JP2013213670A - Inverter cooling device, inverter cooling method, and refrigerating machine - Google Patents
Inverter cooling device, inverter cooling method, and refrigerating machine Download PDFInfo
- Publication number
- JP2013213670A JP2013213670A JP2013148759A JP2013148759A JP2013213670A JP 2013213670 A JP2013213670 A JP 2013213670A JP 2013148759 A JP2013148759 A JP 2013148759A JP 2013148759 A JP2013148759 A JP 2013148759A JP 2013213670 A JP2013213670 A JP 2013213670A
- Authority
- JP
- Japan
- Prior art keywords
- inverter
- temperature
- casing
- refrigerant
- bypass pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Inverter Devices (AREA)
Abstract
Description
本発明は、圧縮機を駆動制御するインバータを冷却するインバータ冷却装置およびインバータ冷却方法、ならびに前記インバータ冷却装置を適用する冷凍機に関する。 The present invention relates to an inverter cooling device and an inverter cooling method for cooling an inverter that drives and controls a compressor, and a refrigerator to which the inverter cooling device is applied.
ターボ冷凍機のような冷凍機は、建物の空調設備や製氷装置や冷蔵装置に用いられ、圧縮機を駆動制御するインバータを備えている。インバータは、IGBT(Insulated Gate Bipolar Transistor)などの半導体素子の温度上昇を防止するため、排熱を空気へ排出するために比較的大型のファンおよび放熱部材を必要としている。このため、インバータが大型化し、このインバータを含む冷凍機の大型化が懸念されている。 A refrigerator such as a turbo refrigerator is used in an air conditioning facility, ice making device, or refrigeration device in a building, and includes an inverter that drives and controls the compressor. The inverter requires a relatively large fan and a heat radiating member in order to discharge the exhaust heat to the air in order to prevent a temperature rise of a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor). For this reason, the size of the inverter is increased, and there is a concern about an increase in size of the refrigerator including the inverter.
従来、例えば特許文献1に示す冷凍機(車両用空調装置)では、小型で、かつ簡単な構成でインバータを冷却するため、インバータの筐体内に、コンデンサから吐出した冷媒を流通させている。 Conventionally, for example, in the refrigerator (vehicle air conditioner) disclosed in Patent Document 1, in order to cool an inverter with a small and simple configuration, a refrigerant discharged from a capacitor is circulated in a casing of the inverter.
しかし、上述した特許文献1の冷凍機のように、冷媒をインバータの筐体内に流通させると、インバータの筐体外との温度差により半導体素子に結露が発生するおそれがあり、この結露が半導体素子の機能を損なわせる原因となり得る。 However, if the refrigerant is circulated in the casing of the inverter as in the refrigerator disclosed in Patent Document 1 described above, there is a possibility that condensation occurs in the semiconductor element due to a temperature difference with the outside of the casing of the inverter. It can be a cause of damaging the function.
本発明は上述した課題を解決するものであり、冷凍機の小型化を図ると共に、インバータの半導体素子への結露の発生を防ぐことのできるインバータ冷却装置およびインバータ冷却方法ならびに冷凍機を提供することを目的とする。 The present invention solves the above-described problems, and provides an inverter cooling device, an inverter cooling method, and a refrigerator that can reduce the size of the refrigerator and prevent the occurrence of condensation on the semiconductor elements of the inverter. With the goal.
上述の目的を達成するために、本発明のインバータ冷却装置では、冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷凍機に係り、前記インバータを冷却するインバータ冷却装置において、前記凝縮器と前記蒸発器とを連通する冷媒配管の途中で迂回し、かつ前記インバータの筐体内に配置されたバイパス管と、前記バイパス管に設けられて前記バイパス管に流通する冷媒の流量を可変する調整弁と、前記インバータの筐体内の温度、または前記インバータの筐体内に配置された半導体素子の温度を検出する筐体内温度検出手段と、前記インバータの筐体外の温度を検出する筐体外温度検出手段と、前記インバータの筐体外の湿度を検出する筐体外湿度検出手段と、前記筐体内温度検出手段が検出した温度、前記筐体外温度検出手段が検出した温度、および前記筐体外湿度検出手段が検出した湿度に基づいて、前記調整弁を制御する制御手段と、を備えたことを特徴とする。 In order to achieve the above object, in the inverter cooling apparatus of the present invention, a compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and the refrigerant condensed by the condenser are evaporated. In an inverter cooling device that cools the inverter, bypassing the refrigerant in the middle of a refrigerant pipe that communicates the condenser and the evaporator And a bypass pipe disposed in the casing of the inverter, a regulating valve that is provided in the bypass pipe and varies a flow rate of the refrigerant flowing through the bypass pipe, a temperature in the casing of the inverter, or the inverter A temperature detection means inside the case for detecting the temperature of the semiconductor element disposed in the case; a temperature detection means outside the case for detecting the temperature outside the case of the inverter; The outside humidity detecting means for detecting the humidity outside the casing of the inverter, the temperature detected by the inside temperature detecting means, the temperature detected by the outside temperature detecting means, and the humidity detected by the outside humidity detecting means And a control means for controlling the regulating valve.
このインバータ冷却装置によれば、バイパス管に流通する冷媒により、インバータの半導体素子を冷却するため、半導体素子冷却用のファンおよび放熱部材の小型化を図ることができ、インバータを小型化できる。このため、冷凍機を構成する圧縮機、凝縮器、蒸発器、または中間冷却器にインバータを一体に設けることができ、インバータを含む冷凍機を小型化できる。しかも、バイパス管に流通する冷媒の流量を調整することで、半導体素子の冷却量が調整できるので、半導体素子を所望の温度に冷却でき、半導体素子への結露の発生を防止できる。しかも、このインバータ冷却装置によれば、インバータの筐体内の温度、またはインバータの筐体内に配置された半導体素子の温度と、筐体外の温度と、筐体外の湿度とに基づいて、調整弁を制御し、バイパス管に流通する液相の冷媒の流量を調整することで、結露を生じない露点以上の温度に半導体素子を冷却できる。 According to this inverter cooling device, since the semiconductor element of the inverter is cooled by the refrigerant flowing through the bypass pipe, it is possible to reduce the size of the fan for cooling the semiconductor element and the heat radiating member, and the size of the inverter can be reduced. For this reason, an inverter can be integrally provided in the compressor, the condenser, the evaporator, or the intercooler constituting the refrigerator, and the refrigerator including the inverter can be downsized. In addition, since the cooling amount of the semiconductor element can be adjusted by adjusting the flow rate of the refrigerant flowing through the bypass pipe, the semiconductor element can be cooled to a desired temperature, and the occurrence of condensation on the semiconductor element can be prevented. Moreover, according to this inverter cooling device, the regulating valve is controlled based on the temperature inside the inverter casing or the temperature of the semiconductor element disposed in the inverter casing, the temperature outside the casing, and the humidity outside the casing. By controlling and adjusting the flow rate of the liquid-phase refrigerant flowing through the bypass pipe, the semiconductor element can be cooled to a temperature equal to or higher than the dew point at which no condensation occurs.
また、本発明のインバータ冷却装置では、前記半導体素子に熱伝達性を有した放熱部材が設けられ、前記放熱部材に前記バイパス管を配置したことを特徴とする。 In the inverter cooling device of the present invention, the semiconductor element is provided with a heat radiating member having heat transfer properties, and the bypass pipe is arranged on the heat radiating member.
このインバータ冷却装置によれば、バイパス管に流通する液相の冷媒により、半導体素子の放熱部材を直接冷却することで、冷却効率が向上するので、冷却用のファンを不用にでき、インバータをさらに小型化できる。 According to this inverter cooling device, the cooling efficiency is improved by directly cooling the heat radiating member of the semiconductor element with the liquid-phase refrigerant flowing in the bypass pipe, so that the cooling fan can be made unnecessary and the inverter can be further connected. Can be downsized.
上述の目的を達成するために、本発明のインバータ冷却方法では、冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷却装置に係り、前記インバータを冷却するインバータ冷却方法において、前記凝縮器から前記蒸発器に流通する冷媒の一部を、バイパス管を介して前記インバータの筐体内に導入させつつ、前記インバータの筐体内および筐体外の温度と、前記インバータの筐体外の湿度とを検出した結果に基づき、前記バイパス管に流通する冷媒の流量を調整することを特徴とする。 In order to achieve the above-described object, in the inverter cooling method of the present invention, a compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and the refrigerant condensed by the condenser are evaporated. In the inverter cooling method for cooling the inverter, a part of the refrigerant flowing from the condenser to the evaporator is bypassed in the inverter cooling method including the inverter for driving and controlling the inverter for driving the compressor. Based on the result of detecting the temperature inside and outside the inverter casing and the humidity outside the casing of the inverter, the flow rate of the refrigerant flowing through the bypass pipe is introduced into the inverter casing via the It is characterized by adjusting.
このインバータ冷却方法によれば、インバータの半導体素子を冷却するため、半導体素子冷却用のファンおよび放熱部材の小型化を図ることができ、インバータを小型化できる。このため、冷凍機を構成する圧縮機、凝縮器、蒸発器、または中間冷却器にインバータを一体に設けることができ、インバータを含む冷凍機を小型化できる。しかも、バイパス管に流通する冷媒の流量を調整することで、半導体素子の冷却量が調整できるので、半導体素子を所望の温度に冷却でき、半導体素子への結露の発生を防止できる。しかも、このインバータ冷却方法によれば、インバータの筐体内の温度、またはインバータの筐体内に配置された半導体素子の温度と、筐体外の温度と、筐体外の湿度とに基づいて、バイパス管に流通する液相の冷媒の流量を調整することで、結露を生じない露点以上の温度に半導体素子を冷却できる。 According to this inverter cooling method, since the semiconductor element of the inverter is cooled, the semiconductor element cooling fan and the heat dissipation member can be reduced in size, and the inverter can be reduced in size. For this reason, an inverter can be integrally provided in the compressor, the condenser, the evaporator, or the intercooler constituting the refrigerator, and the refrigerator including the inverter can be downsized. In addition, since the cooling amount of the semiconductor element can be adjusted by adjusting the flow rate of the refrigerant flowing through the bypass pipe, the semiconductor element can be cooled to a desired temperature, and the occurrence of condensation on the semiconductor element can be prevented. Moreover, according to this inverter cooling method, the bypass pipe is connected to the bypass pipe based on the temperature inside the inverter casing or the temperature of the semiconductor element disposed in the inverter casing, the temperature outside the casing, and the humidity outside the casing. By adjusting the flow rate of the flowing liquid phase refrigerant, the semiconductor element can be cooled to a temperature equal to or higher than the dew point at which dew condensation does not occur.
上述の目的を達成するために、本発明の冷凍機では、冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷凍機において、前記インバータを冷却する態様で、上記のいずれかのインバータ冷却装置を適用したことを特徴とする。 To achieve the above object, in the refrigerator of the present invention, a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and a refrigerant that is condensed by the condenser is evaporated. In a refrigerator including an evaporator and an inverter that drives and controls the compressor, any one of the inverter cooling devices described above is applied in a mode of cooling the inverter.
この冷凍機によれば、上記のインバータ冷却装置を適用したことにより、インバータを含む冷凍機を小型化しつつ、半導体素子への結露の発生を防止できる。この結果、インバータの機能を損なわせる事態を防ぎ、安定した冷凍性能が得られる。 According to this refrigerator, by applying the inverter cooling device described above, it is possible to reduce the size of the refrigerator including the inverter and prevent the occurrence of condensation on the semiconductor element. As a result, a situation in which the function of the inverter is impaired can be prevented, and stable refrigeration performance can be obtained.
本発明によれば、冷凍機の小型化を図ると共に、インバータの半導体素子への結露の発生を防ぐことができる。 ADVANTAGE OF THE INVENTION According to this invention, while aiming at size reduction of a refrigerator, generation | occurrence | production of the dew condensation to the semiconductor element of an inverter can be prevented.
以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Embodiments according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
[実施の形態1]
図1に示すように、冷凍機は、主に、圧縮機1と、凝縮器2と、蒸発器3と、中間冷却器4と、インバータ5とにより構成されている。圧縮機1と凝縮器2とは、冷媒が流通される冷媒配管6aにより連通されている。また、凝縮器2と蒸発器3とは、冷媒が流通される冷媒配管6bにより連通されている。中間冷却器4は、冷媒配管6bに介在されている。また、蒸発器3と圧縮機1とは、冷媒が流通される冷媒配管6cにより連通されている。すなわち、圧縮機1、凝縮器2、蒸発器3、および中間冷却器4は、冷媒配管6a,6b,6cを介して冷媒を循環させる循環経路6に設けられている。
[Embodiment 1]
As shown in FIG. 1, the refrigerator mainly includes a compressor 1, a
圧縮機1は、羽根車の回転運動によって冷媒を圧縮するターボ圧縮機として構成されている。すなわち、本実施の形態の冷凍機は、いわゆるターボ冷凍機である。ターボ圧縮機としての圧縮機1は、電動機11によって駆動される圧縮部12を有している。圧縮部12には、電動機11により回転駆動される羽根車を同軸上に2つ備えた2段圧縮や、電動機11により回転駆動される羽根車を1つ備えた単段圧縮の方式がある。圧縮部12が2段圧縮の場合、蒸発器3から圧縮機1へ送られる気相の冷媒は、1段目の圧縮部で圧縮された後、2段目の圧縮部でさらに圧縮され、圧力と温度とが上昇しつつ冷媒配管6aを介して凝縮器2へ送られる。一方、圧縮部12が単段圧縮の場合、蒸発器3から圧縮機1へ送られる気相の冷媒は、圧縮部12にて圧縮され、圧力と温度とが上昇しつつ冷媒配管6aを介して凝縮器2へ送られる。
The compressor 1 is configured as a turbo compressor that compresses refrigerant by the rotational movement of an impeller. That is, the refrigerator of the present embodiment is a so-called turbo refrigerator. A compressor 1 as a turbo compressor has a
凝縮器2は、冷媒冷却流体(例えば、水)が供給される冷却水配管21が接続されている。圧縮機1から凝縮器2に送られる気相の冷媒は、冷却水配管21により供給される冷媒冷却流体と熱交換して凝縮し、すなわち、冷媒冷却流体に熱を捨てて液化し、冷媒配管6bを介して蒸発器3へ送られる。
The
蒸発器3は、冷却媒体(例えば、水)が供給される冷却媒体配管31が接続されている。凝縮器2から蒸発器3に送られる液相の冷媒は、冷却媒体配管31により供給される冷却媒体と熱交換して蒸発する。この過程で、冷却媒体は、液相の冷媒に熱を捨てて温度が低下する。そして、冷却媒体と熱交換した液相の冷媒は、蒸発して気相の冷媒となり、冷媒配管6cを介して圧縮機1へ送られる。
The
中間冷却器4は、凝縮器2において液化された冷媒を液相とガス相とに分離するものである。さらに、中間冷却器4は、凝縮器2と蒸発器3との間に一定の圧力差を保持すると共に、液相の冷媒の一部を蒸発させて蒸発器3での潜熱の増大を図るものである。また、中間冷却器4は、凝縮器2にて凝縮し切れなかった気相の冷媒と、液相の冷媒とが気液二相流流体として導入され、この気相の冷媒と液相の冷媒とを分離する気液分離器として機能するものであり、分離された気相の冷媒は圧縮機1へ送られ、液相の冷媒は蒸発器3へ送られる。
The
インバータ5は、圧縮機1の電動機11に電気的に接続され、この電動機11を駆動制御するためのものである。インバータ5は、筐体51内に、IGBT(Insulated Gate Bipolar Transistor)などの半導体素子52が配置されている。
The
上述した冷凍機に係り、インバータ5では、半導体素子52が通電時に発熱する。このため、本実施の形態では、半導体素子52を冷却するためのインバータ冷却装置を備えている。
In the refrigerator described above, in the
インバータ冷却装置は、図1に示すように、バイパス管71と、調整弁72と、筐体内温度検出手段73と、制御手段74とで構成されている。
As shown in FIG. 1, the inverter cooling apparatus includes a
バイパス管71は、凝縮器2と蒸発器3とを連通する冷媒配管6bの途中に迂回して設けられている。このバイパス管71は、インバータ5の筐体51内に配置されている。すなわち、バイパス管71は、凝縮器2と蒸発器3との差圧により凝縮器2から蒸発器3に至る液相の冷媒をインバータ5の筐体51内に流通させる。これにより、インバータ5の筐体51内では、液相の冷媒に熱を捨てて温度が低下し、半導体素子52が冷却され、液相の冷媒は蒸発して気相の冷媒となる。すなわち、インバータ5の筐体51内に流通する液相の冷媒の潜熱により半導体素子52が冷却されることになる。
The
また、バイパス管71を流通して半導体素子52の冷却に供された冷媒は、冷媒配管6bに戻され蒸発器3に送られる。このため、半導体素子52の冷却に供されても蒸発しきれない液相の冷媒が蒸発器3での冷却に利用することができると共に、蒸発しきれない液相の冷媒を蒸発器3にて蒸発させることができる。
In addition, the refrigerant that has flowed through the
ここで、インバータ5の筐体51内へのバイパス管71の具体的な配置を図2に示す。図2に示すように、筐体51内に配置された半導体素子52は、基板52aに実装されていると共に、熱伝導性を有した放熱部材52bが設けられた放熱構造とされている。放熱部材52bは、放熱性能を向上するために多数のフィン(図示せず)を有している。さらに、筐体51内には、ファン8が設けられている。ファン8は、筐体51に設けられた吸込口51cから筐体51内に空気を吸引しつつ、排気口51dから筐体51外に空気を排出するものである。バイパス管71は、このような構成において、筐体51内の吸込口51c近傍に配置されている。これにより、筐体51内に吸い込まれた空気が、放熱部材52bを通過する前に、バイパス管71を流通する液相の冷媒の潜熱により冷却されつつ、半導体素子52および放熱部材52bの周囲を通過することにより、半導体素子52が冷却される。なお、バイパス管71は、筐体51内の空気をより冷却するため、筐体51内で蛇行して配置されて、筐体51内で冷媒を流通させる経路を長く形成されていることが好ましい。
Here, a specific arrangement of the
また、インバータ5の筐体51内へのバイパス管71の具体的な別の配置を図3に示す。図3に示すように、筐体51内に配置された半導体素子52は、基板52aに実装されていると共に、熱伝導性を有した放熱部材52bが設けられた放熱構造とされている。放熱部材52bは、放熱性能を向上するために多数のフィン(図示せず)を有している。バイパス管71は、このような構成において、放熱部材52bの内部に通して配置されている。これにより、放熱部材52bが、バイパス管71を流通する液相の冷媒の潜熱により冷却されることで半導体素子52が冷却される。なお、バイパス管71は、放熱部材52bをより冷却するため、放熱部材52b内で蛇行して配置されて、放熱部材52b内で冷媒を流通させる経路を長く形成されていることが好ましい。
FIG. 3 shows another specific arrangement of the
調整弁72は、バイパス管71に設けられている。調整弁72は、アクチュエータ72aで弁72bの開度を変えることにより、バイパス管71に流通する冷媒の流量を可変するものである。
The
また、調整弁72にてバイパス管71に流通する冷媒の流量が調整されると、冷媒が減圧され、飽和温度が低下する。このため、冷却効率が向上するので、少量の冷媒で半導体素子52の冷却を行うことが可能である。
Further, when the flow rate of the refrigerant flowing through the
筐体内温度検出手段73は、インバータ5の筐体51内に配置され、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度を検出するものである。なお、図2に示すようにインバータ5がファン8を有する場合、筐体内温度検出手段73は、吸込口51c側と排気口51d側とに配置されていることが好ましい。
The in-casing temperature detection means 73 is disposed in the
制御手段74は、マイコンなどで構成され、調整弁72のアクチュエータ72aを作動させ、バイパス管71に流通する冷媒の流量を制御するものである。制御手段74は、筐体内温度検出手段73に接続され、筐体内温度検出手段73にて検出された温度情報が入力される。この制御手段74には、半導体素子52の冷却に適した温度と、この温度に応じたアクチュエータ72aの作動量(調整弁72の弁72bの開度)の情報が予め記憶されている。そして、制御手段74は、筐体内温度検出手段73から入力した温度情報に基づき、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度が、半導体素子52の冷却に適した温度となるように、バイパス管71に流通する冷媒の流量を制御する。なお、図2に示すようにインバータ5がファン8を有し、筐体内温度検出手段73が吸込口51c側と排気口51d側とに配置されている場合、制御手段74は、吸込口51c側と排気口51d側との温度差に基づき、バイパス管71に流通する冷媒の流量を制御する。
The control means 74 is constituted by a microcomputer or the like, and operates the
このように、実施の形態1のインバータ冷却装置では、凝縮器2と蒸発器3とを連通する冷媒配管6bの途中で迂回し、かつインバータ5の筐体51内に配置されたバイパス管71と、バイパス管71に設けられてバイパス管71に流通する液相の冷媒の流量を可変する調整弁72とを備えている。そして、実施の形態1のインバータ冷却装置の作用としてのインバータ冷却方法では、凝縮器2から蒸発器3に流通する液相の冷媒の一部を、バイパス管71を介してインバータ5の筐体51内に導入させつつ、バイパス管71に流通する液相の冷媒の流量を調整する。
As described above, in the inverter cooling device of the first embodiment, the
このインバータ冷却装置およびインバータ冷却方法によれば、バイパス管71に流通する液相の冷媒により、インバータ5の半導体素子52を冷却するため、ファンおよび放熱部材の小型化を図ることができ、インバータ5を小型化することが可能になる。このため、冷凍機を構成する圧縮機1、凝縮器2、蒸発器3、または中間冷却器4にインバータ5を一体に設けることができ、インバータ5を含む冷凍機を小型化することが可能になる。しかも、バイパス管71に流通する液相の冷媒の流量を調整することで、半導体素子52の冷却量が調整できるので、半導体素子52を所望の温度に冷却でき、半導体素子52への結露の発生を防止することが可能になる。
According to the inverter cooling device and the inverter cooling method, the
また、実施の形態1のインバータ冷却装置では、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度を検出する筐体内温度検出手段73と、筐体内温度検出手段73が検出した温度に基づいて調整弁72を制御する制御手段74とを備えている。
Further, in the inverter cooling device of the first embodiment, the temperature in the
このインバータ冷却装置によれば、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度に基づいて、調整弁72を制御し、バイパス管71に流通する液相の冷媒の流量を調整することで、結露を生じない所望の温度に半導体素子52を冷却することが可能になる。
According to this inverter cooling device, the regulating
また、実施の形態1のインバータ冷却装置では、半導体素子52に熱伝達性を有した放熱部材52bが設けられ、この放熱部材52bにバイパス管71が配置されている(図3参照)。
In the inverter cooling apparatus of the first embodiment, the
このインバータ冷却装置によれば、バイパス管71に流通する液相の冷媒により、半導体素子52の放熱部材52bを直接冷却することで、冷却効率が向上するので、ファン8(図2参照)を不用にでき、インバータ5をさらに小型化することが可能になる。
According to this inverter cooling device, the cooling efficiency is improved by directly cooling the
また、実施の形態1の冷凍機では、上述のインバータ冷却装置を適用したことにより、インバータ5を含む冷凍機を小型化しつつ、半導体素子52への結露の発生を防止することが可能になる。この結果、インバータ5の機能を損なわせる事態を防ぎ、安定した冷凍性能を得ることが可能になる。
Further, in the refrigerator of the first embodiment, by applying the above-described inverter cooling device, it is possible to prevent the occurrence of condensation on the
[実施の形態2]
実施の形態2は、冷凍機の構成が上述した実施の形態1と同じであり、インバータ冷却装置の構成が異なる。従って、実施の形態2では、インバータ冷却装置について説明し、その他同等部分には、同一符号を付してその説明を省略する。
[Embodiment 2]
In the second embodiment, the configuration of the refrigerator is the same as that of the first embodiment described above, and the configuration of the inverter cooling device is different. Therefore, in
インバータ冷却装置は、図4に示すように、バイパス管71’と、調整弁72’と、筐体内温度検出手段73’と、制御手段74’と、筐体外温度検出手段75’と、筐体外湿度検出手段76’で構成されている。
As shown in FIG. 4, the inverter cooling device includes a
バイパス管71’、調整弁72’および筐体内温度検出手段73’は、上述した実施の形態1のバイパス管71、調整弁72および筐体内温度検出手段73と同様のものである。また、インバータ5の筐体51内へのバイパス管71’の具体的な配置も、上述した実施の形態1と同様である(図2および図3参照)。
The
筐体外温度検出手段75’は、インバータ5の筐体51外に配置され、インバータ5の筐体51外の周囲の温度を検出するものである。
The outside-case temperature detecting means 75 ′ is arranged outside the
筐体外湿度検出手段76’は、インバータ5の筐体51外に配置され、インバータ5の筐体51外の周囲の湿度を検出するものである。
The outside-humidity detecting means 76 ′ is disposed outside the
制御手段74’は、マイコンなどで構成され、調整弁72’のアクチュエータ72a’を作動させ、バイパス管71’に流通する冷媒の流量を制御するものである。制御手段74’は、筐体内温度検出手段73’に接続され、筐体内温度検出手段73’にて検出された温度情報が入力される。また、制御手段74’は、筐体外温度検出手段75’に接続され、筐体外温度検出手段75’にて検出された温度情報が入力される。また、制御手段74’は、筐体外湿度検出手段76’に接続され、筐体外湿度検出手段76’にて検出された湿度情報が入力される。この制御手段74’には、露点温度に基づく半導体素子52の冷却に適した温度と、この温度に応じたアクチュエータ72a’の作動量(調整弁72’の弁72b’の開度)の情報が予め記憶されている。そして、制御手段74’は、筐体内温度検出手段73’から入力した温度情報、筐体外温度検出手段75’から入力した温度情報、および筐体外湿度検出手段76’から入力した湿度情報から露点温度に基づき、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度が、露点温度に応じて半導体素子52の冷却に適した温度(露点温度以上の温度)となるように、バイパス管71に流通する冷媒の流量を制御する。
The control means 74 'is constituted by a microcomputer or the like, and operates the
このように、実施の形態2のインバータ冷却装置では、凝縮器2と蒸発器3とを連通する冷媒配管6bの途中で迂回し、かつインバータ5の筐体51内に配置されたバイパス管71’と、バイパス管71’に設けられてバイパス管71’に流通する液相の冷媒の流量を可変する調整弁72’とを備えている。そして、実施の形態2のインバータ冷却装置の作用としてのインバータ冷却方法では、凝縮器2から蒸発器3に流通する液相の冷媒の一部を、バイパス管71’を介してインバータ5の筐体51内に導入させつつ、バイパス管71’に流通する液相の冷媒の流量を調整する。
As described above, in the inverter cooling device according to the second embodiment, the
このインバータ冷却装置およびインバータ冷却方法によれば、バイパス管71’に流通する液相の冷媒により、インバータ5の半導体素子52を冷却するため、ファンおよび放熱部材の小型化を図ることができ、インバータ5を小型化することが可能になる。このため、冷凍機を構成する圧縮機1、凝縮器2、蒸発器3、または中間冷却器4にインバータ5を一体に設けることができ、インバータ5を含む冷凍機を小型化することが可能になる。しかも、バイパス管71’に流通する液相の冷媒の流量を調整することで、半導体素子52の冷却量が調整できるので、半導体素子52を所望の温度に冷却でき、半導体素子52への結露の発生を防止することが可能になる。
According to the inverter cooling device and the inverter cooling method, the
また、実施の形態2のインバータ冷却装置では、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度を検出する筐体内温度検出手段73’と、インバータ5の筐体51外の温度を検出する筐体外温度検出手段75’と、インバータ5の筐体51外の湿度を検出する筐体外湿度検出手段76’と、筐体内温度検出手段73’が検出した温度、筐体外温度検出手段75’が検出した温度、および筐体外湿度検出手段76’が検出した湿度に基づいて、冷却する半導体素子52への結露を防止するように調整弁72’を制御する制御手段74’とを備えている。
Further, in the inverter cooling device of the second embodiment, the temperature in the
このインバータ冷却装置によれば、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度と、筐体51外の温度と、筐体51外の湿度とに基づいて、調整弁72’を制御し、バイパス管71’に流通する液相の冷媒の流量を調整することで、結露を生じない露点以上の温度に半導体素子52を冷却することが可能になる。
According to this inverter cooling device, the temperature in the
また、実施の形態2のインバータ冷却装置では、半導体素子52に熱伝達性を有した放熱部材52bが設けられ、この放熱部材52bにバイパス管71’が配置されている(図3参照)。
In the inverter cooling apparatus of the second embodiment, the
このインバータ冷却装置によれば、バイパス管71’に流通する液相の冷媒により、半導体素子52の放熱部材52bを直接冷却することで、冷却効率が向上するので、ファン8(図2参照)を不用にでき、インバータ5をさらに小型化することが可能になる。
According to this inverter cooling device, the cooling efficiency is improved by directly cooling the
また、実施の形態2の冷凍機では、上述のインバータ冷却装置を適用したことにより、インバータ5を含む冷凍機を小型化しつつ、半導体素子52への結露の発生を防止することが可能になる。この結果、インバータ5の機能を損なわせる事態を防ぎ、安定した冷凍性能を得ることが可能になる。
In the refrigerator according to the second embodiment, by applying the above-described inverter cooling device, it is possible to reduce the size of the refrigerator including the
[実施の形態3]
実施の形態3は、冷凍機の構成が上述した実施の形態1と同じであり、インバータ冷却装置の構成が異なる。従って、実施の形態3では、インバータ冷却装置について説明し、その他同等部分には、同一符号を付してその説明を省略する。
[Embodiment 3]
In the third embodiment, the configuration of the refrigerator is the same as that of the first embodiment described above, and the configuration of the inverter cooling device is different. Therefore, in
インバータ冷却装置は、図5に示すように、バイパス管71”と、調整弁72”と、制御手段74”とで構成されている。
As shown in FIG. 5, the inverter cooling device includes a
バイパス管71”および調整弁72”は、上述した実施の形態1のバイパス管71および調整弁72と同様のものである。また、インバータ5の筐体51内へのバイパス管71”の具体的な配置も、上述した実施の形態1と同様である(図2および図3参照)。
The
制御手段74”は、マイコンなどで構成され、調整弁72”のアクチュエータ72a”を作動させ、バイパス管71”に流通する冷媒の流量を制御するものである。制御手段74”は、圧縮機1を駆動制御するインバータ5の出力情報が入力される。この制御手段74”には、インバータ5の発熱量に基づく半導体素子52の冷却に適した温度と、この温度に応じたアクチュエータ72a”の作動量(調整弁72”の弁72b”の開度)の情報が予め記憶されている。そして、制御手段74”は、インバータ5の出力情報から圧縮機1を制御する際のインバータ5(半導体素子52)の発熱量を算出し、この発熱量に基づいて、半導体素子52の冷却に適した温度となるように、バイパス管71”に流通する冷媒の流量を制御する。
The control means 74 ″ is constituted by a microcomputer or the like, and operates the
このように、実施の形態3のインバータ冷却装置では、凝縮器2と蒸発器3とを連通する冷媒配管6bの途中で迂回し、かつインバータ5の筐体51内に配置されたバイパス管71”と、バイパス管71”に設けられてバイパス管71”に流通する液相の冷媒の流量を可変する調整弁72”とを備えている。そして、実施の形態3のインバータ冷却装置の作用としてのインバータ冷却方法では、凝縮器2から蒸発器3に流通する液相の冷媒の一部を、バイパス管71”を介してインバータ5の筐体51内に導入させつつ、バイパス管71”に流通する液相の冷媒の流量を調整する。
As described above, in the inverter cooling device of the third embodiment, the
このインバータ冷却装置およびインバータ冷却方法によれば、バイパス管71”に流通する液相の冷媒により、インバータ5の半導体素子52を冷却するため、ファンおよび放熱部材の小型化を図ることができ、インバータ5を小型化することが可能になる。このため、冷凍機を構成する圧縮機1、凝縮器2、蒸発器3、または中間冷却器4にインバータ5を一体に設けることができ、インバータ5を含む冷凍機を小型化することが可能になる。しかも、バイパス管71”に流通する液相の冷媒の流量を調整することで、半導体素子52の冷却量が調整できるので、半導体素子52を所望の温度に冷却でき、半導体素子52への結露の発生を防止することが可能になる。
According to the inverter cooling device and the inverter cooling method, the
また、実施の形態3のインバータ冷却装置では、圧縮機1を駆動制御するインバータ5の出力電力・電流などに基づいて、調整弁72”を制御する制御手段74”を備えている。
Further, the inverter cooling apparatus of the third embodiment includes the control means 74 ″ for controlling the regulating
このインバータ冷却装置によれば、圧縮機1を駆動制御するインバータ5の出力情報から、インバータ5(半導体素子52)の発熱量を算出し、この発熱量に基づいて、調整弁72”を制御し、バイパス管71”に流通する液相の冷媒の流量を調整することで、結露を生じない所望の温度に半導体素子52を冷却することが可能になる。
According to this inverter cooling device, the heat generation amount of the inverter 5 (semiconductor element 52) is calculated from the output information of the
また、実施の形態3のインバータ冷却装置では、半導体素子52に熱伝達性を有した放熱部材52bが設けられ、この放熱部材52bにバイパス管71”が配置されている(図3参照)。
In the inverter cooling apparatus of the third embodiment, the
このインバータ冷却装置によれば、バイパス管71”に流通する液相の冷媒により、半導体素子52の放熱部材52bを直接冷却することで、冷却効率が向上するので、ファン8(図2参照)を不用にでき、インバータ5をさらに小型化することが可能になる。
According to this inverter cooling device, the cooling efficiency is improved by directly cooling the
また、実施の形態3の冷凍機では、上述のインバータ冷却装置を適用したことにより、インバータ5を含む冷凍機を小型化しつつ、半導体素子52への結露の発生を防止することが可能になる。この結果、インバータ5の機能を損なわせる事態を防ぎ、安定した冷凍性能を得ることが可能になる。
Further, in the refrigerator of the third embodiment, by applying the above-described inverter cooling device, it is possible to prevent the condensation on the
ところで、上述した実施の形態1〜実施の形態3では、バイパス管71,71’,71”により、凝縮器2から蒸発器3に至る液相の冷媒をインバータ5の筐体51内に流通させ、蒸発器3に送っている。その他、図6に示すように、バイパス管71,71’,71”により、凝縮器2から蒸発器3に至る液相の冷媒をインバータ5の筐体51内に流通させた後、中間冷却器4に送ってもよい。すなわち、インバータ5の筐体51内に流通させた冷媒は、中間冷却器4に送られることで、減圧され、さらに一定の圧力差を保持されると共に、一部蒸発されて蒸発器3での潜熱が増大され、さらにまた気液分離されて気相の冷媒は圧縮機1へ送られ、液相の冷媒は蒸発器3へ送られることになる。
In the first to third embodiments described above, the liquid-phase refrigerant from the
また、その他、図7に示すように、バイパス管71,71’,71”により、中間冷却器4から蒸発器3に至る液相の冷媒をインバータ5の筐体51内に流通させた後、蒸発器3に送ってもよい。すなわち、インバータ5の筐体51内に流通される冷媒は、それ以前に中間冷却器4に送られることで、減圧され、さらに一定の圧力差を保持されると共に、一部蒸発されて蒸発器3での潜熱が増大されることになる。
In addition, as shown in FIG. 7, after the liquid phase refrigerant from the
以上のように、本発明に係るインバータ冷却装置およびインバータ冷却方法ならびに冷凍機は、冷凍機の小型化を図ると共に、インバータの半導体素子への結露の発生を防ぐことに適している。 As described above, the inverter cooling device, the inverter cooling method, and the refrigerator according to the present invention are suitable for reducing the size of the refrigerator and preventing the occurrence of condensation on the semiconductor element of the inverter.
1 圧縮機
11 電動機
12 圧縮部
2 凝縮器
21 冷却水配管
3 蒸発器
31 冷却媒体配管
4 中間冷却器
5 インバータ
51 筐体
51c 吸込口
51d 排気口
52 半導体素子
52a 基板
52b 放熱部材
6 循環経路
6a,6b,6c 冷媒配管
71,71’,71” バイパス管
72,72’,72” 調整弁
72a,72a’,72a” アクチュエータ
72b,72b’,72b” 弁
73,73’ 筐体内温度検出手段
74,74’,74” 制御手段
75’ 筐体外温度検出手段
76’ 筐体外湿度検出手段
8 ファン
DESCRIPTION OF SYMBOLS 1
Claims (4)
前記凝縮器と前記蒸発器とを連通する冷媒配管の途中で迂回し、かつ前記インバータの筐体内に配置されたバイパス管と、
前記バイパス管に設けられて前記バイパス管に流通する冷媒の流量を可変する調整弁と、
前記インバータの筐体内の温度、または前記インバータの筐体内に配置された半導体素子の温度を検出する筐体内温度検出手段と、
前記インバータの筐体外の温度を検出する筐体外温度検出手段と、
前記インバータの筐体外の湿度を検出する筐体外湿度検出手段と、
前記筐体内温度検出手段が検出した温度、前記筐体外温度検出手段が検出した温度、および前記筐体外湿度検出手段が検出した湿度に基づいて、前記調整弁を制御する制御手段と、
を備えたことを特徴とするインバータ冷却装置。 A compressor that compresses the refrigerant; a condenser that condenses the refrigerant compressed by the compressor; an evaporator that evaporates the refrigerant condensed by the condenser; and an inverter that drives and controls the compressor. In an inverter cooling apparatus that cools the inverter according to a refrigerator,
A bypass pipe that bypasses in the middle of a refrigerant pipe that communicates the condenser and the evaporator, and is disposed in the casing of the inverter;
An adjustment valve provided in the bypass pipe and configured to vary a flow rate of the refrigerant flowing through the bypass pipe;
A temperature inside the casing of the inverter, or a temperature detecting means in the casing for detecting a temperature of a semiconductor element disposed in the casing of the inverter;
An outside-case temperature detecting means for detecting a temperature outside the case of the inverter;
Outside-humidity detection means for detecting humidity outside the casing of the inverter;
Control means for controlling the regulating valve based on the temperature detected by the temperature detection means inside the casing, the temperature detected by the temperature detection means outside the casing, and the humidity detected by the humidity detection means outside the casing;
An inverter cooling device comprising:
前記凝縮器から前記蒸発器に流通する冷媒の一部を、バイパス管を介して前記インバータの筐体内に導入させつつ、前記インバータの筐体内および筐体外の温度と、前記インバータの筐体外の湿度とを検出した結果に基づき、前記バイパス管に流通する冷媒の流量を調整することを特徴とする冷却装置のインバータ冷却方法。 A compressor that compresses the refrigerant; a condenser that condenses the refrigerant compressed by the compressor; an evaporator that evaporates the refrigerant condensed by the condenser; and an inverter that drives and controls the compressor. In an inverter cooling method according to a cooling device for cooling the inverter,
While introducing a part of the refrigerant flowing from the condenser to the evaporator into the inverter casing via a bypass pipe, the temperature inside and outside the inverter casing and the humidity outside the inverter casing An inverter cooling method for a cooling device, wherein the flow rate of the refrigerant flowing through the bypass pipe is adjusted based on the detection result.
前記インバータを冷却する態様で、請求項1または2に記載のインバータ冷却装置を適用したことを特徴とする冷凍機。 A compressor that compresses the refrigerant; a condenser that condenses the refrigerant compressed by the compressor; an evaporator that evaporates the refrigerant condensed by the condenser; and an inverter that drives and controls the compressor. In the refrigerator,
The refrigerator which applied the inverter cooling device of Claim 1 or 2 in the aspect which cools the said inverter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013148759A JP5611423B2 (en) | 2013-07-17 | 2013-07-17 | Inverter cooling device, inverter cooling method, and refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013148759A JP5611423B2 (en) | 2013-07-17 | 2013-07-17 | Inverter cooling device, inverter cooling method, and refrigerator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009118215A Division JP5455431B2 (en) | 2009-05-15 | 2009-05-15 | Inverter cooling device, inverter cooling method, and refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013213670A true JP2013213670A (en) | 2013-10-17 |
JP5611423B2 JP5611423B2 (en) | 2014-10-22 |
Family
ID=49587101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013148759A Active JP5611423B2 (en) | 2013-07-17 | 2013-07-17 | Inverter cooling device, inverter cooling method, and refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5611423B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107062534A (en) * | 2017-03-27 | 2017-08-18 | 广东美的制冷设备有限公司 | Anti-condensation control system, air conditioner and condensation prevention control method |
WO2019069470A1 (en) * | 2017-10-06 | 2019-04-11 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
KR20190092172A (en) * | 2018-01-30 | 2019-08-07 | 엘지전자 주식회사 | Compressor control unit for increasing the usable lifetime and control method using the same |
JP2019148417A (en) * | 2019-06-04 | 2019-09-05 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
JP2020506362A (en) * | 2017-02-10 | 2020-02-27 | ダイキン工業株式会社 | Heat source unit and air conditioner having heat source unit |
JP2020507735A (en) * | 2017-02-10 | 2020-03-12 | ダイキン工業株式会社 | Heat source unit and air conditioner having heat source unit |
JPWO2021166753A1 (en) * | 2020-02-21 | 2021-08-26 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110878988B (en) * | 2018-09-05 | 2021-06-29 | 合肥海尔空调器有限公司 | Anti-condensation control method for air conditioner |
CN110878989B (en) * | 2018-09-05 | 2021-06-25 | 合肥海尔空调器有限公司 | Anti-condensation control method for air conditioner |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05136588A (en) * | 1991-11-11 | 1993-06-01 | Fuji Electric Co Ltd | Cooling structure of inverter built-in control device |
JPH10259930A (en) * | 1997-03-18 | 1998-09-29 | Mitsubishi Electric Corp | Inverter device and outdoor unit of air conditioner using the same |
JP2000283569A (en) * | 1999-03-15 | 2000-10-13 | Carrier Corp | Cooler and cooling method for variable frequency driver |
JP2004263986A (en) * | 2003-03-04 | 2004-09-24 | Hitachi Ltd | Air conditioner |
JP2005241100A (en) * | 2004-02-25 | 2005-09-08 | Toshiba Kyaria Kk | Air conditioner |
JP2006170537A (en) * | 2004-12-16 | 2006-06-29 | Daikin Ind Ltd | Heat exchange system |
JP2008121985A (en) * | 2006-11-13 | 2008-05-29 | Daikin Ind Ltd | Heat exchange system |
-
2013
- 2013-07-17 JP JP2013148759A patent/JP5611423B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05136588A (en) * | 1991-11-11 | 1993-06-01 | Fuji Electric Co Ltd | Cooling structure of inverter built-in control device |
JPH10259930A (en) * | 1997-03-18 | 1998-09-29 | Mitsubishi Electric Corp | Inverter device and outdoor unit of air conditioner using the same |
JP2000283569A (en) * | 1999-03-15 | 2000-10-13 | Carrier Corp | Cooler and cooling method for variable frequency driver |
JP2004263986A (en) * | 2003-03-04 | 2004-09-24 | Hitachi Ltd | Air conditioner |
JP2005241100A (en) * | 2004-02-25 | 2005-09-08 | Toshiba Kyaria Kk | Air conditioner |
JP2006170537A (en) * | 2004-12-16 | 2006-06-29 | Daikin Ind Ltd | Heat exchange system |
JP2008121985A (en) * | 2006-11-13 | 2008-05-29 | Daikin Ind Ltd | Heat exchange system |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11199349B2 (en) | 2017-02-10 | 2021-12-14 | Daikin Industries, Ltd. | Heat source unit and air conditioner having the heat source unit |
JP2020506362A (en) * | 2017-02-10 | 2020-02-27 | ダイキン工業株式会社 | Heat source unit and air conditioner having heat source unit |
JP2020507735A (en) * | 2017-02-10 | 2020-03-12 | ダイキン工業株式会社 | Heat source unit and air conditioner having heat source unit |
US11530827B2 (en) | 2017-02-10 | 2022-12-20 | Daikin Industries, Ltd. | Heat source unit and air conditioner having the heat source unit |
CN107062534A (en) * | 2017-03-27 | 2017-08-18 | 广东美的制冷设备有限公司 | Anti-condensation control system, air conditioner and condensation prevention control method |
WO2019069470A1 (en) * | 2017-10-06 | 2019-04-11 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
JP6538290B1 (en) * | 2017-10-06 | 2019-07-03 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
US11231185B2 (en) | 2017-10-06 | 2022-01-25 | Hitachi-Johnson Controls Air Conditioning, Inc. | Air conditioner |
KR20190092172A (en) * | 2018-01-30 | 2019-08-07 | 엘지전자 주식회사 | Compressor control unit for increasing the usable lifetime and control method using the same |
KR102022966B1 (en) | 2018-01-30 | 2019-09-19 | 엘지전자 주식회사 | Compressor control unit for increasing the usable lifetime and control method using the same |
JP2019148417A (en) * | 2019-06-04 | 2019-09-05 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
JPWO2021166753A1 (en) * | 2020-02-21 | 2021-08-26 | ||
JP7250208B2 (en) | 2020-02-21 | 2023-03-31 | 三菱電機株式会社 | air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP5611423B2 (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5455431B2 (en) | Inverter cooling device, inverter cooling method, and refrigerator | |
JP5611423B2 (en) | Inverter cooling device, inverter cooling method, and refrigerator | |
US10465953B2 (en) | Air conditioning apparatus | |
CN108425862A (en) | Oil-free centrifugal compressor for being used in being applied in low capacity | |
JP6854892B2 (en) | Heat exchange unit and air conditioner | |
US11394063B2 (en) | Cooling system for temperature regulation and control method thereof | |
JP6309169B2 (en) | Air conditioner | |
CN106662364A (en) | Refrigerant cooling for variable speed drive | |
JP2008014563A (en) | Cold storage type air conditioning system | |
JP2014169802A (en) | Air conditioning device | |
US10260783B2 (en) | Chiller compressor oil conditioning | |
US10508841B2 (en) | Cooling circuit for a variable frequency drive | |
WO2018164253A1 (en) | Air-conditioning device | |
JP2010101621A (en) | Refrigerating cycle device and method of controlling the same | |
JP2017137012A (en) | Vehicular air conditioner, vehicle including the same and control method for vehicular air conditioner | |
US11221166B2 (en) | Refrigerator system | |
JP2001251078A (en) | Exothermic body cooling device | |
JP2018124017A (en) | Cooling system | |
CN115866973A (en) | Cabinet air conditioner, cabinet air conditioner radiating system and control method | |
JP2013155949A (en) | Refrigeration device | |
JP2016223743A (en) | Air conditioner | |
JP6275015B2 (en) | Air conditioner for railway vehicles | |
JP2013117360A (en) | Air conditioning device and method | |
JP6733625B2 (en) | Refrigeration cycle equipment | |
WO2013172196A1 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130717 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140902 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5611423 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |