JP2013211171A - Method of manufacturing sulfide-based solid electrolyte - Google Patents

Method of manufacturing sulfide-based solid electrolyte Download PDF

Info

Publication number
JP2013211171A
JP2013211171A JP2012080845A JP2012080845A JP2013211171A JP 2013211171 A JP2013211171 A JP 2013211171A JP 2012080845 A JP2012080845 A JP 2012080845A JP 2012080845 A JP2012080845 A JP 2012080845A JP 2013211171 A JP2013211171 A JP 2013211171A
Authority
JP
Japan
Prior art keywords
sulfide
solid electrolyte
powder
based solid
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012080845A
Other languages
Japanese (ja)
Other versions
JP5701808B2 (en
Inventor
Norihiko Miyashita
徳彦 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2012080845A priority Critical patent/JP5701808B2/en
Priority to PCT/JP2012/083395 priority patent/WO2013145480A1/en
Priority to TW102102303A priority patent/TW201340437A/en
Publication of JP2013211171A publication Critical patent/JP2013211171A/en
Application granted granted Critical
Publication of JP5701808B2 publication Critical patent/JP5701808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a new sulfide-based solid electrolyte that can make up an S defect and increase conductivity as compared with a conventional solid electrolyte.SOLUTION: There is provided a method of manufacturing sulfide-based solid electrolyte that is characterized by including: mixing sulfide powder comprising one or two or more selected from the group consisting of lithium sulfide (LiS), phosphorus sulfide (PSor PS), silicon sulfide (SiS), germanium sulfide (GeS), boron sulfide (BS), gallium sulfide (GaS), tin sulfide (SnS or SnS), antimony sulfide (SbSor SbS), and aluminum sulfide (AlS); and baking the mixed powder in a hydrogen sulfide gas atmosphere.

Description

本発明は、リチウムイオン電池の固体電解質として好適に用いることができる硫化物系の固体電解質の製造方法に関する。   The present invention relates to a method for producing a sulfide-based solid electrolyte that can be suitably used as a solid electrolyte of a lithium ion battery.

リチウムイオン電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器、パワーツールなどの電動工具などの電源として広く用いられており、最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池へも応用されている。   Lithium-ion batteries are secondary batteries that have a structure in which lithium is dissolved as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely returns from the negative electrode to the positive electrode during discharging. It has been widely used as a power source for home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, and power tools such as power tools. Then, it is applied also to the large sized battery mounted in an electric vehicle (EV), a hybrid electric vehicle (HEV), etc.

この種のリチウムイオン電池は、正極、負極、及びこの両電極に挟まれたイオン伝導層から構成され、当該イオン伝導層には、ポリエチレン、ポリプロピレン等の多孔質フィルムからなるセパレータに非水系の電解液を満たしたものが一般的に用いられている。ところが、電解質として、このように可燃性の有機溶剤を溶媒とする有機電解液が使用されているため、揮発や漏出を防ぐための構造・材料面での改善が必要であったほか、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善も必要であった。   This type of lithium ion battery is composed of a positive electrode, a negative electrode, and an ion conductive layer sandwiched between the two electrodes. The ion conductive layer includes a separator made of a porous film such as polyethylene or polypropylene, and a nonaqueous electrolytic cell. The one filled with liquid is generally used. However, since an organic electrolyte using a flammable organic solvent as a solvent is used as the electrolyte, it was necessary to improve the structure and materials to prevent volatilization and leakage. It was also necessary to improve the structure and materials in order to prevent the occurrence of short circuits by installing safety devices that suppress the temperature rise.

これに対し、硫化リチウム(Li2S)などの固体電解質を用いて、電池を全固体化してなる全固体型リチウム電池は、可燃性の有機溶媒を用いないので、安全装置の簡素化を図ることができ、しかも製造コストや生産性に優れたものとすることができるほか、セル内で直列に積層して高電圧化を図れるという特徴も有している。また、この種に固体電解質では、Liイオン以外は動かないため、アニオンの移動による副反応が生じないなど、安全性や耐久性の向上につながることが期待される。 On the other hand, an all-solid-state lithium battery obtained by fully solidifying a battery using a solid electrolyte such as lithium sulfide (Li 2 S) does not use a flammable organic solvent. In addition to being excellent in manufacturing cost and productivity, it has a feature that it can be stacked in series in a cell to increase the voltage. Further, in this type of solid electrolyte, since only Li ions do not move, side reactions due to the movement of anions do not occur, and it is expected to lead to improvements in safety and durability.

この種の硫化物系固体電解質は、水分や酸素と極めて反応し易く、水酸化物や酸化物を生成すると、導電率が低下する原因となるため、硫化物系固体電解質の合成を水分や酸素を含まない不活性ガス中で行うのが通常である。特許文献1には、酸素を1000ppm以下の範囲で含んだ不活性ガス流中で加熱、溶融して固体電解質を合成する方法が開示されている。   This type of sulfide-based solid electrolyte is extremely reactive with moisture and oxygen, and the formation of hydroxide and oxide causes a decrease in conductivity. Usually, it is carried out in an inert gas containing no benzene. Patent Document 1 discloses a method of synthesizing a solid electrolyte by heating and melting in an inert gas flow containing oxygen in a range of 1000 ppm or less.

特許文献2には、Li2SとP25を乾燥窒素雰囲気下で混合し、その混合粉末を石英管に投入して真空封入し、600〜700℃で焼成して固相反応させた後、急冷することで目的とするセラミックスを合成する方法が開示されている。 In Patent Document 2, Li 2 S and P 2 S 5 are mixed in a dry nitrogen atmosphere, the mixed powder is put into a quartz tube, vacuum sealed, and fired at 600 to 700 ° C. to cause a solid phase reaction. Thereafter, a method for synthesizing a target ceramic by rapid cooling is disclosed.

特許文献3には、固体電解質の各構成化合物であるLi2SやSiS2などを、所定の化学量論比に混合した後、この混合物に硫黄ガスを加えて、硫黄の過剰存在下で前記混合物を加熱溶融する製法が開示されている。 In Patent Document 3, Li 2 S, SiS 2 and the like, which are constituent compounds of a solid electrolyte, are mixed in a predetermined stoichiometric ratio, sulfur gas is added to this mixture, and the above-described compound is added in the presence of excess sulfur. A process for heating and melting the mixture is disclosed.

また、非特許文献1には、固体電解質の各構成化合物であるLi2S、GeS及びPを、所定の化学量論比に10%過剰のPを加えたものをカーボンポットに入れ、ガスの流通が可能な石英チューブ内で、Arガス雰囲気下で700℃で2時間焼成することで、Li3.25Ge0.250.75を合成する方法が報告されている。 In Non-Patent Document 1, Li 2 S, GeS 2 and P 2 S 5 which are constituent compounds of a solid electrolyte are added to a predetermined stoichiometric ratio with 10% excess P 2 S 5 added. A method of synthesizing Li 3.25 Ge 0.25 P 0.75 S 4 by placing it in a carbon pot and firing it at 700 ° C. for 2 hours in an Ar gas atmosphere in a quartz tube capable of gas flow. It has been reported.

特許第3125506号公報Japanese Patent No. 3125506 特開2001−250580号公報JP 2001-250580 A 特許3284215号公報Japanese Patent No. 3284215

Journal of Power Sources、Vol.174、632−636(2007)Journal of Power Sources, Vol. 174, 632-636 (2007)

この種の硫化物材料は、加熱温度が上がるに連れてSが抜けてS欠損を生じやすいため、上述のように、従来は石英管に封入して焼成することが多かったが、そのような方法では工業的に製造することが難しいという課題を抱えていた。
また、原料混合物に硫黄粉末を加えて、硫黄の過剰存在下で前記混合物を加熱溶融する製法も提案されていたが、硫黄は過剰に加えた分しかガスにならないため、S欠損を補填するには不十分である。また、ガスとなった硫黄は系外へと抜けていくため、硫黄ガスと溶融物との反応において、反応の初期段階と終期段階では、系内の硫黄ガス分圧が大きく変化してしまうことから、製造した固体電解質のS量が化学量論組成比よりも不足してしまうといった課題を抱えていた。
Since this type of sulfide material tends to cause S deficiency and S deficiency as the heating temperature rises, as described above, conventionally, the sulfide material was often enclosed in a quartz tube and fired. This method has a problem that it is difficult to manufacture industrially.
In addition, a production method has been proposed in which sulfur powder is added to the raw material mixture and the mixture is heated and melted in the presence of an excess of sulfur. However, since sulfur becomes a gas only in excess, sulfur can be compensated for. Is insufficient. In addition, since sulfur that has become gas escapes out of the system, the partial pressure of sulfur gas in the system greatly changes in the reaction between the sulfur gas and the melt at the initial and final stages of the reaction. For this reason, the produced solid electrolyte has a problem that the amount of S is less than the stoichiometric composition ratio.

そこで本発明は、S欠損を補填することができ、従来の固体電解質に比べて導電率を高めることができる、新たな硫化物系固体電解質の製造方法を提供せんとするものである。   Therefore, the present invention is intended to provide a new method for producing a sulfide-based solid electrolyte that can compensate for S deficiency and can increase the electrical conductivity as compared with a conventional solid electrolyte.

本発明は、硫化リチウム(LiS)と、硫化リン(P又はP)、硫化ケイ素(SiS)、硫化ゲルマニウム(GeS)、硫化ホウ素(B)、硫化ガリウム(Ga)、硫化すず(SnS又はSnS)、硫化アンチモン(Sb又はSb)及あえ及び硫化アルミニウム(Al)からなる群から選択される1種又は2種以上からなる硫化物粉末とを混合し、硫化水素ガス雰囲気で焼成することを特徴とする硫化物系固体電解質の製造方法を提案する。 The present invention relates to lithium sulfide (LiS 2 ), phosphorus sulfide (P 2 S 3 or P 2 S 5 ), silicon sulfide (SiS 2 ), germanium sulfide (GeS 2 ), boron sulfide (B 2 S 3 ), sulfide One selected from the group consisting of gallium (Ga 2 S 3 ), tin sulfide (SnS or SnS 2 ), antimony sulfide (Sb 2 S 3 or Sb 2 S 5 ), and aluminum sulfide (Al 2 S 3 ) Alternatively, a method for producing a sulfide-based solid electrolyte is proposed in which two or more sulfide powders are mixed and fired in a hydrogen sulfide gas atmosphere.

本発明が提案する硫化物系固体電解質の製造方法によれば、S欠損を補填することができ、従来の固体電解質に比べて導電率を高めることができる、新たな硫化物系固体電解質を製造することができる。   According to the method for manufacturing a sulfide-based solid electrolyte proposed by the present invention, a new sulfide-based solid electrolyte that can compensate for S deficiency and can increase the electrical conductivity compared to the conventional solid electrolyte is manufactured. can do.

以下に本発明の実施形態について詳細に述べるが、本発明の範囲が以下に説明する実施形態に限定されるものではない。   Embodiments of the present invention will be described in detail below, but the scope of the present invention is not limited to the embodiments described below.

<本固体電解質の製造方法>
本発明の実施形態に係る固体電解質の製造方法(以下「本製造方法」と称する)の一例について説明する。
<Method for producing the present solid electrolyte>
An example of a method for producing a solid electrolyte according to an embodiment of the present invention (hereinafter referred to as “the present production method”) will be described.

本製造方法は、硫化リチウム(LiS)と硫化物粉末とを混合し、硫化水素ガス雰囲気で焼成することを特徴とする硫化物系固体電解質の製造方法である。 The present production method is a method for producing a sulfide-based solid electrolyte, characterized in that lithium sulfide (LiS 2 ) and sulfide powder are mixed and fired in a hydrogen sulfide gas atmosphere.

(原料粉)
硫化リチウム(LiS)と混合する硫化物粉末としては、硫化リン(P又はP)、硫化ケイ素(SiS)、 硫化ゲルマニウム(GeS)、硫化ホウ素(B)、硫化ガリウム(Ga)、硫化すず(SnS又はSnS)、硫化アンチモン(Sb又はSb)及び硫化アルミニウム(Al)、からなる群から選択される1種又は2種以上からなる硫化物粉末であればよい。中でも、硫化リン(P25)粉末及び硫化ケイ素(SiS2)粉を組み合わせて使用するのが好ましい。
(Raw material powder)
Examples of the sulfide powder mixed with lithium sulfide (LiS 2 ) include phosphorus sulfide (P 2 S 3 or P 2 S 5 ), silicon sulfide (SiS 2 ), germanium sulfide (GeS 2 ), and boron sulfide (B 2 S 3). ), Gallium sulfide (Ga 2 S 3 ), tin sulfide (SnS or SnS 2 ), antimony sulfide (Sb 2 S 3 or Sb 2 S 5 ), and aluminum sulfide (Al 2 S 3 ). What is necessary is just the sulfide powder which consists of 1 type or 2 types or more. Among these, it is preferable to use a combination of phosphorus sulfide (P 2 S 5 ) powder and silicon sulfide (SiS 2 ) powder.

原料の粒度は特に限定するものではない。
ただし、原料、特に硫化リチウム(Li2S)粉末に関しては、粒度の小さいものの方が反応性が高く、本固体電解質の作製をより一層容易とすることができる点で好ましい。中でも、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50(「平均粒径(D50)」と称する)が20μm以下の微粒硫化リチウムを用いるのが好ましい。
硫化リチウム(Li2S)粉末の微粒化を図るためには、炭酸リチウム粉末と、硫黄(S)を含有するガスとを乾式にて接触させると共に、前記炭酸リチウムを加熱することにより硫化リチウム粉末を得る製法において、原料とする炭酸リチウム粉末の粒径を小さくすることで、得られる硫化リチウム粉末の小さくすることができる。
中でも、平均粒径(D50)が20μm以下の微粒硫化リチウムを得るためには、目的とする微粒硫化リチウムの平均粒径(D50)の1/3〜2/3の平均粒径の炭酸リチウムを用いればよく、より好ましくは2/5〜3/5の平均粒径(D50)の炭酸リチウムを用いるのがよい。より具体的には、例えば平均粒径(D50)が8μm〜12μmの炭酸リチウム粉末を用いれば、硫化リチウムの平均粒径(D50)を20μm以下とすることができ、炭酸リチウム粉末の平均粒径(D50)を4μm〜6μmとすれば、硫化リチウムの平均粒径(D50)を10μm以下とすることができ、炭酸リチウム粉末の平均粒径(D50)を0.8μm〜1.2μmとすれば、硫化リチウムの平均粒径(D50)を2μm以下とすることができる。
The particle size of the raw material is not particularly limited.
However, regarding the raw materials, particularly lithium sulfide (Li 2 S) powder, those having a smaller particle size are preferred because they have higher reactivity and can make the production of the solid electrolyte easier. Among them, it is preferable to use fine lithium sulfide having a D50 (referred to as “average particle size (D 50 )”) of 20 μm or less based on a volume-based particle size distribution obtained by measurement by a laser diffraction / scattering particle size distribution measurement method.
In order to atomize the lithium sulfide (Li 2 S) powder, the lithium carbonate powder and a gas containing sulfur (S) are brought into contact with each other in a dry manner, and the lithium carbonate powder is heated by heating the lithium carbonate. In the production method for obtaining the above, by reducing the particle size of the lithium carbonate powder as a raw material, the obtained lithium sulfide powder can be made smaller.
In particular, in order to obtain fine lithium sulfide having an average particle diameter (D 50 ) of 20 μm or less, carbonic acid having an average particle diameter of 1/3 to 2/3 of the average particle diameter (D 50 ) of the target fine lithium sulfide. Lithium may be used, and lithium carbonate having an average particle diameter (D 50 ) of 2/5 to 3/5 is more preferably used. More specifically, for example, if the average particle size (D 50) using lithium carbonate powder 8Myuemu~12myuemu, can mean particle size of the lithium sulfide (D 50) and 20μm or less, an average of lithium carbonate powder if the particle diameter of the (D 50) and 4Myuemu~6myuemu, the average particle size of the lithium sulfide (D 50) can be set to 10μm or less, an average particle size of lithium carbonate powder (D 50) 0.8μm~1 If the thickness is 0.2 μm, the average particle diameter (D 50 ) of lithium sulfide can be 2 μm or less.

(原料の混合)
原料の混合手段は、適宜手段を採用可能であり、例えばボールミル、ビーズミル、ホモジナイザー等の手段を採用することができる。湿式混合手段を採用した場合には、無極性溶媒であるヘプタンなど、原料が溶解しない溶媒の選定と、その混合後に十分乾燥するのが好ましい。
(Mixing of raw materials)
As the raw material mixing means, any appropriate means can be adopted. For example, means such as a ball mill, a bead mill, and a homogenizer can be adopted. When the wet mixing means is employed, it is preferable to select a solvent that does not dissolve the raw material, such as heptane, which is a nonpolar solvent, and to dry sufficiently after mixing.

(焼成)
焼成は、硫化水素ガス(H2S)流通下で600〜800℃で行うのが好ましい。
硫化リチウム(LiS)と硫化物粉末との混合物からなる原料粉を硫化水素ガス雰囲気で焼成する場合、焼成温度が600℃より低温であれば、焼成中にSが抜けて硫化物系固体電解質のS含有量が低下する傾向を示すのに対し、焼成温度が600℃以上になると、600℃よりも低温で焼成する場合に比べてS含有量が上昇する傾向を示し、650℃付近であれば、原料粉のS含有量を十分に回復することができる。
よって、硫化物中のSの欠損を抑制して導電率を高める観点から、焼成温度は600〜800℃とするのが好ましく、中でも650℃以上或いは750℃以下であるのがより一層好ましい。
特に硫化リチウム(Li2S)粉末、硫化リン(P25)粉末及び硫化ケイ素(SiS2)粉末の混合物からなる原料粉を硫化水素ガス雰囲気で焼成する場合は、600〜750℃で行うのがより好ましい。
(Baking)
Firing is preferably performed at 600 to 800 ° C. under a flow of hydrogen sulfide gas (H 2 S).
When firing raw material powder composed of a mixture of lithium sulfide (LiS 2 ) and sulfide powder in a hydrogen sulfide gas atmosphere, if the firing temperature is lower than 600 ° C., S is released during firing, and the sulfide-based solid electrolyte However, when the firing temperature is 600 ° C. or higher, the S content tends to increase as compared with the case of firing at a temperature lower than 600 ° C. In this case, the S content of the raw material powder can be sufficiently recovered.
Therefore, from the viewpoint of increasing the conductivity by suppressing S deficiency in the sulfide, the firing temperature is preferably 600 to 800 ° C., and more preferably 650 ° C. or higher or 750 ° C. or lower.
In particular, when a raw material powder composed of a mixture of lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder and silicon sulfide (SiS 2 ) powder is fired in a hydrogen sulfide gas atmosphere, it is performed at 600 to 750 ° C. Is more preferable.

焼成は、密閉炉で行ってもよいが、工業的に製造することを考慮すると、流動炉で行うのが好ましい。   Firing may be performed in a closed furnace, but in consideration of industrial production, it is preferably performed in a fluidized furnace.

焼成雰囲気における硫化水素ガス濃度は、10〜100%であるのが好ましく、中でも50〜100%であるのが特に好ましい。   The hydrogen sulfide gas concentration in the firing atmosphere is preferably 10 to 100%, and particularly preferably 50 to 100%.

なお、原料及び焼成物は極めて不安定で酸化したり、大気中の水分と反応し易いため、不活性ガス雰囲気に置換したグローブボックスを通して、原料を炉内にセットしたり、焼成物を炉から取り出したりする一連の作業を行うのが好ましい。   Since the raw materials and fired products are extremely unstable and easily oxidize or react with moisture in the atmosphere, the raw materials and fired products are set in the furnace through the glove box replaced with an inert gas atmosphere, or the fired products are removed from the furnace. It is preferable to perform a series of operations such as taking out.

また、未反応のH2Sガスは、有毒ガスであるため、排気ガスをバーナーなどで完全燃焼させた後、水酸化ナトリウム溶液で中和させて硫化ナトリウムなどとして処理するのが好ましい。 Further, since the unreacted H 2 S gas is a toxic gas, it is preferable that the exhaust gas is completely burned with a burner or the like, then neutralized with a sodium hydroxide solution and treated as sodium sulfide or the like.

<本固体電解質>
本製造方法により得られる硫化物系固体電解質(「本固体電解質」と称する)は、Li2S−P25、Li2S−P25−SiS2、Li2S−P25−Al23、Li2S−P25−GeS2、Li2S−P25−B、Li2S−P25−Ga、Li2S−P25−SnS又はSnS、Li2S−P25−Sb又はSbなどの結晶性を有する特徴を有している。本固体電解質は全て結晶性を有するものであり、格子欠陥等が少ないことから、非晶質性の硫化物系固体電解質と比較すると欠陥が少なく、化学的安定性に優れ、ばらつきが小さい安定した特性を得ることができる。
また、本固体電解質は、イオン伝導性に優れており、酸化物に比べて常温で活物質との界面を形成し易く、界面抵抗を低くできることが知られている。中でも、本固体電解質は常温での導電性に著しく優れている。
<This solid electrolyte>
The sulfide-based solid electrolyte (referred to as “the present solid electrolyte”) obtained by this production method is Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S. 5- Al 2 S 3 , Li 2 S—P 2 S 5 —GeS 2, Li 2 S—P 2 S 5 —B 2 S 3 , Li 2 S—P 2 S 5 —Ga 2 S 3 , Li 2 S -P 2 has S 5-SNS or SnS 2, Li 2 S-P 2 S 5 -Sb 2 S 3 or features having crystallinity such as Sb 2 S 5. Since this solid electrolyte is all crystalline and has few lattice defects, it has fewer defects compared to amorphous sulfide-based solid electrolytes, excellent chemical stability, and stable with little variation. Characteristics can be obtained.
In addition, it is known that the present solid electrolyte is excellent in ion conductivity, can easily form an interface with an active material at room temperature, and can reduce interface resistance compared to an oxide. Among these, this solid electrolyte is remarkably excellent in electrical conductivity at room temperature.

なお、上記の「結晶性」とは、X線程度の波長の光に対して回折現象を起こす程度に原子が3次元的に規則的、周期的に配列している構造を有することを意味する。そのため、上記結晶性の硫化物固体電解質は、含有する原子の種類やその割合によって、特有の結晶構造を有していることから、X線回折装置において、各結晶構造に沿ったX線回折パターンが測定される。   Note that the above “crystallinity” means having a structure in which atoms are regularly and periodically arranged three-dimensionally to the extent that a diffraction phenomenon occurs with respect to light having a wavelength of about X-rays. . For this reason, the crystalline sulfide solid electrolyte has a specific crystal structure depending on the type and proportion of atoms contained therein. Therefore, in an X-ray diffractometer, an X-ray diffraction pattern along each crystal structure is used. Is measured.

中でも、本固体電解質の一例として、Li7PS6の構造骨格を有し、Pの一部をSiで置換してなるLi7+x1−ySiy6(但し、xは−0.6〜0.6、yは0.1〜0.6)を含有する硫化物系固体電解質を挙げることができる。 Among these, as an example of the present solid electrolyte, Li 7 + x P 1-y Si y S 6 having a structural skeleton of Li 7 PS 6 and partially replacing P with Si (where x is −0.6) A sulfide-based solid electrolyte containing ˜0.6 and y is 0.1 to 0.6) can be mentioned.

本固体電解質は、結晶構造内に含有するS量が、化学量論組成から算出した理論量の95at%以上、中でも97%以上、その中でも99%以上であるのがより好ましい。
結晶構造内に含有するS量を化学量論組成から算出した理論量の95at%以上とするためには、硫化水素ガス(H2S)流通下で焼成するのがよい。
In the present solid electrolyte, the amount of S contained in the crystal structure is preferably 95 at% or more of the theoretical amount calculated from the stoichiometric composition, more preferably 97% or more, and more preferably 99% or more.
In order to set the amount of S contained in the crystal structure to 95 at% or more of the theoretical amount calculated from the stoichiometric composition, it is preferable to perform firing under a hydrogen sulfide gas (H 2 S) flow.

<本固体電解質の用途>
本固体電解質は、全固体リチウム二次電池又は全固体リチウム一次電池の固体電解質層や、正極合材に混合する固体電解質等として使用できる。
例えば正極と、負極と、正極及び負極の間に上記の固体電解質からなる層を形成することで、全固体リチウム二次電池を構成することができる。
<Uses of this solid electrolyte>
The present solid electrolyte can be used as a solid electrolyte layer of an all-solid lithium secondary battery or an all-solid lithium primary battery, a solid electrolyte mixed with a positive electrode mixture, or the like.
For example, an all-solid lithium secondary battery can be formed by forming a layer made of the above solid electrolyte between the positive electrode, the negative electrode, and the positive electrode and the negative electrode.

ここで、固体電解質からなる層は、例えばスラリーを基体上に滴下し、ドクターブレードなどで擦り切る方法、スラリー接触後にエアーナイフで切る方法、スクリン印刷法等で作成することができる。
正極材としては、リチウムイオン電池の正極活物質として使用されている正極材を適宜使用可能である。
負極材についても、リチウムイオン電池の正極活物質として使用されている正極材を適宜使用可能である。
Here, the layer made of the solid electrolyte can be prepared by, for example, dropping a slurry onto a substrate and scraping it with a doctor blade, cutting with an air knife after contacting the slurry, or a screen printing method.
As the positive electrode material, a positive electrode material used as a positive electrode active material of a lithium ion battery can be used as appropriate.
As the negative electrode material, a positive electrode material used as a positive electrode active material of a lithium ion battery can be used as appropriate.

<用語の解説>
本発明において「固体電解質」とは、固体状態のままイオン、例えばLi+が移動し得る物質全般を意味する。
また、本発明において「X〜Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」或いは「Yより小さいことが好ましい」旨の意図を包含する。
<Glossary of terms>
In the present invention, the “solid electrolyte” means any substance that can move ions such as Li + in the solid state.
Further, in the present invention, when “X to Y” (X and Y are arbitrary numbers) is described, “X is preferably greater than X” or “ The meaning of “smaller than Y” is also included.
Further, when “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), the intention of “preferably larger than X” or “preferably smaller than Y” Is included.

以下、実施例に基づいて本発明を説明する。但し、本発明はこれらに限定されて解釈されるものではない。   Hereinafter, the present invention will be described based on examples. However, the present invention is not construed as being limited to these.

<導電率の測定>
実施例・比較例で得たサンプルをグローブボックス内で200MPaの圧力にて一軸加圧成形してペレットを作製し、更にペレット上下両面に電極としてのカーボンペーストを塗布した後、180℃で30分熱処理を行い、イオン導電率測定用サンプルを作製した。イオン導電率測定は室温(25℃)にて交流インピーダンス法にて行った。
<Measurement of conductivity>
Samples obtained in Examples and Comparative Examples were uniaxially pressed at a pressure of 200 MPa in a glove box to produce pellets, and further, carbon paste as an electrode was applied on both upper and lower surfaces of the pellets, and then at 180 ° C. for 30 minutes. Heat treatment was performed to prepare a sample for measuring ionic conductivity. The ionic conductivity was measured by the AC impedance method at room temperature (25 ° C.).

<生成相及び組成比の測定>
実施例・比較例で得られた試料について、生成相をX線回折法で測定した。また、各組成比をICP発光分析法で測定した。
<Measurement of product phase and composition ratio>
About the sample obtained by the Example and the comparative example, the production | generation phase was measured by the X ray diffraction method. Each composition ratio was measured by ICP emission spectrometry.

<実施例1>
表1に示した組成式となるよう、硫化リチウム(Li2S)粉末2.15gと、硫化リン(P25)粉末1.84gと、硫化ケイ素(SiS2)粉末1.02gとをそれぞれ秤量して混合し、ボールミルで12時間粉砕して混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にて硫化水素ガス(H2S、純度100%)を1.0L/min流通させながら、昇降温速度300℃/hにて600℃で4時間焼成した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粉末状の試料を得た。
この際、上記秤量、混合、電気炉へのセット、電気炉からの取り出し、解砕及び整粒作業は全て、十分に乾燥されたArガス(露点−60℃以上)で置換されたグローブボックス内で実施した。
<Example 1>
Lithium sulfide (Li 2 S) powder 2.15 g, phosphorus sulfide (P 2 S 5 ) powder 1.84 g, and silicon sulfide (SiS 2 ) powder 1.02 g so as to have the composition formula shown in Table 1. Each was weighed and mixed, and pulverized with a ball mill for 12 hours to prepare a mixed powder. The mixed powder is filled in a carbon container, and this is heated at a temperature rising / lowering rate of 300 ° C./h while flowing 1.0 L / min of hydrogen sulfide gas (H 2 S, purity 100%) in a tubular electric furnace. Baked at 600 ° C. for 4 hours. Thereafter, the sample was crushed in a mortar and sized with a sieve having an opening of 53 μm to obtain a powdery sample.
At this time, the above weighing, mixing, setting in the electric furnace, taking out from the electric furnace, crushing and sizing operations are all carried out in the glove box substituted with sufficiently dried Ar gas (dew point -60 ° C or higher). It carried out in.

<実施例2−10>
表1に示した組成式になるように各原料の配合量を変更すると共に、焼成温度を表1に示した温度とした以外の点は、実施例1と同様にして試料を作製した。
<Example 2-10>
A sample was prepared in the same manner as in Example 1 except that the blending amount of each raw material was changed so that the composition formula shown in Table 1 was obtained, and the firing temperature was changed to the temperature shown in Table 1.

<比較例1−8>
表1に示した組成式になるように各原料の配合量を変更すると共に、焼成温度を表1に示した温度とした以外の点は、実施例1と同様にして試料を作製した。
<Comparative Example 1-8>
A sample was prepared in the same manner as in Example 1 except that the blending amount of each raw material was changed so that the composition formula shown in Table 1 was obtained, and the firing temperature was changed to the temperature shown in Table 1.

<比較例9>
表1に示した実施例1と同じ組成式となるよう、硫化リチウム(Li2S)粉末3.11gと、硫化リン(P25)粉末1.22gと、硫化ケイ素(SiS2)粉末0.68gとをそれぞれ秤量して混合し、ボールミルで12時間粉砕して混合粉末を調製した。その混合粉末を、片方の口が閉じられている石英管に入れた後、石英管を真空ポンプで排気しながら、石英管の開いている口をバーナーで溶融して封入した。なお、石英管は、混合粉末との反応を抑制するため、内部をカーボンスプレーで塗布した後、熱処理することでカーボンコーティングを行った。この石英管を箱型電気炉に入れ、昇降温速度300℃/hにて700℃で4時間焼成した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粉末状の試料を得た。この際、上記秤量、混合、解砕及び整粒作業は全て、十分に乾燥されたArガス(露点−60℃以上)で置換されたグローブボックス内で実施した。
<Comparative Example 9>
Lithium sulfide (Li 2 S) powder 3.11 g, phosphorus sulfide (P 2 S 5 ) powder 1.22 g, and silicon sulfide (SiS 2 ) powder so as to have the same composition formula as Example 1 shown in Table 1. 0.68 g was weighed and mixed, and pulverized with a ball mill for 12 hours to prepare a mixed powder. The mixed powder was put into a quartz tube having one end closed, and the quartz tube was evacuated with a vacuum pump, and the opening with the quartz tube was melted and sealed with a burner. In addition, in order to suppress reaction with the mixed powder, the quartz tube was coated with carbon spray and then heat-treated to perform carbon coating. This quartz tube was put into a box-type electric furnace and baked at 700 ° C. for 4 hours at a temperature rising / falling rate of 300 ° C./h. Thereafter, the sample was crushed in a mortar and sized with a sieve having an opening of 53 μm to obtain a powdery sample. At this time, the above weighing, mixing, crushing, and sizing operations were all performed in a glove box that was replaced with sufficiently dried Ar gas (dew point -60 ° C. or higher).

Figure 2013211171
Figure 2013211171

表1において、「Li2S(微)」とは、XRDチャートにおいて、硫化リチウム(Li2S)のピークは検出されたものの、そのLi2Sのピーク強度が主生成相のピーク強度の3%未満であった場合である。また「unknown」とは、同定できないピークが検出された場合である。
なお、主生成相以外の不純物相が生成している場合には、正確なS量を算出することができない。そのため、S量については、XRD測定において、硫化リチウムのピークが検出されず、主生成相のピークのみが検出された場合のみに算出した。
また、「c-Li7PS6」は結晶構造が立方晶であり、「o-Li7PS6」は結晶構造が斜方晶である。
In Table 1, “Li 2 S (fine)” means that the peak of lithium sulfide (Li 2 S) is detected in the XRD chart, but the peak intensity of Li 2 S is 3 % of the peak intensity of the main product phase. %. “Unknown” refers to a case where an unidentifiable peak is detected.
Note that when an impurity phase other than the main product phase is generated, an accurate amount of S cannot be calculated. Therefore, the amount of S was calculated only when the peak of lithium sulfide was not detected and only the peak of the main product phase was detected in the XRD measurement.
“C-Li 7 PS 6 ” has a cubic crystal structure, and “o-Li 7 PS 6 ” has an orthorhombic crystal structure.

(考察)
表1に示されるように、実施例1〜10までの試料は、主たる生成相が生成しており、また未反応のLi2Sは残存していないか、あるいは僅かにしか残存していないことが分かった。
また、主生成相内に含有するS量も全て96at%以上であった。僅かにLi2Sが残存しているものについても、主生成相内に含有するS量は95at%以上であると考えられる。このことから、硫化水素ガス雰囲気で600〜800℃で焼成することによって、S欠損を抑制することができることが分かった。
導電率もo-Li7PS6構造が生成した実施例7を除いて全ての試料で10-4S/cm台以上であり、極めて高い値となっていた。
なお、Li7PS6の骨格構造は、イオン伝導性が低い斜方晶と高い立方晶の2つの結晶構造を有しており、約170℃付近が相転移点であり、室温近傍の結晶構造はイオン伝導性が低い斜方晶であった。従って、実施例7においては、一度相転移点以上に加熱した後に、急冷処理を行うことで導電率の高い立方晶が得られたことが分かった。
さらに、硫化リチウム(Li2S)粉末と、硫化リン(P25)粉末と、硫化ケイ素(SiS2)粉末を混合し、硫化水素ガス雰囲気で600〜750℃で焼成することによって、得られる試料はより導電率を顕著に高めることができることが分かった。
(Discussion)
As shown in Table 1, in the samples of Examples 1 to 10, the main product phase was generated, and unreacted Li 2 S did not remain or remained only slightly. I understood.
Further, the amount of S contained in the main product phase was 96 at% or more. Even in the case where a slight amount of Li 2 S remains, the amount of S contained in the main product phase is considered to be 95 at% or more. From this, it was found that S deficiency can be suppressed by firing at 600 to 800 ° C. in a hydrogen sulfide gas atmosphere.
The conductivity was 10 -4 S / cm or more in all samples except Example 7 in which the o-Li 7 PS 6 structure was formed, which was an extremely high value.
Note that the skeletal structure of Li 7 PS 6 has two crystal structures, an orthorhombic crystal having a low ion conductivity and a cubic crystal having a high ion conductivity, a phase transition point around 170 ° C., and a crystal structure around room temperature. Was orthorhombic with low ionic conductivity. Therefore, in Example 7, it was found that a cubic crystal having a high conductivity was obtained by heating once above the phase transition point and then performing a rapid cooling treatment.
Further, lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder, and silicon sulfide (SiS 2 ) powder are mixed and fired at 600 to 750 ° C. in a hydrogen sulfide gas atmosphere. It was found that the obtained samples can significantly increase the conductivity.

他方、表1に示す比較例1〜9までの試料は、主たる生成相以外に未反応のLi2Sや同定できない相が多く残存するか、或いは、主たる生成相のみである試料についても、主生成相内に含有するS量も全て95at%未満であった。その結果、導電率としては10-4S/cm未満で低い値であった。 On the other hand, the samples up to Comparative Examples 1 to 9 shown in Table 1 have a large number of unreacted Li 2 S and unidentifiable phases in addition to the main product phase, or the samples having only the main product phase. The amount of S contained in the product phase was also less than 95 at%. As a result, the conductivity was less than 10 −4 S / cm and a low value.

上記実施例に記載のLi2S−P25、Li2S−P25−SiS2、Li2S−P25−Al23系固体電解質は、硫化リチウム(LiS)以外の硫化物が生成相内の骨格構造を形成し、Liイオンにとって適度に大きい拡散経路を有するため、高い導電率が得られる。また、主生成相内に含有するS量が、化学量論組成から算出した理論量の95at%以上であれば、骨格構造を構成するS量が過不足なく含まれていることから、骨格構造の乱れが少なくなり、より高い導電率が得られると考えられる。
上記実施例と同様に、硫化リチウム(Li2S)及び硫化リン(P25)と、硫化ゲルマニウム(GeS)、硫化ホウ素(B)、硫化ガリウム(Ga)、硫化すず(SnS又はSnS)及び硫化アンチモン(Sb又はSb)で形成される、Li2S−P25−GeS2、Li2S−P25−B、Li2S−P25−Ga、Li2S−P25−SnS又はSnS、Li2S−P25−Sb又はSbなどの結晶性を有する固体電解質についても、Liイオンにとって適度に大きい拡散経路を有する骨格構造を形成すると共に、骨格構造を構成するS量が過不足なく含まれていれば、高い導電率が得られると考えられる。
よって、硫化リチウム(LiS)粉末と、硫化リン(P又はP)、硫化ケイ素(SiS)、硫化ゲルマニウム(GeS)、硫化ホウ素(B)、硫化ガリウム(Ga)、硫化すず(SnS又はSnS)、硫化アンチモン(Sb又はSb)及び硫化アルミニウム(Al)からなる群から選択される1種又は2種以上からなる硫化物粉末とを混合し、硫化水素ガス雰囲気で焼成すれば、同様の特性を有する硫化物系固体電解質を製造することができるものと考察される。
Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —SiS 2 , and Li 2 S—P 2 S 5 —Al 2 S 3 based solid electrolytes described in the above examples are lithium sulfide (Li 2 Since sulfides other than S) form a skeletal structure in the product phase and have a reasonably large diffusion path for Li ions, high conductivity can be obtained. Further, if the amount of S contained in the main product phase is 95 at% or more of the theoretical amount calculated from the stoichiometric composition, the amount of S constituting the skeletal structure is contained without excess or deficiency. It is considered that the disturbance is less and higher conductivity can be obtained.
As in the above example, lithium sulfide (Li 2 S) and phosphorus sulfide (P 2 S 5 ), germanium sulfide (GeS 2 ), boron sulfide (B 2 S 3 ), gallium sulfide (Ga 2 S 3 ), Li 2 S—P 2 S 5 —GeS 2, Li 2 S—P 2 S 5 —B 2 formed of tin sulfide (SnS or SnS 2 ) and antimony sulfide (Sb 2 S 3 or Sb 2 S 5 ). S 3 , Li 2 S—P 2 S 5 —Ga 2 S 3 , Li 2 S—P 2 S 5 —SnS or SnS 2 , Li 2 S—P 2 S 5 —Sb 2 S 3 or Sb 2 S 5 etc. As for the solid electrolyte having the above crystallinity, a high conductivity can be obtained if a skeletal structure having a moderately large diffusion path for Li ions is formed and the amount of S constituting the skeletal structure is included in excess or deficiency. it is conceivable that.
Therefore, lithium sulfide (LiS 2 ) powder, phosphorus sulfide (P 2 S 3 or P 2 S 5 ), silicon sulfide (SiS 2 ), germanium sulfide (GeS 2 ), boron sulfide (B 2 S 3 ), gallium sulfide One or two selected from the group consisting of (Ga 2 S 3 ), tin sulfide (SnS or SnS 2 ), antimony sulfide (Sb 2 S 3 or Sb 2 S 5 ), and aluminum sulfide (Al 2 S 3 ) It is considered that a sulfide-based solid electrolyte having similar characteristics can be produced by mixing the above-described sulfide powder and firing in a hydrogen sulfide gas atmosphere.

Claims (8)

硫化リチウム(LiS)粉末と、硫化リン(P又はP)、硫化ケイ素(SiS)、硫化ゲルマニウム(GeS)、硫化ホウ素(B)、硫化ガリウム(Ga)、硫化すず(SnS又はSnS)、硫化アンチモン(Sb又はSb)及び硫化アルミニウム(Al)からなる群から選択される1種又は2種以上からなる硫化物粉末とを混合し、硫化水素ガス雰囲気で焼成することを特徴とする硫化物系固体電解質の製造方法。 Lithium sulfide (LiS 2 ) powder, phosphorus sulfide (P 2 S 3 or P 2 S 5 ), silicon sulfide (SiS 2 ), germanium sulfide (GeS 2 ), boron sulfide (B 2 S 3 ), gallium sulfide (Ga) 2 S 3 ), tin sulfide (SnS or SnS 2 ), antimony sulfide (Sb 2 S 3 or Sb 2 S 5 ), and one or more selected from the group consisting of aluminum sulfide (Al 2 S 3 ) A sulfide-based solid electrolyte manufacturing method, comprising mixing a sulfide powder and firing in a hydrogen sulfide gas atmosphere. 硫化水素雰囲気で焼成する温度が600〜800℃であることを特徴とする請求項1記載の硫化物系固体電解質の製造方法。   The method for producing a sulfide-based solid electrolyte according to claim 1, wherein the temperature for firing in a hydrogen sulfide atmosphere is 600 to 800 ° C. 硫化リチウム(Li2S)粉末と、硫化リン(P25)粉末と、硫化ケイ素(SiS2)粉末とを混合し、硫化水素ガス雰囲気で600〜750℃で焼成することを特徴とする硫化物系固体電解質の製造方法。 Lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder, and silicon sulfide (SiS 2 ) powder are mixed and fired at 600 to 750 ° C. in a hydrogen sulfide gas atmosphere. A method for producing a sulfide-based solid electrolyte. レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が20μm以下である硫化リチウム(Li2S)粉末を用いることを特徴とする請求項1〜3の何れかに記載の硫化物系固体電解質の製造方法。 According to claim 1, D50 due to volume-based particle size distribution obtained by measuring by a laser diffraction scattering particle size distribution measuring method is characterized by using less of lithium sulfide (Li 2 S) powder 20μm A method for producing a sulfide-based solid electrolyte. 請求項1〜4の何れかに記載の製造方法で得られる硫化物系固体電解質であって、結晶性を有することを特徴とする硫化物系固体電解質。   A sulfide-based solid electrolyte obtained by the production method according to claim 1, wherein the sulfide-based solid electrolyte has crystallinity. 請求項1〜4の何れかに記載の製造方法で得られる硫化物系固体電解質であって、結晶構造内に含有するS量が、化学量論組成から算出した理論量の95at%以上であることを特徴とする硫化物系固体電解質。   The sulfide-based solid electrolyte obtained by the production method according to claim 1, wherein the amount of S contained in the crystal structure is 95 at% or more of the theoretical amount calculated from the stoichiometric composition. A sulfide-based solid electrolyte characterized by that. リチウムイオン電池の電解質として用いることを特徴とする請求項5又は6に記載の硫化物系固体電解質。   The sulfide-based solid electrolyte according to claim 5 or 6, wherein the sulfide-based solid electrolyte is used as an electrolyte of a lithium ion battery. 請求項5〜7の何れかに記載された硫化物系固体電解質を備えたリチウムイオン電池。
The lithium ion battery provided with the sulfide type solid electrolyte in any one of Claims 5-7.
JP2012080845A 2012-03-30 2012-03-30 Method for producing sulfide solid electrolyte Active JP5701808B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012080845A JP5701808B2 (en) 2012-03-30 2012-03-30 Method for producing sulfide solid electrolyte
PCT/JP2012/083395 WO2013145480A1 (en) 2012-03-30 2012-12-25 Method for producing sulfide-based solid electrolyte
TW102102303A TW201340437A (en) 2012-03-30 2013-01-22 Manufacturing method of sulfide-based solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080845A JP5701808B2 (en) 2012-03-30 2012-03-30 Method for producing sulfide solid electrolyte

Publications (2)

Publication Number Publication Date
JP2013211171A true JP2013211171A (en) 2013-10-10
JP5701808B2 JP5701808B2 (en) 2015-04-15

Family

ID=49258810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080845A Active JP5701808B2 (en) 2012-03-30 2012-03-30 Method for producing sulfide solid electrolyte

Country Status (3)

Country Link
JP (1) JP5701808B2 (en)
TW (1) TW201340437A (en)
WO (1) WO2013145480A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167845A (en) * 2013-02-28 2014-09-11 Toyota Motor Corp Process of manufacturing sulfide solid electrolyte material
WO2014171483A1 (en) * 2013-04-16 2014-10-23 トヨタ自動車株式会社 Sulfide solid electrolyte material, cell, and method for manufacturing sulfide solid electrolyte material
JP2017021965A (en) * 2015-07-09 2017-01-26 国立大学法人東京工業大学 Lithium solid electrolyte
WO2018092366A1 (en) 2016-11-16 2018-05-24 出光興産株式会社 Sulfide solid electrolyte
US20180166740A1 (en) * 2016-12-09 2018-06-14 Toyota Jidosha Kabushiki Kaisha Method of producing sulfide solid electrolyte
JP2018172244A (en) * 2017-03-31 2018-11-08 国立研究開発法人産業技術総合研究所 Lithium tin sulfide
US10818966B2 (en) 2016-09-08 2020-10-27 Idemitsu Kosan Co., Ltd. Sulfide solid electrolyte with argyrodite type crystal structure
WO2021054412A1 (en) 2019-09-20 2021-03-25 出光興産株式会社 Method for producing solid electrolyte
DE112020000097T5 (en) 2019-08-09 2021-08-19 Idemitsu Kosan Co., Ltd. Process for the production of a solid electrolyte
WO2022025268A1 (en) * 2020-07-31 2022-02-03 Agc株式会社 Method for producing sulfide solid electrolyte, and sulfide solid electrolyte
KR20220116334A (en) * 2016-08-23 2022-08-22 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Sulfide Solid Electrolyte

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748052B (en) * 2017-02-03 2021-12-01 德商亞比馬利德國有限公司 Highly reactive, dust-free and free-flowing lithium sulfide and method for producing it
KR20200036918A (en) 2017-09-14 2020-04-07 후지필름 가부시키가이샤 Solid electrolyte composition, manufacturing method, storage method and kit, solid electrolyte-containing sheet, storage method and kit, and all-solid-state secondary battery
CN109841898B (en) * 2019-03-13 2021-01-19 宁德新能源科技有限公司 Solid electrolyte, method of preparing the same, electrochemical device and electronic device including the same
JP6909365B2 (en) 2019-04-19 2021-07-28 三井金属鉱業株式会社 Method for producing sulfide solid electrolyte
CN110526281B (en) * 2019-08-26 2021-08-24 浙江工业大学 Method for synthesizing tin disulfide
CN112456543B (en) * 2020-11-24 2023-05-23 深圳大学 High energy ball milling method for preparing Ga with high energy density 2 S 3 Negative electrode material of lithium/sodium ion battery
CN112495400B (en) * 2020-12-25 2021-12-28 江苏悟晴电子新材料有限公司 SnS with S vacancy2Preparation of nanosheet and application thereof in photodegradation of Cr (VI)
CN113659196A (en) * 2021-07-22 2021-11-16 河北光兴半导体技术有限公司 Sulfide solid electrolyte, preparation method thereof and all-solid-state lithium battery
CN113461014B (en) * 2021-07-30 2022-11-15 江西科泰新材料有限公司 Double-temperature-zone gas-solid synthesis process of silicon disulfide
CN114142084B (en) * 2021-11-26 2024-01-30 湖州昆仑先端固态电池科技有限公司 Sulfide solid electrolyte and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103229A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Manufacturing method of solid electrolyte molded body and full solid battery provided with the same
WO2008050903A1 (en) * 2006-10-25 2008-05-02 Sumitomo Chemical Company, Limited Lithium secondary battery
JP2010040511A (en) * 2008-07-07 2010-02-18 Toyota Motor Corp Method of manufacturing sulfide system solid electrolyte

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212058A (en) * 2009-03-10 2010-09-24 Toyota Motor Corp Manufacturing method for solid electrolyte layer
JP2011165650A (en) * 2010-01-12 2011-08-25 Toyota Motor Corp Sulfide-based solid electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103229A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Manufacturing method of solid electrolyte molded body and full solid battery provided with the same
WO2008050903A1 (en) * 2006-10-25 2008-05-02 Sumitomo Chemical Company, Limited Lithium secondary battery
JP2010040511A (en) * 2008-07-07 2010-02-18 Toyota Motor Corp Method of manufacturing sulfide system solid electrolyte

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167845A (en) * 2013-02-28 2014-09-11 Toyota Motor Corp Process of manufacturing sulfide solid electrolyte material
WO2014171483A1 (en) * 2013-04-16 2014-10-23 トヨタ自動車株式会社 Sulfide solid electrolyte material, cell, and method for manufacturing sulfide solid electrolyte material
JP6036996B2 (en) * 2013-04-16 2016-11-30 トヨタ自動車株式会社 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
JPWO2014171483A1 (en) * 2013-04-16 2017-02-23 トヨタ自動車株式会社 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
US10541443B2 (en) 2015-07-09 2020-01-21 Tokyo Institute Of Technology Lithium solid electrolyte
JP2017021965A (en) * 2015-07-09 2017-01-26 国立大学法人東京工業大学 Lithium solid electrolyte
CN107851842A (en) * 2015-07-09 2018-03-27 国立大学法人东京工业大学 Lithium solid electrolyte
CN107851842B (en) * 2015-07-09 2020-09-08 国立大学法人东京工业大学 Lithium solid electrolyte
KR102448921B1 (en) 2016-08-23 2022-09-30 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Sulfide Solid Electrolyte
KR20220116334A (en) * 2016-08-23 2022-08-22 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Sulfide Solid Electrolyte
US10818966B2 (en) 2016-09-08 2020-10-27 Idemitsu Kosan Co., Ltd. Sulfide solid electrolyte with argyrodite type crystal structure
WO2018092366A1 (en) 2016-11-16 2018-05-24 出光興産株式会社 Sulfide solid electrolyte
EP4273986A2 (en) 2016-11-16 2023-11-08 Idemitsu Kosan Co.,Ltd. Sulfide solid electrolyte
KR101970892B1 (en) * 2016-12-09 2019-04-19 도요타 지도샤(주) Method of producing sulfide solid electrolyte
US10811725B2 (en) * 2016-12-09 2020-10-20 Toyota Jidosha Kabushiki Kaisha Method of producing sulfide solid electrolyte
JP2018097954A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Method of producing sulfide solid electrolyte
KR20180066821A (en) * 2016-12-09 2018-06-19 도요타 지도샤(주) Method of producing sulfide solid electrolyte
US20180166740A1 (en) * 2016-12-09 2018-06-14 Toyota Jidosha Kabushiki Kaisha Method of producing sulfide solid electrolyte
JP2018172244A (en) * 2017-03-31 2018-11-08 国立研究開発法人産業技術総合研究所 Lithium tin sulfide
DE112020000097T5 (en) 2019-08-09 2021-08-19 Idemitsu Kosan Co., Ltd. Process for the production of a solid electrolyte
WO2021054412A1 (en) 2019-09-20 2021-03-25 出光興産株式会社 Method for producing solid electrolyte
KR20220068217A (en) 2019-09-20 2022-05-25 이데미쓰 고산 가부시키가이샤 Method for manufacturing solid electrolyte
WO2022025268A1 (en) * 2020-07-31 2022-02-03 Agc株式会社 Method for producing sulfide solid electrolyte, and sulfide solid electrolyte
JP7452659B2 (en) 2020-07-31 2024-03-19 Agc株式会社 Method for producing sulfide-based solid electrolyte and sulfide-based solid electrolyte

Also Published As

Publication number Publication date
TW201340437A (en) 2013-10-01
WO2013145480A1 (en) 2013-10-03
JP5701808B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5701808B2 (en) Method for producing sulfide solid electrolyte
JP5873533B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
JP5957144B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
KR102162070B1 (en) Sulfide-based solid electrolyte for lithium secondary batteries
JP5701741B2 (en) Sulfide-based solid electrolyte
JP5985120B1 (en) Sulfide solid electrolyte and solid electrolyte compound for lithium ion battery
JP4948659B1 (en) Method for producing lithium sulfide for solid electrolyte material of lithium ion battery
CN111512397B (en) Solid electrolyte
JPWO2019009228A1 (en) Solid electrolyte of lithium secondary battery and sulfide compound for solid electrolyte
JP6595153B1 (en) Sulfide solid electrolyte particles
WO2021049414A1 (en) Sulfide solid electrolyte
JP2020027715A (en) Manufacturing method of crystalline sulfide-based solid electrolyte
TWI566454B (en) Sulfide solid electrolte for lithum ion battery and lithum ion battery
JP7435927B1 (en) Sulfide-based solid electrolyte powder, method for producing sulfide-based solid electrolyte powder, sulfide-based solid electrolyte layer, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150218

R150 Certificate of patent or registration of utility model

Ref document number: 5701808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250