JP2013215123A - Artificial lighting device for plant raising, and method for irradiating the same - Google Patents

Artificial lighting device for plant raising, and method for irradiating the same Download PDF

Info

Publication number
JP2013215123A
JP2013215123A JP2012087688A JP2012087688A JP2013215123A JP 2013215123 A JP2013215123 A JP 2013215123A JP 2012087688 A JP2012087688 A JP 2012087688A JP 2012087688 A JP2012087688 A JP 2012087688A JP 2013215123 A JP2013215123 A JP 2013215123A
Authority
JP
Japan
Prior art keywords
light
artificial
lamp
lighting device
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012087688A
Other languages
Japanese (ja)
Inventor
Tomohiro Katayanagi
智博 片柳
Susumu Saito
将 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oak Co Ltd
Original Assignee
Oak Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oak Co Ltd filed Critical Oak Co Ltd
Priority to JP2012087688A priority Critical patent/JP2013215123A/en
Publication of JP2013215123A publication Critical patent/JP2013215123A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of irradiating without using wasteful electric power in order to radiate only artificial light of a light wavelength needed by plants, becoming energy saving, and capable of revolutionarily quickly and large growing arbitrary vegetables, Chinese medicine, and plants such as flowers regardless of season.SOLUTION: A device includes a horizontally arranged base material 1, an arbitrary number of tubular discharge tubes including at least R66 lump 2, BEX lump 3, WW lump 4 and Ne lump 5 placed side by side on the lower side of the base material 1, respective lump electric source substrates 6 respectively electrically connected to an arbitrary number of the tubular discharge tubes, respective lump control parts 7 respectively electrically connected the lump electric source substrates 6, a whole control part 8 electrically connected to the respective lump control parts 7, and an electric source substrate 9 for control electrically connected to the respective lump electric source substrates 6.

Description

本発明は、植物を育成するための人工照明装置とその照射方法に関するものであり、更に詳細には、少なくともR66ランプとBEXランプとWWランプとNeランプとを含む人工照明装置により、主として野菜、漢方薬、花等の植物が必要とする光波長域の人工光を他の光波長より強い光度で照射して、植物の早期育成や育成をコントロールさせる方法に関するものである。   The present invention relates to an artificial lighting device for growing plants and an irradiation method thereof, and more specifically, an artificial lighting device including at least an R66 lamp, a BEX lamp, a WW lamp, and a Ne lamp, The present invention relates to a method for controlling early growth and growth of plants by irradiating artificial light in a light wavelength range required by plants such as Chinese medicine and flowers with a light intensity stronger than other light wavelengths.

近年、野菜や花を季節や気温に関係なく安定供給するために人工的に肥料や水、光を提供して育てる技術が行われており、植物は根から吸い上げた水と大気中の炭酸ガスがあれば、その葉の中にある葉緑体の中に存在する色素(クロロフィル)が光を吸収して、エネルギーを獲得して、炭酸ガスを取り込み、これを糖として蓄え成長し、このとき副産物として酸素ガスを放出する、所謂光合成が行われるものである。   In recent years, in order to provide a stable supply of vegetables and flowers regardless of the season and temperature, artificial fertilizers, water, and light have been cultivated and technology has been developed. Plants suck up water from the roots and carbon dioxide in the atmosphere. If there is, the pigment (chlorophyll) present in the chloroplast in the leaf absorbs light, acquires energy, takes in carbon dioxide gas, stores this as sugar, grows, So-called photosynthesis is performed, in which oxygen gas is released as a by-product.

そして、植物の成長は光や炭酸ガス濃度、環境温度によって行われるもので、根から吸い上げる水が存在すれば、照射光の波長やその光度の強弱、炭酸ガス濃度の濃淡、環境温度の上下によって成長速度が大きく変わるものである。   Plant growth is performed by light, carbon dioxide concentration, and environmental temperature. If there is water to be sucked up from the roots, depending on the wavelength of the irradiated light, the intensity of the light, the concentration of carbon dioxide gas, and the environmental temperature The growth rate changes greatly.

また、図3に図示したように、植物の光吸収はクロロフィルaとクロロフィルbとの二種類の色素によるものが殆どであり、クロロフィルaは430nmと660nm、クロロフィルbは460nmと650nmでの光吸収が著しいものである。   In addition, as shown in FIG. 3, the light absorption of plants is mostly due to two types of pigments, chlorophyll a and chlorophyll b. Chlorophyll a absorbs light at 430 nm and 660 nm, and chlorophyll b absorbs light at 460 nm and 650 nm. Is remarkable.

例えば、先に開示されている、Eu3+を蛍光媒体として紫外光励起によって赤色蛍光を呈する蛍光ガラスであり、該蛍光ガラスの陰イオンをF-からなるものとし、ガラス中の全陽イオンに対してEu3+を5〜20mol%とするもの(特許文献1参照)や、4つの逆導通の半導体スイッチとエネルギー蓄積コンデンサで構成される磁気エネルギー回生スイッチをリアクトルと交流電源に直列に接続して交流電圧に同期したスイッチのオン・オフをすることにより、電源周波数の共振を起こさせる。この共振電圧をダイオード整流回路により取り出せば、交流入力電圧より高い直流電圧を得て、入力電流は高調波が少なく力率が良くなるもの(特許文献2参照)や、理論化された「磁気プロトニクス原理」に基づく生物生命活性化手段で栽培する構成としたイチゴ3等の農作物栽培促進装置で、磁気プロトニクス原理の生物体内及び体外の水に超低周波の微小交流磁界を印加し、プロトンの長距離移動を実現し、生物の細胞エネルギー物質であるアデノシン三燐酸の生成能を向上し、生物の身体及び体内外有用細菌を活性化・成長促進する構成とした農作物栽培促進装置(特許文献3参照)等が開示されている。
特開2007−153626号公報 特開2007−174723号公報 特開2008−61614号公報
For example, it is a fluorescent glass that exhibits red fluorescence when excited by ultraviolet light using Eu 3+ as a fluorescent medium, and the anion of the fluorescent glass is made of F-, and is disclosed for all cations in the glass. An AC voltage obtained by connecting Eu 3+ to 5 to 20 mol% (see Patent Document 1) and a magnetic energy regenerative switch composed of four reverse conducting semiconductor switches and an energy storage capacitor in series with a reactor and an AC power supply The resonance of the power supply frequency is caused by turning on / off the switch synchronized with the power supply frequency. If this resonant voltage is taken out by a diode rectifier circuit, a DC voltage higher than the AC input voltage can be obtained, and the input current has less harmonics and a better power factor (see Patent Document 2), or the theoretical “magnetic prototyping” A device for cultivating crops such as strawberry 3 that is cultivated by means of biological life activation based on the principle of “Nix”, applying a very low frequency micro alternating magnetic field to water inside and outside the organism based on the principle of magnetic protonics, Achieving long-distance movement of plants, improving the ability to produce adenosine triphosphate, a cellular energy substance of living organisms, and activating and promoting the growth of useful organisms and useful bacteria in and outside the organism (Patent Literature) 3) and the like.
JP 2007-153626 A JP 2007-174723 A JP 2008-61614 A

然し乍ら、特許文献1では、野菜類、果実類のビタミンCを増量させることに有用な580〜590nm付近の光波長帯の蛍光強度が強い蛍光ガラスを提供するもので、更に、特許文献2では、発光ダイオード(LED)を太陽光の代わりに用いて光を照射して野菜などの植物を育成する野菜工場、植物工場において、コストの安い光源を得るものであり、更には、特許文献3では、「磁気プロトニクス原理」に基づく生物生命活性化手段(技術)で設計された果物類、野菜類、穀物、キノコ類の農作物の栽培を促進する技術、とくにビタミン等の栄養物が豊富で、味覚、食感、形状等の優れた健康な秀品を、微弱なエネルギーの使用によって多量に収穫する農作物栽培促進装置(技術全般)に関するものであり、特許文献1〜3は何れも人工光を用いたものであるが、野菜の生育に特に必要な波長の人工光のみを照射させエネルギー効率の向上を図るものではないものである。   However, Patent Document 1 provides a fluorescent glass having a strong fluorescence intensity in the light wavelength band near 580 to 590 nm, which is useful for increasing the amount of vitamin C in vegetables and fruits. In vegetable factories and plant factories in which light emitting diodes (LEDs) are used instead of sunlight to irradiate light to grow plants such as vegetables, a low-cost light source is obtained. Technology that promotes the cultivation of fruits, vegetables, grains, mushrooms, and other crops designed with biological life activation means (technology) based on the “Magnetic Protonics Principle”, especially rich in nutrients such as vitamins and taste , Food cropping promotion device (technical in general) that harvests a large amount of healthy excellent products such as texture and shape by using weak energy. Those using light, but those are not intended to improve the energy efficiency is irradiated only with artificial light of a wavelength specifically required for the growth of vegetables.

本発明は、前記課題に鑑み、鋭意研鑽の結果、これらの課題を解決するもので、人工的に植物を育成する人工照明装置であって、水平状に配設された基材と、基材の下方に並設された少なくともR66ランプとBEXランプとWWランプとNeランプとを含む任意数の管状の放電管と、任意数の管状の放電管と電気的に接続したランプ用電源基板と、ランプ用電源基板と電気的に接続したランプ用制御部と、ランプ用制御部と電気的に接続した全体制御部と、ランプ用電源基板と電気的に接続した制御用電源基板と、を備えた植物育成用人工照明装置であり、更に、植物育成用人工照明装置を用いて、光波長350〜500nmと光波長600〜750nmとの人工光を他の光波長より強い光度で照射し、光波長350〜500nmと光波長600〜750nmとの人工光に光度比を設定し、光度比を維持させた状態で全体の光度の可変をさせる植物育成用人工照明装置の照射方法であり、更には、植物育成用人工照明装置を用いて、自然光の一日の光度の変化と同様に人工光の光度を変化させる植物育成用人工照明装置の照射方法であり、加えて、植物育成用人工照明装置を用いて、自然光の一年の光度の変化と同様に人工光の光度を変化させる植物育成用人工照明装置の照射方法である。   In view of the above problems, the present invention solves these problems as a result of diligent research, and is an artificial lighting device for artificially growing a plant, in which a horizontally disposed substrate and a substrate An arbitrary number of tubular discharge tubes including at least an R66 lamp, a BEX lamp, a WW lamp, and an Ne lamp, and a lamp power supply board electrically connected to the arbitrary number of tubular discharge tubes, A lamp control unit electrically connected to the lamp power supply board; an overall control unit electrically connected to the lamp control part; and a control power supply board electrically connected to the lamp power supply board. An artificial lighting device for plant growth, and further, using an artificial lighting device for plant growth, irradiates artificial light with a light wavelength of 350 to 500 nm and a light wavelength of 600 to 750 nm at a light intensity stronger than other light wavelengths, 350-500nm and light wavelength It is an irradiation method of an artificial lighting device for plant growth in which the light intensity ratio is set to artificial light of 00 to 750 nm and the entire light intensity is changed in a state where the light intensity ratio is maintained. Is used to illuminate the artificial lighting device for plant growth that changes the luminous intensity of the artificial light in the same manner as the change in the daily luminous intensity of natural light. It is an irradiation method of an artificial lighting device for plant cultivation that changes the luminous intensity of artificial light in the same manner as the luminous intensity of the year.

本発明の植物育成用人工照明装置とその照射方法は、基材の下方に並設された少なくともR66ランプとBEXランプとWWランプとNeランプとを含む任意数の管状の放電管と、任意数の管状の放電管と電気的に接続したランプ用電源基板と、ランプ用電源基板と電気的に接続したランプ用制御部と、ランプ用制御部と電気的に接続した全体制御部と、ランプ用電源基板と電気的に接続した制御用電源基板と、を備えたことにより、育成する植物に最適な夫々の任意数の管状の放電管の光度や、照射時間を自在に変化させることが可能であり、更に、その照射方法は、光波長350〜500nmと光波長600〜750nmとの夫々の人工光を他の光波長より強い光度で照射し、光波長350〜500nmと光波長600〜750nmとの人工光に光度比を設定し、光度比を維持させた状態で全体の光度の可変をさせるもので、植物が必要としている光波長の人工光のみを照射させるため無駄な電力を使用することなく照射でき、省エネルギーに成り、更には、自然光の一日、又は、一年の光度の変化と同様に人工光の光度を制御させるもので、人工光でありながら自然に近い状態で育成したり、春夏秋冬、朝昼夜等の人工光の演出ができ、植物の育成を自在にコントロールできるものであり、任意の野菜や漢方薬や花等の植物を季節に関係なく、画期的に早く、大きく成長することを可能とするもので、実用性の高い有効な発明である。   An artificial lighting device for plant growth and an irradiation method thereof according to the present invention include an arbitrary number of tubular discharge tubes including at least an R66 lamp, a BEX lamp, a WW lamp, and an Ne lamp arranged in parallel below a base material, and an arbitrary number A lamp power supply board electrically connected to the tubular discharge tube, a lamp control section electrically connected to the lamp power supply board, an overall control section electrically connected to the lamp control section, and a lamp By providing a control power supply board electrically connected to the power supply board, it is possible to freely change the luminous intensity and irradiation time of each arbitrary number of tubular discharge tubes optimal for the plant to be grown. Furthermore, the irradiation method irradiates each artificial light with a light wavelength of 350 to 500 nm and a light wavelength of 600 to 750 nm with a light intensity stronger than other light wavelengths, and a light wavelength of 350 to 500 nm and a light wavelength of 600 to 750 nm. of The light intensity ratio is set to the working light, and the entire light intensity is changed while maintaining the light intensity ratio. Only the artificial light of the light wavelength required by the plant is irradiated. It is possible to irradiate, save energy, and further control the light intensity of artificial light in the same way as the change of light intensity of one day or one year of natural light. It can produce artificial light such as spring, summer, autumn, winter, morning, day, night, etc., and can freely control the growth of plants. It is an effective invention with high practicality that enables growth.

以下、本発明の植物育成用人工照明装置とその照射方法の実施の形態を図面によって具体的に説明すると、図1は本発明の植物育成用人工照明装置とその照射方法に用いる実施例の植物育成用人工照明装置の底面図であり、図2は本発明の植物育成用人工照明装置とその照射方法に用いる実施例の植物育成用人工照明装置の平面図であり、図3は本発明の植物育成用人工照明装置とその照射方法の実施例を説明するための光吸収スペクトルの説明図であり、図4は本発明の植物育成用人工照明装置のR66ランプの分光分布特性を表すグラフであり、図5は本発明の植物育成用人工照明装置のBEXランプの分光分布特性を表すグラフであり、図6は本発明の植物育成用人工照明装置のWWランプの分光分布特性を表すグラフであり、図7は本発明の植物育成用人工照明装置のNeランプの分光分布特性を表すグラフである。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an artificial lighting device for plant growth and its irradiation method according to the present invention will be specifically described below with reference to the drawings. FIG. 1 shows a plant according to an embodiment used for the artificial lighting device for plant growth of the present invention and its irradiation method. FIG. 2 is a bottom view of the artificial lighting device for growing, FIG. 2 is a plan view of the artificial lighting device for plant growth of the present invention and the artificial lighting device for plant growth of the embodiment used in the irradiation method, and FIG. It is explanatory drawing of the light absorption spectrum for demonstrating the Example of the artificial lighting apparatus for plant cultivation, and its irradiation method, FIG. 4 is a graph showing the spectral distribution characteristic of R66 lamp of the artificial lighting apparatus for plant growth of this invention. FIG. 5 is a graph showing the spectral distribution characteristic of the BEX lamp of the artificial lighting device for plant growth of the present invention, and FIG. 6 is a graph showing the spectral distribution characteristic of the WW lamp of the artificial lighting device for plant growth of the present invention. Yes, Is a graph showing the spectral distribution characteristics of the Ne lamp for cultivating plant artificial lighting device of the present invention.

本発明は、植物を育成するための人工照明装置とその照射方法に関するものであり、更に詳細には、少なくともR66ランプとBEXランプとWWランプとNeランプとを含む人工照明装置により、主として野菜、漢方薬、花等の植物が必要とする光波長域の人工光を他の光波長より強い光度で照射して、植物の早期育成や育成をコントロールさせる方法に関するものであり、請求項1に記載の植物育成用人工照明装置は、人工的に植物を育成する水耕育成又は土耕育成の人工照明装置であって、水平状に配設された基材1と、該基材1の下方に並設された少なくともR66ランプ2とBEXランプ3とWWランプ4とNeランプ5とを含む任意数の管状の放電管と、該任意数の管状の放電管と夫々電気的に接続した夫々のランプ用電源基板6と、該夫々のランプ用電源基板6と電気的に接続した夫々のランプ用制御部7と、該夫々のランプ用制御部7と電気的に接続した全体制御部8と、前記夫々のランプ用電源基板6と電気的に接続した制御用電源基板9と、を備えたことを特徴とするものである。   The present invention relates to an artificial lighting device for growing plants and an irradiation method thereof, and more specifically, an artificial lighting device including at least an R66 lamp, a BEX lamp, a WW lamp, and a Ne lamp, The present invention relates to a method for controlling early growth and growth of plants by irradiating artificial light in a light wavelength range required by plants such as Chinese medicine and flowers with a light intensity stronger than other light wavelengths. The artificial lighting device for plant cultivation is an artificial lighting device for hydroponics or soil cultivation that artificially grows a plant, and is arranged in parallel with a base material 1 arranged horizontally and below the base material 1. For any number of tubular discharge tubes including at least the R66 lamp 2, the BEX lamp 3, the WW lamp 4 and the Ne lamp 5, and for each of the lamps electrically connected to the number of tubular discharge tubes. Power supply board Each lamp control unit 7 electrically connected to the respective lamp power supply substrate 6; an overall control unit 8 electrically connected to the respective lamp control unit 7; And a control power supply board 9 electrically connected to the power supply board 6.

更に、請求項2に記載の植物育成用人工照明装置の照射方法は、請求項1に記載の植物育成用人工照明装置を用いて、光波長350〜500nmと光波長600〜750nmとの夫々の人工光を他の光波長より強い光度で照射し、前記光波長350〜500nmと前記光波長600〜750nmとの人工光に光度比を設定し、該光度比を維持させた状態で全体の光度の可変をさせることを特徴とするものである。   Furthermore, the irradiation method of the artificial illuminating device for plant growth according to claim 2 uses the artificial illuminating device for plant growth according to claim 1, and has an optical wavelength of 350 to 500 nm and an optical wavelength of 600 to 750 nm. Irradiate artificial light with a light intensity that is stronger than other light wavelengths, set the light intensity ratio to the artificial light with the light wavelength of 350 to 500 nm and the light wavelength of 600 to 750 nm, and maintain the light intensity ratio in the whole light intensity It is characterized by making the variable.

更には、請求項3に記載の植物育成用人工照明装置の照射方法は、請求項2に記載の植物育成用人工照明装置の照射方法において、前記植物育成用人工照明装置を用いて、自然光の一日の光度の変化と同様に前記人工光の光度を変化させることを特徴とするものである。   Furthermore, the irradiation method of the artificial lighting device for plant growth according to claim 3 is the irradiation method of the artificial lighting device for plant growth according to claim 2, wherein the artificial lighting device for plant growth is used to emit natural light. It is characterized in that the luminous intensity of the artificial light is changed in the same manner as the luminous intensity of the day.

加えて、請求項4に記載の植物育成用人工照明装置の照射方法は、請求項2又は請求項3に記載の植物育成用人工照明装置の照射方法において、前記植物育成用人工照明装置を用いて、自然光の一年の光度の変化と同様に前記人工光の光度を変化させることを特徴とするものである。   In addition, the irradiation method of the artificial lighting device for plant growth according to claim 4 uses the artificial lighting device for plant growth in the irradiation method of the artificial lighting device for plant growth according to claim 2 or claim 3. Thus, the artificial light intensity is changed in the same manner as the natural light intensity changes in one year.

即ち、自然の太陽光を受けて多種類の植物は成長するものであるが、近年では、植物の育成を季節に関係なくコントロールするために温室などの隔離された人工空間での育成が盛んに成ってきている。   In other words, many types of plants grow under natural sunlight, but in recent years they have been actively grown in isolated artificial spaces such as greenhouses to control plant growth regardless of the season. It has become.

そして、本発明の植物育成用人工照明装置は、人工的に植物を育成するもので、液体肥料槽の液体肥料の上面に浮かぶように配設された栽培床に多数配設された培地に植設する水耕育成又は土壌を用いた土耕育成に用いる人工照明装置であり、後述する少なくともR66ランプ2とBEXランプ3とWWランプ4とNeランプ5とを含むものである。   The artificial illuminating device for plant growth of the present invention artificially grows plants, and is planted on a culture medium arranged in large numbers on a cultivation floor arranged so as to float on the upper surface of the liquid fertilizer in the liquid fertilizer tank. This is an artificial lighting device used for hydroponics or soil cultivation using soil, and includes at least an R66 lamp 2, a BEX lamp 3, a WW lamp 4, and a Ne lamp 5, which will be described later.

次に、基材1は育成する野菜や漢方薬、花等の植物の上方に水平状に配設されたもので、基材1の下方には後述する任意数の管状の放電管や、上面に後述する各基板や、各制御部を装着するものである。   Next, the base material 1 is horizontally arranged above plants such as vegetables, herbal medicines, and flowers to be grown. Below the base material 1, an arbitrary number of tubular discharge tubes, which will be described later, Each board to be described later and each control unit are mounted.

次いで、任意数の管状の放電管は、その植物育成用人工照明装置の規模によりサイズや数は任意に決定するものであり、少なくともR66ランプ2とBEXランプ3とWWランプ4とNeランプ5とを含むものであり、他の放電管、LED、白熱灯等を並用することは任意のものである。   Next, the number and the number of the tubular discharge tubes of any number are arbitrarily determined depending on the scale of the artificial lighting device for plant growth. At least the R66 lamp 2, the BEX lamp 3, the WW lamp 4, and the Ne lamp 5 It is optional to use other discharge tubes, LEDs, incandescent lamps, and the like.

そして、R66ランプ2は、図4の分光分布特性図に図示するように、光波長が660nm辺りにピークが表れると共に、光波長600〜700nm間の照射が主であり、BEXランプ3では、図5の分光分布特性図に図示するように、光波長が435〜450nmの間にピークが表れると共に、概ね光波長が400〜500nm間の照射が主であり、WWランプ4では、図6の分光分布特性図に図示するように、光波長が312nm辺りと、364nm辺りと、404nm辺りに稍低いピークが表れると共に、475nm辺りと、545nm辺りと、580nm辺りに高いピークが表れ、更に、光波長が520〜700nm間を幅広く照射するものであり、Neランプ5では、図7の分光分布特性図に図示するように、光波長が640nm辺りと、502nm辺りに高いピークが表れ、光波長が580nm〜760nmの間で多数の光波長がランダムに低いピークが表れるものである。   In the R66 lamp 2, as shown in the spectral distribution characteristic diagram of FIG. 4, the light wavelength has a peak around 660 nm and is mainly irradiated between the light wavelengths of 600 to 700 nm. As shown in the spectral distribution characteristic diagram of FIG. 5, a peak appears between the light wavelengths of 435 to 450 nm, and irradiation is mainly performed between the light wavelengths of 400 to 500 nm. As shown in the distribution characteristic diagram, a light peak appears at around 312 nm, around 364 nm, and around 404 nm, and high peaks appear at around 475 nm, around 545 nm, and around 580 nm. , And the Ne lamp 5 has a light wavelength of 640 nm as shown in the spectral distribution characteristic diagram of FIG. Litho, appears a peak high Atari 502 nm, a number of optical wavelengths between the light wavelength 580nm~760nm is what appears a peak low randomly.

次に、実施例では、図1に図示するように、両側にR66ランプ2を配置し、その間にBEXランプ3とWWランプ4とNeランプ5とを各一本宛並設したものである。   Next, in the embodiment, as shown in FIG. 1, R66 lamps 2 are arranged on both sides, and a BEX lamp 3, a WW lamp 4 and a Ne lamp 5 are arranged in parallel between them.

次いで、ランプ用電源基板6は、任意数に配設した管状の放電管と夫々電気的に接続しているものであり、電源から夫々の管状の放電管の長手方向に設けたソケットや配線を介して電力を放電管に提供するランプ用電源基板6である。   Next, the lamp power supply substrate 6 is electrically connected to an arbitrary number of tubular discharge tubes, and sockets and wires provided in the longitudinal direction of the respective tubular discharge tubes are connected from the power supply. It is the power supply board 6 for lamps which provides electric power to a discharge tube via.

更に、ランプ用制御部7は、夫々のランプ用電源基板6と電気的に接続して夫々の管状の放電管の照射光度の強弱、照射時間等の予め設定されたプログラムによって制御するためのものである。   Further, the lamp control section 7 is electrically connected to each lamp power supply board 6 and is controlled by a preset program such as the intensity of irradiation intensity and irradiation time of each tubular discharge tube. It is.

更には、全体制御部8は、夫々のランプ用制御部7と電気的に接続しており、全体の照明の制御をするものであり、又、制御用電源基板9は夫々のランプ用電源基板6と電気的に接続しており、全体の照明の電源の制御をするものである。   Furthermore, the overall control unit 8 is electrically connected to each lamp control unit 7 to control the entire illumination, and the control power supply board 9 is each lamp power supply board. 6 is electrically connected to control the power supply of the entire illumination.

そして、植物育成用人工照明装置の照射方法は、前述の植物育成用人工照明装置を用いて、光波長350〜500nmと光波長600〜750nmとの夫々の人工光を他の光波長より強い光度で照射するもので、例えば、R66ランプ2を照射させると主に光波長600〜750nmの照射ができ、BEXランプ3を照射させると主に光波長350〜500nmの照射ができるものである。   And the irradiation method of the artificial illuminating device for plant growth uses the above-mentioned artificial illuminating device for plant growth, and each artificial light with a light wavelength of 350 to 500 nm and a light wavelength of 600 to 750 nm is stronger than other light wavelengths. For example, when the R66 lamp 2 is irradiated, irradiation with a light wavelength of 600 to 750 nm can be performed, and when the BEX lamp 3 is irradiated, irradiation with a light wavelength of 350 to 500 nm can be performed.

更に、実施例のように、R66ランプ2を2本にして照射させると光波長600〜750nmの照射の光度比が強くなり、BEXランプ3を1本で照射させると光波長350〜500nmの照射は現状であり、光波長350〜500nmと光波長600〜750nmとの人工光に光度比を設定できるものであるが、夫々のランプ用制御部7によっても光度は可変できるものである。   Further, as in the embodiment, when two R66 lamps 2 are irradiated, the intensity ratio of irradiation with a light wavelength of 600 to 750 nm is increased, and when one BEX lamp 3 is irradiated, irradiation with a light wavelength of 350 to 500 nm is performed. Is the current state, and the light intensity ratio can be set for artificial light having a light wavelength of 350 to 500 nm and a light wavelength of 600 to 750 nm. However, the light intensity can also be varied by each lamp control unit 7.

更には、ランプ用制御部7と全体制御部8とによって、前述の光度比を維持させた状態で全体の光度の可変させるもので、また、育成中の植物に休息が必要な場合はランプ用制御部7と全体制御部8とによって光度を落とすことも可能なものである。   Furthermore, the lamp controller 7 and the overall controller 8 can change the overall luminous intensity while maintaining the above-mentioned luminous intensity ratio. If the growing plant requires rest, it can be used for the lamp. The light intensity can be reduced by the control unit 7 and the overall control unit 8.

そして、図3の植物の光吸収スペクトルに表すように、クロロフィルaの光吸収は430nmと660nmとにピークが表れ、クロロフィルbの光吸収は460nmと650nmとにピークが表れるものであり、この人工光の光波長350〜500nmは青色光で、光波長600〜750nmは赤色光であり、青色と赤色とに特化した光源がエネルギー効率として優れているものである。   As shown in the light absorption spectrum of the plant in FIG. 3, light absorption of chlorophyll a has peaks at 430 nm and 660 nm, and light absorption of chlorophyll b has peaks at 460 nm and 650 nm. The light wavelength 350 to 500 nm is blue light, the light wavelength 600 to 750 nm is red light, and a light source specialized in blue and red is excellent in energy efficiency.

更に、自然光の一日の光度の変化と同様に人工光の光度を変化させるものであり、植物育成用人工照明装置のランプ用制御部7と全体制御部8とに予めプログラムを記憶させることによって、朝夕は弱い光度で、昼間は強い光度で一日を演出するものである。   Further, it changes the light intensity of artificial light in the same way as the change in the daily light intensity of natural light. By storing the program in advance in the lamp control section 7 and the overall control section 8 of the plant-growing artificial lighting device. In the morning and evening, it produces a day with a weak light intensity and a strong light intensity in the daytime.

更には、自然光の一年の光度の変化と同様に人工光の光度を変化させるものであり、植物育成用人工照明装置のランプ用制御部7と全体制御部8とに予めプログラムを記憶させることによって、冬の時期は弱い光度で、且つ、時間を短く、夏の時期は強い光度で、且つ、時間を長くして一年を演出するものである。   Furthermore, it changes the light intensity of artificial light in the same way as the change in light intensity of natural light for one year, and the program is stored in advance in the lamp control section 7 and the overall control section 8 of the plant-growing artificial lighting device. Thus, the winter time is weak and the time is short, the summer time is strong and the time is extended to produce a year.

本発明は、基材の下方に並設された少なくともR66ランプとBEXランプとWWランプとNeランプとを含む任意数の管状の放電管と、任意数の管状の放電管と電気的に接続したランプ用電源基板と、ランプ用電源基板と電気的に接続したランプ用制御部と、ランプ用制御部と電気的に接続した全体制御部と、ランプ用電源基板と電気的に接続した制御用電源基板と、を備えたことにより、育成する植物に最適な夫々の任意数の管状の放電管の光度や、照射時間を自在に変化させることが可能であり、更に、その照射方法は、光波長350〜500nmと光波長600〜750nmとの夫々の人工光を他の光波長より強い光度で照射し、光波長350〜500nmと光波長600〜750nmとの人工光に光度比を設定し、光度比を維持させた状態で全体の光度の可変をさせるもので、植物が必要としている光波長の人工光のみを照射させるため無駄な電力を使用することなく照射でき、省エネルギーに成り、更には、自然光の一日、又は、一年の光度の変化と同様に人工光の光度を制御させるもので、人工光でありながら自然に近い状態で育成したり、春夏秋冬、朝昼夜等の人工光の演出ができ、植物の育成を自在にコントロールできるものであり、任意の野菜や漢方薬や花等の植物を季節に関係なく画期的に早く、大きく成長することを可能とする植物育成用人工照明装置とその照射方法の提供するものである。   According to the present invention, any number of tubular discharge tubes including at least an R66 lamp, a BEX lamp, a WW lamp, and a Ne lamp arranged in parallel below the base material are electrically connected to the number of tubular discharge tubes. Lamp power supply board, lamp control section electrically connected to the lamp power supply board, overall control section electrically connected to the lamp control section, and control power supply electrically connected to the lamp power supply board And the substrate, the luminous intensity and irradiation time of each arbitrary number of tubular discharge tubes optimal for the plant to be grown can be freely changed. Irradiate each artificial light with a wavelength of 350 to 500 nm and a light wavelength of 600 to 750 nm at a light intensity stronger than the other light wavelengths, set a luminous intensity ratio to the artificial light with a light wavelength of 350 to 500 nm and a light wavelength of 600 to 750 nm, Maintained ratio In this state, the entire light intensity can be changed, and only artificial light of the light wavelength required by the plant is irradiated, so that it can be irradiated without using unnecessary power, saving energy, and further, a day of natural light. Or, it can control the light intensity of artificial light in the same way as the change in light intensity of the year, and it can be grown in a state close to nature while being artificial light, and can produce artificial light such as spring, summer, autumn, winter, morning, day and night Plant growth artificial lighting device that can freely control the growth of plants, and can grow any vegetable, herbal medicine, flowers, etc. An irradiation method is provided.

図1は本発明の植物育成用人工照明装置とその照射方法に用いる実施例の植物育成用人工照明装置の底面図である。FIG. 1 is a bottom view of an artificial lighting device for plant growth according to the present invention and an artificial lighting device for plant growth according to an embodiment used in the irradiation method. 図2は本発明の植物育成用人工照明装置とその照射方法に用いる実施例の植物育成用人工照明装置の平面図である。FIG. 2 is a plan view of the artificial illuminating device for plant growth according to the present invention and the artificial illuminating device for plant growing according to the embodiment used in the irradiation method. 図3は本発明の植物育成用人工照明装置とその照射方法の実施例を説明するための光吸収スペクトルの説明図である。FIG. 3 is an explanatory diagram of a light absorption spectrum for explaining an embodiment of the artificial lighting device for plant growth and its irradiation method according to the present invention. 図4は本発明の植物育成用人工照明装置のR66ランプの分光分布特性を表すグラフである。FIG. 4 is a graph showing the spectral distribution characteristics of the R66 lamp of the artificial lighting device for plant growth of the present invention. 図5は本発明の植物育成用人工照明装置のBEXランプの分光分布特性を表すグラフである。FIG. 5 is a graph showing the spectral distribution characteristics of the BEX lamp of the artificial lighting device for plant growth of the present invention. 図6は本発明の植物育成用人工照明装置のWWランプの分光分布特性を表すグラフである。FIG. 6 is a graph showing the spectral distribution characteristics of the WW lamp of the artificial lighting device for plant growth of the present invention. 図7は本発明の植物育成用人工照明装置のNeランプの分光分布特性を表すグラフである。FIG. 7 is a graph showing the spectral distribution characteristics of the Ne lamp of the artificial lighting device for plant growth of the present invention.

1 基材
2 R66ランプ
3 BEXランプ
4 WWランプ
5 Neランプ
6 ランプ用電源基板
7 ランプ用制御部
8 全体制御部
9 制御用電源基板
DESCRIPTION OF SYMBOLS 1 Base material 2 R66 lamp 3 BEX lamp 4 WW lamp 5 Ne lamp 6 Lamp power supply board 7 Lamp control part 8 Overall control part 9 Control power supply board

Claims (4)

人工的に植物を育成する水耕育成又は土耕育成の人工照明装置であって、水平状に配設された基材と、該基材の下方に並設された少なくともR66ランプとBEXランプとWWランプとNeランプとを含む任意数の管状の放電管と、該任意数の管状の放電管と夫々電気的に接続した夫々のランプ用電源基板と、該夫々のランプ用電源基板と電気的に接続した夫々のランプ用制御部と、該夫々のランプ用制御部と電気的に接続した全体制御部と、前記夫々のランプ用電源基板と電気的に接続した制御用電源基板と、を備えたことを特徴とする植物育成用人工照明装置。   An artificial lighting device for artificially growing plants for hydroponics or soil cultivation, and a base material arranged horizontally, at least an R66 lamp and a BEX lamp arranged in parallel below the base material An arbitrary number of tubular discharge tubes including WW lamps and Ne lamps, respective lamp power supply boards electrically connected to the arbitrary number of tubular discharge tubes, and the respective lamp power supply boards electrically A lamp control unit connected to the lamp control unit, an overall control unit electrically connected to the lamp control unit, and a control power supply board electrically connected to the lamp power supply board. An artificial lighting device for plant cultivation characterized by that. 前記植物育成用人工照明装置を用いて、光波長350〜500nmと光波長600〜750nmとの夫々の人工光を他の光波長より強い光度で照射し、前記光波長350〜500nmと前記光波長600〜750nmとの人工光に光度比を設定し、該光度比を維持させた状態で全体の光度の可変をさせることを特徴とする請求項1に記載の植物育成用人工照明装置の照射方法。   Using the artificial illumination device for plant growth, each artificial light having a light wavelength of 350 to 500 nm and a light wavelength of 600 to 750 nm is irradiated with a light intensity stronger than other light wavelengths, and the light wavelength of 350 to 500 nm and the light wavelength are irradiated. 2. The irradiation method for an artificial lighting device for plant growth according to claim 1, wherein a luminous intensity ratio is set for artificial light of 600 to 750 nm, and the entire luminous intensity is varied while maintaining the luminous intensity ratio. . 前記植物育成用人工照明装置を用いて、自然光の一日の光度の変化と同様に前記人工光の光度を変化させることを特徴とする請求項2に記載の植物育成用人工照明装置の照射方法。   The method for irradiating an artificial lighting device for plant growth according to claim 2, wherein the artificial lighting device for plant growth is used to change the light intensity of the artificial light in the same manner as the change of the daily light intensity of natural light. . 前記植物育成用人工照明装置を用いて、自然光の一年の光度の変化と同様に前記人工光の光度を変化させることを特徴とする請求項2又は請求項3に記載の植物育成用人工照明装置の照射方法。   The artificial illumination for plant cultivation according to claim 2 or 3, wherein the artificial illumination device for plant growth is used to change the luminous intensity of the artificial light in the same manner as a change in luminous intensity for one year of natural light. The irradiation method of the apparatus.
JP2012087688A 2012-04-06 2012-04-06 Artificial lighting device for plant raising, and method for irradiating the same Pending JP2013215123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012087688A JP2013215123A (en) 2012-04-06 2012-04-06 Artificial lighting device for plant raising, and method for irradiating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087688A JP2013215123A (en) 2012-04-06 2012-04-06 Artificial lighting device for plant raising, and method for irradiating the same

Publications (1)

Publication Number Publication Date
JP2013215123A true JP2013215123A (en) 2013-10-24

Family

ID=49588066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087688A Pending JP2013215123A (en) 2012-04-06 2012-04-06 Artificial lighting device for plant raising, and method for irradiating the same

Country Status (1)

Country Link
JP (1) JP2013215123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689552B1 (en) * 2014-05-01 2015-03-25 日本メナード化粧品株式会社 A skin external preparation or an internal preparation containing an extract of chamomile grown by irradiating light having a specific wavelength range.
JP2017101003A (en) * 2015-12-04 2017-06-08 日本メナード化粧品株式会社 Skin external preparation or internal preparation using herbal sprout

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689552B1 (en) * 2014-05-01 2015-03-25 日本メナード化粧品株式会社 A skin external preparation or an internal preparation containing an extract of chamomile grown by irradiating light having a specific wavelength range.
JP2017101003A (en) * 2015-12-04 2017-06-08 日本メナード化粧品株式会社 Skin external preparation or internal preparation using herbal sprout

Similar Documents

Publication Publication Date Title
US10172296B2 (en) Method for enhancing the nutritional value in an edible plant part by light, and lighting device therefore
EP2761994B1 (en) Plant cultivation method and plant cultivation apparatus
JP5779678B2 (en) Lamp for plant cultivation and plant cultivation method using the same
US20120198762A1 (en) Spectural specific horticulture apparatus
JP5722820B2 (en) LED lamp for plant cultivation
JP5723900B2 (en) Plant cultivation method
JP5724003B2 (en) Plant cultivation method
Cheremisin et al. Development of an ecological lighting device to reduce the growth time of agricultural plants in greenhouses
EP2761987B1 (en) Method for cultivating plant
JP2013215121A (en) Method for raising plant
US9445549B2 (en) Method for cultivating plant
JP2013215123A (en) Artificial lighting device for plant raising, and method for irradiating the same
JP2014176374A (en) Lighting cultivation device
CN103960015B (en) A kind of method of beta vulgaris indoor production
KR20160090023A (en) Vertical hook vegetation device
CN201726723U (en) Hydroponic culture greenhouse
EP2761988B1 (en) Method for cultivating plant
Yen et al. Artificial-lighting sources for plant growth
JP7236186B1 (en) Plant cultivation method and plant cultivation device
Bergstrand et al. Development of strategies for hydroponic cultivation in vertical systems
JP7157489B1 (en) Plant cultivation method and plant cultivation device
JP2023084091A (en) Plant cultivation method and plant cultivation device
JP2014171465A (en) Plant cultivation method and irradiation device for plant cultivation used for the same
Yeh et al. Effects of supplementary lighting by natural light for growth of Brassica chinensis
JP2023174498A (en) Plant cultivation method and plant cultivation device