JP2013212995A - Method for producing olefin polymer - Google Patents

Method for producing olefin polymer Download PDF

Info

Publication number
JP2013212995A
JP2013212995A JP2012082673A JP2012082673A JP2013212995A JP 2013212995 A JP2013212995 A JP 2013212995A JP 2012082673 A JP2012082673 A JP 2012082673A JP 2012082673 A JP2012082673 A JP 2012082673A JP 2013212995 A JP2013212995 A JP 2013212995A
Authority
JP
Japan
Prior art keywords
carbon atoms
column
distillation
liquid
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012082673A
Other languages
Japanese (ja)
Inventor
Hideki Sato
秀企 佐藤
Tatsuyoshi Yokota
龍力 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2012082673A priority Critical patent/JP2013212995A/en
Priority to PCT/JP2013/002013 priority patent/WO2013145696A1/en
Publication of JP2013212995A publication Critical patent/JP2013212995A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • C07C2/34Metal-hydrocarbon complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of titanium, zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing oligomer (C20) in which the pyrolysis of the oligomer is suppressed and a yield is 0.99 or more when producing the oligomer (C20) having 20 carbon atoms from α-olefin of 10 carbon atoms.SOLUTION: A method for producing olefin polymers having 20 carbon atoms includes: polymerizing alpha-olefins having 10 carbon atoms to produce a polymerization liquid comprising polymers having 20 carbon atoms or more; removing unreacted alpha-olefins having 10 carbon atoms from the polymerization liquid; distilling the polymerization liquid; and separating, at a yield of 0.99 or more, olefin polymers having 20 carbon atoms in which the amount of a light component having 6 to 16 carbon atoms is 100 weight ppm or less.

Description

本発明は、炭素数20のオレフィン重合体の製造方法及びその製造方法により得られた炭素数20のオレフィン重合体に関する。   The present invention relates to a method for producing an olefin polymer having 20 carbon atoms and an olefin polymer having 20 carbon atoms obtained by the production method.

炭素数10のα−オレフィン(C10)から製造された2量体である炭素数20のオリゴマー(C20)は、接着剤やシーリング剤を中心とする製品として市場へ広がりつつある。
C20は、オレフィンであるため反応活性剤として用いることができ、揮発性有機化合物(VOC)を含まず、低臭気性であるという特徴を有する。従って、軽質分、特に人体への影響が大きいVOC成分や、臭気性のオレフィン類のVOC成分が混入すると製品価値が著しく低下するので、製造過程でこれらを混入させないことが必要となる。
尚、製品のC20自体はオレフィンであるが、高沸点、低揮発性であるためオレフィン特有の臭気性はほとんど有さない。
An oligomer (C20) having 20 carbon atoms, which is a dimer produced from an α-olefin (C10) having 10 carbon atoms, is spreading to the market as a product centering on adhesives and sealing agents.
Since C20 is an olefin, it can be used as a reaction activator, has no volatile organic compound (VOC), and has low odor characteristics. Accordingly, when a light component, particularly a VOC component having a great influence on the human body or a VOC component of odorous olefins, is mixed, the product value is remarkably lowered. Therefore, it is necessary not to mix them in the manufacturing process.
In addition, although C20 itself of a product is an olefin, since it is a high boiling point and low volatility, it has almost no odor characteristic peculiar to an olefin.

C20を生成する重合反応は、従来から様々な触媒を用いて行われているが、この反応は、触媒によらず連鎖性重合反応となる。即ち、重合生成物に、製品となるC20の他に副生品となる炭素数30以上のオリゴマー(C30+)を含む。従って、製品となるC20と副生品C30+を分離する必要がある。   The polymerization reaction for producing C20 has been conventionally performed using various catalysts, but this reaction is a chain polymerization reaction regardless of the catalyst. That is, the polymerization product contains an oligomer (C30 +) having 30 or more carbon atoms as a by-product in addition to C20 as a product. Therefore, it is necessary to separate the product C20 and the by-product C30 +.

C20を高収率で分離して塔頂回収するためには、塔底温度を高くする必要があるが、塔底温度を高くすると熱分解により発生したVOCがC20に混入し、製品品質を悪化させてしまう。一方、熱分解を防ぐために塔底温度を低くすると、C20が塔底にロスしてしまい、C20収率を低下させてしまう。   In order to separate C20 in high yield and recover the tower top, it is necessary to raise the tower bottom temperature. However, if the tower bottom temperature is raised, VOC generated by thermal decomposition is mixed into C20 and the product quality deteriorates. I will let you. On the other hand, if the tower bottom temperature is lowered to prevent thermal decomposition, C20 is lost to the tower bottom, and the C20 yield is lowered.

特開2006−232673号公報JP 2006-232673 A

本発明の目的は、炭素数10のα−オレフィンから炭素数20のオリゴマー(C20)を製造する際、オリゴマーの熱分解を抑え、かつ、収率を0.99以上とするC20の製造方法を提供することである。   An object of the present invention is to provide a method for producing C20 that suppresses thermal decomposition of an oligomer and produces a yield of 0.99 or more when producing an oligomer (C20) having 20 carbon atoms from an α-olefin having 10 carbon atoms. Is to provide.

本発明者らは、鋭意検討した結果、蒸留塔の塔底圧力等を制御することにより、熱分解の制御と高収率の確保を両立できることを見出した。
本発明によれば、以下のオレフィン重合体の製造方法等が提供される。
1.炭素数10のα−オレフィンを重合して炭素数20以上の重合体を含む重合液を製造し、前記重合液から未反応の炭素数10のα−オレフィンを除去した後、この重合液を蒸留して、炭素数6〜16の軽質分が100重量ppm以下の炭素数20のオレフィン重合体を、収率0.99以上で分離することを特徴とする炭素数20のオレフィン重合体の製造方法。
2.前記蒸留を280℃以下で行うことを特徴とする1に記載の炭素数20のオレフィン重合体の製造方法。
3.前記蒸留を、流下液膜式蒸発器を備えた蒸留塔で行うことを特徴とする1又は2に記載の炭素数20のオレフィン重合体の製造方法。
4.前記蒸留を、蒸留塔内部熱交換器型の塔頂凝縮器を備えた蒸留塔で行うことを特徴とする1〜3のいずれかに記載の炭素数20のオレフィン重合体の製造方法。
5.前記重合をメタロセン触媒存在下で行う1〜4のいずれかに記載の炭素数20のオレフィン重合体の製造方法。
6.1〜5のいずれかに記載の製造方法により得られた炭素数20のオレフィン重合体。
As a result of intensive studies, the present inventors have found that control of thermal decomposition and securing of high yield can be achieved by controlling the bottom pressure of the distillation column.
According to the present invention, the following olefin polymer production methods and the like are provided.
1. A polymer solution containing a polymer having 20 or more carbon atoms is produced by polymerizing an α-olefin having 10 carbon atoms, and after removing the unreacted α-olefin having 10 carbon atoms from the polymer solution, the polymer solution is distilled. Then, a method for producing a olefin polymer having 20 carbon atoms, comprising separating a olefin polymer having 20 to 16 carbon atoms having a carbon content of 6 to 16 having a carbon content of 100 wt ppm or less in a yield of 0.99 or more. .
2. 2. The method for producing an olefin polymer having 20 carbon atoms according to 1, wherein the distillation is performed at 280 ° C. or lower.
3. 3. The method for producing an olefin polymer having 20 carbon atoms according to 1 or 2, wherein the distillation is performed in a distillation column equipped with a falling liquid film evaporator.
4). The method for producing an olefin polymer having 20 carbon atoms according to any one of 1 to 3, wherein the distillation is performed in a distillation column equipped with a tower top condenser of a distillation column internal heat exchanger type.
5. The method for producing an olefin polymer having 20 carbon atoms according to any one of 1 to 4, wherein the polymerization is performed in the presence of a metallocene catalyst.
The olefin polymer of carbon number 20 obtained by the manufacturing method in any one of 6.1-5.

本発明によれば、炭素数10のα−オレフィン(C10)から炭素数20のオリゴマー(C20)を製造する際、オリゴマーの熱分解を抑え、かつ、収率を0.99以上にするC20の製造方法を提供できる。   According to the present invention, when producing an oligomer (C20) having 20 carbon atoms from an α-olefin (C10) having 10 carbon atoms, thermal decomposition of the oligomer is suppressed, and the yield of C20 is set to 0.99 or more. A manufacturing method can be provided.

本発明の製造方法で用いる蒸留塔の一例を示す概略図である。It is the schematic which shows an example of the distillation column used with the manufacturing method of this invention. 一般的に用いられている蒸留塔を示す概略図である。It is the schematic which shows the distillation tower generally used.

本発明の第1の製造方法は、C10を重合してC20+を含む重合液を製造し、未反応のC10を除去した重合液を蒸留して、C20を収率0.99以上で分離する。
このとき、分離したC20中の、熱分解によって生じた炭素数6〜16の軽質分の濃度は100重量ppm以下である。
In the first production method of the present invention, a polymer solution containing C20 + is produced by polymerizing C10, the polymer solution from which unreacted C10 has been removed is distilled, and C20 is separated at a yield of 0.99 or more.
At this time, the density | concentration of the C6-C16 light part produced | generated by thermal decomposition in isolate | separated C20 is 100 weight ppm or less.

尚、「C10」は炭素数10のα−オレフィン(デセン)、「CX」(Xは整数)は炭素数Xのオレフィン重合体、「CX+」は炭素数X以上のオレフィン重合体の混合物を意味する。   “C10” means an α-olefin (decene) having 10 carbon atoms, “CX” (X is an integer) means an olefin polymer having X carbon atoms, and “CX +” means a mixture of olefin polymers having X or more carbon atoms. To do.

原料C10からC20を含む重合液を製造する重合方法としては、公知の方法を用いることができる。   As a polymerization method for producing a polymerization liquid containing raw materials C10 to C20, a known method can be used.

使用できる重合触媒は、メタロセン触媒やチーグラーナッタ触媒等を用いることができるが、好ましくはメタロセン触媒である。例えば、遷移金属化合物であるメタロセン触媒と、該遷移金属化合物又はその派生物と反応してイオン性の錯体を形成し得る化合物やアルミノキサンから選択される少なくとも一種を含有する触媒が挙げられる。助触媒成分としては、有機アルミニウム化合物を使用できる。   As the polymerization catalyst that can be used, a metallocene catalyst, a Ziegler-Natta catalyst, or the like can be used, and a metallocene catalyst is preferable. For example, a metallocene catalyst that is a transition metal compound and a catalyst that contains at least one selected from a compound that can react with the transition metal compound or a derivative thereof to form an ionic complex or an aluminoxane can be given. An organoaluminum compound can be used as the promoter component.

メタロセン触媒としては、例えば、下記式(I)で表される遷移金属化合物が挙げられる。   Examples of the metallocene catalyst include transition metal compounds represented by the following formula (I).

(式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及びケイ素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E1、E2又はYと架橋していてもよい。
Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY、E1、E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。)
(In the formula, M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and E 1 and E 2 are a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, respectively. A ligand selected from a heterocyclopentadienyl group, a substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group, and a silicon-containing group, and is bridged via A 1 and A 2 Forms a structure, and they may be the same or different from each other, X represents a sigma-binding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different. X, E 1 , E 2 or Y may be cross-linked.
Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, which may be the same as or different from each other. q represents an integer of 1 to 5 and represents [(M valence) -2], and r represents an integer of 0 to 3. )

上記式(I)において、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、具体例としてはチタン、ジルコニウム、ハフニウム、イットリウム、バナジウム、クロム、マンガン、ニッケル、コバルト、パラジウム及びランタノイド系金属等が挙げられるが、これらの中ではオレフィン共重合活性等の点からチタン、ジルコニウム及びハフニウムが好適である。
1及びE2としては、シクロペンタジエニル基、置換シクロペンタジエニル基、置換又は無置換のインデニル基が好ましい。
In the above formula (I), M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium and Examples of these include lanthanoid metals, among which titanium, zirconium and hafnium are preferred from the viewpoint of olefin copolymerization activity.
E 1 and E 2 are preferably a cyclopentadienyl group, a substituted cyclopentadienyl group, or a substituted or unsubstituted indenyl group.

Xの具体例としては、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数6〜20のアリールオキシ基、炭素数1〜20のアミド基、炭素数1〜20の珪素含有基、炭素数1〜20のホスフィド基、炭素数1〜20のスルフィド基、炭素数1〜20のアシル基等が挙げられる。
Yのルイス塩基の具体例としては、アミン類、エーテル類、ホスフィン類、チオエーテル類等を挙げることができる。
Specific examples of X include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, and a carbon number. Examples thereof include a silicon-containing group having 1 to 20, a phosphide group having 1 to 20 carbon atoms, a sulfide group having 1 to 20 carbon atoms, and an acyl group having 1 to 20 carbon atoms.
Specific examples of the Lewis base of Y include amines, ethers, phosphines, thioethers and the like.

次に、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子又は炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。 Next, A 1 and A 2 are divalent bridging groups for bonding two ligands, which are a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and a silicon-containing group. Group, germanium-containing group, tin-containing group, —O—, —CO—, —S—, —SO 2 —, —Se—, —NR 1 —, —PR 1 —, —P (O) R 1 —, —BR 1 — or —AlR 1 —, wherein R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, May be different.

またメタロセン触媒としては、下記式(II)で表される遷移金属化合物が挙げられる。
1’2’MX (II)
(式中、M、X、q、Y、rは式(I)と同じである。E1’、E2’は、式(I)のE、Eであって架橋していないものである。)
Examples of the metallocene catalyst include transition metal compounds represented by the following formula (II).
E 1 ′ E 2 ′ MX q Y r (II)
(In the formula, M, X, q, Y and r are the same as those in the formula (I). E 1 ′ and E 2 ′ are E 1 and E 2 in the formula (I) and are not crosslinked. .)

通常、得られた重合液に触媒失活剤を添加、攪拌して触媒を失活し、油相(オレフィンオリゴマーを含む相)と、触媒由来の金属分を含む水相(失活剤を含む相)を分離(脱灰)する。   Usually, a catalyst deactivator is added to the obtained polymerization liquid and stirred to deactivate the catalyst, and an oil phase (phase containing an olefin oligomer) and an aqueous phase containing a metal component derived from the catalyst (including a deactivator) Phase) is separated (decalcified).

失活剤としては、例えばアルコール、水、及び酸、アルカリ、含酸素化合物等の水溶液が挙げられ、具体的には、水酸化ナトリウム水溶液、エタノール、イソプロピルアルコール、塩酸及びアセトン等が挙げられる。   Examples of the quenching agent include alcohols, water, and aqueous solutions of acids, alkalis, oxygenated compounds, and the like, and specific examples include aqueous sodium hydroxide, ethanol, isopropyl alcohol, hydrochloric acid, and acetone.

また、本発明では、重合液中に含まれる未反応モノマーC10を除去する。このとき、微量水分、溶剤等の軽質分も合わせて除去できる。このような軽質分除去工程は通常、220〜250℃、3000〜5000PaAの条件下で処理を行う。
未反応のC10は、例えばC10/C20の重量比で、50ppm以下とする。
Moreover, in this invention, the unreacted monomer C10 contained in a polymerization liquid is removed. At this time, light components such as trace moisture and solvent can be removed together. Such a light component removing step is usually performed under conditions of 220 to 250 ° C. and 3000 to 5000 PaA.
Unreacted C10 is, for example, 50 ppm or less in a weight ratio of C10 / C20.

以上の工程を経た重合液は、C20+、例えば、C20、C30、C40及びC50+等を含む。また、未反応のC10が微量残留している場合もある。   The polymerization solution that has undergone the above steps includes C20 +, for example, C20, C30, C40, and C50 +. In addition, a small amount of unreacted C10 may remain.

蒸留工程では、このC20+から、収率0.99以上でC20を分離する。
通常蒸留は減圧蒸留塔において、C20の沸点未満の温度で行う。C20の常圧での沸点は335℃であるが、重合生成混合物の分解温度(260℃)を超えてしまうためである。C20は減圧蒸留塔の塔頂から得られ、塔底からは副生成物C30+が得られる。
In the distillation step, C20 is separated from C20 + with a yield of 0.99 or more.
Usually, distillation is performed in a vacuum distillation column at a temperature below the boiling point of C20. This is because the boiling point of C20 at normal pressure is 335 ° C., but it exceeds the decomposition temperature (260 ° C.) of the polymerization product mixture. C20 is obtained from the top of the vacuum distillation column, and a by-product C30 + is obtained from the bottom of the column.

塔頂のC20の収率は、好ましくは0.999以上である。
C20は塔頂又は塔底のいずれにも存在するため、C20の塔頂収率は、塔底におけるC20/C30(重量比率)を指標として算出できる。C20/C30は、重合生成物中のC20とC30の割合によっても変動するが、一般的な連鎖性重合反応によるシュルツフローリー分布等の重合生成物組成によれば、C20とC30の生成比率は同程度である。
即ち、C20の塔頂収率=1−C20/C30(塔底での重量比率)である。C20/C30(重量比率)はガスクロマトグラフィーにより測定できる。
The yield of C20 at the top of the column is preferably 0.999 or more.
Since C20 exists in either the tower top or the tower bottom, the tower top yield of C20 can be calculated using C20 / C30 (weight ratio) in the tower bottom as an index. C20 / C30 varies depending on the ratio of C20 and C30 in the polymerization product, but according to a polymerization product composition such as a Schulz-Flory distribution by a general chain polymerization reaction, the production ratio of C20 and C30 is the same. Degree.
That is, the column top yield of C20 = 1-C20 / C30 (weight ratio at the column bottom). C20 / C30 (weight ratio) can be measured by gas chromatography.

物質収支の関係から、塔底の副生成物C30+に混入(残留)するC20が多くなるほど、塔頂でのC20収率が低下し、生産性が低下する。C20を収率0.99又は0.999で塔頂回収するためには、塔底のC20/C30を0.01、好ましくは0.001程度とする必要がある。   From the relationship of the mass balance, the more C20 mixed (residual) in the by-product C30 + at the bottom of the column, the lower the C20 yield at the top and the lower the productivity. In order to recover C20 at the column top with a yield of 0.99 or 0.999, C20 / C30 at the column bottom needs to be 0.01, preferably about 0.001.

塔底でのC20/C30を0.1、0.01、0.001及び0.0とするための塔底圧力及び蒸発温度(泡立ち点)を表1に示す。   Table 1 shows tower bottom pressure and evaporation temperature (bubble point) for setting C20 / C30 at the tower bottom to 0.1, 0.01, 0.001, and 0.0.

表1から、例えば、塔底圧力を1kPa−Aとした場合、塔底温度を258℃とすることで、C20の収率を0.99(C20/C30=0.01)とすることができる。   From Table 1, for example, when the column bottom pressure is 1 kPa-A, the yield of C20 can be set to 0.99 (C20 / C30 = 0.01) by setting the column bottom temperature to 258 ° C. .

蒸留工程において、重合生成物が塔底で熱分解すると、分解によって生じた炭素数6〜16の揮発性の軽質分(VOC)が、塔頂のC20に混入する。
この軽質分は製品品質の劣化の原因となり、また人体に影響があるため、C20中の濃度を100重量ppm以下、好ましくは50重量ppm以下とする。
C20中の軽質分の濃度は、ガスクロマトグラフィー測定により測定できる。
In the distillation step, when the polymerization product is thermally decomposed at the bottom of the column, a volatile light component (VOC) having 6 to 16 carbon atoms generated by the decomposition is mixed into C20 at the top of the column.
Since this light component causes deterioration of product quality and affects the human body, the concentration in C20 is 100 ppm by weight or less, preferably 50 ppm by weight or less.
The concentration of light components in C20 can be measured by gas chromatography measurement.

C20中の軽質分濃度を100重量ppm以下とする方法としては、例えば、蒸留塔の塔底温度を、280℃以下、好ましくは260℃以下、より好ましくは250℃以下とする方法が挙げられる。
尚、塔底温度が280℃以下の場合、塔底での重合液の滞留時間を15〜20分とすることが好ましく、塔底温度が260℃以下の場合、塔底での重合液の滞留時間を60〜90分とすることが好ましい。
Examples of the method for setting the light component concentration in C20 to 100 ppm by weight or less include a method in which the bottom temperature of the distillation column is 280 ° C. or less, preferably 260 ° C. or less, more preferably 250 ° C. or less.
When the tower bottom temperature is 280 ° C. or less, the residence time of the polymerization liquid at the tower bottom is preferably 15 to 20 minutes. When the tower bottom temperature is 260 ° C. or less, the residence of the polymerization liquid at the tower bottom The time is preferably 60 to 90 minutes.

尚、C20中の軽質分濃度は、以下のように設定した。
液体中のVOCの許容濃度には法的な制約はないが、気体中のVOC室内濃度指針値は厚生労働省により示されている。この指針値は、物質にもよるが1〜数百μg/mである。
In addition, the light component concentration in C20 was set as follows.
There is no legal restriction on the allowable concentration of VOC in the liquid, but the VOC indoor concentration guideline value in the gas is provided by the Ministry of Health, Labor and Welfare. This guideline value is 1 to several hundred μg / m 3 depending on the substance.

この指針値から、気体発生源となる製品C20の液体における軽質分濃度を以下のような考え方で計算した。即ち、大気100mが1kgの製品C20に十分接している状態で、揮発するC8やC10がとりうる気相中濃度が数百μg/mとなるような、C20液中でのC8やC10の濃度を算出した。
上記より、C20液中の軽質分濃度は、100重量ppm以下とした。
From this guideline value, the light component concentration in the liquid of the product C20, which is a gas generation source, was calculated based on the following concept. That is, C8 or C10 in the C20 liquid such that the vapor concentration of C8 or C10 which can be volatilized is several hundred μg / m 3 in a state where the atmosphere 100 m 3 is sufficiently in contact with 1 kg of the product C20. The concentration of was calculated.
From the above, the light component concentration in the C20 liquid was set to 100 ppm by weight or less.

以上から、C20中の軽質分濃度を100重量ppm以下とするために蒸留塔の塔底温度を280℃以下とし、かつ、C20の収率を0.99以上とするためには、蒸留塔の塔底圧力を2kPa−A以下、好ましくは1kPa−A以下にする。   From the above, in order to make the light component concentration in C20 100 ppm by weight or less, the bottom temperature of the distillation column is 280 ° C. or less, and in order to make the C20 yield 0.99 or more, The column bottom pressure is 2 kPa-A or less, preferably 1 kPa-A or less.

蒸留塔の塔底圧力を2kPa−A以下にするための方法としては、以下の(1)〜(4)が挙げられる。   The following (1) to (4) may be mentioned as a method for setting the bottom pressure of the distillation column to 2 kPa-A or less.

(1)凝縮用熱交換器の蒸留塔内への内蔵化(Internal exchanger)
凝縮用熱交換器の蒸留塔内へ設けると、配管中のガス線速による圧力損失を避けることができ、好ましい。
一般的な蒸留塔において、塔頂から塔外の凝縮器までは配管により接続されるが、配管中のガス線速により、圧力損失が生じる。特に、1kPa−A前後の圧力においてはガス線速が速くなり、その分の圧力損失も大きくなる。圧力損失を避けるためには、塔頂から凝縮器までの配管を短くすることが好ましいく、凝縮器を蒸留塔内へ内蔵すると最も短くなる。
(1) Built-in condenser heat exchanger in distillation tower (Internal exchanger)
Providing it in the distillation column of the heat exchanger for condensation is preferable because pressure loss due to the gas linear velocity in the piping can be avoided.
In a general distillation column, the top of the column and the condenser outside the column are connected by piping, but pressure loss occurs due to the gas linear velocity in the piping. In particular, at a pressure around 1 kPa-A, the gas linear velocity increases, and the pressure loss increases accordingly. In order to avoid pressure loss, it is preferable to shorten the piping from the top of the column to the condenser, and the shortest time when the condenser is built in the distillation column.

(2)塔底液だまり部におけるバッフルの設置
塔底液だまり部にバッフル(液面制御板)を設置すると、再沸器出口の液体(蒸発しなかった液体)を、塔内液と接触させずに直接缶出することができるので、塔底の温度と圧力を下げることができるため好ましい。
(2) Installation of baffles at the bottom of the tower liquid pool When a baffle (liquid level control plate) is installed at the bottom of the liquid pool, the liquid at the reboiler outlet (liquid that has not evaporated) is brought into contact with the liquid in the tower. It is preferable because the temperature and pressure at the bottom of the column can be lowered.

(3)流下液膜式蒸発器(FFE:falling film evaporator)の塔底再沸器の採用
流下液膜式再沸器は、固定管板式縦型熱交換器であり、加熱された複数のチューブに被加熱液を流入させ、加熱壁面を膜状に流下させることで蒸発させる再沸器である。各チューブへの流量を均一化するため、通常、全てのチューブ上部に円筒状のフェルールが設けられている。フェルールは、堰としての機能を有し、堰の高さを揃えることで、各チューブへの流入量が均一化する。
(3) Adopting the bottom reboiler of the falling film evaporator (FFE) The falling film reboiler is a fixed tube plate type vertical heat exchanger, which is heated by a plurality of heated tubes. This is a reboiler which allows the liquid to be heated to flow in and evaporates by flowing down the heating wall surface into a film. In order to equalize the flow rate to each tube, a cylindrical ferrule is usually provided on all the tubes. The ferrule has a function as a weir, and the amount of inflow into each tube is made uniform by aligning the height of the weir.

一般的に用いられる自然循環式再沸器(thermo-siphon)は、熱交換器内に液面が存在すため、液の自重分の圧力が蒸発面にかかっている。この圧力は、液密度と液深さに比例するため、縦熱交換器の高さ方向の場所によって大きく異なる。
また、再沸器内の最も圧力の低い位置の液が蒸発しても、液とともに気液混相流体が蒸留塔本体に繋がる立ち上がり配管を登る必要があり、その影響で圧力が上昇する。例えば、液深さ約10cmでも1kPaの圧力上昇になるので、塔頂圧力を0.5kPa−Aに低圧化しても、塔底での合計圧力はプロセス上必要な真空度1kPa−Aを簡単に超えてしまうほど影響が大きい。
In a commonly used natural circulation reboiler (thermo-siphon), since the liquid level exists in the heat exchanger, the pressure of the liquid's own weight is applied to the evaporation surface. Since this pressure is proportional to the liquid density and the liquid depth, it varies greatly depending on the location in the height direction of the longitudinal heat exchanger.
Further, even if the liquid at the lowest pressure position in the reboiler is evaporated, the gas-liquid mixed phase fluid needs to climb up the rising pipe connected to the distillation column main body together with the liquid, and the pressure rises due to the influence. For example, since the pressure rises to 1 kPa even at a liquid depth of about 10 cm, even if the pressure at the top of the column is reduced to 0.5 kPa-A, the total pressure at the bottom of the column can be easily reduced to a vacuum level of 1 kPa-A required for the process. The influence is so large that it exceeds.

流下液膜式再沸器は液深さがなく、かつ、再沸器から蒸留塔本体への復路配管において、立ち上がり部がない。チューブ内に流入した液体は、チューブ内の壁面を液膜状態で流下し、液膜の表面は蒸留塔と気相で繋がっているため、液深さによる圧力上昇は発生しない。
尚、流下液膜式蒸発器は自然循環ではなく強制循環であるため、ポンプが必要である。
The falling film membrane reboiler has no liquid depth, and there is no rising portion in the return pipe from the reboiler to the distillation column body. The liquid that has flowed into the tube flows down in a liquid film state on the wall surface of the tube, and the surface of the liquid film is connected to the distillation tower in a gas phase, so that a pressure increase due to the liquid depth does not occur.
In addition, since the falling liquid film type evaporator is not natural circulation but forced circulation, a pump is necessary.

(4)空気漏れの対策
塔頂部や塔底部には、C20やC30+等の液体を引き抜くポンプが設けられるが、このポンプの接続には、ベロー型バルブ等の空気漏れの少ないバルブを用いることが好ましい。
(4) Countermeasures for air leakage A pump that draws out liquid such as C20 and C30 + is provided at the top and bottom of the tower. To connect this pump, a valve with low air leakage such as a bellows type valve should be used. preferable.

上記(1)〜(4)のうち、1つのみを採用してもよく、2つ以上を採用してもよい。好ましくは、(1)又は(3)を採用する。   Of the above (1) to (4), only one may be adopted, or two or more may be adopted. Preferably, (1) or (3) is adopted.

本発明の第1の製造方法で用いる蒸留塔の一例を、図1に示す。
蒸留塔1の蒸留塔本体10は、その塔頂部において真空ポンプ20がベント系凝縮器22を介して接続され、凝縮器30が蒸留塔内部に設けられている。塔中央部には蒸留充填物12が設けられている。
また、塔底部には、流下液膜式蒸発式の再沸器(流下液膜式再沸器)40がポンプ42を介して設けられ、塔底部の液だまりにはバッフル60が設置されている。
An example of a distillation column used in the first production method of the present invention is shown in FIG.
The distillation column main body 10 of the distillation column 1 is connected to a vacuum pump 20 via a vent condenser 22 at the top of the column, and a condenser 30 is provided inside the distillation column. A distillation packing 12 is provided in the center of the column.
A falling liquid film evaporation reboiler (falling liquid film reboiler) 40 is provided at the bottom of the tower via a pump 42, and a baffle 60 is provided in the liquid pool at the bottom of the tower. .

液分散機52から蒸留塔10内部に投入された重合液は、塔底の液だまりからポンプ42によって流下液膜式再沸器40に送られる。被加熱液は、再沸器40において加熱されて一部(主にC20)が気体となり、再び蒸留塔10内部に送られる。これら気体は凝縮器30に達すると液化し、塔頂部の液だまりに貯蔵される。貯蔵された液体は、塔外部のポンプ70により引き抜かれ、一部は回収され、一部は液分散機50から再び蒸留塔10内部に送られる。
再沸器40で気化しなかった成分(C30+)は、液体のまま再び蒸留塔10内部に送られ、塔底部より引き抜かれる。
The polymerization liquid charged into the distillation tower 10 from the liquid disperser 52 is sent to the falling liquid film reboiler 40 by the pump 42 from the liquid pool at the bottom of the tower. The liquid to be heated is heated in the reboiler 40 and a part (mainly C20) becomes a gas, and is sent again into the distillation column 10. These gases liquefy when they reach the condenser 30 and are stored in a liquid pool at the top of the column. The stored liquid is drawn out by a pump 70 outside the tower, a part is collected, and a part is sent again from the liquid disperser 50 to the inside of the distillation tower 10.
The component (C30 +) that has not been vaporized in the reboiler 40 is sent again into the distillation column 10 as a liquid and is extracted from the bottom of the column.

次に、従来、一般的に使用されている減圧蒸留塔を図2に示す。
蒸留塔2の蒸留塔本体110は、その塔頂部において配管132を介して凝縮器130が蒸留塔外部に設けられている。凝縮器130には真空ポンプ120がベント系凝縮器122を介して接続されている。塔中央部にはトレイ型の気液接触手段が設けられている。
また、塔底部には、自然循環式再沸器140が設けられている。
Next, a vacuum distillation column generally used conventionally is shown in FIG.
The distillation column main body 110 of the distillation column 2 has a condenser 130 provided outside the distillation column via a pipe 132 at the top of the column. A vacuum pump 120 is connected to the condenser 130 via a vent system condenser 122. A tray-type gas-liquid contact means is provided at the center of the tower.
A natural circulation reboiler 140 is provided at the bottom of the tower.

上述したように、凝縮器を蒸留塔の外部に設けると、蒸留塔と凝縮器の配管において圧力損失が生じる。また、再沸器として通常の自然循環式再沸器を用いると、液深さに由来する圧力損失が生じる。
この圧力損失は、配管においては約1kPa以上であり、再沸器では液深さ約10cm毎に1kPa程度である。即ち、塔頂に配置した真空ポンプ等の圧力が1kPa−A(=7.5torr)以下を満足しても、塔底圧力はこれらの合計により、通常1kPa−Aより数倍程度大きくなる。
As described above, when the condenser is provided outside the distillation tower, pressure loss occurs in the piping of the distillation tower and the condenser. Further, when a normal natural circulation reboiler is used as the reboiler, a pressure loss due to the liquid depth occurs.
This pressure loss is about 1 kPa or more in the piping, and about 1 kPa at a liquid depth of about 10 cm in the reboiler. That is, even if the pressure of a vacuum pump or the like disposed at the top of the tower satisfies 1 kPa-A (= 7.5 torr) or less, the tower bottom pressure is usually several times higher than 1 kPa-A due to the sum of these.

従って、一般的な蒸留塔を使用する場合、C20を0.99以上で塔頂回収するためには、塔底温度を260℃以上にすることが好ましい。しかしながら、塔底温度が高すぎると、熱分解により発生したVOCが塔頂製品に混入し、製品品質を悪化させる場合がある。一方、熱分解を防ぐために、塔底温度が低すぎると、製品C20が塔底にロスし、製品収率を低下させる場合がある。   Therefore, when a general distillation column is used, the column bottom temperature is preferably 260 ° C. or higher in order to recover the column top at 0.99 or higher. However, if the tower bottom temperature is too high, VOC generated by thermal decomposition may be mixed into the tower top product, which may deteriorate the product quality. On the other hand, if the tower bottom temperature is too low in order to prevent thermal decomposition, the product C20 may be lost to the tower bottom and the product yield may be reduced.

本発明の製造方法によって製造されたC20は、VOCの含有量が低減されているので、人体への影響が少なく、また、製品品質を劣化させない。   Since C20 produced by the production method of the present invention has a reduced VOC content, it has little influence on the human body and does not deteriorate product quality.

実験例1
〔連続蒸留塔による熱分解実験〕
凝縮用熱交換器を内蔵化し、塔底再沸器が流下液膜式である連続蒸留塔を用いて、C10が6重量ppm含まれている原料(重合液)の蒸留分離を行った。
原料の組成を表2に示す。
Experimental example 1
[Pyrolysis experiment using continuous distillation tower]
A raw material (polymerization solution) containing 6 ppm by weight of C10 was distilled using a continuous distillation column in which a heat exchanger for condensation was incorporated and the bottom reboiler was a falling liquid film type.
Table 2 shows the composition of the raw materials.

蒸留分離は、塔底内液温度を246℃〜261℃の温度においてそれぞれ行った。塔底圧力は、蒸留塔への原料供給速度、蒸留塔の塔頂圧力及び還流比を調整して調節した。   Distillation separation was performed at a liquid temperature in the tower bottom of 246 ° C. to 261 ° C., respectively. The column bottom pressure was adjusted by adjusting the feed rate of the raw material to the distillation column, the column top pressure and the reflux ratio.

尚、原料中のC10の濃度は6重量ppmであるが、このC10に由来する、分離されたC20中のC10は約18重量ppmとなる。これは、原料中に29.6重量%含まれるC20を収率1程度で塔頂に分離すると、C30+は除去されるが、C10はC20と共に回収され、C10の濃縮が起こるためである。   In addition, although the density | concentration of C10 in a raw material is 6 weight ppm, C10 in the isolate | separated C20 originating in this C10 will be about 18 weight ppm. This is because when C20 contained in the raw material at 29.6% by weight is separated at the top of the column with a yield of about 1, C30 + is removed, but C10 is recovered together with C20 and C10 is concentrated.

蒸留塔塔頂留分に含まれる軽質分(C7〜16の成分)の濃度を、下記条件でガスクロマトグラフィー分析した。また、塔底でのC20/C30の比率をガスクロマトグラフィーにより測定した。結果を表3に示す。
尚、軽質分C6の濃度は測定していないが、分解により生じるC6はごく微量であり、通常、0〜5重量ppmである。
尚、軽質分の濃度は、軽質分の分析値から18重量ppm(原料中のC10に由来する軽質分)を差し引いた値である。
The concentration of light components (components of C7 to 16) contained in the distillation column top fraction was analyzed by gas chromatography under the following conditions. Moreover, the ratio of C20 / C30 at the tower bottom was measured by gas chromatography. The results are shown in Table 3.
In addition, although the density | concentration of the light part C6 is not measured, C6 produced by decomposition | disassembly is very trace amount, and is 0-5 weight ppm normally.
In addition, the density | concentration of a light part is the value which deducted 18 weight ppm (light part derived from C10 in a raw material) from the analytical value of a light part.

〔ガスクロマトグラフィー測定条件〕
カラム:DB−5MS(30m×0.53mm×1.0μm)
キャリアガス流量:40cm/秒
注入モード:クールオンカラム注入
インジェクション、ディテクション温度:320℃
カラム温度:50℃(0.1分保持)、10℃/分で昇温、300℃(25分保持)
注入量:1.0μL
[Gas chromatography measurement conditions]
Column: DB-5MS (30 m × 0.53 mm × 1.0 μm)
Carrier gas flow rate: 40 cm / second Injection mode: Cool on-column injection injection, detection temperature: 320 ° C.
Column temperature: 50 ° C. (0.1 minute hold), temperature rise at 10 ° C./min, 300 ° C. (25 min hold)
Injection volume: 1.0 μL

〔実験の考察〕
表3から、蒸留塔の塔底温度の上昇に伴って、分解によりVOC成分が顕著に増加することが分かる。
また、上述したように、C20液中の軽質分濃度は、好ましくは100重量ppm以下であるので、塔底の最高温度が260℃程度、好ましくは258℃以下となるように蒸留塔を運転することが好ましいと言える。
[Experimental considerations]
From Table 3, it can be seen that the VOC component significantly increases due to decomposition as the bottom temperature of the distillation column rises.
Further, as described above, since the concentration of light components in the C20 liquid is preferably 100 ppm by weight or less, the distillation column is operated so that the maximum temperature at the bottom of the column is about 260 ° C., preferably 258 ° C. or less. It can be said that it is preferable.

上記実験機の塔底での滞留時間は、0.8〜1.2時間であり、約1時間であった。
尚、原料の滞留時間を短くすれば、分解量は小さくなる。
表3から、温度が10℃上昇すると、軽質分濃度が2倍程度増加することが分かる。即ち、温度が10℃上昇すると、分解速度は2倍程度増加する。従って、高い塔底温度であっても、滞留時間を短くすれば熱分解を抑えることができる。
The residence time at the tower bottom of the experimental machine was 0.8 to 1.2 hours, which was about 1 hour.
In addition, if the residence time of the raw material is shortened, the decomposition amount becomes small.
From Table 3, it can be seen that when the temperature is increased by 10 ° C., the light component concentration is increased about twice. That is, when the temperature rises by 10 ° C., the decomposition rate increases about twice. Therefore, even at a high tower bottom temperature, thermal decomposition can be suppressed by shortening the residence time.

塔底の直径を小さくする等の設備変更により、滞留時間は15分程度(滞留時間1/4程度)まで短くしても同等のC20収率を確保できるので、この場合、塔底最高温度がさらに20℃程度高くても、C20液中の軽質分濃度は上記と同程度となると考えられる。   By changing the equipment such as reducing the diameter of the tower bottom, the equivalent C20 yield can be secured even if the residence time is shortened to about 15 minutes (about 1/4 residence time). Furthermore, even if the temperature is about 20 ° C., the light component concentration in the C20 solution is considered to be about the same as above.

実験例2
塔頂に凝縮器が内装されている蒸留塔ではなく、凝縮器が外装され、蒸留塔本体と凝縮器が配管により接続している蒸留塔における圧力損失、及び温度上昇について、以下のように検討した。
即ち、以下の条件でシミュレーション計算を行い、凝縮器が内装型の場合、及び凝縮器が外装型であって蒸留塔との接続配管のサイズ(直径)が20,16,12インチである場合について、圧力損失及び温度上昇を求めた。結果を表4に示す。
Experimental example 2
Consider pressure loss and temperature rise in a distillation column that is not a distillation column with a condenser at the top of the column, but a condenser that is externally connected and the distillation column itself and the condenser are connected by piping. did.
That is, the simulation calculation is performed under the following conditions, and the case where the condenser is an interior type and the case where the condenser is an exterior type and the size (diameter) of the connection pipe to the distillation column is 20, 16, 12 inches. The pressure loss and temperature increase were determined. The results are shown in Table 4.

計算条件として、蒸留塔へ供給される原料組成を、C20を40重量%、C30を30重量%、C40を20重量%、C50を10重量%、原料供給速度を2500kg/hr、塔底でのC20/C30濃度を重量比0.003以下、還流比R/D=1.0とした。
また、上部理論段数2段、下部理論段数2段を規則充填物で分離し、各充填物を直径1.6m、高さ1mとした。尚、規則充填物はSulzer社製の低差圧型の252Yとした。
As calculation conditions, the composition of the raw material supplied to the distillation column is as follows: C20 40% by weight, C30 30% by weight, C40 20% by weight, C50 10% by weight, raw material supply rate 2500 kg / hr, The C20 / C30 concentration was 0.003 or less and the reflux ratio R / D = 1.0.
Further, the upper theoretical plate number 2 and the lower theoretical plate number 2 were separated by regular packing, and each packing had a diameter of 1.6 m and a height of 1 m. The regular packing was a low differential pressure type 252Y manufactured by Sulzer.

塔頂留分はC20であり、その流量は約1000kg/hrであるが、還流比R/D=1.0とすると、塔頂蒸発ガス量は約2000kg/hrとなった。   The column top fraction was C20, and the flow rate was about 1000 kg / hr, but when the reflux ratio R / D = 1.0, the column top evaporation gas amount was about 2000 kg / hr.

表4から、凝縮器を外装とすると、圧力損失による塔底圧力の上昇が顕著で、塔底温度が目標値の260℃又は限界値の280℃を超えてしまうことが分かる。凝縮器までの配管があることによる圧力損失上昇は1kPa程度あり、これに伴う塔底温度上昇は30℃以上ある。
以上から、凝縮器は内装方式にすることが好ましい。
From Table 4, it can be seen that when the condenser is an exterior, the rise in the tower bottom pressure due to pressure loss is remarkable, and the tower bottom temperature exceeds the target value of 260 ° C. or the limit value of 280 ° C. The pressure loss rise due to the piping to the condenser is about 1 kPa, and the tower temperature rise accompanying this is 30 ° C. or more.
From the above, it is preferable that the condenser is an internal type.

本発明の製造方法によって製造された炭素数20のオレフィン重合体は、減粘剤、可塑剤、希釈剤、潤滑油、溶剤、合成中間原料等に使用できる。   The olefin polymer having 20 carbon atoms produced by the production method of the present invention can be used for a thickener, a plasticizer, a diluent, a lubricating oil, a solvent, a synthetic intermediate raw material, and the like.

1,2 蒸留塔
10,110 蒸留塔本体
12 蒸留充填物
20,120 真空ポンプ
22,122 ベント系凝縮器
30,130 凝縮器
40 流下液膜式再沸器
42,70,170 ポンプ
50,52 液分散機
60 バッフル
140 自然循環式再沸器
DESCRIPTION OF SYMBOLS 1, 2 Distillation tower 10,110 Distillation tower main body 12 Distillation packing 20,120 Vacuum pump 22,122 Vent condenser 30,130 Condenser 40 Falling liquid film reboiler 42,70,170 Pump 50,52 Liquid Disperser 60 Baffle 140 Natural circulation reboiler

Claims (6)

炭素数10のα−オレフィンを重合して炭素数20以上の重合体を含む重合液を製造し、前記重合液から未反応の炭素数10のα−オレフィンを除去した後、この重合液を蒸留して、炭素数6〜16の軽質分が100重量ppm以下の炭素数20のオレフィン重合体を、収率0.99以上で分離することを特徴とする炭素数20のオレフィン重合体の製造方法。   A polymer solution containing a polymer having 20 or more carbon atoms is produced by polymerizing an α-olefin having 10 carbon atoms, and after removing the unreacted α-olefin having 10 carbon atoms from the polymer solution, the polymer solution is distilled. Then, a method for producing a olefin polymer having 20 carbon atoms, comprising separating a olefin polymer having 20 to 16 carbon atoms having a carbon content of 6 to 16 having a carbon content of 100 wt ppm or less in a yield of 0.99 or more. . 前記蒸留を280℃以下で行うことを特徴とする請求項1に記載の炭素数20のオレフィン重合体の製造方法。   The method for producing an olefin polymer having 20 carbon atoms according to claim 1, wherein the distillation is performed at 280 ° C or lower. 前記蒸留を、流下液膜式蒸発器を備えた蒸留塔で行うことを特徴とする請求項1又は2に記載の炭素数20のオレフィン重合体の製造方法。   The method for producing an olefin polymer having 20 carbon atoms according to claim 1 or 2, wherein the distillation is performed in a distillation column equipped with a falling liquid film evaporator. 前記蒸留を、蒸留塔内部熱交換器型の塔頂凝縮器を備えた蒸留塔で行うことを特徴とする請求項1〜3のいずれかに記載の炭素数20のオレフィン重合体の製造方法。   The method for producing an olefin polymer having 20 carbon atoms according to any one of claims 1 to 3, wherein the distillation is performed in a distillation column provided with a tower top condenser of a distillation column internal heat exchanger type. 前記重合をメタロセン触媒存在下で行う請求項1〜4のいずれかに記載の炭素数20のオレフィン重合体の製造方法。   The method for producing an olefin polymer having 20 carbon atoms according to any one of claims 1 to 4, wherein the polymerization is performed in the presence of a metallocene catalyst. 請求項1〜5のいずれかに記載の製造方法により得られた炭素数20のオレフィン重合体。   The olefin polymer of carbon number 20 obtained by the manufacturing method in any one of Claims 1-5.
JP2012082673A 2012-03-30 2012-03-30 Method for producing olefin polymer Pending JP2013212995A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012082673A JP2013212995A (en) 2012-03-30 2012-03-30 Method for producing olefin polymer
PCT/JP2013/002013 WO2013145696A1 (en) 2012-03-30 2013-03-25 Method for producing olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082673A JP2013212995A (en) 2012-03-30 2012-03-30 Method for producing olefin polymer

Publications (1)

Publication Number Publication Date
JP2013212995A true JP2013212995A (en) 2013-10-17

Family

ID=49258999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082673A Pending JP2013212995A (en) 2012-03-30 2012-03-30 Method for producing olefin polymer

Country Status (2)

Country Link
JP (1) JP2013212995A (en)
WO (1) WO2013145696A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110615A1 (en) * 2018-11-29 2020-06-04 昭和電工株式会社 Raw material feeder and n-vinylcarboxylic acid amide production method
WO2021246355A1 (en) 2020-06-05 2021-12-09 株式会社日本触媒 Method for producing easily polymerizable compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY139205A (en) * 2001-08-31 2009-08-28 Pennzoil Quaker State Co Synthesis of poly-alpha olefin and use thereof
DE10149348A1 (en) * 2001-10-06 2003-04-10 Oxeno Olefinchemie Gmbh Production of higher alpha-olefins, useful for copolymer production, includes telomerizing a conjugated diene with a nucleophile in the presence of a palladium carbene complex catalyst
TW201031743A (en) * 2008-12-18 2010-09-01 Basf Se Surfactant mixture comprising branched short-chain and branched long-chain components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110615A1 (en) * 2018-11-29 2020-06-04 昭和電工株式会社 Raw material feeder and n-vinylcarboxylic acid amide production method
CN113164827A (en) * 2018-11-29 2021-07-23 昭和电工株式会社 Raw material feeder and method for producing N-vinylcarboxylic acid amide
JPWO2020110615A1 (en) * 2018-11-29 2021-10-14 昭和電工株式会社 Raw material feeder and method for producing N-vinylcarboxylic acid amide
JP7405094B2 (en) 2018-11-29 2023-12-26 株式会社レゾナック Raw material supply device and method for producing N-vinylcarboxylic acid amide
WO2021246355A1 (en) 2020-06-05 2021-12-09 株式会社日本触媒 Method for producing easily polymerizable compound

Also Published As

Publication number Publication date
WO2013145696A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
EP2454288B1 (en) Polymerization process for olefin-based polymers
US10927052B2 (en) Decene oligomers
JP2011521991A (en) Process for producing a C5-aldehyde mixture having a high n-pentanal content
TW201420550A (en) Process for oligomerization of ethylene
CN101616882A (en) Use the method for ionic liquid from the carbon dioxide separation tetrafluoroethylene
KR101974295B1 (en) Method for separating hydrocarbons from polymers
CN101568580B (en) Process for transferring heat to a liquid mixture comprising at least one (meth)acrylic monomer
TWI746500B (en) Purification of mercaptans or thiophenes using dividing wall column distillation
CN104284714A (en) A process for oligomerising a hydrocarbon to form at least one co-monomer product
JP2016522203A (en) Method for producing aromatic carbonate
WO2013145696A1 (en) Method for producing olefin polymer
CN1547506A (en) Stabilization of fluorophosphite-containing catalysts
RU2734254C2 (en) Methods and systems for producing 1,3-butadiene
JP6890591B2 (en) Production of tert-butyl ester of ethylenically unsaturated carboxylic acid
JP5593585B2 (en) Method for producing α-olefin low polymer
US8748522B2 (en) Solution process for the olefins polymerization
CN107108777B (en) Purification of plasticizers and their use in polymer production processes and apparatus
CN103922891B (en) Energy integration method for producing benzyl chloride by two-stage reaction rectification series connection
EP3390462B1 (en) Olefin polymerization process
CA3083892A1 (en) Metal-ligand complex, catalyst composition comprising same for ethylene-based polymerization, and method for preparing ethylene-based polymer by using same
KR101724072B1 (en) Method of purificaiton for vinyl acetic acid using dividing wall column
CN1784372A (en) Method for producing aldehyde
WO2024080319A1 (en) 3-methyl-1-butene, and production method of 3-methyl-1-butene polymer
WO2013164908A1 (en) Method for producing olefin oligomer
US2518122A (en) Manufacture of halogenated hyrocarbon oils