JP2013212525A - Method for manufacturing magnesium alloy extruded material - Google Patents

Method for manufacturing magnesium alloy extruded material Download PDF

Info

Publication number
JP2013212525A
JP2013212525A JP2012084605A JP2012084605A JP2013212525A JP 2013212525 A JP2013212525 A JP 2013212525A JP 2012084605 A JP2012084605 A JP 2012084605A JP 2012084605 A JP2012084605 A JP 2012084605A JP 2013212525 A JP2013212525 A JP 2013212525A
Authority
JP
Japan
Prior art keywords
magnesium alloy
extruded material
extrusion
gas
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012084605A
Other languages
Japanese (ja)
Other versions
JP5956806B2 (en
Inventor
Akira Nakagawa
昭 中川
Kazunori Shimizu
和紀 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Tateyama Inc
Original Assignee
Sankyo Tateyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Tateyama Inc filed Critical Sankyo Tateyama Inc
Priority to JP2012084605A priority Critical patent/JP5956806B2/en
Publication of JP2013212525A publication Critical patent/JP2013212525A/en
Application granted granted Critical
Publication of JP5956806B2 publication Critical patent/JP5956806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a magnesium alloy extruded material, capable of controlling the oxidation of a surface to obtain a silver-white extruded material, and also capable of improving productivity.SOLUTION: A method for manufacturing a magnesium alloy extruded material includes spraying a fluoride gas 11 to a magnesium alloy immediately after the extrusion of the magnesium alloy from a mold 3. A magnesium fluoride film is formed at a surface of an extruded material by spraying the fluoride gas immediately after the extrusion, thus the oxidation of the surface is suppressed, thereby obtaining a magnesium alloy extruded material with a silver-white surface.

Description

本発明は、マグネシウム合金押出材の製造方法に関する。   The present invention relates to a method for producing a magnesium alloy extruded material.

マグネシウム合金の押出材は、軽量で強度も高いため、輸送機器や福祉機器などの様々な産業分野での利用の拡大が期待されている。従来の押出方法では、押出材の表面が酸化によって黒色化し、見た目が悪い、外観検査しづらい等の問題があった。押出速度を遅くすると比較的きれいな表面を得ることができるが、それでは生産性が悪い。   Magnesium alloy extruded materials are lightweight and high in strength, and are expected to expand their use in various industrial fields such as transportation equipment and welfare equipment. In the conventional extrusion method, the surface of the extruded material is blackened by oxidation, and there are problems such as poor appearance and difficult visual inspection. If the extrusion speed is slowed, a relatively clean surface can be obtained, but the productivity is poor.

本発明は以上に述べた実情に鑑み、表面の酸化を抑制し、銀白色の押出材を得ることができ、尚且つ生産性も向上させられるマグネシウム合金押出材の製造方法の提供を目的とする。   In view of the circumstances described above, the present invention aims to provide a method for producing a magnesium alloy extruded material that can suppress surface oxidation, obtain a silver-white extruded material, and improve productivity. .

上記の課題を達成するために請求項1記載の発明によるマグネシウム合金押出材の製造方法は、マグネシウム合金を金型から押出す際に、押出直後にフッ化ガスを吹き付けることを特徴とする。フッ化ガスとは、フッ素を含むガスのことをいい、例えばHFC−134a、六フッ化硫黄(SF)、Novec612、OHFC−1234ze、ヨウ化トリフルオロメタン(CFI)等があげられる。 In order to achieve the above object, a method for producing a magnesium alloy extruded material according to the first aspect of the present invention is characterized in that when a magnesium alloy is extruded from a mold, a fluorinated gas is blown immediately after the extrusion. The fluorinated gas refers to a gas containing fluorine. Examples thereof include HFC-134a, sulfur hexafluoride (SF 6 ), Novec 612, OHFC-1234ze, and trifluoromethane iodide (CF 3 I).

請求項1記載の発明によるマグネシウム合金押出材の製造方法は、押出直後にフッ化ガスを吹き付けることにより、押出材の表面にフッ化マグネシウムの膜が形成され、これにより表面の酸化が抑制され、表面が銀白色のマグネシウム合金押出材を得ることができる。本発明の方法によれば、押出速度を遅くすることなく表面の酸化を抑制でき、生産性と表面のきれいさを両立させることができる。   In the manufacturing method of the magnesium alloy extruded material according to the invention of claim 1, a film of magnesium fluoride is formed on the surface of the extruded material by blowing a fluorinated gas immediately after extrusion, thereby suppressing oxidation of the surface, A magnesium alloy extruded material having a silver-white surface can be obtained. According to the method of the present invention, surface oxidation can be suppressed without slowing the extrusion speed, and both productivity and surface cleanliness can be achieved.

本発明のマグネシウム合金押出材の製造方法を実施する押出機の概略図である。It is the schematic of the extruder which enforces the manufacturing method of the magnesium alloy extrusion material of this invention. 実施例の押出材(押出形材)の断面図である。It is sectional drawing of the extrusion material (extruded profile) of an Example. 実施例1、比較例1及び2の押出形材の外観写真であって、(a)は各押出形材の頭部、(b)は各押出形材の中央部、(c)は各押出形材の尾部を示す。It is an external appearance photograph of Example 1 and the extrusion shape material of Comparative Examples 1 and 2, (a) is the head part of each extrusion shape material, (b) is the center part of each extrusion shape material, (c) is each extrusion shape. Shows the tail of the profile. 実施例1、比較例1及び2の押出形材の明度L*を測定した結果を示すグラフである。It is a graph which shows the result of having measured the brightness L * of the extrusion shape material of Example 1 and Comparative Examples 1 and 2. FIG. 本発明の方法により得られるマグネシウム合金押出形材の断面を模式的に示す図である。It is a figure which shows typically the cross section of the magnesium alloy extrusion shape material obtained by the method of this invention. 実施例1、2及び3の押出形材の外観写真である。It is an external appearance photograph of the extrusion shape material of Examples 1, 2, and 3. 比較例1、3及び4の押出形材の外観写真である。It is an external appearance photograph of the extruded shape material of Comparative Examples 1, 3, and 4.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明のマグネシウム合金押出材の製造方法を実施する押出機の概要を示している。押出機は、マグネシウム合金のビレット1を装填するコンテナ2と、ビレット1の前方に配置された金型(押出ダイス)3と、金型3を支持するプラテン4とを備え、ビレット1と金型3は高温に加熱され、ビレット1を図示しないステムによって金型3に押し付けると、金型3に形成された孔よりマグネシウム合金が押し出されて所定の断面形状の押出形材5が製造されるものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an extruder for carrying out the method for producing a magnesium alloy extruded material of the present invention. The extruder comprises a container 2 for loading a magnesium alloy billet 1, a mold (extrusion die) 3 disposed in front of the billet 1, and a platen 4 for supporting the mold 3. The billet 1 and the mold 3 is heated to a high temperature, and when the billet 1 is pressed against the mold 3 by a stem (not shown), a magnesium alloy is extruded from a hole formed in the mold 3 to produce an extruded profile 5 having a predetermined cross-sectional shape. It is.

プラテン4は、押出形材5の長手方向に沿って空洞部6を有し、空洞部6は出口側のみ開放されており、金型3側は閉鎖されている。プラテン4の空洞部6には、出口側より金型3の近傍に向けて複数の銅パイプ7が挿入されており、銅パイプ7はゴムホース8及び流量計9を介してフッ化ガスを詰めたガスボンベ10に連結されている。そして、銅パイプ7の先端より金型3から押し出された直後の押出形材5にフッ化ガス11を吹き付け、フッ化ガス11の雰囲気中でマグネシウム合金を押し出すようにしている。これにより、押出形材5の表面の酸化が抑制され、押出条件に関わらず表面が銀白色のマグネシウム合金押出材を得ることができる。
フッ化ガスとは、フッ素を含むガスのことをいい、例えばHFC−134a、六フッ化硫黄(SF)、Novec612、OHFC−1234ze、ヨウ化トリフルオロメタン(CFI)等があげられる。
なお、プラテン4の空洞部6に注入するガスは、フッ化ガスだけであってもよいが、COや不活性ガスをキャリアガスとしてフッ化ガスと共に供給することで、プラテン4の空洞部6内を効率良くこれらのガスで置換し、酸素を遮断できる。
The platen 4 has a cavity 6 along the longitudinal direction of the extruded profile 5, the cavity 6 is open only on the outlet side, and the mold 3 side is closed. A plurality of copper pipes 7 are inserted into the cavity 6 of the platen 4 from the outlet side toward the vicinity of the mold 3, and the copper pipes 7 are filled with a fluorinated gas via a rubber hose 8 and a flow meter 9. The gas cylinder 10 is connected. Then, the fluorinated gas 11 is blown onto the extruded shape member 5 immediately after being extruded from the die 3 from the tip of the copper pipe 7, and the magnesium alloy is extruded in the atmosphere of the fluorinated gas 11. Thereby, the oxidation of the surface of the extruded shape member 5 is suppressed, and a magnesium alloy extruded material whose surface is silver white can be obtained regardless of the extrusion conditions.
The fluorinated gas refers to a gas containing fluorine. Examples thereof include HFC-134a, sulfur hexafluoride (SF 6 ), Novec 612, OHFC-1234ze, and trifluoromethane iodide (CF 3 I).
The gas injected into the cavity 6 of the platen 4 may be only the fluorinated gas, but by supplying CO 2 or an inert gas together with the fluorinated gas as the carrier gas, the cavity 6 of the platen 4 is supplied. The inside can be efficiently replaced with these gases to block oxygen.

以上に説明した押出機を用い、下記の表1に示す条件で実際にマグネシウム合金の押出形材5を製造し、その外観を観察した。マグネシウム合金は、AZ31Bを使用した。図2は押出形材5の断面形状を示す。
実施例1〜3は、プラテン4内にフッ化ガスとしてHFC−134aを、キャリアガスとしてCOを供給した場合で、実施例1〜3の順に供給するガスの量を少なくしている。
比較例1は押出速度を実施例1〜3と同じ5m/minとし、プラテン4内にフッ化ガスを供給しない場合であり、比較例2は押出速度を実施例1〜3より遅い3m/minとし、プラテン内にフッ化ガスを供給しない場合であり、比較例3は押出速度を実施例1〜3と同じ5m/minとし、プラテン内に不活性ガスであるArを供給した場合であり、比較例4は押出速度を実施例1〜3と同じ5m/minとし、プラテン内にCOを供給した場合である。
Using the extruder described above, an extruded shape 5 of a magnesium alloy was actually produced under the conditions shown in Table 1 below, and the appearance was observed. As the magnesium alloy, AZ31B was used. FIG. 2 shows the cross-sectional shape of the extruded profile 5.
Examples 1-3, the HFC-134a as a fluoride gas into the platen 4, in the case of supplying the CO 2 as a carrier gas, and reduce the amount of gas supplied in the order of Examples 1-3.
Comparative Example 1 is the case where the extrusion speed is 5 m / min, the same as in Examples 1 to 3, and no fluorinated gas is supplied into the platen 4, and Comparative Example 2 is 3 m / min, which is slower than Examples 1 to 3. And Comparative Example 3 is a case where the extrusion speed is 5 m / min, which is the same as in Examples 1 to 3, and Ar which is an inert gas is supplied into the platen. In Comparative Example 4, the extrusion speed was set to 5 m / min, which was the same as in Examples 1 to 3, and CO 2 was supplied into the platen.

図3は、実施例1と比較例1及び2の押出形材の頭部と中央部と尾部の外観写真であり、図4はこれらの押出形材の明度を測定した結果を示している。図3より明らかなように、フッ化ガスを供給しない比較例1は表面が酸化して茶褐色になっているのに対して、フッ化ガスを供給した実施例1は、表面の酸化が抑制されて銀白色のきれいな表面になった。フッ化ガスを供給しないで押出速度を遅くした比較例2も表面は比較的きれいであるが、実施例1はそれを上回るきれいさであった。また図4より明らかなように、比較例1,2は押出形材の頭部と中央部と尾部で明度にバラツキがあるのに対して、実施例1は頭部と中央部と尾部で明度にバラツキがほとんどなく、何れも高い値であった。
図6は実施例1,2,3の外観を比較したものであり、HFC−134aの流量を3L/min、1L/minと少なくした場合でも、実施例1と変わらない銀白色のきれいな表面が得られることが分る。HFC−134aの流量をどこまで少なくできるかは、プラテン4の容積にもよるが、実験に用いた6吋の押出機では0.8L/minまで少なくしても表面の酸化を抑制する効果が得られることを確認した。
図7は比較例1,3,4の外観を比較したものであり、比較例3も比較例4も比較例1と同じように表面が酸化して茶褐色となっており、不活性ガスだけやCOだけを供給しても表面の酸化を抑制する効果がないことが分る。
FIG. 3 is an appearance photograph of the head, center, and tail of the extruded shapes of Example 1 and Comparative Examples 1 and 2, and FIG. 4 shows the results of measuring the brightness of these extruded shapes. As is clear from FIG. 3, the surface of Comparative Example 1 in which no fluorinated gas is supplied is oxidized to be brown, whereas in Example 1 in which the fluorinated gas is supplied, surface oxidation is suppressed. It became a beautiful silver-white surface. The surface of Comparative Example 2 in which the extrusion speed was slowed without supplying the fluorinated gas was also relatively clean, but Example 1 was more clean than that. As is clear from FIG. 4, Comparative Examples 1 and 2 have variations in brightness between the head, center, and tail of the extruded profile, whereas Example 1 has brightness at the head, center, and tail. There was almost no variation, and both values were high.
FIG. 6 is a comparison of the appearances of Examples 1, 2 and 3. Even when the flow rate of HFC-134a is reduced to 3 L / min and 1 L / min, a clean silver-white surface that is the same as Example 1 is obtained. You can see that it is obtained. The extent to which the flow rate of HFC-134a can be reduced depends on the volume of the platen 4, but the effect of suppressing surface oxidation can be obtained with the 6 吋 extruder used in the experiment even if it is reduced to 0.8 L / min. It was confirmed that
FIG. 7 is a comparison of the appearances of Comparative Examples 1, 3, and 4. In Comparative Example 3 and Comparative Example 4, the surface was oxidized and turned brown as in Comparative Example 1, and only the inert gas was used. It can be seen that even if only CO 2 is supplied, there is no effect of suppressing the surface oxidation.

このように押出直後にフッ化ガスを吹き付けることできれいな表面が得られるのは、図5に示すように、押出形材5の表面にフッ化マグネシウムMgFの緻密な極薄膜12が優先的に形成され、この膜12が酸素との接触を妨げることで表面の酸化が抑制されたものと推察される。 As shown in FIG. 5, a fine ultrathin film 12 of magnesium fluoride MgF 2 is preferentially formed on the surface of the extruded shape member 5 as a result of spraying the fluorinated gas immediately after the extrusion. It is presumed that the film 12 is formed and the oxidation of the surface is suppressed by preventing the film 12 from coming into contact with oxygen.

以上に述べたように本発明の製造方法は、押出直後にフッ化ガス11を吹き付けることにより、押出材の表面にフッ化マグネシウムの膜12が形成され、これにより表面の酸化が抑制され、表面が銀白色のマグネシウム合金押出押出形材5を得ることができる。本発明の方法によれば、押出速度を遅くすることなく表面の酸化を抑制でき、生産性と表面のきれいさを両立させることができる。
プラテン4の空洞部6は、出口側のみ開放されており、金型3側は閉鎖されていることから、フッ化ガス11をプラテン4の空洞部6の金型3近傍から供給することで、プラテン4内を効率よく空気からフッ化ガスに置換できる。
また本発明の製造方法は、押出工程の全てをフッ化ガス雰囲気にする必要はなく、プラテン4内のみで十分効果がある。よって、既存の設備に、ガスとガス供給用のパイプ7やゴムホース8のみを追加するだけで実施可能であり、大幅な設備更新の必要がなく、低コストで実施できる。
フッ化ガスと共にCOや不活性ガスをキャリアガスとして供給することで、プラテン4内を効率よくこれらのガスで置換し、酸素を遮断することができる。フッ化ガスは少ない量でもよく、フッ化ガスの量を少なくすることでコストアップを抑えられる。
As described above, in the production method of the present invention, the fluoride gas 11 is blown immediately after extrusion, whereby the magnesium fluoride film 12 is formed on the surface of the extruded material. Can obtain a silver-white magnesium alloy extruded shape 5. According to the method of the present invention, surface oxidation can be suppressed without slowing the extrusion speed, and both productivity and surface cleanliness can be achieved.
Since the cavity 6 of the platen 4 is opened only on the outlet side and the mold 3 side is closed, by supplying the fluorinated gas 11 from the vicinity of the mold 3 of the cavity 6 of the platen 4, The inside of the platen 4 can be efficiently replaced with fluorinated gas from air.
Further, the production method of the present invention does not require the entire extrusion process to be a fluorinated gas atmosphere, and is sufficiently effective only in the platen 4. Therefore, it can be carried out by adding only the gas and the gas supply pipe 7 and the rubber hose 8 to the existing equipment, and it can be carried out at a low cost without the need for significant equipment renewal.
By supplying CO 2 or an inert gas as a carrier gas together with the fluorinated gas, the inside of the platen 4 can be efficiently replaced with these gases, and oxygen can be shut off. The amount of the fluorinated gas may be small, and the cost increase can be suppressed by reducing the amount of the fluorinated gas.

本発明は以上に述べた実施形態に限定されない。マグネシウム合金は、AZ31Bに限らず、他のあらゆるマグネシウム合金であってもよい。押出材の断面形状は任意であり、棒状や中空状等であってもよい。フッ化ガスは、フッ素を含むガスであればよく、HFC−134aの他、六フッ化硫黄(SF)、Novec612、OHFC−1234ze、ヨウ化トリフルオロメタン(CFI)等とすることができる。COや不活性ガスの使用は任意であり、フッ化ガス単独で使用しても効果がある。 The present invention is not limited to the embodiments described above. The magnesium alloy is not limited to AZ31B, and may be any other magnesium alloy. The cross-sectional shape of the extruded material is arbitrary, and may be a rod shape or a hollow shape. The fluorinated gas may be a gas containing fluorine, and in addition to HFC-134a, sulfur hexafluoride (SF 6 ), Novec 612, OHFC-1234ze, trifluoromethane iodide (CF 3 I), and the like can be used. . The use of CO 2 or an inert gas is optional, and the use of fluorinated gas alone is also effective.

1 ビレット
2 コンテナ
3 金型
4 プラテン
5 押出形材(押出材)
11 フッ化ガス
1 Billet 2 Container 3 Mold 4 Platen 5 Extruded material (extruded material)
11 Fluoride gas

Claims (1)

マグネシウム合金を金型から押出す際に、押出直後にフッ化ガスを吹き付けることを特徴とするマグネシウム合金押出材の製造方法。   A method for producing a magnesium alloy extruded material, characterized in that, when a magnesium alloy is extruded from a mold, a fluoride gas is blown immediately after the extrusion.
JP2012084605A 2012-04-03 2012-04-03 Method for producing magnesium alloy extruded material Active JP5956806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084605A JP5956806B2 (en) 2012-04-03 2012-04-03 Method for producing magnesium alloy extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084605A JP5956806B2 (en) 2012-04-03 2012-04-03 Method for producing magnesium alloy extruded material

Publications (2)

Publication Number Publication Date
JP2013212525A true JP2013212525A (en) 2013-10-17
JP5956806B2 JP5956806B2 (en) 2016-07-27

Family

ID=49586292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084605A Active JP5956806B2 (en) 2012-04-03 2012-04-03 Method for producing magnesium alloy extruded material

Country Status (1)

Country Link
JP (1) JP5956806B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138548A (en) * 2017-05-05 2017-09-08 太原理工大学 A kind of reciprocating extrusion processing method for preparing ultra-fine grained magnesium alloy tubing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197569A (en) * 1975-02-25 1976-08-27 OSHIDASHIPURESUNIOKERU OSHIDASHISEIKEIHINREIKYAKUSOCHI
JPH0195812A (en) * 1987-10-06 1989-04-13 Kobe Steel Ltd Indirect extruding machine
JPH0261052A (en) * 1988-08-26 1990-03-01 Toyota Motor Corp Corrosion resistant mg-based member and production thereof
JPH0466657A (en) * 1990-07-05 1992-03-03 Mitsubishi Alum Co Ltd Corrosion-resistant aluminum alloy material and its manufacture
JPH057927A (en) * 1991-07-05 1993-01-19 Showa Alum Corp Production of al alloy extruding stock for welding structure formed by improving welding crack
JP2004052024A (en) * 2002-07-18 2004-02-19 Stella Chemifa Corp Method for manufacturing metallic material having mixed film of oxide and fluoride formed on at least one part of surface thereof
US20040099030A1 (en) * 2002-11-27 2004-05-27 Richard Twigg Apparatus and method for die inerting
JP2005193371A (en) * 2003-12-31 2005-07-21 Hyundai Motor Co Ltd Magnesium alloy and method of producing vehicle sheet frame using the same
JP2006089821A (en) * 2004-09-27 2006-04-06 Tocalo Co Ltd Method for processing corrosion resistance of member for semiconductor working apparatus, and member processed for corrosion resistance
JP2007319895A (en) * 2006-05-31 2007-12-13 Mitsui Mining & Smelting Co Ltd Heat-resistant magnesium alloy extruded material, and forged article and manufacturing method therefor
JP2012024819A (en) * 2010-07-26 2012-02-09 Showa Denko Kk Extruding tool

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197569A (en) * 1975-02-25 1976-08-27 OSHIDASHIPURESUNIOKERU OSHIDASHISEIKEIHINREIKYAKUSOCHI
JPH0195812A (en) * 1987-10-06 1989-04-13 Kobe Steel Ltd Indirect extruding machine
JPH0261052A (en) * 1988-08-26 1990-03-01 Toyota Motor Corp Corrosion resistant mg-based member and production thereof
JPH0466657A (en) * 1990-07-05 1992-03-03 Mitsubishi Alum Co Ltd Corrosion-resistant aluminum alloy material and its manufacture
JPH057927A (en) * 1991-07-05 1993-01-19 Showa Alum Corp Production of al alloy extruding stock for welding structure formed by improving welding crack
JP2004052024A (en) * 2002-07-18 2004-02-19 Stella Chemifa Corp Method for manufacturing metallic material having mixed film of oxide and fluoride formed on at least one part of surface thereof
US20040099030A1 (en) * 2002-11-27 2004-05-27 Richard Twigg Apparatus and method for die inerting
JP2005193371A (en) * 2003-12-31 2005-07-21 Hyundai Motor Co Ltd Magnesium alloy and method of producing vehicle sheet frame using the same
JP2006089821A (en) * 2004-09-27 2006-04-06 Tocalo Co Ltd Method for processing corrosion resistance of member for semiconductor working apparatus, and member processed for corrosion resistance
JP2007319895A (en) * 2006-05-31 2007-12-13 Mitsui Mining & Smelting Co Ltd Heat-resistant magnesium alloy extruded material, and forged article and manufacturing method therefor
JP2012024819A (en) * 2010-07-26 2012-02-09 Showa Denko Kk Extruding tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138548A (en) * 2017-05-05 2017-09-08 太原理工大学 A kind of reciprocating extrusion processing method for preparing ultra-fine grained magnesium alloy tubing

Also Published As

Publication number Publication date
JP5956806B2 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
ATE401188T1 (en) METHOD FOR PRODUCING A HOLLOW SHAPED BODY FROM POLYPROPYLENE FOAM
JP5956806B2 (en) Method for producing magnesium alloy extruded material
KR101290596B1 (en) Immersion nozzle
CN107362958A (en) A kind of technique that the mute androgynous metal effect of light is realized on plastic parts
JP2005526895A5 (en)
SI2408346T1 (en) Verfahren zur kontinuierlichen herstellung von schwammkorpern aus regenerierter cellulose und ein schwammkorper
RU2012157789A (en) METHOD FOR PRODUCING SEAMLESS PIPES
JP2010507512A5 (en)
CN204771205U (en) Welding slag automatic clearing apparatus
CN103464503B (en) A kind of extruding die for aluminum shaped material
JPS63313612A (en) Manufacture of hollow extrusion shape made of aluminium for vacuum
CN208800558U (en) A kind of hollow cast ingot
CN207643509U (en) A kind of Teflon mold of carbon fiber racket
CN207859442U (en) A kind of five hole flat optical cable molding dies
CN105291455A (en) Coating and vulcanizing method of rubber hose
CN204487972U (en) A kind of anti-sulks mould
CN103071792B (en) A kind of curved plate forming mold of hard alloy
CN204894462U (en) Die head with lip structure
Moghanizadeh Development of 3D printing scaffolds by sacrificial ice support layers
CN204526137U (en) Flat crowded lower blowing method film apparatus
CN207758086U (en) A kind of cable plastic extrusion composite construction die sleeve
CN208697928U (en) A kind of PVC structured wall popes inner wall cooling device
CN204687311U (en) The coated flexible pipe mould of high pressure
CN108202439A (en) A kind of high-performance composite materials foaming mould with air discharge duct
JPH0347615A (en) Manufacture of curved and extruded hollow aluminum material to be formed for vacuum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160617

R150 Certificate of patent or registration of utility model

Ref document number: 5956806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150