化装置(淡水生成部)27と、ナツメヤシや小麦などのバイオマスを燃焼させる燃焼炉(燃焼部)28と、から構成されている。   Moreover, the apparatus which manufactures fresh water using a solar heat and a semipermeable membrane is also known (patent document 2). As shown in FIG. 5, the apparatus includes a reflection unit 21 that reflects sunlight, a heat collection unit 22 that receives heat of reflected sunlight and heats mineral oil or molten smoke supplied therein. The steam generator (evaporation unit) 23 for evaporating water using the mineral oil or the molten smoke heated by the heat collecting unit 22 as a heat source, the steam turbine (turbine unit) 24 driven by the evaporated steam, and the steam turbine A fresh water is produced from a generator (power generation unit) 25 driven by 24, a reverse osmosis membrane desalination device (fresh water generation unit) 26 that produces fresh water from salt water, and exhaust heat of steam that drives the steam turbine 24. It comprises a multi-stage effect desalination apparatus (fresh water generating section) 27 for watering, and a combustion furnace (combustion section) 28 for burning biomass such as dates or wheat.

一方、半透膜を介して海水より高濃度の塩溶液を存在させれば、加圧せずとも浸透圧で水をこの塩溶液に移動させることができる。そして、この塩溶液として揮発性物質を溶解させた溶液を用いれば、この塩溶液を蒸留することにより揮発性物質を蒸発、分離させて浄水を得ることができる。揮発性物質としてアンモニアと二酸化炭素の組合せを用いた方法が既に開発されている(特許文献3、4)。   On the other hand, if a salt solution having a higher concentration than seawater is present through the semipermeable membrane, water can be transferred to the salt solution by osmotic pressure without applying pressure. If a solution in which a volatile substance is dissolved is used as the salt solution, purified water can be obtained by evaporating and separating the volatile substance by distilling the salt solution. A method using a combination of ammonia and carbon dioxide as a volatile substance has already been developed (Patent Documents 3 and 4).

特許文献3の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液を蒸留塔に送って水を得るとともにアンモニアと二酸化炭素と水を含む混合ガスを分離し、この混合ガスを半透膜の元の部屋に返送する方法である。   In the method of Patent Document 3, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. This is a method in which the obtained diluted salt solution is sent to a distillation tower to obtain water, and a mixed gas containing ammonia, carbon dioxide and water is separated, and this mixed gas is returned to the original chamber of the semipermeable membrane. .

特許文献4の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液をイオン交換膜や蒸留塔等を用いてアンモニウムイオンと炭酸イオンを個別に分離して浄水を得、分離したアンモニウムイオンと炭酸イオンを溶解して半透膜の元の部屋に戻す方法である。   In the method of Patent Document 4, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. The obtained diluted salt solution is separated into ammonium ions and carbonate ions individually using an ion exchange membrane or distillation tower to obtain purified water, and the separated ammonium ions and carbonate ions are dissolved to dissolve the semipermeable membrane. It is a method to return to the original room.

特開平2−214586号公報JP-A-2-214586 特開2006−341165号公報JP 2006-341165 A 米国特許出願公開第2005/0145568A1号明細書US Patent Application Publication No. 2005 / 0145568A1 特開2011−83663号公報JP 2011-83663 A

特許文献1の方式は、集熱効率が低く、多量の淡水の製造には不向きである。   The method of Patent Document 1 has low heat collection efficiency and is not suitable for producing a large amount of fresh water.

特許文献2の方式は、熱機関を介して太陽熱を電気に変換する方式であるため変換ロスが生じ、受熱した太陽熱を1とした発電効率は一般に低く、概ね0.1〜0.2程度である。   Since the method of Patent Document 2 is a method of converting solar heat into electricity via a heat engine, conversion loss occurs, and the power generation efficiency with the received solar heat as 1 is generally low, about 0.1 to 0.2. is there.

一方、従来の順浸透法による淡水化は、特許文献3のように、薄まった炭酸アンモニウムを含む水溶液の全量と、蒸留塔から分離して出てきた二酸化炭素、アンモニア、水からなるガスの全量とを混合することは、蒸留塔に入る水を取り出すための炭酸アンモニウムを含む水溶液中の、二酸化炭素とアンモニアの濃度が上昇することにつながり、これらの濃度が上昇すると水を取り出すためのエネルギーがより多く必要になる。   On the other hand, the conventional desalination by the forward osmosis method, as in Patent Document 3, is the total amount of the aqueous solution containing dilute ammonium carbonate and the total amount of gas composed of carbon dioxide, ammonia and water separated from the distillation tower. And the concentration of carbon dioxide and ammonia in the aqueous solution containing ammonium carbonate for taking out the water entering the distillation tower increases, and when these concentrations rise, the energy for taking out the water is increased. You will need more.

また、特許文献4にあるように、薄まった炭酸アンモニウムを含む水溶液の一部を、ガス状に分離したものと混合することは、薄まった炭酸アンモニウムを含む水溶液の全量を蒸留することで多くの水を取り出せるのに対して水の取り出し量が減り、かつ、その水溶液の一部を循環させる動力が掛かり、またその水溶液の一部を循環させるための配管が必要となり、構造が複雑になる。   In addition, as disclosed in Patent Document 4, mixing a part of an aqueous solution containing thinned ammonium carbonate with a gas-separated one is obtained by distilling the entire amount of an aqueous solution containing thinned ammonium carbonate. While water can be taken out, the amount of water taken out is reduced, and power for circulating a part of the aqueous solution is applied, and piping for circulating a part of the aqueous solution is required, which complicates the structure.

そのため、薄まった炭酸アンモニウムを含む水溶液を全量蒸留塔に送入し、蒸留に必要なエネルギーを削減し、また、より多くの水を取り出すとともに、動力や配管を削減して構造を簡易にすることが必要であった。   For this reason, the entire aqueous solution containing diluted ammonium carbonate is sent to the distillation column to reduce the energy required for distillation, and more water is taken out, and the structure is simplified by reducing power and piping. Was necessary.

本発明者は、これを解決する手段として下記の方法と装置を開発し、これを特願2011−238284号として特許出願した。
(1)溶媒が水である液体と、所定量のアンモニアと二酸化炭素を水に溶解した誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して誘導溶液に移動させる浸透工程と、前記工程で得られる、水で希釈された希釈誘導溶液を所定の温度に調整した後、蒸留塔に送入し、塔頂部から二酸化炭素、アンモニア、水蒸気からなるガスを得るとともに、塔底部から浄水を得る蒸留工程と、前記ガスを冷却し、前記誘導溶液を再生する冷却再生工程とを有する浄水製造方法。
(2)溶媒が水である液体と、所定量のアンモニアと二酸化炭素を水に溶解した誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる浸透手段と、前記手段で得られる、水で希釈された希釈誘導溶液全量を所定の温度に調整する希釈誘導溶液温度調整手段と、前記温度調整手段で所定の温度に調整された希釈誘導溶液を蒸留する蒸留塔と、前記蒸留等の塔頂部から得られる二酸化炭素、アンモニア、水蒸気からなるガスを冷却し、誘導溶液を再生する冷却再生手段と、前記蒸留塔の塔底部から得られる二酸化炭素とアンモニアをほとんど含まない浄水の回収手段とを有する浄水製造装置。
The present inventor has developed the following method and apparatus as means for solving this, and applied for a patent as Japanese Patent Application No. 2011-238284.
(1) A liquid whose solvent is water and an induction solution in which predetermined amounts of ammonia and carbon dioxide are dissolved in water are brought into contact with each other through a semipermeable membrane, and water in the liquid is made into the induction solution through the semipermeable membrane. The infiltration step to be transferred and the dilution induction solution diluted with water obtained in the above step are adjusted to a predetermined temperature, and then sent to a distillation column to obtain a gas composed of carbon dioxide, ammonia, and water vapor from the top of the column. And the purified water manufacturing method which has the distillation process of obtaining purified water from a tower bottom part, and the cooling regeneration process which cools the said gas and reproduces | regenerates the said induction | guidance | derivation solution.
(2) A liquid whose solvent is water and an induction solution in which a predetermined amount of ammonia and carbon dioxide are dissolved in water are brought into contact with each other through a semipermeable membrane, and the water in the liquid passes through the semipermeable membrane and the induction solution. Osmotic means to be moved to the dilution, dilution induction solution temperature adjustment means for adjusting the total amount of the dilution induction solution diluted with water obtained by the means to a predetermined temperature, and dilution adjusted to the predetermined temperature by the temperature adjustment means Obtained from a distillation column for distilling the induction solution, cooling regeneration means for regenerating the induction solution by cooling a gas comprising carbon dioxide, ammonia, and water vapor obtained from the top of the distillation column, and the bottom of the distillation column A purified water manufacturing apparatus having purified water recovery means that contains almost no carbon dioxide and ammonia.

上記発明は、薄まった炭酸アンモニウムを含む水溶液から蒸留、分離された、二酸化炭素、アンモニア、水からなるガスをそのまま冷却することにより水溶液状態にし、再利用することを特徴としている。   The above invention is characterized in that a gas composed of carbon dioxide, ammonia, and water distilled and separated from an aqueous solution containing diluted ammonium carbonate is cooled as it is to obtain an aqueous solution and reused.

本発明は、この上記発明を改良し、希釈誘導溶液を効率よく蒸留し、淡水を分離する手段を提供することを目的としている。   An object of the present invention is to improve the above-described invention and provide means for efficiently distilling the dilution-inducing solution and separating fresh water.

本発明はこのような目的でなされたものであり、希釈誘導溶液を蒸留する熱源として、太陽熱を電気に変換することなくそのまま利用することを特徴としている。   The present invention has been made for such a purpose, and is characterized in that solar heat is used as it is without being converted into electricity as a heat source for distilling the diluted induction solution.

すなわち、本発明は、溶媒が水である液体と、所定量のアンモニアと二酸化炭素を水に溶解した誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる順浸透手段と、前記手段で得られる、水で希釈された希釈誘導溶液を蒸留する蒸留塔と、前記蒸留塔の塔頂部から得られる二酸化炭素、アンモニア、水蒸気からなるガスを冷却し、前記誘導溶液を再生する冷却再生手段と、前記蒸留塔の塔頂部から得られる二酸化炭素とアンモニアを実質的に含まない淡水の回収手段とを有する淡水製造装置であって、前記蒸留塔の加熱手段として、集光装置により集光された太陽エネルギーを利用して水蒸気を生成する蒸気生成器を設置したことを特徴とする淡水製造装置と、
溶媒が水である液体と、所定量のアンモニアと二酸化炭素を水に溶解した誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる順浸透手段と、前記手段で得られる、水で希釈された希釈誘導溶液を蒸留する蒸留塔と、前記蒸留塔の塔頂部から得られる二酸化炭素、アンモニア、水蒸気からなるガスを冷却し、前記誘導溶液を再生する冷却再生手段と、前記蒸留塔の塔底部から得られる二酸化炭素とアンモニアを実質的に含まない淡水の回収手段とを有する淡水製造装置であって、前記蒸留塔の加熱手段として、集光装置により集光された太陽エネルギーにより熱媒体を加熱する集熱装置と、前記集熱装置で加熱された熱媒体を利用して水蒸気を生成する蒸気発生器を設置したことを特徴とする淡水製造装置と、
溶媒が水である液体と、所定量のアンモニアと二酸化炭素を水に溶解した誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる順浸透工程と、前記工程で得られる、水で希釈された希釈誘導溶液を蒸留塔に送入し、塔頂部から二酸化炭素、アンモニア、水蒸気からなるガスを得るとともに、塔底部から二酸化炭素とアンモニアを実質的に含まない淡水を得る蒸留工程と、前記ガスを冷却し前記誘導溶液を再生する冷却再生工程とを有する淡水製造方法であって、前記蒸留工程における加熱源として、集光された太陽エネルギーを利用して製造された水蒸気を使用することを特徴とする淡水製造方法と、
前記水蒸気が、集光された太陽エネルギーで加熱された熱媒体を利用して製造された水蒸気であることを特徴とする上記に記載の淡水製造方法を提供するものである。
That is, in the present invention, a liquid whose solvent is water is brought into contact with an induction solution in which a predetermined amount of ammonia and carbon dioxide is dissolved in water through a semipermeable membrane, and water in the liquid is passed through the semipermeable membrane. A forward osmosis means for transferring to the induction solution, a distillation column obtained by distilling the diluted induction solution diluted with water obtained by the means, and a gas comprising carbon dioxide, ammonia, and water vapor obtained from the top of the distillation tower A fresh water producing apparatus comprising: a cooling and regenerating means for regenerating the induction solution; and a means for recovering fresh water substantially free of carbon dioxide and ammonia obtained from the top of the distillation tower. As a heating means for the tower, a fresh water producing apparatus characterized in that a steam generator that generates water vapor using solar energy collected by a light concentrator is installed;
A liquid in which the solvent is water is brought into contact with an induction solution in which a predetermined amount of ammonia and carbon dioxide is dissolved in water through a semipermeable membrane, and water in the liquid is transferred to the induction solution through the semipermeable membrane. A forward osmosis means, a distillation column obtained by distilling the diluted induction solution diluted with water obtained by the means, and a gas comprising carbon dioxide, ammonia and water vapor obtained from the top of the distillation tower, and A fresh water producing apparatus comprising cooling and regenerating means for regenerating a solution, and carbon dioxide obtained from the bottom of the distillation tower and fresh water recovery means substantially free of ammonia, as heating means for the distillation tower, A heat collecting device that heats the heat medium by solar energy collected by the light collecting device and a steam generator that generates water vapor using the heat medium heated by the heat collecting device are installed. And fresh water production equipment,
A liquid in which the solvent is water is brought into contact with an induction solution in which a predetermined amount of ammonia and carbon dioxide is dissolved in water through a semipermeable membrane, and water in the liquid is transferred to the induction solution through the semipermeable membrane. The forward osmosis step and the dilution induction solution diluted with water obtained in the above step are fed into a distillation column to obtain a gas composed of carbon dioxide, ammonia and water vapor from the top of the column, and carbon dioxide and ammonia from the bottom of the column. A fresh water production method having a distillation step of obtaining fresh water substantially free of water and a cooling regeneration step of cooling the gas and regenerating the induction solution, wherein the concentrated sun is used as a heating source in the distillation step. A method for producing fresh water, characterized by using water vapor produced using energy;
The water vapor is water vapor produced using a heat medium heated by condensed solar energy, and provides the fresh water production method as described above.

本発明では、太陽熱を熱源とすることで電気に変換して利用する場合のロスを無くし、太陽熱の利用効率が向上する。そのため、逆浸透膜装置を使用する場合に比べ、太陽熱集熱装置の設置面積の省スペース化や省コスト化が図れる。   In the present invention, solar heat is used as a heat source, so that loss in the case of conversion to electricity is eliminated, and utilization efficiency of solar heat is improved. Therefore, compared with the case where a reverse osmosis membrane apparatus is used, the installation area of a solar heat collecting apparatus can be reduced in space and cost.

そして、さらに、希釈誘導溶液から蒸留、分離された、二酸化炭素、アンモニア、水からなるガスをそのまま冷却することにより水溶液状態にして、誘導溶液を再生、再利用することにより、蒸留に必要なエネルギーを削減し、また、より多くの水を取り出すとともに、動力や配管を削減して構造を簡易にすることができる。   Further, the energy required for distillation is obtained by regenerating and reusing the induction solution by cooling the gas consisting of carbon dioxide, ammonia and water, which is distilled and separated from the dilution induction solution, into an aqueous solution. And more water can be taken out, and the power and piping can be reduced to simplify the structure.

また、簡便な方法で誘導溶液の濃度を濃くしたり、薄くしたりすることができ、装置の効率的な運転が可能となった。   In addition, the concentration of the induction solution can be increased or decreased by a simple method, and the apparatus can be operated efficiently.

本発明の装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the apparatus of this invention. 本発明の装置の太陽エネルギー利用部の別の構成の一例を示すブロック図である。It is a block diagram which shows an example of another structure of the solar energy utilization part of the apparatus of this invention. 本発明の太陽熱集熱システムの一例を示すブロック図である。It is a block diagram which shows an example of the solar heat collection system of this invention. 本発明の太陽熱集熱システムの他の一例を示すブロック図である。It is a block diagram which shows another example of the solar heat collection system of this invention. 従来の装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the conventional apparatus.

本発明で淡水(浄水)を得るのに使用される液体(淡水化対象液)は溶媒が水であればよいが、例示すれば、海水、湖沼水、河川水、工場廃水などである。   The liquid (desalination target liquid) used for obtaining fresh water (purified water) in the present invention may be water as long as the solvent is water. Examples thereof include seawater, lake water, river water, and factory waste water.

順浸透手段
順浸透手段は、淡水化対象液と誘導溶液とを半透膜を介して接触させ、浸透圧の差によって淡水化対象液中の水をこの半透膜を通して誘導溶液に移動させる手段であり、半透膜装置を用いる。
Forward osmosis means The forward osmosis means is a means for bringing the desalination target liquid and the induction solution into contact with each other through the semipermeable membrane, and moving the water in the desalination target liquid through the semipermeable membrane to the induction solution by the difference in osmotic pressure. A semipermeable membrane device is used.

誘導溶液は、所定量のアンモニアと二酸化炭素を水に溶解して生成する炭酸アンモニウム水溶液である。所定量の下限は、淡水化対象液中の水を半透膜を通過させて誘導溶液まで移動させることができる濃度にする量であり、淡水化対象液の浸透圧と等しくなる塩濃度である。濃度の上限は、アンモニアと二酸化炭素の塩、すなわち、炭酸アンモニウム、炭酸水素アンモニウム、アンモニウムカルバメート等が半透膜面や、蒸留塔内で析出しないように定められ、これは実験で求めることができる。半透膜面や蒸留塔内に析出物が生じたか否かの確認方法の一つとして長時間運転をして安定稼動可能かどうかで判断する方法がある。アンモニアと二酸化炭素のモル比は1.5〜3程度である。このモル比も半透膜面や蒸留塔内でアンモニアと二酸化炭素の塩が析出しないよう配慮する。   The induction solution is an aqueous ammonium carbonate solution produced by dissolving a predetermined amount of ammonia and carbon dioxide in water. The lower limit of the predetermined amount is an amount that makes the water in the desalination target liquid a concentration that allows the water to pass through the semipermeable membrane to the induction solution, and is a salt concentration that is equal to the osmotic pressure of the desalination target liquid. . The upper limit of the concentration is determined so that a salt of ammonia and carbon dioxide, that is, ammonium carbonate, ammonium hydrogen carbonate, ammonium carbamate, etc. does not precipitate on the semipermeable membrane surface or in the distillation tower, and this can be obtained by experiment. . One of the methods for confirming whether or not precipitates are generated on the semipermeable membrane surface or in the distillation column is a method of judging whether stable operation is possible by operating for a long time. The molar ratio of ammonia to carbon dioxide is about 1.5-3. This molar ratio is also taken into consideration so that the salt of ammonia and carbon dioxide does not precipitate on the semipermeable membrane surface or in the distillation column.

半透膜は水を選択的に透過できるものがよく、市販のもの、特に順浸透膜を好ましく使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸などいずれであってもよい。   The semipermeable membrane is preferably one that can selectively permeate water, and a commercially available one, particularly a forward osmosis membrane, can be preferably used. The material is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials. The form of the semipermeable membrane is not particularly limited and may be any of a flat membrane, a tubular membrane, a hollow fiber, and the like.

この半透膜を装着する装置は通常は円筒形あるいは箱形の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に淡水化対象液を流し、他方の室に誘導溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることができる。   The apparatus to which this semipermeable membrane is attached usually has a semipermeable membrane installed in a cylindrical or box-shaped container, and the desalination target liquid flows into one chamber partitioned by this semipermeable membrane, and the other chamber A known semipermeable membrane device can be used, and a commercially available product can be used.

淡水化対象液を流す室の入口は淡水化対象液溜(これは海や河川そのものであってもよく、タンク等であってもよい。)に配管接続される。出口側は通常は淡水化対象液溜の放流口に配管接続される。両配管を結ぶ循環ラインを設けて、淡水化対象液を循環させることもできる。   The entrance of the chamber through which the desalination target liquid flows is connected to a desalination target liquid reservoir (this may be the sea, a river itself, or a tank). The outlet side is usually connected by piping to the outlet of the desalination target liquid reservoir. A circulation line connecting both pipes can be provided to circulate the desalination target liquid.

誘導溶液を流す室の入口は冷却再生手段に配管接続され、出口は必要により設けられる希釈誘導溶液温度調節手段に配管接続され、これによって誘導溶液の循環ラインが形成される。   The inlet of the chamber through which the induction solution flows is piped to the cooling regeneration means, and the outlet is piped to the diluted induction solution temperature adjusting means provided as necessary, thereby forming a circulation line for the induction solution.

なお、本発明においては、高濃度の誘導溶液を使用するので、塩の析出による配管の詰まりが生ずる可能性があり、これを防止するために、冷却再生手段の出口配管に希釈誘導溶液を通水するための希釈誘導溶液通水手段を設けることが好ましい。   In the present invention, since a high-concentration induction solution is used, there is a possibility of clogging of piping due to salt precipitation. To prevent this, the diluted induction solution is passed through the outlet piping of the cooling regeneration means. It is preferable to provide a dilution-inducing solution water passing means for watering.

希釈誘導溶液温度調節手段
希釈誘導溶液温度調節手段は、半透膜装置で淡水化対象液から水を抽出して希釈された誘導溶液を所定の温度に調整する手段であり、これは加熱によって行われる。加熱手段は問わないが、系内で発生する熱を有効利用する点で熱交換器を用いるのがよい。熱源としては蒸留塔の塔頂部から得られるガスや塔底部から得られる淡水などの熱を利用することができる。
Dilution induction solution temperature adjustment means The dilution induction solution temperature adjustment means is a means for adjusting the diluted induction solution to a predetermined temperature by extracting water from the desalination target liquid with a semipermeable membrane device, and this is performed by heating. Is called. Although a heating means is not ask | required, it is good to use a heat exchanger at the point which utilizes effectively the heat which generate | occur | produces in a system. As the heat source, heat such as gas obtained from the top of the distillation tower or fresh water obtained from the bottom of the tower can be used.

希釈誘導溶液に対して調整を行う所定の温度とはアンモニアと二酸化炭素の塩が析出しない温度であり、これは実験によって求めることができる。この温度調整は、通常は加熱によって行われる。この加温は、蒸留塔の塔頂から排出される前記ガスと熱交換してその温度を利用して行うことができ、あるいは、蒸留塔の塔底から排出される浄水と熱交換してその温度を利用することもできる。その両者を併用することもでき、あるいは別の熱源を利用することもできる。   The predetermined temperature at which the dilution induction solution is adjusted is a temperature at which the salt of ammonia and carbon dioxide does not precipitate, and this can be determined by experiment. This temperature adjustment is usually performed by heating. This heating can be performed by exchanging heat with the gas discharged from the top of the distillation tower and using the temperature, or by exchanging heat with purified water discharged from the bottom of the distillation tower. Temperature can also be used. Both can be used together, or another heat source can be used.

希釈誘導溶液温度調節手段は、蒸留塔に配管接続される。   The dilution induction solution temperature adjusting means is connected to the distillation column by piping.

蒸留塔
蒸留塔は公知のものを用いればよく、棚段方式、充填方式等いずれのものであってもよい。蒸留塔下部には加熱器を設け、下部の浄水を熱することにより発生する蒸気を上部から落下してくる希釈誘導溶液と接触させて熱交換させる。加熱器にはリボイラーや熱交換器等を用いることができる。
Distillation Tower A known distillation column may be used, and any of a shelf system, a packing system, and the like may be used. A heater is provided at the lower part of the distillation tower, and the steam generated by heating the purified water at the lower part is brought into contact with the diluted induction solution falling from the upper part to exchange heat. A reboiler, a heat exchanger, etc. can be used for a heater.

本発明では、加熱器の熱源に太陽エネルギーを利用する。具体的には、集光装置で直接水を加熱して水蒸気を生成させてもよく、集光装置と蒸気生成器を設けて、集光装置で熱媒体を加熱して蒸気生成器で熱媒体と水を熱交換させて、蒸気を生成させてもよい。   In the present invention, solar energy is used as a heat source of the heater. Specifically, water may be directly generated by a condensing device to generate water vapor, a condensing device and a steam generator are provided, a heat medium is heated by the condensing device, and a heat medium is generated by the steam generator. Steam may be generated by exchanging heat with water.

いずれの場合も集光装置は太陽エネルギーの利用に一般的に用いられているものでよく、通常は凹面鏡や樋状の反射鏡の焦点部に加熱管を配置したものや一般にヘリオスタットと呼ばれる、太陽の位置に合わせ数秒間隔で自動追尾する反射鏡群などが用いられる。   In any case, the concentrator may be one that is generally used for the use of solar energy, and usually a heating tube placed at the focal point of a concave mirror or bowl-shaped reflector or commonly called a heliostat, For example, a reflector group that automatically tracks the position of the sun every few seconds is used.

熱媒体も太陽エネルギーの利用に一般的に用いられるもので良く、シリコーン油のような熱媒体油、もしくは熱で溶けると水のように流れる炭酸リチウムや炭酸カリウムのような溶融塩などが用いられる。   The heat medium may be one generally used for solar energy, such as a heat medium oil such as silicone oil, or a molten salt such as lithium carbonate or potassium carbonate that flows like water when dissolved by heat. .

加熱器の熱源に専ら太陽エネルギーを利用する場合には、熱供給の安定化を図るために蓄熱装置を設けることが望ましいが、補助の加熱器を設け熱供給の安定化を図っても構わない。   When solar energy is exclusively used as the heat source of the heater, it is desirable to provide a heat storage device to stabilize the heat supply, but an auxiliary heater may be provided to stabilize the heat supply. .

いずれにしても、熱源の温度が100℃以上の場合には常圧で蒸留を行えるが、それより低い場合は減圧する必要がある。   In any case, when the temperature of the heat source is 100 ° C. or higher, distillation can be performed at normal pressure, but when it is lower than that, it is necessary to reduce the pressure.

冷却再生手段
蒸留塔の塔頂から、希釈誘導溶液温度調節手段を経由して塔頂ガス冷却再生手段に配管接続し、塔頂部から得られる二酸化炭素、アンモニア、水蒸気からなるガスを冷却して水溶液状態にする。冷却手段は問わないが、熱交換器を用いることができる。冷却する熱源としては、特に限定されないが、河川水、海水、空気などを用いることができる。
Cooling and regenerating means Pipe connected to the tower top gas cooling and regenerating means from the top of the distillation tower via the dilution induction solution temperature adjusting means, cooling the gas consisting of carbon dioxide, ammonia and water vapor obtained from the top of the tower to prepare an aqueous solution Put it in a state. Although a cooling means is not ask | required, a heat exchanger can be used. Although it does not specifically limit as a heat source to cool, River water, seawater, air, etc. can be used.

誘導溶液の貯留タンク
誘導溶液の貯留タンクは、冷却再生手段で再生された誘導溶液の受槽であり、かつ予め作製しておいた誘導溶液の貯槽を兼ねることができる。
Induction Solution Storage Tank The induction solution storage tank is a reservoir for the induction solution regenerated by the cooling regeneration means and can also serve as a storage tank for the induction solution prepared in advance.

淡水の回収手段
淡水の回収手段は、蒸留塔の塔底部に溜った二酸化炭素とアンモニアをほとんど含まない浄水を塔底部から引き抜く手段であり、通常はポンプが用いられる。蒸留塔と淡水の貯留タンクに高低差がかなりあり、蒸留塔内が減圧にされていない場合は自然流出を利用することもできる。また、塔底部から抜き出された淡水が若干のアンモニアや二酸化炭素を含んでいる場合には、用途に応じて適宜水処理を実施する。
Fresh water recovery means The fresh water recovery means is means for drawing out purified water containing almost no carbon dioxide and ammonia from the bottom of the distillation tower, and a pump is usually used. If there is a significant difference in height between the distillation tower and the storage tank for fresh water, and if the inside of the distillation tower is not depressurized, natural spillage can be used. Moreover, when the fresh water extracted from the tower bottom part contains some ammonia and carbon dioxide, a water treatment is implemented suitably according to a use.

淡水の貯留タンク
淡水の貯留タンクは、蒸留塔の塔底部から抜き出された淡水の貯槽である。
Fresh water storage tank The fresh water storage tank is a fresh water storage tank extracted from the bottom of the distillation tower.

本発明を適用した淡水製造装置の一例の構成を図1に示す。   The structure of an example of the fresh water manufacturing apparatus to which this invention is applied is shown in FIG.

図1において、1は半透膜装置の容器であり、内部には半透膜4が収容されている。溶媒が水である液体の例である海水2は容器左側の室に入り、そこで、誘導溶液との浸透圧差で水5は半透膜を通って右側の室に移動し、それによって濃縮された海水3は左側の室から排出される。誘導溶液6は右側の室に入り、半透膜4を通ってきた水で希釈された希釈誘導溶液7は右側の室から出る。   In FIG. 1, 1 is a container of a semipermeable membrane device, and a semipermeable membrane 4 is accommodated therein. Seawater 2, which is an example of a liquid whose solvent is water, enters the chamber on the left side of the container, where water 5 moves through the semipermeable membrane to the right side chamber due to the osmotic pressure difference with the induction solution, and is concentrated thereby. Seawater 3 is discharged from the left chamber. The induction solution 6 enters the right chamber, and the diluted induction solution 7 diluted with water that has passed through the semipermeable membrane 4 exits the right chamber.

室から出た希釈誘導溶液7は、熱交換器16で熱交換して昇熱され、蒸留塔11に入る。   The dilution induction solution 7 exiting the chamber is heated by exchanging heat in the heat exchanger 16 and enters the distillation column 11.

蒸留塔11内では、この希釈誘導溶液7が蒸留されて、二酸化炭素、アンモニア、水蒸気からなるガスが塔頂部から排出される。このガスは前記熱交換器16で熱交換して冷却され、次の熱交換器17でさらに冷却水と熱交換されて誘導溶液6に戻り、ポンプ18を通って半透膜4の容器1内にリサイクルされる。   In the distillation column 11, the dilution induction solution 7 is distilled, and a gas composed of carbon dioxide, ammonia, and water vapor is discharged from the top of the column. This gas is cooled by exchanging heat in the heat exchanger 16, further exchanged with cooling water in the next heat exchanger 17, returning to the induction solution 6, and passing through the pump 18 in the container 1 of the semipermeable membrane 4. Recycled.

一方、塔底部からは二酸化炭素とアンモニアを実質的に含まない淡水12が排出され、熱交換器20で冷却水と熱交換されたのちに系外に出される。   On the other hand, fresh water 12 substantially free of carbon dioxide and ammonia is discharged from the bottom of the tower, and is exchanged with cooling water in the heat exchanger 20 and then discharged out of the system.

太陽エネルギーは集光装置13で集光されて、その加熱管(図示されていない。)内の水を加熱し、その水が蒸気生成器14内で水蒸気となって、蒸留塔11内のリボイラー15に送られる。   The solar energy is condensed by the condensing device 13 to heat the water in the heating pipe (not shown), and the water becomes water vapor in the steam generator 14, and the reboiler in the distillation column 11. 15 is sent.

図2は、集光装置13で熱媒体を加熱してこれを集熱装置19に送ってその内部の水を加熱し、これを蒸気生成器14内で水蒸気にした例である。   FIG. 2 shows an example in which the heat medium is heated by the light collecting device 13 and is sent to the heat collecting device 19 to heat the water therein, which is converted into water vapor in the steam generator 14.

(実施例1)
誘導溶液として炭酸アンモニウムを含む水溶液を用い、アンモニアを8.5Mol/L、二酸化炭素を5.6Mol/Lを含有するものを用いた。残りは全て水であり、半透膜装置の誘導溶液入口の流入量は20kg/hrとした。浄化対象液には塩化ナトリウムを35,000mg/L含有する人工海水を用い、入口の流入量は200kg/hrとした。半透膜を通過して誘導溶液に移動した水の量は100kg/hrであり、誘導溶液で出口から流出する希釈誘導溶液の量は120kg/hrであり、温度は28℃であった。
Example 1
An aqueous solution containing ammonium carbonate was used as the induction solution, and ammonia containing 8.5 mol / L and carbon dioxide containing 5.6 mol / L was used. The rest was all water, and the inflow rate of the induction solution inlet of the semipermeable membrane device was 20 kg / hr. Artificial seawater containing 35,000 mg / L of sodium chloride was used as the purification target liquid, and the inflow rate at the inlet was 200 kg / hr. The amount of water transferred to the induction solution through the semipermeable membrane was 100 kg / hr, the amount of the diluted induction solution flowing out from the outlet with the induction solution was 120 kg / hr, and the temperature was 28 ° C.

この希釈誘導溶液を蒸留塔の塔頂部から出てくるガスと熱交換して38℃まで加熱し、蒸留塔上部1段目に注入した。   This diluted induction solution was heated to 38 ° C. by exchanging heat with the gas coming out from the top of the distillation column, and injected into the upper stage of the distillation column.

蒸留塔は30段の棚段方式のものであり、最下段の30段目にリボイラーがある。この30段目の温度を100℃に、そして蒸留塔内の圧力を大気圧状態に設定した。   The distillation tower is of a 30-stage shelf type, with a reboiler on the 30th lowest stage. The temperature at the 30th stage was set to 100 ° C., and the pressure in the distillation column was set to atmospheric pressure.

リボイラーの熱源には、太陽熱を集光し生成した蒸気を用いた。太陽熱の集光には、鏡面の軸方向の断面形状が放物線状である凹面鏡を用い、その焦点部に配置された加熱管内部に水を供給して、集光した太陽熱エネルギーと水とを熱交換することで120℃、20kg/hrの飽和蒸気を生成した。太陽熱の集光に用いた集光装置の有効鏡面積は17.5m2である。本実施例の太陽熱集熱システムを図3に示す。 Steam generated by collecting solar heat was used as the reboiler heat source. Condensing solar heat uses a concave mirror with a parabolic cross-section in the axial direction of the mirror surface, supplying water to the inside of the heating tube arranged at the focal point, and heating the collected solar thermal energy and water. By exchanging, saturated steam at 120 ° C. and 20 kg / hr was generated. The effective mirror area of the light collecting device used for collecting solar heat is 17.5 m 2 . The solar heat collection system of a present Example is shown in FIG.

この状態で蒸留塔の塔底部から出てくる浄水は100kg/hrであり、浄水に含まれる二酸化炭素とアンモニアの濃度は1ppm以下であった。   In this state, the purified water coming out from the bottom of the distillation tower was 100 kg / hr, and the concentrations of carbon dioxide and ammonia contained in the purified water were 1 ppm or less.

蒸留塔の塔頂部から出てくるガスは、温度が39℃でモル分率が水0.68、二酸化炭素0.13、アンモニア0.19であった。   The gas coming out from the top of the distillation column had a temperature of 39 ° C., a molar fraction of water 0.68, carbon dioxide 0.13, and ammonia 0.19.

このガスを半透膜装置から出てくる希釈誘導溶液と熱交換し、さらに25℃の海水と熱交換して29℃まで冷却し、水溶液状態にして半透膜装置に返送した。   This gas was heat exchanged with the diluted induction solution coming out of the semipermeable membrane device, further heat exchanged with seawater at 25 ° C., cooled to 29 ° C., converted into an aqueous solution, and returned to the semipermeable membrane device.

(実施例2)
誘導溶液として炭酸アンモニウムを含む水溶液を用い、アンモニアを8.5Mol/L、二酸化炭素を5.6Mol/Lを含有するものを用いた。残りは全て水であり、半透膜装置の誘導溶液入口の流入量は20kg/hrとした。浄化対象液には塩化ナトリウムを35,000mg/L含有する人工海水を用い、入口の流入量は200kg/hrとした。半透膜を通過して誘導溶液に移動した水の量は100kg/hrであり、誘導溶液で出口から流出する希釈誘導溶液の量は120kg/hrであり、温度は28℃であった。
(Example 2)
An aqueous solution containing ammonium carbonate was used as the induction solution, and ammonia containing 8.5 mol / L and carbon dioxide containing 5.6 mol / L was used. The rest was all water, and the inflow rate of the induction solution inlet of the semipermeable membrane device was 20 kg / hr. Artificial seawater containing 35,000 mg / L of sodium chloride was used as the purification target liquid, and the inflow rate at the inlet was 200 kg / hr. The amount of water transferred to the induction solution through the semipermeable membrane was 100 kg / hr, the amount of the diluted induction solution flowing out from the outlet with the induction solution was 120 kg / hr, and the temperature was 28 ° C.

この希釈誘導溶液を蒸留塔の塔頂部から出てくるガスと熱交換して38℃まで加熱し、蒸留塔上部1段目に注入した。   This diluted induction solution was heated to 38 ° C. by exchanging heat with the gas coming out from the top of the distillation column, and injected into the upper stage of the distillation column.

蒸留塔は30段の棚段方式のものであり、最下段の30段目にリボイラーがある。この30段目の温度を100℃に、そして蒸留塔内の圧力を大気圧状態に設定した。   The distillation tower is of a 30-stage shelf type, with a reboiler on the 30th lowest stage. The temperature at the 30th stage was set to 100 ° C., and the pressure in the distillation column was set to atmospheric pressure.

リボイラーの熱源には、太陽熱を集光し生成した蒸気を用いた。太陽熱の集光には、鏡面の軸方向の断面形状が放物線状である凹面鏡を用い、その焦点部に配置された加熱管内部に熱媒油を供給した。使用した熱媒油はフッ素系の熱媒油で、沸点が350℃である。加熱管内部に供給した熱媒油は、加熱管内を流れる間に加熱管を介して太陽熱と熱交換を行い、集光装置出口で130℃まで加温されたあと、集熱装置に貯槽した。貯槽した熱媒油を蒸気生成器に流通させて水と熱交換することで120℃、20kg/hrの飽和蒸気を生成した。本実施例では、太陽が沈んだ夜間も昼間に蓄熱した太陽熱で蒸気を安定生成可能とするため、有効鏡面積100m2の集光装置を用い太陽エネルギーを集光した。本実施例の太陽熱集熱システムを図4に示す。 Steam generated by collecting solar heat was used as the reboiler heat source. For concentrating solar heat, a concave mirror having a parabolic parabolic cross-sectional shape was used, and heat transfer oil was supplied into the heating tube disposed at the focal point. The heat medium oil used is a fluorine-based heat medium oil and has a boiling point of 350 ° C. The heat transfer oil supplied to the inside of the heating tube exchanged heat with solar heat through the heating tube while flowing through the heating tube, heated to 130 ° C. at the outlet of the light collecting device, and then stored in the heat collecting device. The stored heat transfer oil was passed through a steam generator to exchange heat with water, thereby producing saturated steam at 120 ° C. and 20 kg / hr. In this example, solar energy was collected using a condensing device having an effective mirror area of 100 m 2 in order to enable stable generation of steam by solar heat stored during the daytime even when the sun goes down. The solar heat collection system of a present Example is shown in FIG.

この状態で蒸留塔の塔底部から出てくる浄水は、100kg/hrであり、浄水に含まれる二酸化炭素とアンモニアの濃度は1ppm以下であった。   The purified water coming out from the bottom of the distillation column in this state was 100 kg / hr, and the concentrations of carbon dioxide and ammonia contained in the purified water were 1 ppm or less.

蒸留塔の塔頂部から出てくるガスは、温度が39℃でモル分率が水0.68、二酸化炭素0.13、アンモニア0.19であった。   The gas coming out from the top of the distillation column had a temperature of 39 ° C., a molar fraction of water 0.68, carbon dioxide 0.13, and ammonia 0.19.

このガスを半透膜装置から出てくる希釈誘導溶液と熱交換し、さらに25℃の海水と熱交換して29℃まで冷却し、水溶液状態にして半透膜装置に返送した。   This gas was heat exchanged with the diluted induction solution coming out of the semipermeable membrane device, further heat exchanged with seawater at 25 ° C., cooled to 29 ° C., converted into an aqueous solution, and returned to the semipermeable membrane device.

本発明により、海水等の淡水化対象液から安定して確実に淡水を得ることができるので、本発明は海水等から淡水を得る方法と装置に広く適用できる。   According to the present invention, since fresh water can be stably and reliably obtained from a desalination target liquid such as seawater, the present invention can be widely applied to a method and an apparatus for obtaining fresh water from seawater or the like.

1 容器
2 海水
3 濃縮された海水
4 半透膜
5 半透膜を通過して移動する水
6 誘導溶液
7 希釈誘導溶液
10 蒸留塔の塔頂部から出てくる二酸化炭素、アンモニア、水からなるガス
11 蒸留塔
12 淡水
13 集光装置
14 蒸気生成器
15 リボイラー
16 熱交換器(希釈誘導溶液温度調整手段)
17 熱交換器
18 ポンプ
19 集熱装置
20 熱交換器
DESCRIPTION OF SYMBOLS 1 Container 2 Seawater 3 Concentrated seawater 4 Semipermeable membrane 5 Water which moves through a semipermeable membrane 6 Induction solution 7 Dilution induction solution 10 Gas which consists of carbon dioxide, ammonia, and water which emerges from the top of a distillation tower DESCRIPTION OF SYMBOLS 11 Distillation tower 12 Fresh water 13 Condensing apparatus 14 Steam generator 15 Reboiler 16 Heat exchanger (dilution induction solution temperature adjustment means)
17 Heat exchanger 18 Pump 19 Heat collector 20 Heat exchanger

Claims (4)

溶媒が水である液体と、所定量のアンモニアと二酸化炭素を水に溶解した誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる順浸透手段と、前記手段で得られる、水で希釈された希釈誘導溶液を蒸留する蒸留塔と、前記蒸留塔の塔頂部から得られる二酸化炭素、アンモニア、水蒸気からなるガスを冷却し、前記誘導溶液を再生する冷却再生手段と、前記蒸留塔の塔頂部から得られる二酸化炭素とアンモニアを実質的に含まない淡水の回収手段とを有する淡水製造装置であって、前記蒸留塔の加熱手段として、集光装置により集光された太陽エネルギーを利用して水蒸気を生成する蒸気生成器を設置したことを特徴とする淡水製造装置。   A liquid in which the solvent is water is brought into contact with an induction solution in which a predetermined amount of ammonia and carbon dioxide is dissolved in water through a semipermeable membrane, and water in the liquid is transferred to the induction solution through the semipermeable membrane. A forward osmosis means, a distillation column obtained by distilling the diluted induction solution diluted with water obtained by the means, and a gas comprising carbon dioxide, ammonia and water vapor obtained from the top of the distillation tower, and A fresh water producing apparatus comprising a cooling and regenerating means for regenerating a solution, and a means for collecting fresh water substantially free of carbon dioxide and ammonia obtained from the top of the distillation tower, the heating means for the distillation tower, An apparatus for producing fresh water, wherein a steam generator for generating water vapor using solar energy collected by a light concentrator is installed. 溶媒が水である液体と、所定量のアンモニアと二酸化炭素を水に溶解した誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる順浸透手段と、前記手段で得られる、水で希釈された希釈誘導溶液を蒸留する蒸留塔と、前記蒸留塔の塔頂部から得られる二酸化炭素、アンモニア、水蒸気からなるガスを冷却し、前記誘導溶液を再生する冷却再生手段と、前記蒸留塔の塔底部から得られる二酸化炭素とアンモニアを実質的に含まない淡水の回収手段とを有する淡水製造装置であって、前記蒸留塔の加熱手段として、集光装置により集光された太陽エネルギーにより加熱された熱媒体を貯留する集熱装置と、前記集熱装置に貯留された熱媒体を利用して水蒸気を生成する蒸気発生器を設置したことを特徴とする淡水製造装置。   A liquid in which the solvent is water is brought into contact with an induction solution in which a predetermined amount of ammonia and carbon dioxide is dissolved in water through a semipermeable membrane, and water in the liquid is transferred to the induction solution through the semipermeable membrane. A forward osmosis means, a distillation column obtained by distilling the diluted induction solution diluted with water obtained by the means, and a gas comprising carbon dioxide, ammonia and water vapor obtained from the top of the distillation tower, and A fresh water producing apparatus comprising cooling and regenerating means for regenerating a solution, and carbon dioxide obtained from the bottom of the distillation tower and fresh water recovery means substantially free of ammonia, as heating means for the distillation tower, A heat collecting device that stores a heat medium heated by solar energy collected by the light collecting device and a steam generator that generates water vapor using the heat medium stored in the heat collecting device are installed. Fresh water production apparatus according to claim. 溶媒が水である液体と、所定量のアンモニアと二酸化炭素を水に溶解した誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる順浸透工程と、前記工程で得られる、水で希釈された希釈誘導溶液を蒸留塔に送入し、塔頂部から二酸化炭素、アンモニア、水蒸気からなるガスを得るとともに、塔底部から二酸化炭素とアンモニアを実質的に含まない淡水を得る蒸留工程と、前記ガスを冷却し前記誘導溶液を再生する冷却再生工程とを有する淡水製造方法であって、前記蒸留工程における加熱源として、集光された太陽エネルギーを利用して製造された水蒸気を使用することを特徴とする淡水製造方法。   A liquid in which the solvent is water is brought into contact with an induction solution in which a predetermined amount of ammonia and carbon dioxide is dissolved in water through a semipermeable membrane, and water in the liquid is transferred to the induction solution through the semipermeable membrane. The forward osmosis step and the dilution induction solution diluted with water obtained in the above step are fed into a distillation column to obtain a gas composed of carbon dioxide, ammonia and water vapor from the top of the column, and carbon dioxide and ammonia from the bottom of the column. A fresh water production method having a distillation step of obtaining fresh water substantially free of water and a cooling regeneration step of cooling the gas and regenerating the induction solution, wherein the concentrated sun is used as a heating source in the distillation step. A method for producing fresh water, characterized by using water vapor produced using energy. 前記水蒸気が、集光された太陽エネルギーで加熱された熱媒体を利用して製造された水蒸気であることを特徴とする請求項3に記載の淡水製造方法。   The fresh water production method according to claim 3, wherein the water vapor is water vapor produced using a heat medium heated by concentrated solar energy.
JP2012086981A 2011-10-31 2012-04-06 Fresh water production apparatus and fresh water production method Active JP5907340B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012086981A JP5907340B2 (en) 2012-04-06 2012-04-06 Fresh water production apparatus and fresh water production method
US14/355,050 US20140319056A1 (en) 2011-10-31 2012-10-31 Process for manufacturing potable water and apparatus therefor
PCT/JP2012/006970 WO2013065293A1 (en) 2011-10-31 2012-10-31 Method and device for preparing fresh water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086981A JP5907340B2 (en) 2012-04-06 2012-04-06 Fresh water production apparatus and fresh water production method

Publications (2)

Publication Number Publication Date
JP2013215653A true JP2013215653A (en) 2013-10-24
JP5907340B2 JP5907340B2 (en) 2016-04-26

Family

ID=49588460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086981A Active JP5907340B2 (en) 2011-10-31 2012-04-06 Fresh water production apparatus and fresh water production method

Country Status (1)

Country Link
JP (1) JP5907340B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027865A1 (en) * 2014-08-21 2016-02-25 旭化成株式会社 Solvent separation system and method
JP2017127842A (en) * 2016-01-22 2017-07-27 株式会社東芝 Water treatment system, and water treatment method
JP2018012080A (en) * 2016-07-22 2018-01-25 Jfeエンジニアリング株式会社 Water treatment method and water treatment device
KR20180012545A (en) * 2016-07-27 2018-02-06 두산중공업 주식회사 Recovery apparatus and recovery method of diluted draw solution for saving energy expenditure
JP2018065100A (en) * 2016-10-20 2018-04-26 本田技研工業株式会社 Water distillation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341165A (en) * 2005-06-08 2006-12-21 Mitsubishi Heavy Ind Ltd Desalination apparatus using solar heat and biomass, and greening method using the desalination apparatus
JP2009539584A (en) * 2006-06-08 2009-11-19 イェール ユニバーシティー Multistage column distillation (MSCD) method for recovering osmotic solutes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341165A (en) * 2005-06-08 2006-12-21 Mitsubishi Heavy Ind Ltd Desalination apparatus using solar heat and biomass, and greening method using the desalination apparatus
JP2009539584A (en) * 2006-06-08 2009-11-19 イェール ユニバーシティー Multistage column distillation (MSCD) method for recovering osmotic solutes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027865A1 (en) * 2014-08-21 2016-02-25 旭化成株式会社 Solvent separation system and method
JPWO2016027865A1 (en) * 2014-08-21 2017-04-27 旭化成株式会社 Solvent separation system and method
JP2017127842A (en) * 2016-01-22 2017-07-27 株式会社東芝 Water treatment system, and water treatment method
JP2018012080A (en) * 2016-07-22 2018-01-25 Jfeエンジニアリング株式会社 Water treatment method and water treatment device
KR20180012545A (en) * 2016-07-27 2018-02-06 두산중공업 주식회사 Recovery apparatus and recovery method of diluted draw solution for saving energy expenditure
KR101992304B1 (en) * 2016-07-27 2019-06-25 두산중공업 주식회사 Recovery apparatus and recovery method of diluted draw solution for saving energy expenditure
JP2018065100A (en) * 2016-10-20 2018-04-26 本田技研工業株式会社 Water distillation system

Also Published As

Publication number Publication date
JP5907340B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
WO2013065293A1 (en) Method and device for preparing fresh water
Altmann et al. Primary energy and exergy of desalination technologies in a power-water cogeneration scheme
US8341961B2 (en) Solar desalination system
EP3504305B1 (en) Process for treating oil and gas well produced saltwater
JP5907340B2 (en) Fresh water production apparatus and fresh water production method
JP5913113B2 (en) Forward osmosis separation method
US20160368785A1 (en) Methods and systems to reduce air pollution combined with water desalination of power station's marine waste water
CN101921006B (en) Integrated condensing solar power and seawater desalination method and system
US10597309B2 (en) Coupling photovoltaic, concentrated solar power, and wind technologies for desalination
JP6333573B2 (en) Fresh water generator and fresh water generation method
ES2547472A2 (en) Renewable desalination of brines
Palenzuela et al. Concentrating solar power and desalination plants: engineering and economics of coupling multi-effect distillation and solar plants
JP5943924B2 (en) Osmotic pressure driven membrane process and system, and extraction solute recovery method
CN102329035B (en) Fresh water collecting and supplying system
JP5988032B2 (en) Fresh water production apparatus and operation method thereof
KR20200036416A (en) Process of collecting carbon dioxide and desalination using energy of waste gas from thermal power plant
KR101245264B1 (en) Method of capturing including method for desalination of saltwater using forward osmosis and hybrid system of capturing carbon dioxide-forward osmosis
US9790103B2 (en) Hydrogen-powered desalination plant
JP2012007602A (en) Hybrid thermal power generation system and method of constructing the same
KR101174281B1 (en) Hybrid system for forward osmosis desalination and co2 capture using exhaust gas
JP5910466B2 (en) Water purification manufacturing method and apparatus
AU2015314347B2 (en) Electricity generation process
CN103990372B (en) The system of ammonia process carbon trapping is carried out in the generating of solar seawater desalination assistant coal
JP5900745B2 (en) Fresh water production method and fresh water production apparatus
JPH0985059A (en) Seawater desalting apparatus by reverse osmosis membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5907340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150