JP2013210161A - Refrigerating apparatus - Google Patents

Refrigerating apparatus Download PDF

Info

Publication number
JP2013210161A
JP2013210161A JP2012081363A JP2012081363A JP2013210161A JP 2013210161 A JP2013210161 A JP 2013210161A JP 2012081363 A JP2012081363 A JP 2012081363A JP 2012081363 A JP2012081363 A JP 2012081363A JP 2013210161 A JP2013210161 A JP 2013210161A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
source side
pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081363A
Other languages
Japanese (ja)
Inventor
Yasuhiro Iwata
育弘 岩田
Tetsuya Okamoto
哲也 岡本
Kunitada Yo
国忠 楊
Kazuhiro Kosho
和宏 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012081363A priority Critical patent/JP2013210161A/en
Publication of JP2013210161A publication Critical patent/JP2013210161A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To defrost an outdoor heat exchanger in a refrigerating apparatus performing multiple-stage compression while allowing an indoor heat exchanger to function as a radiator.SOLUTION: An air conditioning apparatus 10 includes a four-stage compressor 20, a fourth heat exchanger 44 that functions as a radiator during a cooling operation and functions as an evaporator during a heating operation, and first to third heat exchangers 41-43 that function as a radiator which cools an intermediate pressure refrigerant inhaled into high-stage compression parts 22-24 during the cooling operation and functions as an evaporator during the heating operation. One of first to fourth heat exchangers 41-44 functions as a radiator during a defrosting operation, the other heat exchangers function as evaporators, and an indoor heat exchanger 12a functions as a radiator.

Description

本発明は、冷凍装置、特に、複数段圧縮機構を備えた冷凍装置に関する。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus provided with a multistage compression mechanism.

従来から、多段圧縮冷凍サイクルを行う冷凍装置であって、圧縮途中の中間圧の冷媒を冷却する手段を備えたものが存在する。例えば、特許文献1(特開2010−112618号公報)に記載の冷凍装置では、熱源ユニットが室外側熱交換器と室外側中間冷却器とを備えており、冷房運転時に、室外側熱交換器がガスクーラとして機能し、室外側中間冷却器が、前段側の圧縮要素から吐出され後段側の圧縮要素に吸入される中間圧の冷媒を冷却するインタークーラとして機能する。このように圧縮途中の中間圧の冷媒を冷却することにより、冷凍装置の運転効率が高まる。   2. Description of the Related Art Conventionally, there are refrigeration apparatuses that perform a multistage compression refrigeration cycle, and include a unit that cools an intermediate-pressure refrigerant during compression. For example, in the refrigeration apparatus described in Patent Document 1 (Japanese Patent Laid-Open No. 2010-112618), the heat source unit includes an outdoor heat exchanger and an outdoor intermediate cooler, and the outdoor heat exchanger is used during cooling operation. Functions as a gas cooler, and the outdoor intermediate cooler functions as an intercooler that cools the intermediate-pressure refrigerant that is discharged from the front-stage compression element and sucked into the rear-stage compression element. By thus cooling the intermediate pressure refrigerant in the middle of compression, the operating efficiency of the refrigeration apparatus is increased.

上述の特許文献1(特開2010−112618号公報)に記載の冷凍装置では、暖房運転時に、膨張機構で減圧された気液二相の冷媒を分流して室外側熱交換器および室外側中間冷却器の両方に並列に流し、室外側熱交換器および室外側中間冷却器を蒸発器として機能させている。このようにすれば、室外側熱交換器だけを蒸発器として用いる場合に較べて、冷媒循環量を増やし冷凍装置の運転効率を上げることができる。   In the refrigeration apparatus described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-112618) described above, during the heating operation, the gas-liquid two-phase refrigerant decompressed by the expansion mechanism is divided and the outdoor heat exchanger and the outdoor intermediate are separated. It flows in parallel with both of the coolers, and the outdoor heat exchanger and the outdoor intermediate cooler function as an evaporator. In this way, compared with the case where only the outdoor heat exchanger is used as the evaporator, the refrigerant circulation amount can be increased and the operating efficiency of the refrigeration apparatus can be increased.

ところで、暖房運転時に蒸発器として機能する熱源ユニットの各熱交換器には、熱源である空気(外気)に含まれる水分が結露して、特に外気温度が低いときには着霜が多くなる。このような熱源ユニットの熱交換器に付着した霜を溶かすために、冷凍装置においては一般に除霜運転が行われる。除霜運転では、通常、暖房運転を休止して冷房運転のサイクルで冷媒を流し、圧縮機から吐出された高温の冷媒を熱源ユニットの熱交換器に流す。しかし、冷房運転のサイクルで冷媒を流す通常の除霜運転をする場合、暖房運転を休止する必要があり、利用者に我慢を強いることになる。   By the way, in each heat exchanger of the heat source unit that functions as an evaporator during heating operation, moisture contained in air (outside air) as a heat source is condensed, and frost formation increases especially when the outside air temperature is low. In order to melt the frost adhering to the heat exchanger of such a heat source unit, a defrosting operation is generally performed in the refrigeration apparatus. In the defrosting operation, the heating operation is usually stopped, the refrigerant is allowed to flow in the cooling operation cycle, and the high-temperature refrigerant discharged from the compressor is allowed to flow to the heat exchanger of the heat source unit. However, when performing a normal defrosting operation in which the refrigerant flows in the cooling operation cycle, it is necessary to stop the heating operation, which imposes patience on the user.

本発明の課題は、利用側熱交換器を放熱器として機能させつつ熱源側熱交換器を除霜することができる、複数段圧縮を行う冷凍装置を提供することにある。   The subject of this invention is providing the refrigeration apparatus which performs multistage compression which can defrost the heat-source side heat exchanger, making a utilization side heat exchanger function as a heat radiator.

本発明の第1観点に係る冷凍装置は、複数段圧縮機構と、熱源側メイン熱交換器と、熱源側サブ熱交換器と、利用側熱交換器と、第1切換機構と、膨張機構と、制御部とを備える。複数段圧縮機構は、低段圧縮部と、高段圧縮部とが、直列に接続された圧縮機構である。熱源側メイン熱交換器は、冷房運転時に放熱器として機能し、暖房運転時に蒸発器として機能する。熱源側サブ熱交換器は、冷房運転時に、高段圧縮部に吸入される圧縮途中の中間圧冷媒を冷やす放熱器として機能し、暖房運転時に、蒸発器として機能する。利用側熱交換器は、冷房運転時に蒸発器として機能し、暖房運転時に放熱器として機能する。第1切換機構は、冷房運転時には、熱源側メイン熱交換器から利用側熱交換器に冷媒が送られ、暖房運転時には、利用側熱交換器から熱源側メイン熱交換器および熱源側サブ熱交換器に冷媒が送られるように、状態が切り換わる。膨張機構は、冷房運転時に、熱源側メイン熱交換器から利用側熱交換器に送られる冷媒を減圧し、暖房運転時に、利用側熱交換器から熱源側メイン熱交換器および熱源側サブ熱交換器に送られる冷媒を減圧する。制御部は、冷房運転と、暖房運転と、熱源側メイン熱交換器および熱源側サブ熱交換器に付着した霜を溶かす除霜運転とを、選択的に行う。そして、制御部は、除霜運転において、熱源側メイン熱交換器および熱源側サブ熱交換器のうち少なくとも1つの熱交換器を蒸発器として機能させ且つ他の熱交換器を放熱器として機能させ、利用側熱交換器を放熱器として機能させる。   A refrigeration apparatus according to a first aspect of the present invention includes a multistage compression mechanism, a heat source side main heat exchanger, a heat source side sub heat exchanger, a use side heat exchanger, a first switching mechanism, and an expansion mechanism. And a control unit. The multistage compression mechanism is a compression mechanism in which a low-stage compression unit and a high-stage compression unit are connected in series. The heat source side main heat exchanger functions as a radiator during cooling operation and functions as an evaporator during heating operation. The heat source side sub heat exchanger functions as a radiator that cools the intermediate pressure refrigerant in the middle of compression sucked into the high-stage compression unit during the cooling operation, and functions as an evaporator during the heating operation. The use side heat exchanger functions as an evaporator during cooling operation and functions as a radiator during heating operation. In the cooling operation, the first switching mechanism sends the refrigerant from the heat source side main heat exchanger to the use side heat exchanger, and during the heating operation, the heat source side main heat exchanger and the heat source side sub heat exchange from the use side heat exchanger. The state changes so that the refrigerant is sent to the vessel. The expansion mechanism decompresses the refrigerant sent from the heat source side main heat exchanger to the user side heat exchanger during the cooling operation, and during the heating operation, the heat source side main heat exchanger and the heat source side sub heat exchange from the user side heat exchanger. The refrigerant sent to the vessel is depressurized. The control unit selectively performs a cooling operation, a heating operation, and a defrosting operation for melting frost attached to the heat source side main heat exchanger and the heat source side sub heat exchanger. In the defrosting operation, the control unit causes at least one of the heat source side main heat exchanger and the heat source side sub heat exchanger to function as an evaporator and allows the other heat exchanger to function as a radiator. The use side heat exchanger functions as a radiator.

この冷凍装置では、冷房運転時には、放熱器として機能する熱源側メイン熱交換器から蒸発器として機能する利用側熱交換器へと流れる冷媒が、膨張機構で減圧され、複数段圧縮機構では、複数の高段圧縮部に吸入される圧縮途中の中間圧冷媒が、熱源側サブ熱交換器によって冷やされる。また、暖房運転時には、放熱器として機能する利用側熱交換器から蒸発器として機能する熱源側メイン熱交換器および熱源側サブ熱交換器へと流れる冷媒が、膨張機構で減圧され、減圧後の冷媒が、熱源側メイン熱交換器に流れるとともに、熱源側サブ熱交換器にも流れ、熱源側メイン熱交換器および熱源側サブ熱交換器において蒸発する。そして、除霜運転時には、暖房運転時と同じく利用側熱交換器を放熱器として機能させ、熱源側メイン熱交換器および熱源側サブ熱交換器のうち少なくとも1つの熱交換器を蒸発器として機能させ且つ他の熱交換器を放熱器として機能させている。この除霜運転では、利用側熱交換器が放熱器となるため利用者に我慢を強いることがなくなる。また、除霜運転において放熱器として機能させる熱源側メイン熱交換器あるいは熱源側サブ熱交換器では、霜が溶ける。   In this refrigeration apparatus, during cooling operation, the refrigerant flowing from the heat source side main heat exchanger functioning as a radiator to the use side heat exchanger functioning as an evaporator is decompressed by the expansion mechanism, and in the multistage compression mechanism, The intermediate-pressure refrigerant in the middle of compression sucked into the high-stage compression section is cooled by the heat source side sub heat exchanger. During heating operation, the refrigerant flowing from the use side heat exchanger functioning as a radiator to the heat source side main heat exchanger functioning as an evaporator and the heat source side sub heat exchanger is decompressed by the expansion mechanism, The refrigerant flows to the heat source side main heat exchanger and also flows to the heat source side sub heat exchanger, and evaporates in the heat source side main heat exchanger and the heat source side sub heat exchanger. Then, during the defrosting operation, the use side heat exchanger functions as a radiator as in the heating operation, and at least one of the heat source side main heat exchanger and the heat source side sub heat exchanger functions as an evaporator. And other heat exchangers function as radiators. In this defrosting operation, the user-side heat exchanger becomes a radiator, so that the user is not forced to endure. Further, frost melts in the heat source side main heat exchanger or the heat source side sub heat exchanger that functions as a radiator in the defrosting operation.

本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、制御部は、除霜運転において、熱源側メイン熱交換器および熱源側サブ熱交換器のうち放熱器として機能させる熱交換器を、順に切り換える。   The refrigeration apparatus according to the second aspect of the present invention is the refrigeration apparatus according to the first aspect, wherein the control unit is a radiator among the heat source side main heat exchanger and the heat source side sub heat exchanger in the defrosting operation. Switch the heat exchanger to function in order.

第1観点に係る冷凍装置では、熱源側メイン熱交換器および熱源側サブ熱交換器のうち一部は除霜運転において蒸発器として機能させるため、除霜運転の開始から終了まで熱源側メイン熱交換器および熱源側サブ熱交換器のうち放熱器として機能させる熱交換器を変えなければ、一度の除霜運転で全ての熱源側メイン熱交換器および熱源側サブ熱交換器の霜を取り除くことは出来ない。そこで、第2観点に係る冷凍装置では、除霜運転において、熱源側メイン熱交換器および熱源側サブ熱交換器のうち放熱器として機能させる熱交換器を順に切り換え、熱源側の多くの熱交換器の霜を取り除くように制御を行っている。   In the refrigeration apparatus according to the first aspect, part of the heat source side main heat exchanger and the heat source side sub heat exchanger functions as an evaporator in the defrosting operation. If the heat exchanger functioning as a radiator is not changed among the exchanger and the heat source side sub heat exchanger, all the heat source side main heat exchanger and the heat source side sub heat exchanger will be defrosted by one defrosting operation. I can't. Therefore, in the refrigeration apparatus according to the second aspect, in the defrosting operation, the heat exchanger functioning as a radiator is sequentially switched among the heat source side main heat exchanger and the heat source side sub heat exchanger, and many heat exchanges on the heat source side are performed. Control is performed to remove the frost on the vessel.

本発明の第3観点に係る冷凍装置は、第2観点に係る冷凍装置であって、熱源側メイン熱交換器および熱源側サブ熱交換器は、それぞれが平面的に重なるように、上下に配置されている。そして、制御部は、除霜運転において、熱源側メイン熱交換器および熱源側サブ熱交換器のうち下に配置されている熱交換器よりも上に配置されている熱交換器を優先して放熱器として機能させ、順に下に配置されている熱交換器を放熱器として機能させていく。   The refrigeration apparatus according to the third aspect of the present invention is the refrigeration apparatus according to the second aspect, wherein the heat source side main heat exchanger and the heat source side sub heat exchanger are arranged one above the other so as to overlap each other in a plane. Has been. And in a defrost operation, a control part gives priority to the heat exchanger arrange | positioned above the heat exchanger arrange | positioned below among the heat source side main heat exchanger and the heat source side sub heat exchanger. It functions as a radiator, and the heat exchangers arranged below are functioned as radiators.

ここでは、まず上に位置する熱交換器の霜が溶けるため、その溶けて温度が上がった水が下の熱交換器へと流れていく。これにより、下に位置する熱交換器の霜が少し溶けることになり、下に位置する熱交換器を放熱器として霜を溶かすときに要する時間が短くなる。   Here, since the frost of the heat exchanger located at the top melts first, the melted and heated water flows to the lower heat exchanger. Thereby, the frost of the heat exchanger located below will melt a little, and the time required to melt the frost using the heat exchanger located below as a radiator will be shortened.

本発明の第4観点に係る冷凍装置は、第1から第3観点のいずれかに係る冷凍装置であって、第1冷媒配管と、除霜用配管と、第2切換機構とをさらに備えている。第1冷媒配管は、冷房運転時に、利用側熱交換器で蒸発した低圧冷媒が流れ、暖房運転時に、複数段圧縮機構の最も高段の高段圧縮部から吐出された高圧冷媒が利用側熱交換器に向かって流れる配管である。除霜用配管は、第1冷媒配管から分岐して、熱源側メイン熱交換器が放熱器として機能するときの入口配管となる第2冷媒配管に向かう。第2切換機構は、第1冷媒配管、除霜用配管および第2冷媒配管が連通する連通状態と、第1冷媒配管、除霜用配管および第2冷媒配管が連通しない非連通状態とを切り換える。   A refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to any one of the first to third aspects, further comprising a first refrigerant pipe, a defrosting pipe, and a second switching mechanism. Yes. In the first refrigerant pipe, the low-pressure refrigerant evaporated in the use-side heat exchanger flows during the cooling operation, and during the heating operation, the high-pressure refrigerant discharged from the highest high-stage compression portion of the multistage compression mechanism is used on the use-side heat. It is a pipe that flows toward the exchanger. The defrosting pipe branches from the first refrigerant pipe and goes to the second refrigerant pipe that becomes an inlet pipe when the heat source side main heat exchanger functions as a radiator. The second switching mechanism switches between a communication state in which the first refrigerant pipe, the defrosting pipe and the second refrigerant pipe communicate with each other and a non-communication state in which the first refrigerant pipe, the defrosting pipe and the second refrigerant pipe do not communicate with each other. .

ここでは、第2切換機構を連通状態に切り換えることで、複数段圧縮機構から吐出した高温の高圧冷媒を、利用側熱交換器に流すとともに熱源側メイン熱交換器に流すことができる。これにより、除霜運転時に利用側熱交換器を放熱器として機能させつつ熱源側メイン熱交換器に付いた霜を溶かすことが可能になる。   Here, by switching the second switching mechanism to the communication state, the high-temperature high-pressure refrigerant discharged from the multiple-stage compression mechanism can flow to the use side heat exchanger and to the heat source side main heat exchanger. Thereby, it becomes possible to melt the frost attached to the heat source side main heat exchanger while causing the use side heat exchanger to function as a radiator during the defrosting operation.

本発明の第5観点に係る冷凍装置は、第1から第4観点のいずれかに係る冷凍装置であって、高段圧縮部は、低段圧縮部から吐出された冷媒を吸入する第2段圧縮部と、第2段圧縮部から吐出された冷媒を吸入する第3段圧縮部とを含む。また、熱源側サブ熱交換器は、冷房運転時に低段圧縮部から吐出され第2段圧縮部に吸入される冷媒を冷やす熱源側第1サブ熱交換器と、冷房運転時に第2段圧縮部から吐出され第3段圧縮部に吸入される冷媒を冷やす熱源側第2サブ熱交換器とを含む。そして、制御部は、除霜運転において、熱源側メイン熱交換器および熱源側サブ熱交換器のうち1つの熱交換器を放熱器として機能させ且つ残りの熱交換器を蒸発器として機能させ、利用側熱交換器を放熱器として機能させる。   A refrigeration apparatus according to a fifth aspect of the present invention is the refrigeration apparatus according to any one of the first to fourth aspects, wherein the high-stage compression section is a second stage that sucks the refrigerant discharged from the low-stage compression section. A compression unit, and a third-stage compression unit that sucks the refrigerant discharged from the second-stage compression unit. The heat source side sub heat exchanger includes a heat source side first sub heat exchanger that cools the refrigerant discharged from the low stage compression unit during cooling operation and sucked into the second stage compression unit, and the second stage compression unit during cooling operation. And a heat source side second sub heat exchanger that cools the refrigerant discharged from the refrigerant and sucked into the third stage compression section. And in the defrosting operation, the controller causes one heat exchanger of the heat source side main heat exchanger and the heat source side sub heat exchanger to function as a radiator and the remaining heat exchanger to function as an evaporator, Make the user-side heat exchanger function as a radiator.

ここでは、少なくとも2つの高段圧縮部を有し3段以上の圧縮を行う複数段圧縮機構を採用し、熱源側サブ熱交換器も2つ以上設け、除霜運転においては熱源側の1つの熱交換器だけを放熱器として機能させ、他の2以上の熱源側の熱交換器を蒸発器として機能させている。このように除霜運転において熱源側の2以上の熱交換器が蒸発器として機能するため、放熱器として機能している利用側熱交換器の暖房能力が大きくは減少せず、利用者が暖房能力の低下に不満を持つ場合であっても利用者の不快度合いを小さく抑えることができる。   Here, a multi-stage compression mechanism that has at least two high-stage compression sections and performs compression of three or more stages, two or more heat source side sub heat exchangers are also provided, and one of the heat source side is provided in the defrosting operation. Only the heat exchanger functions as a radiator, and the other two or more heat source side heat exchangers function as an evaporator. Thus, since two or more heat exchangers on the heat source side function as an evaporator in the defrosting operation, the heating capacity of the use side heat exchanger functioning as a radiator is not greatly reduced, and the user can perform heating. Even if the user is dissatisfied with the decrease in ability, the user's degree of discomfort can be kept small.

本発明の第1観点に係る冷凍装置では、除霜運転において、熱源側メイン熱交換器および熱源側サブ熱交換器のうち少なくとも1つの熱交換器を蒸発器として機能させるため、利用側熱交換器を放熱器として機能させつつ熱源側の熱交換器を除霜することができる。   In the refrigeration apparatus according to the first aspect of the present invention, in the defrosting operation, at least one of the heat source side main heat exchanger and the heat source side sub heat exchanger functions as an evaporator. The heat exchanger on the heat source side can be defrosted while functioning as a radiator.

本発明の第2観点に係る冷凍装置では、除霜運転において、熱源側の各熱交換器の霜を順に溶かすことができるようになる。   In the refrigeration apparatus according to the second aspect of the present invention, the frost of each heat exchanger on the heat source side can be melted in order in the defrosting operation.

本発明の第3観点に係る冷凍装置では、除霜運転において、上に配置されている熱交換器を優先して放熱器として機能させるため、下に位置する熱交換器が放熱器となって霜を溶かすときに要する時間が短くなる。   In the refrigeration apparatus according to the third aspect of the present invention, in the defrosting operation, the heat exchanger disposed above is preferentially caused to function as a radiator, so that the heat exchanger located below serves as a radiator. The time required to melt the frost is shortened.

本発明の第4観点に係る冷凍装置では、第2切換機構を連通状態に切り換えることで、複数段圧縮機構から吐出した高温の高圧冷媒を、利用側熱交換器に流すとともに熱源側メイン熱交換器に流すことができる。   In the refrigeration apparatus according to the fourth aspect of the present invention, the high-temperature high-pressure refrigerant discharged from the multistage compression mechanism is caused to flow to the use side heat exchanger and the heat source side main heat exchange by switching the second switching mechanism to the communication state. Can be poured into a vessel.

本発明の第5観点に係る冷凍装置では、放熱器として機能している利用側熱交換器の能力が大きくは減少せず、利用者の不快度合いを小さく抑えることができる。   In the refrigeration apparatus according to the fifth aspect of the present invention, the ability of the use side heat exchanger functioning as a radiator is not greatly reduced, and the user's discomfort can be kept small.

本発明の一実施形態に係る空気調和装置の冷房運転時の概略構成図である。It is a schematic block diagram at the time of air_conditionaing | cooling operation of the air conditioning apparatus which concerns on one Embodiment of this invention. 図1の冷房運転時の冷凍サイクルの圧力−エンタルピ線図である。FIG. 2 is a pressure-enthalpy diagram of a refrigeration cycle during the cooling operation of FIG. 1. 空気調和装置の暖房運転時の概略構成図である。It is a schematic block diagram at the time of the heating operation of an air conditioning apparatus. 図3の暖房運転時の冷凍サイクルの圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the refrigerating cycle at the time of heating operation of FIG. 空気調和装置の室外ユニットの側板の一部を省略した概略外観斜視図。The schematic external appearance perspective view which abbreviate | omitted a part of side plate of the outdoor unit of an air conditioning apparatus. 空気調和装置の制御部の制御対象を示す制御構成図である。It is a control block diagram which shows the control object of the control part of an air conditioning apparatus. 除霜運転の各ステージを示す制御模式図である。It is a control schematic diagram which shows each stage of a defrost operation. 空気調和装置の除霜運転の第1ステージの概略構成図である。It is a schematic block diagram of the 1st stage of the defrost operation of an air conditioning apparatus. 図8の除霜運転の第1ステージ時の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram at the time of the 1st stage of the defrost operation of FIG. 空気調和装置の除霜運転の第2ステージの概略構成図である。It is a schematic block diagram of the 2nd stage of the defrost operation of an air conditioning apparatus. 図10の除霜運転の第2ステージ時の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram at the time of the 2nd stage of the defrost operation of FIG. 空気調和装置の除霜運転の第3ステージの概略構成図である。It is a schematic block diagram of the 3rd stage of the defrost operation of an air conditioning apparatus. 図12の除霜運転の第3ステージ時の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram at the time of the 3rd stage of the defrost operation of FIG. 空気調和装置の除霜運転の第4ステージの概略構成図である。It is a schematic block diagram of the 4th stage of the defrost operation of an air conditioning apparatus. 図14の除霜運転の第4ステージ時の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram at the time of the 4th stage of the defrost operation of FIG. 変形例Bに係る空気調和装置の暖房運転時の概略構成図である。It is a schematic block diagram at the time of the heating operation of the air conditioning apparatus which concerns on the modification B. 変形例Bに係る空気調和装置の除霜運転第1ステージの概略構成図である。It is a schematic block diagram of the 1st stage of the defrost operation of the air conditioning apparatus which concerns on the modification B. 変形例Bに係る空気調和装置の除霜運転第2ステージの概略構成図である。It is a schematic block diagram of the 2nd defrosting operation | movement stage of the air conditioning apparatus which concerns on the modification B.

本発明の一実施形態に係る冷凍装置である空気調和装置10について、以下、図面を参照しながら説明する。   An air conditioner 10 that is a refrigeration apparatus according to an embodiment of the present invention will be described below with reference to the drawings.

(1)空気調和装置の構成
図1、図3、図6、図8、図10、図12および図14は、空気調和装置10の概略構成図である。空気調和装置10は、超臨界状態の二酸化炭素冷媒を使用して四段圧縮冷凍サイクルを行う冷凍装置である。空気調和装置10は、熱源ユニットである室外ユニット11と、利用ユニットである複数の室内ユニット12とが、連絡冷媒配管13,14によって結ばれた装置であり、冷房運転のサイクルと、暖房運転のサイクルと、除霜運転の4つのステージのサイクルとが切り替わる冷媒回路を有する。図1は、冷房運転時において冷媒回路を循環する冷媒の流れを表している。図3は、暖房運転時において冷媒回路を循環する冷媒の流れを表している。図6は、制御部10aの制御対象機器を示す制御構成図である。図8、図10、図12および図14は、除霜運転時の各ステージにおいて冷媒回路を循環する冷媒の流れを表している。図1、図3、図8、図10、図12および図14において、冷媒回路の配管に沿って示す矢印が、冷媒の流れを表している。
(1) Configuration of Air Conditioner FIGS. 1, 3, 6, 8, 8, 10, and 14 are schematic configuration diagrams of the air conditioner 10. FIG. The air conditioning apparatus 10 is a refrigeration apparatus that performs a four-stage compression refrigeration cycle using a supercritical carbon dioxide refrigerant. The air conditioner 10 is an apparatus in which an outdoor unit 11 that is a heat source unit and a plurality of indoor units 12 that are utilization units are connected by communication refrigerant pipes 13 and 14. It has a refrigerant circuit in which the cycle and the cycle of the four stages of the defrosting operation are switched. FIG. 1 shows the flow of the refrigerant circulating in the refrigerant circuit during the cooling operation. FIG. 3 shows the flow of the refrigerant circulating in the refrigerant circuit during the heating operation. FIG. 6 is a control configuration diagram illustrating a control target device of the control unit 10a. 8, 10, 12 and 14 show the flow of the refrigerant circulating in the refrigerant circuit in each stage during the defrosting operation. In FIG. 1, FIG. 3, FIG. 8, FIG. 10, FIG. 12 and FIG. 14, the arrows shown along the piping of the refrigerant circuit represent the flow of the refrigerant.

空気調和装置10の冷媒回路は、主として、四段圧縮機20、第1切換機構としての第1〜第4四路切換弁31〜34、第2切換機構としての除霜用三方弁37、室外熱交換器40、室外電動弁50、逆止弁回路55、エコノマイザ熱交換器61、内部熱交換器62、膨張機構70、レシーバ80、過冷却熱交換器90、室内熱交換器12a、室内電動弁12bおよび制御部10a(図6参照)から成る。室外熱交換器40は、並列に配置された、第1熱交換器41、第2熱交換器42、第3熱交換器43および第4熱交換器44から成る。   The refrigerant circuit of the air conditioner 10 mainly includes a four-stage compressor 20, first to fourth four-way switching valves 31 to 34 as a first switching mechanism, a defrosting three-way valve 37 as a second switching mechanism, and an outdoor unit. Heat exchanger 40, outdoor electric valve 50, check valve circuit 55, economizer heat exchanger 61, internal heat exchanger 62, expansion mechanism 70, receiver 80, supercooling heat exchanger 90, indoor heat exchanger 12a, indoor electric It consists of the valve 12b and the control part 10a (refer FIG. 6). The outdoor heat exchanger 40 includes a first heat exchanger 41, a second heat exchanger 42, a third heat exchanger 43, and a fourth heat exchanger 44 that are arranged in parallel.

以下、冷媒回路の各構成要素を詳細に説明する。   Hereinafter, each component of the refrigerant circuit will be described in detail.

(1−1)四段圧縮機
四段圧縮機20は、密閉容器内に、第1圧縮部21、第2圧縮部22、第3圧縮部23、第4圧縮部24および圧縮機駆動モータ(図示せず)が収容された、密閉式の圧縮機である。圧縮機駆動モータは、駆動軸を介して、4つの圧縮部21〜24を駆動する。すなわち、四段圧縮機20は、4つの圧縮部21〜24が単一の駆動軸に連結された一軸四段の圧縮構造を有している。四段圧縮機20では、第1圧縮部21、第2圧縮部22、第3圧縮部23および第4圧縮部24が、この順番で直列に配管接続される。第1圧縮部21は、第1吸入管21aから冷媒を吸い込み、第1吐出管21bへと冷媒を吐出する。第2圧縮部22は、第2吸入管22aから冷媒を吸い込み、第2吐出管22bへと冷媒を吐出する。第3圧縮部23は、第3吸入管23aから冷媒を吸い込み、第3吐出管23bへと冷媒を吐出する。第4圧縮部24は、第4吸入管24aから冷媒を吸い込み、第4吐出管24bへと冷媒を吐出する。
(1-1) Four-stage compressor The four-stage compressor 20 includes a first compression section 21, a second compression section 22, a third compression section 23, a fourth compression section 24, and a compressor drive motor ( (Not shown) is a hermetic compressor. A compressor drive motor drives the four compression parts 21-24 via a drive shaft. That is, the four-stage compressor 20 has a uniaxial four-stage compression structure in which four compression units 21 to 24 are connected to a single drive shaft. In the four-stage compressor 20, the 1st compression part 21, the 2nd compression part 22, the 3rd compression part 23, and the 4th compression part 24 are pipe-connected in series in this order. The first compressor 21 sucks the refrigerant from the first suction pipe 21a and discharges the refrigerant to the first discharge pipe 21b. The second compressor 22 sucks the refrigerant from the second suction pipe 22a and discharges the refrigerant to the second discharge pipe 22b. The third compressor 23 sucks the refrigerant from the third suction pipe 23a and discharges the refrigerant to the third discharge pipe 23b. The fourth compressor 24 sucks the refrigerant from the fourth suction pipe 24a and discharges the refrigerant to the fourth discharge pipe 24b.

第1圧縮部21は、最下段の圧縮機構であり、冷媒回路を流れる最も低圧の冷媒を圧縮する。第2圧縮部22は、第1圧縮部21によって圧縮された冷媒を吸い込んで圧縮する。第3圧縮部23は、第2圧縮部22によって圧縮された冷媒を吸い込んで圧縮する。第4圧縮部24は、最上段の圧縮機構であり、第3圧縮部23によって圧縮された冷媒を吸い込んで圧縮する。第4圧縮部24によって圧縮され第4吐出管24bへと吐出された冷媒は、冷媒回路を流れる最も高圧の冷媒となる。   The 1st compression part 21 is a compression mechanism of the lowest stage, and compresses the lowest pressure refrigerant which flows through a refrigerant circuit. The second compression unit 22 sucks and compresses the refrigerant compressed by the first compression unit 21. The third compression unit 23 sucks and compresses the refrigerant compressed by the second compression unit 22. The fourth compression unit 24 is the uppermost compression mechanism, and sucks and compresses the refrigerant compressed by the third compression unit 23. The refrigerant compressed by the fourth compressor 24 and discharged to the fourth discharge pipe 24b becomes the highest pressure refrigerant that flows through the refrigerant circuit.

なお、本実施形態において、各圧縮部21〜24は、ロータリー式やスクロール式などの容積式の圧縮機構である。また、圧縮機駆動モータは、制御部によってインバータ制御される。   In addition, in this embodiment, each compression parts 21-24 are positive displacement type compression mechanisms, such as a rotary type and a scroll type. The compressor drive motor is inverter-controlled by the control unit.

第1吐出管21b、第2吐出管22b、第3吐出管23bおよび第4吐出管24bには、それぞれ油分離器が設けられている。油分離器は、冷媒回路を循環する冷媒に含まれる潤滑油を分離する小容器である。図1では図示を省略しているが、各油分離器の下部からはキャピラリーチューブを含む油戻し管が各吸入管21a〜24aに向かって延びており、冷媒から分離した油を四段圧縮機20へと戻す。   Each of the first discharge pipe 21b, the second discharge pipe 22b, the third discharge pipe 23b, and the fourth discharge pipe 24b is provided with an oil separator. The oil separator is a small container that separates lubricating oil contained in the refrigerant circulating in the refrigerant circuit. Although not shown in FIG. 1, an oil return pipe including a capillary tube extends from the lower part of each oil separator toward each of the suction pipes 21a to 24a, and the oil separated from the refrigerant is supplied to the four-stage compressor. Return to 20.

(1−2)第1〜第4四路切換弁および除霜用三方弁
第1四路切換弁31、第2四路切換弁32、第3四路切換弁33および第4四路切換弁34は、冷媒回路内における冷媒の流れの方向を切り換えて、冷房運転サイクルと暖房運転サイクルとを切り換えるために設けられている切換機構である。
(1-2) First to fourth four-way selector valve and defrosting three-way valve First four-way selector valve 31, second four-way selector valve 32, third four-way selector valve 33, and fourth four-way selector valve Reference numeral 34 denotes a switching mechanism that is provided to switch between the cooling operation cycle and the heating operation cycle by switching the direction of the refrigerant flow in the refrigerant circuit.

第1四路切換弁31は、第1吐出管21b、第2吸入管22a、第1熱交換器41に延びる第1冷房入口配管41f、および低圧冷媒配管19と接続されている。低圧冷媒配管19は、室外ユニット11内の低圧のガス冷媒が流れる冷媒配管であり、内部熱交換器62を介して第1吸入管21aに冷媒を送る。   The first four-way switching valve 31 is connected to the first discharge pipe 21 b, the second suction pipe 22 a, the first cooling inlet pipe 41 f extending to the first heat exchanger 41, and the low-pressure refrigerant pipe 19. The low-pressure refrigerant pipe 19 is a refrigerant pipe through which the low-pressure gas refrigerant in the outdoor unit 11 flows, and sends the refrigerant to the first suction pipe 21 a via the internal heat exchanger 62.

第2四路切換弁32は、第2吐出管22b、第3吸入管23a、第2熱交換器42に延びる第2冷房入口配管42f、および低圧冷媒配管19と接続されている。   The second four-way switching valve 32 is connected to the second discharge pipe 22 b, the third suction pipe 23 a, the second cooling inlet pipe 42 f extending to the second heat exchanger 42, and the low-pressure refrigerant pipe 19.

第3四路切換弁33は、第3吐出管23b、第4吸入管24a、第3熱交換器43に延びる第3冷房入口配管43f、および低圧冷媒配管19と接続されている。   The third four-way switching valve 33 is connected to the third discharge pipe 23 b, the fourth suction pipe 24 a, the third cooling inlet pipe 43 f extending to the third heat exchanger 43, and the low-pressure refrigerant pipe 19.

第4四路切換弁34は、第4吐出管24b、連絡冷媒配管14に延びる第1冷媒配管18、第4熱交換器44に延びる第2冷媒配管44g、および低圧冷媒配管19と接続されている。   The fourth four-way switching valve 34 is connected to the fourth discharge pipe 24 b, the first refrigerant pipe 18 extending to the communication refrigerant pipe 14, the second refrigerant pipe 44 g extending to the fourth heat exchanger 44, and the low-pressure refrigerant pipe 19. Yes.

第4四路切換弁34に接続された第2冷媒配管44gと、第4熱交換器44の冷房運転時の入口側端部に接続された第4冷房入口配管44fとの間には、除霜用三方弁37が設けられている。除霜用三方弁37には、更に、第4四路切換弁34と連絡冷媒配管14とを結ぶ第1冷媒配管18から分岐している除霜用配管36が接続されている。除霜用三方弁37は、第2冷媒配管44gと第4冷房入口配管44fとを連通させて第4四路切換弁34と第4熱交換器44とを結ぶ第1状態と、除霜用配管36と第4冷房入口配管44fとを連通させる第2状態とを切り換える。除霜用三方弁37は、後述する除霜運転の第1ステージのときのみ第2状態となり、それ以外は第1状態である。   Between the second refrigerant pipe 44g connected to the fourth four-way switching valve 34 and the fourth cooling inlet pipe 44f connected to the inlet side end of the fourth heat exchanger 44 during the cooling operation, there is no removal. A frost three-way valve 37 is provided. The defrosting three-way valve 37 is further connected with a defrosting pipe 36 branched from the first refrigerant pipe 18 connecting the fourth four-way switching valve 34 and the communication refrigerant pipe 14. The defrosting three-way valve 37 includes a first state in which the second refrigerant pipe 44g and the fourth cooling inlet pipe 44f are connected to connect the fourth four-way switching valve 34 and the fourth heat exchanger 44, and the defrosting The second state in which the pipe 36 and the fourth cooling inlet pipe 44f are communicated is switched. The defrosting three-way valve 37 is in the second state only during the first stage of the defrosting operation to be described later, and is in the first state otherwise.

(1−3)室外熱交換器
室外熱交換器40は、上述のように、第1熱交換器41、第2熱交換器42、第3熱交換器43および第4熱交換器44から成る。冷房運転時には、第1〜第3熱交換器41〜43が、圧縮途中の冷媒(中間圧冷媒)を冷やすインタークーラとして機能し、第4熱交換器44が、最も高圧の冷媒を冷やすガスクーラとして機能する。第4熱交換器44は、第1〜第3熱交換器41〜43よりも容量が大きい。また、暖房運転時には、第1〜第4熱交換器41〜44の全てが、低圧の冷媒の蒸発器(加熱器)として機能する。
(1-3) Outdoor Heat Exchanger The outdoor heat exchanger 40 includes the first heat exchanger 41, the second heat exchanger 42, the third heat exchanger 43, and the fourth heat exchanger 44 as described above. . During the cooling operation, the first to third heat exchangers 41 to 43 function as an intercooler that cools the refrigerant being compressed (intermediate pressure refrigerant), and the fourth heat exchanger 44 serves as a gas cooler that cools the highest pressure refrigerant. Function. The fourth heat exchanger 44 has a larger capacity than the first to third heat exchangers 41 to 43. Further, during the heating operation, all of the first to fourth heat exchangers 41 to 44 function as low-pressure refrigerant evaporators (heaters).

室外熱交換器40は、図5に示すように、第1熱交換器41、第2熱交換器42、第3熱交換器43、第4熱交換器44の順で下から上に積み上げられ、一体化されている。すなわち、第1〜第4熱交換器41〜44は、平面的に重なるように上下に配置されており、第2熱交換器42は第1熱交換器41の真上に、第3熱交換器43は第2熱交換器42の真上に、第4熱交換器44は第3熱交換器43の真上に、位置している。   As shown in FIG. 5, the outdoor heat exchanger 40 is stacked from bottom to top in the order of a first heat exchanger 41, a second heat exchanger 42, a third heat exchanger 43, and a fourth heat exchanger 44. Is integrated. That is, the 1st-4th heat exchangers 41-44 are arranged up and down so that it may overlap in a plane, and the 2nd heat exchanger 42 is just above the 1st heat exchanger 41, and the 3rd heat exchange. The unit 43 is located directly above the second heat exchanger 42, and the fourth heat exchanger 44 is located directly above the third heat exchanger 43.

この室外熱交換器40には、内部を流れる冷媒と熱交換を行う冷却源あるいは加熱源として、水や空気が供給される。ここでは、室外熱交換器40に、図5に示す送風ファン40aが上向きに空気を吹き出すことによって、室外ユニット11の横および後ろから外気が室外熱交換器40を通って室外ユニット11の中に吸い込まれる。   Water or air is supplied to the outdoor heat exchanger 40 as a cooling source or a heating source for exchanging heat with the refrigerant flowing inside. Here, the blower fan 40a shown in FIG. 5 blows air upward to the outdoor heat exchanger 40, so that outside air passes from the side and the rear of the outdoor unit 11 through the outdoor heat exchanger 40 into the outdoor unit 11. Inhaled.

また、第1熱交換器41、第2熱交換器42および第3熱交換器43の室外電動弁50側の各配管からは、第2吸入管22a、第3吸入管23aおよび第4吸入管24aに向かって、分岐管である第1インタークーラ管41a、第2インタークーラ管42aおよび第3インタークーラ管43aがそれぞれ延びている。第1インタークーラ管41a、第2インタークーラ管42aおよび第3インタークーラ管43aには、図1に示すように、それぞれ逆止弁が設けられている。   Further, the second suction pipe 22a, the third suction pipe 23a, and the fourth suction pipe are connected to the pipes on the outdoor electric valve 50 side of the first heat exchanger 41, the second heat exchanger 42, and the third heat exchanger 43, respectively. A first intercooler pipe 41a, a second intercooler pipe 42a, and a third intercooler pipe 43a, which are branch pipes, extend toward 24a. As shown in FIG. 1, each of the first intercooler pipe 41a, the second intercooler pipe 42a, and the third intercooler pipe 43a is provided with a check valve.

(1−4)室外電動弁および第1〜第4逆止弁
室外電動弁50は、室外熱交換器40と逆止弁回路55との間に配備されている。また、室外電動弁50と室外熱交換器40の第1熱交換器41との間には、中間圧の冷媒が室外電動弁50のほうに流れることを止める第1逆止弁51が、室外電動弁50と室外熱交換器40の第2熱交換器42との間には、中間圧の冷媒が室外電動弁50のほうに流れることを止める第2逆止弁52が、室外電動弁50と室外熱交換器40の第3熱交換器43との間には、中間圧の冷媒が室外電動弁50のほうに流れることを止める第3逆止弁53が、室外電動弁50と室外熱交換器40の第4熱交換器44との間には、高圧の冷媒が室外電動弁50のほうに流れることを止める第4逆止弁54が、それぞれ設けられている。
(1-4) Outdoor Electric Valve and First to Fourth Check Valves The outdoor electric valve 50 is disposed between the outdoor heat exchanger 40 and the check valve circuit 55. Further, a first check valve 51 for stopping the intermediate-pressure refrigerant from flowing toward the outdoor electric valve 50 is provided between the outdoor electric valve 50 and the first heat exchanger 41 of the outdoor heat exchanger 40. Between the motor-operated valve 50 and the second heat exchanger 42 of the outdoor heat exchanger 40, a second check valve 52 that stops the intermediate-pressure refrigerant from flowing toward the outdoor motor-operated valve 50 is provided. And a third heat exchanger 43 of the outdoor heat exchanger 40, a third check valve 53 for stopping the intermediate-pressure refrigerant from flowing toward the outdoor electric valve 50 is provided between the outdoor electric valve 50 and the outdoor heat. Between the 4th heat exchanger 44 of the exchanger 40, the 4th check valve 54 which stops that a high voltage | pressure refrigerant | coolant flows toward the outdoor motor operated valve 50 is provided, respectively.

上述の第1インタークーラ管41a、第2インタークーラ管42aおよび第3インタークーラ管43aは、それぞれ、第1熱交換器41と第1逆止弁51との間、第2熱交換器42と第2逆止弁52との間および第3熱交換器43と第3逆止弁53との間から分岐している。冷房運転時、室外電動弁50は全閉状態にされる。一方、暖房運転時、室外電動弁50は、膨張機構として機能する。暖房運転時に、室外電動弁50で減圧された低圧冷媒は、分流器で4つの流れに分かれ、それぞれ、第1逆止弁51を通って第1熱交換器41に、第2逆止弁52を通って第2熱交換器42に、第3逆止弁53を通って第3熱交換器43に、第4逆止弁54を通って第4熱交換器44に流れる。第1〜第4逆止弁51〜54と第1〜第4熱交換器41〜44との間には、キャピラリーチューブが設けられており、それぞれのキャピラリーチューブは、室外電動弁50から第1〜第4熱交換器41〜44へと流れる冷媒が偏流しないように長さが調整されている。   The first intercooler pipe 41a, the second intercooler pipe 42a, and the third intercooler pipe 43a described above are respectively disposed between the first heat exchanger 41 and the first check valve 51, and the second heat exchanger 42. It branches from between the second check valve 52 and between the third heat exchanger 43 and the third check valve 53. During the cooling operation, the outdoor motor operated valve 50 is fully closed. On the other hand, during the heating operation, the outdoor motor operated valve 50 functions as an expansion mechanism. During the heating operation, the low-pressure refrigerant depressurized by the outdoor electric valve 50 is divided into four flows by the flow divider, each passing through the first check valve 51 to the first heat exchanger 41 and the second check valve 52. Through the second heat exchanger 42, through the third check valve 53 to the third heat exchanger 43, and through the fourth check valve 54 to the fourth heat exchanger 44. Capillary tubes are provided between the first to fourth check valves 51 to 54 and the first to fourth heat exchangers 41 to 44, and each capillary tube is connected to the first electric motor valve 50 from the first electric valve 50. The length is adjusted so that the refrigerant flowing to the fourth heat exchangers 41 to 44 does not drift.

(1−5)逆止弁回路
逆止弁回路55は、室外熱交換器40と室内熱交換器12aとの間に設けられており、エコノマイザ熱交換器61、内部熱交換器62および膨張機構70を介してレシーバ80の入口管81に接続されるとともに、過冷却熱交換器90を介してレシーバ80の出口管82に接続されている。
(1-5) Check valve circuit The check valve circuit 55 is provided between the outdoor heat exchanger 40 and the indoor heat exchanger 12a, and includes an economizer heat exchanger 61, an internal heat exchanger 62, and an expansion mechanism. It is connected to the inlet pipe 81 of the receiver 80 via 70, and is connected to the outlet pipe 82 of the receiver 80 via the supercooling heat exchanger 90.

逆止弁回路55は、3つの逆止弁55a、55b、55dを有している。入口逆止弁55aは、室外熱交換器40の第4熱交換器44からレシーバ80の入口管81へ向かう冷媒の流れのみを許容する逆止弁である。入口逆止弁55bは、室内熱交換器12aからレシーバ80の入口管81へ向かう冷媒の流れのみを許容する逆止弁である。出口逆止弁55dは、レシーバ80の出口管82から室内熱交換器12aへ向かう冷媒の流れのみを許容する逆止弁である。   The check valve circuit 55 includes three check valves 55a, 55b, and 55d. The inlet check valve 55 a is a check valve that allows only the flow of refrigerant from the fourth heat exchanger 44 of the outdoor heat exchanger 40 toward the inlet pipe 81 of the receiver 80. The inlet check valve 55b is a check valve that allows only a refrigerant flow from the indoor heat exchanger 12a to the inlet pipe 81 of the receiver 80. The outlet check valve 55d is a check valve that allows only the flow of refrigerant from the outlet pipe 82 of the receiver 80 toward the indoor heat exchanger 12a.

この逆止弁回路55および室外電動弁50の存在により、どの運転においても、冷媒は、エコノマイザ熱交換器61、内部熱交換器62、膨張機構70、レシーバ80、過冷却熱交換器90に順に流れる。   Due to the presence of the check valve circuit 55 and the outdoor motor-operated valve 50, in any operation, the refrigerant flows into the economizer heat exchanger 61, the internal heat exchanger 62, the expansion mechanism 70, the receiver 80, and the supercooling heat exchanger 90 in order. Flowing.

(1−6)エコノマイザ熱交換器
エコノマイザ熱交換器61は、逆止弁回路55から膨張機構70およびレシーバ80へと向かう高圧の冷媒と、その高圧の冷媒の一部を分岐させ膨張させた中間圧の冷媒との間で熱交換を行わせる。逆止弁回路55から膨張機構70へ冷媒を流す主冷媒配管から分岐した配管(インジェクション配管61a)には、第5室外電動弁61bが配備されている。この第5室外電動弁61bを通って膨張し、エコノマイザ熱交換器61で蒸発した冷媒は、第2インタークーラ管42aに向かって延びるインジェクション配管61aを通って、第2インタークーラ管42aの逆止弁よりも第3吸入管23aに近い部分に流れ込み、第3吸入管23aから第3圧縮部23へ吸い込まれる冷媒を冷やす。
(1-6) Economizer Heat Exchanger The economizer heat exchanger 61 is an intermediate in which a high-pressure refrigerant heading from the check valve circuit 55 to the expansion mechanism 70 and the receiver 80 and a part of the high-pressure refrigerant are branched and expanded. Heat exchange with the pressure refrigerant. A fifth outdoor motor-operated valve 61b is disposed in a pipe (injection pipe 61a) branched from the main refrigerant pipe that flows the refrigerant from the check valve circuit 55 to the expansion mechanism 70. The refrigerant that has expanded through the fifth outdoor motor-operated valve 61b and evaporated in the economizer heat exchanger 61 passes through the injection pipe 61a extending toward the second intercooler pipe 42a, and the check of the second intercooler pipe 42a. The refrigerant that flows into the portion closer to the third suction pipe 23a than the valve and cools the refrigerant sucked into the third compression section 23 from the third suction pipe 23a is cooled.

(1−7)内部熱交換器
内部熱交換器62は、逆止弁回路55から膨張機構70およびレシーバ80へと向かう高圧の冷媒と、膨張機構70等を通過し室内熱交換器12aあるいは室外熱交換器40で蒸発して低圧冷媒配管19を流れる低圧のガス冷媒と、の間で熱交換を行わせる。内部熱交換器62は、液ガス熱交換器と呼ばれることもある。逆止弁回路55を出た高圧の冷媒は、まずエコノマイザ熱交換器61を通過し、次に内部熱交換器62を通過して、膨張機構70およびレシーバ80へと向かう。
(1-7) Internal Heat Exchanger The internal heat exchanger 62 passes through the high-pressure refrigerant from the check valve circuit 55 to the expansion mechanism 70 and the receiver 80, the expansion mechanism 70, etc. and passes through the indoor heat exchanger 12a or the outdoor Heat exchange is performed with the low-pressure gas refrigerant that evaporates in the heat exchanger 40 and flows through the low-pressure refrigerant pipe 19. The internal heat exchanger 62 is sometimes called a liquid gas heat exchanger. The high-pressure refrigerant that has exited the check valve circuit 55 first passes through the economizer heat exchanger 61, then passes through the internal heat exchanger 62, and travels toward the expansion mechanism 70 and the receiver 80.

(1−8)膨張機構
膨張機構70は、逆止弁回路55から流れてきた高圧の冷媒を減圧・膨張させ、気液二相状態の中間圧の冷媒をレシーバ80へと流す。すなわち、膨張機構70は、冷房運転時には、高圧冷媒のガスクーラ(放熱器)として機能する室外の第4熱交換器44から、低圧冷媒の蒸発器として機能する室内熱交換器12aに送られる冷媒を減圧し、暖房運転時には、高圧冷媒のガスクーラ(放熱器)として機能する室内熱交換器12aから、低圧冷媒の蒸発器として機能する室外熱交換器40に送られる冷媒を減圧する。膨張機構70は、膨張機71および第6室外電動弁72から構成される。膨張機71は、冷媒の減圧過程の絞り損失を有効な仕事(エネルギー)として回収する役割を果たす。
(1-8) Expansion Mechanism The expansion mechanism 70 depressurizes and expands the high-pressure refrigerant that has flowed from the check valve circuit 55 and causes the intermediate-pressure refrigerant in a gas-liquid two-phase state to flow to the receiver 80. That is, during the cooling operation, the expansion mechanism 70 receives the refrigerant sent from the outdoor fourth heat exchanger 44 functioning as a high-pressure refrigerant gas cooler (heat radiator) to the indoor heat exchanger 12a functioning as an evaporator of low-pressure refrigerant. During the heating operation, the refrigerant sent from the indoor heat exchanger 12a functioning as a high-pressure refrigerant gas cooler (radiator) to the outdoor heat exchanger 40 functioning as a low-pressure refrigerant evaporator is decompressed. The expansion mechanism 70 includes an expander 71 and a sixth outdoor electric valve 72. The expander 71 plays a role of recovering the throttle loss in the decompression process of the refrigerant as effective work (energy).

(1−9)レシーバ
レシーバ80は、膨張機構70を出て入口管81から内部空間に入ってきた気液二相状態の中間圧の冷媒を、液冷媒とガス冷媒とに分離する。分離されたガス冷媒は、低圧戻し配管91aに設けられた第7室外電動弁91を通過して低圧のガスリッチな冷媒となり、過冷却熱交換器90に送られる。分離された液冷媒は、出口管82によって過冷却熱交換器90に送られる。
(1-9) Receiver The receiver 80 separates the intermediate-pressure refrigerant in the gas-liquid two-phase state that has exited the expansion mechanism 70 and entered the internal space from the inlet pipe 81 into liquid refrigerant and gas refrigerant. The separated gas refrigerant passes through a seventh outdoor motor-operated valve 91 provided in the low-pressure return pipe 91 a to become a low-pressure gas-rich refrigerant and is sent to the supercooling heat exchanger 90. The separated liquid refrigerant is sent to the supercooling heat exchanger 90 through the outlet pipe 82.

(1−10)過冷却熱交換器
過冷却熱交換器90は、低圧のガス冷媒と、レシーバ80の出口管82から出た中間圧の液冷媒との間で熱交換を行わせる。レシーバ80の出口管82から出た中間圧の液冷媒の一部は、冷房運転時には、レシーバ80と過冷却熱交換器90との間から分岐する分岐管92aを流れ、第8室外電動弁92を通過して、気液二相状態の低圧の冷媒となる。冷房運転時に第8室外電動弁92で減圧された低圧冷媒は、第7室外電動弁91で減圧された低圧冷媒と合流し、過冷却熱交換器90において、レシーバ80の出口管82から逆止弁回路55に向かう中間圧の液冷媒と熱交換され、過熱がついた状態で過冷却熱交換器90から低圧戻し配管91aを通って低圧冷媒配管19へと流れていく。一方、レシーバ80の出口管82から逆止弁回路55に向かう中間圧の液冷媒は、過冷却熱交換器90において熱を奪われ、過冷却がついた状態で逆止弁回路55へ流れていく。
(1-10) Supercooling Heat Exchanger The supercooling heat exchanger 90 performs heat exchange between the low-pressure gas refrigerant and the intermediate-pressure liquid refrigerant output from the outlet pipe 82 of the receiver 80. Part of the intermediate-pressure liquid refrigerant that has exited from the outlet pipe 82 of the receiver 80 flows through the branch pipe 92a that branches from between the receiver 80 and the supercooling heat exchanger 90 during the cooling operation, and the eighth outdoor motor-operated valve 92. And becomes a low-pressure refrigerant in a gas-liquid two-phase state. The low-pressure refrigerant depressurized by the eighth outdoor motor-operated valve 92 during the cooling operation merges with the low-pressure refrigerant depressurized by the seventh outdoor motor-operated valve 91, and in the supercooling heat exchanger 90, a check is made from the outlet pipe 82 of the receiver 80. Heat exchange is performed with the intermediate-pressure liquid refrigerant toward the valve circuit 55, and the supercooled heat exchanger 90 flows from the supercooling heat exchanger 90 to the low-pressure refrigerant pipe 19 through the low-pressure return pipe 91a. On the other hand, the intermediate-pressure liquid refrigerant from the outlet pipe 82 of the receiver 80 toward the check valve circuit 55 is deprived of heat in the supercooling heat exchanger 90 and flows to the check valve circuit 55 in a state of being supercooled. Go.

なお、暖房運転時には、第8室外電動弁92が閉まり、分岐管92aには冷媒が流れないが、レシーバ80の出口管82から出た中間圧の液冷媒と、第7室外電動弁91で減圧された低圧冷媒とが、過冷却熱交換器90において熱交換を行うことになる。   During the heating operation, the eighth outdoor motor-operated valve 92 is closed, and the refrigerant does not flow into the branch pipe 92a. However, the intermediate-pressure liquid refrigerant from the outlet pipe 82 of the receiver 80 and the seventh outdoor motor-operated valve 91 reduce the pressure. The low-pressure refrigerant that has been subjected to heat exchange in the supercooling heat exchanger 90.

(1−11)室内熱交換器
室内熱交換器12aは、複数の室内ユニット12それぞれに設けられており、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の冷却器として機能する。これらの室内熱交換器12aには、内部を流れる冷媒と熱交換を行う冷房対象あるいは暖房対象として、水や空気が流される。ここでは、室内熱交換器12aに、図示しない室内送風ファンからの室内空気が流れ、冷却あるいは加熱された空調空気が室内へと供給される。
(1-11) Indoor Heat Exchanger The indoor heat exchanger 12a is provided in each of the plurality of indoor units 12, and functions as a refrigerant evaporator during a cooling operation and as a refrigerant cooler during a heating operation. Water and air are flown through these indoor heat exchangers 12a as cooling targets or heating targets that exchange heat with the refrigerant flowing in the interior. Here, indoor air from an indoor fan (not shown) flows into the indoor heat exchanger 12a, and cooled or heated conditioned air is supplied into the room.

室内熱交換器12aの一端は室内電動弁12bに、室内熱交換器12aの他端は連絡冷媒配管14に接続されている。   One end of the indoor heat exchanger 12a is connected to the indoor motor-operated valve 12b, and the other end of the indoor heat exchanger 12a is connected to the communication refrigerant pipe 14.

(1−12)室内電動弁
室内電動弁12bは、複数の室内ユニット12それぞれに設けられており、室内熱交換器12aに流す冷媒の量を調整したり冷媒の減圧・膨張を行ったりする。室内電動弁12bは、連絡冷媒配管13と室内熱交換器12aとの間に配置されている。
(1-12) Indoor Motorized Valve The indoor motorized valve 12b is provided in each of the plurality of indoor units 12, and adjusts the amount of refrigerant flowing through the indoor heat exchanger 12a, or performs decompression / expansion of the refrigerant. The indoor motor operated valve 12b is disposed between the communication refrigerant pipe 13 and the indoor heat exchanger 12a.

(1−13)制御部
制御部10aは、室外ユニット11および室内ユニット12の電子部品が実装された各制御基板が通信線で結ばれて構成されているもので、図6に示すように、四段圧縮機20の圧縮機駆動モータや第1〜第4四路切換弁31〜34、除霜用三方弁37、各電動弁12b,50,61b,72,91,92と接続される。この制御部10aは、外部から入力された室内設定温度、図示しない温度センサや圧力センサの計測値などの情報に基づいて、圧縮機駆動モータの回転数制御や電動弁開度の調節などを行う。
(1-13) Control Unit The control unit 10a is configured by connecting each control board on which the electronic components of the outdoor unit 11 and the indoor unit 12 are mounted with communication lines. As shown in FIG. The compressor drive motor of the four-stage compressor 20, the first to fourth four-way switching valves 31 to 34, the defrosting three-way valve 37, and the motor-operated valves 12 b, 50, 61 b, 72, 91, 92 are connected. The control unit 10a controls the rotational speed of the compressor drive motor, adjusts the opening of the motor-operated valve, and the like based on information such as the indoor set temperature input from the outside, measured values of a temperature sensor and a pressure sensor (not shown), and the like. .

制御部10aは、冷房運転モード、暖房運転モード、室外ユニット11の第1〜第4熱交換器41〜44に付着した霜を溶かす除霜運転モードを有しており、いずれかの運転を選択的に行う。除霜運転において、制御部10aは、第1〜第4熱交換器41〜44のうち1つの熱交換器を放熱器として機能させ且つ他の3つ熱交換器を蒸発器として機能させ、室内熱交換器12aを常に放熱器として機能させる。具体的には、除霜運転モードのときに、制御部10aは、図7(B)〜(E)に示す4つのステージを順に実行させる。除霜運転の第1ステージでは、第4熱交換器44を放熱器として機能させ且つ第1〜第3熱交換器41〜43を蒸発器として機能させ、室内熱交換器12aを放熱器として機能させる。除霜運転の第2ステージでは、第3熱交換器43を放熱器として機能させ且つ第1,第2および第4熱交換器41,42,44を蒸発器として機能させ、室内熱交換器12aを放熱器として機能させる。除霜運転の第3ステージでは、第2熱交換器42を放熱器として機能させ且つ第1,第3および第4熱交換器41,43,44を蒸発器として機能させ、室内熱交換器12aを放熱器として機能させる。除霜運転の第4ステージでは、第1熱交換器41を放熱器として機能させ且つ第2〜第4熱交換器42〜44を蒸発器として機能させ、室内熱交換器12aを放熱器として機能させる。図7(B)〜(E)において、ハッチングしている熱交換器が放熱器として機能しており、ハッチング無しの熱交換器が蒸発器として機能している。図7(B)〜(E)から明らかなように、除霜運転のいずれのステージにおいても、室外ユニット11の3つの熱交換器が蒸発器として機能する。   The control unit 10a has a cooling operation mode, a heating operation mode, and a defrosting operation mode for melting frost attached to the first to fourth heat exchangers 41 to 44 of the outdoor unit 11, and selects any one of the operations. Do it. In the defrosting operation, the control unit 10a causes one of the first to fourth heat exchangers 41 to 44 to function as a radiator and the other three heat exchangers to function as an evaporator, The heat exchanger 12a always functions as a heat radiator. Specifically, in the defrosting operation mode, the control unit 10a sequentially executes the four stages shown in FIGS. In the first stage of the defrosting operation, the fourth heat exchanger 44 functions as a radiator, the first to third heat exchangers 41-43 function as an evaporator, and the indoor heat exchanger 12a functions as a radiator. Let In the second stage of the defrosting operation, the third heat exchanger 43 functions as a radiator and the first, second, and fourth heat exchangers 41, 42, and 44 function as evaporators, and the indoor heat exchanger 12a To function as a radiator. In the third stage of the defrosting operation, the second heat exchanger 42 functions as a radiator and the first, third and fourth heat exchangers 41, 43, 44 function as evaporators, and the indoor heat exchanger 12a To function as a radiator. In the fourth stage of the defrosting operation, the first heat exchanger 41 functions as a radiator, the second to fourth heat exchangers 42-44 function as an evaporator, and the indoor heat exchanger 12a functions as a radiator. Let 7B to 7E, the hatched heat exchanger functions as a radiator, and the hatched heat exchanger functions as an evaporator. As is clear from FIGS. 7B to 7E, the three heat exchangers of the outdoor unit 11 function as evaporators in any stage of the defrosting operation.

(2)空気調和装置の動作
制御部10aにより実行される空気調和装置10の動作を、図を参照しながら説明する。図2、図4、図9、図11、図13および図15は、それぞれ、冷房運転、暖房運転、除霜運転の第1ステージ、第2ステージ、第3ステージおよび第4ステージにおける冷凍サイクルの圧力−エンタルピ線図(p−h線図)である。これらの各図において、上に凸の一点鎖線で示す曲線は、冷媒の飽和液線および乾き飽和蒸気線である。また、各図において、冷凍サイクル上の英文字が付された点は、それぞれ、図1、図3、図8、図10、図12および図14において同じ英文字で表される点における冷媒の圧力およびエンタルピを表している。例えば、図1の点Bにおける冷媒は、図2の点Bにおける圧力およびエンタルピの状態になっている。なお、空気調和装置10の冷房運転、暖房運転および除霜運転における各運転制御は、制御部10aによって行われる。
(2) Operation of Air Conditioner The operation of the air conditioner 10 executed by the control unit 10a will be described with reference to the drawings. 2, 4, 9, 11, 13, and 15 show the refrigeration cycle in the first stage, the second stage, the third stage, and the fourth stage of the cooling operation, the heating operation, and the defrosting operation, respectively. It is a pressure-enthalpy diagram (ph diagram). In each of these drawings, the curves indicated by the one-dot chain line that protrudes upward are the saturated liquid line and the dry saturated vapor line of the refrigerant. Moreover, in each figure, the point which the English letter on the refrigerating cycle was attached | subjected is respectively the point of the refrigerant | coolant in the point represented by the same alphabetic letter in FIG.1, FIG.3, FIG.8, FIG. Represents pressure and enthalpy. For example, the refrigerant at point B in FIG. 1 is in the state of pressure and enthalpy at point B in FIG. In addition, each operation control in the air_conditionaing | cooling operation of the air conditioning apparatus 10, heating operation, and a defrost operation is performed by the control part 10a.

(2−1)冷房運転モードのときの動作
冷房運転時は、図1に示す冷媒配管に沿った矢印の方向に、冷媒が、四段圧縮機20、室外熱交換器40、膨張機構70、室内熱交換器12aの順に冷媒回路内を循環する。四路切換弁31〜34は、冷房運転時において、四段圧縮機20によって圧縮された冷媒の冷却器として熱交換器41〜44を機能させ、かつ、膨張機構70および室内電動弁12bを通過して膨張した冷媒の蒸発器(加熱器)として室内熱交換器12aを機能させるように、図1に示す状態になる。また、除霜用三方弁37は、上述のように、第2冷媒配管44gと第4冷房入口配管44fとを連通させて第4四路切換弁34と第4熱交換器44とを結ぶ第1状態になっている。以下、冷房運転時における空気調和装置10の動作について、図1および図2を参照しながら説明する。
(2-1) Operation in the cooling operation mode During the cooling operation, the refrigerant moves in the direction of the arrow along the refrigerant pipe shown in FIG. 1 into the four-stage compressor 20, the outdoor heat exchanger 40, the expansion mechanism 70, It circulates in the refrigerant circuit in the order of the indoor heat exchanger 12a. The four-way switching valves 31 to 34 function the heat exchangers 41 to 44 as coolers for the refrigerant compressed by the four-stage compressor 20 during the cooling operation, and pass through the expansion mechanism 70 and the indoor electric valve 12b. Then, the state shown in FIG. 1 is obtained so that the indoor heat exchanger 12a functions as an evaporator (heater) of the expanded refrigerant. Further, as described above, the defrosting three-way valve 37 connects the fourth four-way switching valve 34 and the fourth heat exchanger 44 by communicating the second refrigerant pipe 44g and the fourth cooling inlet pipe 44f. 1 state. Hereinafter, operation | movement of the air conditioning apparatus 10 at the time of air_conditionaing | cooling operation is demonstrated, referring FIG. 1 and FIG.

第1吸入管21aから四段圧縮機20に吸い込まれる低圧のガス冷媒(点A)は、第1圧縮部21で圧縮されて、第1吐出管21bへと吐出される(点B)。吐出された冷媒は、第1四路切換弁31を通過し、インタークーラとして機能する第1熱交換器41で冷却された後、第1インタークーラ管41aを介して第2吸入管22aに流れ込む(点C)。   The low-pressure gas refrigerant (point A) sucked into the four-stage compressor 20 from the first suction pipe 21a is compressed by the first compression section 21 and discharged to the first discharge pipe 21b (point B). The discharged refrigerant passes through the first four-way switching valve 31, is cooled by the first heat exchanger 41 functioning as an intercooler, and then flows into the second suction pipe 22a via the first intercooler pipe 41a. (Point C).

第2吸入管22aから第2圧縮部22に吸い込まれた冷媒は、圧縮されて第2吐出管22bに吐出される(点D)。吐出された冷媒は、第2四路切換弁32を通過し、インタークーラとして機能する第2熱交換器42で冷却された後、第2インタークーラ管42aに流れる(点E)。第2インタークーラ管42aを流れる冷媒は、エコノマイザ熱交換器61において熱交換されてインジェクション配管61aを流れてくる中間圧の冷媒(点L)と合流した後、第3吸入管23aに流れ込む(点F)。   The refrigerant sucked into the second compression part 22 from the second suction pipe 22a is compressed and discharged to the second discharge pipe 22b (point D). The discharged refrigerant passes through the second four-way switching valve 32, is cooled by the second heat exchanger 42 functioning as an intercooler, and then flows to the second intercooler pipe 42a (point E). The refrigerant flowing through the second intercooler pipe 42a is heat-exchanged in the economizer heat exchanger 61 and merged with the intermediate pressure refrigerant (point L) flowing through the injection pipe 61a, and then flows into the third suction pipe 23a (point). F).

第3吸入管23aから第3圧縮部23に吸い込まれた冷媒は、圧縮されて第3吐出管23bに吐出される(点G)。吐出された冷媒は、第3四路切換弁33を通過し、インタークーラとして機能する第3熱交換器43で冷却された後、第3インタークーラ管43aを介して第4吸入管24aに流れ込む(点H)。   The refrigerant sucked into the third compression section 23 from the third suction pipe 23a is compressed and discharged to the third discharge pipe 23b (point G). The discharged refrigerant passes through the third four-way switching valve 33, is cooled by the third heat exchanger 43 functioning as an intercooler, and then flows into the fourth suction pipe 24a via the third intercooler pipe 43a. (Point H).

第4吸入管24aから第4圧縮部24に吸い込まれた冷媒は、圧縮されて第4吐出管24bに吐出される(点I)。吐出された高圧の冷媒は、第4四路切換弁34および除霜用三方弁37を通過し、ガスクーラとして機能する第4熱交換器44で冷却され、逆止弁回路55の入口逆止弁55aを通ってエコノマイザ熱交換器61へと流れていく(点J)。   The refrigerant sucked into the fourth compression section 24 from the fourth suction pipe 24a is compressed and discharged to the fourth discharge pipe 24b (point I). The discharged high-pressure refrigerant passes through the fourth four-way switching valve 34 and the defrosting three-way valve 37, is cooled by the fourth heat exchanger 44 that functions as a gas cooler, and enters the check valve of the check valve circuit 55. It flows to the economizer heat exchanger 61 through 55a (point J).

逆止弁回路55の入口逆止弁55aを通過した高圧冷媒は、エコノマイザ熱交換器61に流れ込むとともに、その一部が分岐して第5室外電動弁61bへと流れる。第5室外電動弁61bで減圧・膨張して気液二相状態となった中間圧冷媒(点K)は、エコノマイザ熱交換器61において、逆止弁回路55から内部熱交換器62に向かう高圧冷媒(点J)と熱交換し、中間圧のガス冷媒(点L)となって上述のようにインジェクション配管61aから第2インタークーラ管42aへと流れ込む。   The high-pressure refrigerant that has passed through the inlet check valve 55a of the check valve circuit 55 flows into the economizer heat exchanger 61, and a part thereof branches to flow to the fifth outdoor motor-operated valve 61b. The intermediate-pressure refrigerant (point K) that has been reduced in pressure and expanded by the fifth outdoor motor operated valve 61b into a gas-liquid two-phase state is subjected to high pressure from the check valve circuit 55 to the internal heat exchanger 62 in the economizer heat exchanger 61. The refrigerant exchanges heat with the refrigerant (point J), becomes an intermediate-pressure gas refrigerant (point L), and flows into the second intercooler pipe 42a from the injection pipe 61a as described above.

第5室外電動弁61bを出た中間圧冷媒と熱交換をし、更に温度が下がった状態でエコノマイザ熱交換器61を出た高圧冷媒(点M)は、次に内部熱交換器62を流れ、膨張機構70へと流れていく(点N)。内部熱交換器62では、後述する低圧冷媒配管19から四段圧縮機20の第1吸入管21aへと流れる低圧冷媒と熱交換を行い、点Mの状態の高圧冷媒が、温度が下がって点Nの状態の高圧冷媒となる。   The high-pressure refrigerant (point M) that has exchanged heat with the intermediate-pressure refrigerant that has exited the fifth outdoor motor-operated valve 61b and has exited the economizer heat exchanger 61 in a state where the temperature has further decreased, then flows through the internal heat exchanger 62. And flows to the expansion mechanism 70 (point N). In the internal heat exchanger 62, heat exchange is performed with the low-pressure refrigerant flowing from the low-pressure refrigerant pipe 19 described later to the first suction pipe 21 a of the four-stage compressor 20, and the high-pressure refrigerant in the state of point M drops in temperature. It becomes a high-pressure refrigerant in the N state.

内部熱交換器62を出た高圧冷媒(点N)は、2つに分岐され、それぞれ膨張機構70の膨張機71、膨張機構70の第6室外電動弁72に流れる。膨張機71で減圧・膨張した中間圧冷媒(点P)と、第6室外電動弁72で減圧・膨張した中間圧冷媒(点O)とは、合流した後に入口管81からレシーバ80の内部空間へと流れ込む(点Q)。このレシーバ80に流れ込んだ気液二相状態の中間圧冷媒は、レシーバ80の内部空間において液冷媒とガス冷媒とに分離される。   The high-pressure refrigerant (point N) exiting the internal heat exchanger 62 is branched into two and flows to the expander 71 of the expansion mechanism 70 and the sixth outdoor motor-operated valve 72 of the expansion mechanism 70, respectively. The intermediate pressure refrigerant (point P) decompressed / expanded by the expander 71 and the intermediate pressure refrigerant (point O) decompressed / expanded by the sixth outdoor motor-operated valve 72 are joined to the internal space of the receiver 80 from the inlet pipe 81. (Point Q). The gas-liquid two-phase intermediate pressure refrigerant flowing into the receiver 80 is separated into liquid refrigerant and gas refrigerant in the internal space of the receiver 80.

レシーバ80で分離された液冷媒(点R)は、出口管82を通ってそのまま過冷却熱交換器90へと流れ、レシーバ80で分離されたガス冷媒(点U)は、第7室外電動弁91で減圧され低圧冷媒(点W)となって過冷却熱交換器90へと流れていく。レシーバ80の出口管82から過冷却熱交換器90に向かう中間圧冷媒は、過冷却熱交換器90の手前で分岐し、一方が過冷却熱交換器90を通って逆止弁回路55に向かい、他方が分岐管92aの第8室外電動弁92へと流れる。第8室外電動弁92を通過して減圧された気液二相状態の低圧冷媒(点S)は、第7室外電動弁91を通過した低圧冷媒(点W)と合流し(点X)、過冷却熱交換器90を経て低圧冷媒配管19へと流れる。過冷却熱交換器90での熱交換によって、低圧冷媒配管19に向かって流れる低圧冷媒(点X)は、蒸発して過熱のついた低圧冷媒(点Y)となり、逆止弁回路55に向かって流れる中間圧冷媒(点R)は、熱を奪われて過冷却のついた中間圧冷媒(点T)となる。   The liquid refrigerant (point R) separated by the receiver 80 flows as it is to the supercooling heat exchanger 90 through the outlet pipe 82, and the gas refrigerant (point U) separated by the receiver 80 is the seventh outdoor motor valve. The pressure is reduced at 91 to form a low-pressure refrigerant (point W) and flow to the supercooling heat exchanger 90. The intermediate pressure refrigerant from the outlet pipe 82 of the receiver 80 toward the supercooling heat exchanger 90 branches before the supercooling heat exchanger 90, and one of the refrigerant passes through the supercooling heat exchanger 90 and goes to the check valve circuit 55. The other flows to the eighth outdoor motor-operated valve 92 of the branch pipe 92a. The low-pressure refrigerant (point S) in the gas-liquid two-phase state that has been decompressed after passing through the eighth outdoor motor-operated valve 92 merges with the low-pressure refrigerant (point W) that has passed through the seventh outdoor motor-operated valve 91 (point X), It flows to the low-pressure refrigerant pipe 19 through the supercooling heat exchanger 90. Due to the heat exchange in the supercooling heat exchanger 90, the low pressure refrigerant (point X) flowing toward the low pressure refrigerant pipe 19 evaporates to become a superheated low pressure refrigerant (point Y) and moves toward the check valve circuit 55. The intermediate-pressure refrigerant (point R) flowing in the direction becomes an intermediate-pressure refrigerant (point T) that is supercooled due to heat being deprived.

過冷却熱交換器90で過冷却のついた中間圧冷媒(点T)は、逆止弁回路55の出口逆止弁55dを通って、連絡冷媒配管13へと流れていく。連絡冷媒配管13から室内ユニット12に入った冷媒は、室内電動弁12bを通過するときに膨張し、気液二相の低圧冷媒(点V)となって室内熱交換器12aに流れ込む。この低圧冷媒は、室内熱交換器12aで室内空気から熱を奪い、過熱のついた低圧のガス冷媒(点Z)になる。室内ユニット12を出た低圧冷媒は、連絡冷媒配管14、第1冷媒配管18および第4四路切換弁34を経て、低圧冷媒配管19へと流れていく。   The intermediate pressure refrigerant (point T) that has been supercooled by the supercooling heat exchanger 90 flows to the communication refrigerant pipe 13 through the outlet check valve 55 d of the check valve circuit 55. The refrigerant that has entered the indoor unit 12 from the communication refrigerant pipe 13 expands when passing through the indoor motor-operated valve 12b, and flows into the indoor heat exchanger 12a as a gas-liquid two-phase low-pressure refrigerant (point V). This low-pressure refrigerant takes heat from the indoor air in the indoor heat exchanger 12a and becomes a superheated low-pressure gas refrigerant (point Z). The low-pressure refrigerant exiting the indoor unit 12 flows to the low-pressure refrigerant pipe 19 via the communication refrigerant pipe 14, the first refrigerant pipe 18 and the fourth four-way switching valve 34.

室内ユニット12から戻ってきた低圧冷媒(点Z)と、過冷却熱交換器90から流れてくる低圧冷媒(点Y)とは、低圧冷媒配管19で合流し(点AB)、内部熱交換器62を通って第1吸入管21aから四段圧縮機20へと戻っていく。上述のように、内部熱交換器62では、四段圧縮機20に向かう低圧冷媒(点AB)と、逆止弁回路55からレシーバ80へと向かう高圧冷媒(点M)とが熱交換を行う。   The low-pressure refrigerant (point Z) returned from the indoor unit 12 and the low-pressure refrigerant (point Y) flowing from the supercooling heat exchanger 90 merge at the low-pressure refrigerant pipe 19 (point AB), and the internal heat exchanger. The first suction pipe 21 a returns to the four-stage compressor 20 through 62. As described above, in the internal heat exchanger 62, the low-pressure refrigerant (point AB) that goes to the four-stage compressor 20 and the high-pressure refrigerant (point M) that goes from the check valve circuit 55 to the receiver 80 exchange heat. .

以上のように冷媒が冷媒回路内を循環することにより、空気調和装置10は冷房運転サイクルを行う。   As described above, the refrigerant circulates in the refrigerant circuit, so that the air conditioner 10 performs the cooling operation cycle.

(2−2)暖房運転モードのときの動作
暖房運転時は、図3に示す冷媒配管に沿った矢印の方向に、冷媒が、四段圧縮機20、室内熱交換器12a、膨張機構70、室外熱交換器40の順に冷媒回路内を循環する。四路切換弁31〜34は、暖房運転時において、四段圧縮機20によって圧縮された冷媒の冷却器(放熱器)として室内熱交換器12aを機能させ、かつ、膨張機構70および室外電動弁50を通過して膨張した冷媒の蒸発器として室外熱交換器40を機能させるように、図3に示す状態になる。また、除霜用三方弁37は、上述のように、第2冷媒配管44gと第4冷房入口配管44fとを連通させて第4四路切換弁34と第4熱交換器44とを結ぶ第1状態になっている。以下、暖房運転時における空気調和装置10の動作について、図3および図4を参照しながら説明する。
(2-2) Operation in the heating operation mode During the heating operation, the refrigerant flows in the direction of the arrow along the refrigerant pipe shown in FIG. 3, the four-stage compressor 20, the indoor heat exchanger 12 a, the expansion mechanism 70, It circulates in the refrigerant circuit in the order of the outdoor heat exchanger 40. The four-way switching valves 31 to 34 function the indoor heat exchanger 12a as a refrigerant cooler (radiator) compressed by the four-stage compressor 20 during the heating operation, and the expansion mechanism 70 and the outdoor electric valve The state shown in FIG. 3 is set so that the outdoor heat exchanger 40 functions as an evaporator of the refrigerant that has passed through 50 and expanded. Further, as described above, the defrosting three-way valve 37 connects the fourth four-way switching valve 34 and the fourth heat exchanger 44 by communicating the second refrigerant pipe 44g and the fourth cooling inlet pipe 44f. 1 state. Hereinafter, operation | movement of the air conditioning apparatus 10 at the time of heating operation is demonstrated, referring FIG. 3 and FIG.

第1吸入管21aから四段圧縮機20に吸い込まれる低圧のガス冷媒(点A)は、第1圧縮部21で圧縮されて、第1吐出管21bに吐出される(点B)。吐出された冷媒は、第1四路切換弁31を通過し、第2吸入管22aを流れる(点C)。   The low-pressure gas refrigerant (point A) sucked into the four-stage compressor 20 from the first suction pipe 21a is compressed by the first compression section 21 and discharged to the first discharge pipe 21b (point B). The discharged refrigerant passes through the first four-way switching valve 31 and flows through the second suction pipe 22a (point C).

第2吸入管22aから第2圧縮部22に吸い込まれた冷媒は、圧縮されて第2吐出管22bに吐出される(点D)。吐出された冷媒は、第2四路切換弁32を通過し、第3吸入管23aを流れる。なお、第3吸入管23aには、エコノマイザ熱交換器61において熱交換されてインジェクション配管61aを流れてくる中間圧の冷媒(点L)も流れ込んでくるため、冷媒の温度が下がる(点F)。   The refrigerant sucked into the second compression part 22 from the second suction pipe 22a is compressed and discharged to the second discharge pipe 22b (point D). The discharged refrigerant passes through the second four-way switching valve 32 and flows through the third suction pipe 23a. In addition, since the intermediate pressure refrigerant (point L) that is heat-exchanged in the economizer heat exchanger 61 and flows through the injection pipe 61a also flows into the third suction pipe 23a, the temperature of the refrigerant decreases (point F). .

第3吸入管23aから第3圧縮部23に吸い込まれた冷媒は、圧縮されて第3吐出管23bに吐出される(点G)。吐出された冷媒は、第3四路切換弁33を通過し、第4吸入管24aを流れる(点H)。   The refrigerant sucked into the third compression section 23 from the third suction pipe 23a is compressed and discharged to the third discharge pipe 23b (point G). The discharged refrigerant passes through the third four-way switching valve 33 and flows through the fourth suction pipe 24a (point H).

第4吸入管24aから第4圧縮部24に吸い込まれた冷媒は、圧縮されて第4吐出管24bに吐出される(点I)。吐出された高圧の冷媒は、第4四路切換弁34を通過し、連絡冷媒配管14を介して室内ユニット12に流入する(点Z)。   The refrigerant sucked into the fourth compression section 24 from the fourth suction pipe 24a is compressed and discharged to the fourth discharge pipe 24b (point I). The discharged high-pressure refrigerant passes through the fourth four-way switching valve 34 and flows into the indoor unit 12 through the communication refrigerant pipe 14 (point Z).

連絡冷媒配管14から室内ユニット12に入った高圧冷媒は、冷媒の冷却器として機能する室内熱交換器12aで室内空気に放熱し、室内空気を暖める。室内熱交換器12aでの熱交換によって温度が下がった高圧冷媒(点V)は、室内電動弁12bを通過する際にわずかに減圧され、連絡冷媒配管13を通って室外ユニット11の逆止弁回路55へと流れ、入口逆止弁55bからエコノマイザ熱交換器61へ向かう(点J)。   The high-pressure refrigerant that has entered the indoor unit 12 from the communication refrigerant pipe 14 radiates heat to the indoor air in the indoor heat exchanger 12a that functions as a refrigerant cooler, and warms the indoor air. The high-pressure refrigerant (point V) whose temperature has decreased due to heat exchange in the indoor heat exchanger 12a is slightly decompressed when passing through the indoor motor-operated valve 12b, passes through the communication refrigerant pipe 13, and the check valve of the outdoor unit 11 It flows to the circuit 55, and goes to the economizer heat exchanger 61 from the inlet check valve 55b (point J).

逆止弁回路55を出た高圧冷媒(点J)は、エコノマイザ熱交換器61に流れ込むとともに、その一部が分岐して第5室外電動弁61bへと流れる。第5室外電動弁61bで減圧・膨張して気液二相状態となった中間圧冷媒(点K)は、エコノマイザ熱交換器6において、逆止弁回路55から内部熱交換器62に向かう高圧冷媒(点J)と熱交換し、中間圧のガス冷媒(点L)となってインジェクション配管61aから第2インタークーラ管42aへと流れ込む。   The high-pressure refrigerant (point J) that has exited the check valve circuit 55 flows into the economizer heat exchanger 61, and a part of the high-pressure refrigerant branches to the fifth outdoor motor-operated valve 61b. The intermediate-pressure refrigerant (point K), which has been reduced in pressure and expanded by the fifth outdoor electric valve 61b and brought into a gas-liquid two-phase state, is increased in pressure in the economizer heat exchanger 6 from the check valve circuit 55 to the internal heat exchanger 62. The refrigerant exchanges heat with the refrigerant (point J), becomes an intermediate-pressure gas refrigerant (point L), and flows from the injection pipe 61a into the second intercooler pipe 42a.

第5室外電動弁61bを出た中間圧冷媒と熱交換をし、更に温度が下がった状態でエコノマイザ熱交換器61を出た高圧冷媒(点M)は、次に内部熱交換器62を流れ、膨張機構70へと流れていく(点N)。内部熱交換器62では、後述する低圧冷媒配管19から四段圧縮機20の第1吸入管21aへと流れる低圧冷媒と熱交換を行い、点Mの状態の高圧冷媒が、温度が下がって点Nの状態の高圧冷媒となる。   The high-pressure refrigerant (point M) that has exchanged heat with the intermediate-pressure refrigerant that has exited the fifth outdoor motor-operated valve 61b and has exited the economizer heat exchanger 61 in a state where the temperature has further decreased, then flows through the internal heat exchanger 62. And flows to the expansion mechanism 70 (point N). In the internal heat exchanger 62, heat exchange is performed with the low-pressure refrigerant flowing from the low-pressure refrigerant pipe 19 described later to the first suction pipe 21 a of the four-stage compressor 20, and the high-pressure refrigerant in the state of point M drops in temperature. It becomes a high-pressure refrigerant in the N state.

内部熱交換器62を出た高圧冷媒(点N)は、2つに分岐され、それぞれ膨張機構70の膨張機71、膨張機構70の第6室外電動弁72に流れる。膨張機71で減圧・膨張した中間圧冷媒(点P)と、第6室外電動弁72で減圧・膨張した中間圧冷媒(点O)とは、合流した後に入口管81からレシーバ80の内部空間へと流れ込む(点Q)。このレシーバ80に流れ込んだ気液二相状態の中間圧冷媒は、レシーバ80の内部空間において液冷媒とガス冷媒とに分離される。   The high-pressure refrigerant (point N) exiting the internal heat exchanger 62 is branched into two and flows to the expander 71 of the expansion mechanism 70 and the sixth outdoor motor-operated valve 72 of the expansion mechanism 70, respectively. The intermediate pressure refrigerant (point P) decompressed / expanded by the expander 71 and the intermediate pressure refrigerant (point O) decompressed / expanded by the sixth outdoor motor-operated valve 72 are joined to the internal space of the receiver 80 from the inlet pipe 81. (Point Q). The gas-liquid two-phase intermediate pressure refrigerant flowing into the receiver 80 is separated into liquid refrigerant and gas refrigerant in the internal space of the receiver 80.

レシーバ80で分離された液冷媒(点R)は、出口管82を通ってそのまま過冷却熱交換器90へと流れ、レシーバ80で分離されたガス冷媒(点U)は、第7室外電動弁91で減圧され低圧冷媒(点W)となって過冷却熱交換器90へと流れていく。レシーバ80の出口管82から過冷却熱交換器90に向かう中間圧冷媒は、第8室外電動弁92が閉められているため分岐管92aには流れず、全量が過冷却熱交換器90に流れ込む。過冷却熱交換器90では、レシーバ80の出口管82から流れてくる中間圧冷媒(点R)と、第7室外電動弁91で減圧された低圧冷媒(点W,X)との間で熱交換が行われる。この熱交換によって、低圧冷媒配管19に向かって流れる低圧冷媒(点X)は、蒸発して過熱のついた低圧冷媒(点Y)となり、レシーバ80から逆止弁回路55に向かう中間圧冷媒(点R)は、熱を奪われて過冷却のついた中間圧冷媒(点T)となる。   The liquid refrigerant (point R) separated by the receiver 80 flows as it is to the supercooling heat exchanger 90 through the outlet pipe 82, and the gas refrigerant (point U) separated by the receiver 80 is the seventh outdoor motor valve. The pressure is reduced at 91 to form a low-pressure refrigerant (point W) and flow to the supercooling heat exchanger 90. The intermediate pressure refrigerant from the outlet pipe 82 of the receiver 80 toward the supercooling heat exchanger 90 does not flow into the branch pipe 92a because the eighth outdoor motor-operated valve 92 is closed, and the entire amount flows into the supercooling heat exchanger 90. . In the supercooling heat exchanger 90, heat is generated between the intermediate-pressure refrigerant (point R) flowing from the outlet pipe 82 of the receiver 80 and the low-pressure refrigerant (points W and X) decompressed by the seventh outdoor motor-operated valve 91. Exchange is performed. By this heat exchange, the low-pressure refrigerant (point X) flowing toward the low-pressure refrigerant pipe 19 evaporates to become superheated low-pressure refrigerant (point Y), and the intermediate-pressure refrigerant (point Y) from the receiver 80 toward the check valve circuit 55 Point R) is an intermediate pressure refrigerant (point T) that has been deprived of heat and is supercooled.

過冷却熱交換器90を出た中間圧冷媒は、室外電動弁50を通過した後、4路に分流される。室外電動弁50および分流後のキャピラリーチューブにおいて減圧・膨張された気液二相の低圧冷媒(点AC)は、第1熱交換器41、第2熱交換器42、第3熱交換器43および第4熱交換器44に流入する。そして、各路の低圧冷媒は、それぞれの熱交換器41〜44において外気から熱を奪って蒸発し、過熱のついた低圧のガス冷媒となって第1〜第4四路切換弁31〜34を通過した後に合流する(点AD)。   The intermediate pressure refrigerant that has exited the supercooling heat exchanger 90 passes through the outdoor motor-operated valve 50 and then is divided into four paths. The gas-liquid two-phase low-pressure refrigerant (point AC) depressurized and expanded in the outdoor motor-operated valve 50 and the capillary tube after the branching flow includes a first heat exchanger 41, a second heat exchanger 42, a third heat exchanger 43, and It flows into the fourth heat exchanger 44. And the low-pressure refrigerant | coolant of each path takes heat from outside air in each heat exchanger 41-44, evaporates, becomes a low-pressure gas refrigerant with overheating, and the 1st-4th four-way switching valves 31-34. After passing through, merge (point AD).

合流後の低圧冷媒(点AD)は、低圧冷媒配管19で、過冷却熱交換器90から流れてくる低圧冷媒(点Y)と合流し(点AB)、内部熱交換器62を通って第1吸入管21aから四段圧縮機20へと戻っていく。上述のように、内部熱交換器62では、四段圧縮機20に向かう低圧冷媒(点AB)と、逆止弁回路55からレシーバ80へと向かう高圧冷媒(点M)とが熱交換を行う。   The low-pressure refrigerant (point AD) after the merge is merged with the low-pressure refrigerant (point Y) flowing from the supercooling heat exchanger 90 (point AB) through the low-pressure refrigerant pipe 19, and passes through the internal heat exchanger 62. The suction pipe 21a returns to the four-stage compressor 20. As described above, in the internal heat exchanger 62, the low-pressure refrigerant (point AB) that goes to the four-stage compressor 20 and the high-pressure refrigerant (point M) that goes from the check valve circuit 55 to the receiver 80 exchange heat. .

以上のように冷媒が冷媒回路内を循環することにより、空気調和装置10は暖房運転サイクルを行う。   As described above, the refrigerant circulates in the refrigerant circuit, whereby the air conditioner 10 performs the heating operation cycle.

(2−3)除霜運転モードのときの動作
制御部10aは、暖房運転中に、室外熱交換器40に霜が付きやすい条件(外気温度などの条件)になると、自動的に除霜運転モードに入って除霜運転を実行する。この除霜運転は、室内熱交換器12aを蒸発器とする運転ではなく、室内熱交換器12aを放熱器として機能させ続けながら、室外熱交換器40の第1〜第4熱交換器41〜44に順番に四段圧縮機20からの中間圧あるいは高圧冷媒を流し、各熱交換器41〜44の霜を溶かす運転である。なお、除霜運転後は、自動的に暖房運転モードに戻って暖房運転を実行する。
(2-3) Operation in the defrosting operation mode The controller 10a automatically performs the defrosting operation when the outdoor heat exchanger 40 is easily frosted (conditions such as the outside air temperature) during the heating operation. Enter the mode and execute the defrosting operation. This defrosting operation is not an operation in which the indoor heat exchanger 12a is used as an evaporator, and the first to fourth heat exchangers 41 to 41 in the outdoor heat exchanger 40 are kept functioning while the indoor heat exchanger 12a continues to function as a radiator. In this operation, the intermediate pressure or high-pressure refrigerant from the four-stage compressor 20 is flowed to 44 in order, and the frost of each of the heat exchangers 41 to 44 is melted. In addition, after a defrost operation, it returns to heating operation mode automatically and performs heating operation.

制御部10aは、除霜運転において、第1〜第4熱交換器41〜44のうち、上に配置されているものから順に、四段圧縮機20からの中間圧あるいは高圧冷媒を流す。具体的には、図7に示すように、暖房運転(A)の最中に除霜の条件が成立すると、除霜運転に入り、まず第1ステージ(B)で最も上に配置されている第4熱交換器44に高圧冷媒を流し、次に第2ステージ(C)で第3熱交換器43に四段圧縮機20からの中間圧冷媒を流し、次に第3ステージ(D)で第2熱交換器42に四段圧縮機20からの中間圧冷媒を流し、最後の第4ステージ(E)で第1熱交換器41に四段圧縮機20からの中間圧冷媒を流す。   In the defrosting operation, the control unit 10a allows the intermediate pressure or high-pressure refrigerant from the four-stage compressor 20 to flow in order from the first to fourth heat exchangers 41 to 44 arranged above. Specifically, as shown in FIG. 7, when the defrosting condition is established during the heating operation (A), the defrosting operation is started, and first, the first stage (B) is arranged at the top. The high-pressure refrigerant flows through the fourth heat exchanger 44, then the intermediate-pressure refrigerant from the four-stage compressor 20 flows through the third heat exchanger 43 in the second stage (C), and then in the third stage (D). The intermediate pressure refrigerant from the four-stage compressor 20 is supplied to the second heat exchanger 42, and the intermediate pressure refrigerant from the four-stage compressor 20 is supplied to the first heat exchanger 41 in the final fourth stage (E).

以下、除霜運転の各ステージについて、図を参照しながら説明する。   Hereinafter, each stage of the defrosting operation will be described with reference to the drawings.

(2−3−1)除霜運転の第1ステージ
除霜運転の第1ステージでは、図8に示す冷媒配管に沿った矢印の方向に冷媒が流れる。四路切換弁31〜34は、暖房運転時と同じ状態であるが、除霜用三方弁37が、上述のように、除霜用配管36と第4冷房入口配管44fとを連通させる第2状態に切り換わる。以下、除霜運転の第1ステージにおける空気調和装置10の動作について、暖房運転の動作と同じ部分を省略しながら説明を行う。
(2-3-1) First Stage of Defrosting Operation In the first stage of the defrosting operation, the refrigerant flows in the direction of the arrow along the refrigerant pipe shown in FIG. The four-way switching valves 31 to 34 are in the same state as in the heating operation, but the defrosting three-way valve 37 is connected to the defrosting pipe 36 and the fourth cooling inlet pipe 44f as described above. Switch to state. Hereinafter, operation | movement of the air conditioning apparatus 10 in the 1st stage of a defrost operation is demonstrated, abbreviate | omitting the same part as operation | movement of heating operation.

第1吸入管21aから四段圧縮機20に吸い込まれる低圧のガス冷媒(点A)が、第4吐出管24bに吐出される(点I)までは、暖房運転と同じである。   The operation is the same as in the heating operation until the low-pressure gas refrigerant (point A) sucked into the four-stage compressor 20 from the first suction pipe 21a is discharged to the fourth discharge pipe 24b (point I).

四段圧縮機20から吐出された高圧の冷媒は、第4四路切換弁34を通過し、第1冷媒配管18および連絡冷媒配管14を介して室内ユニット12に流入する(点Z)とともに、第1冷媒配管18から分岐する除霜用配管36および除霜用三方弁37を経て、第4冷房入口配管44fから第4熱交換器44に流れる(点Z1)。第1冷媒配管18から第4熱交換器44に流れた高圧冷媒は、第4熱交換器44で放熱して霜を溶かし、第4熱交換器44を出る(点E1)。一方の室内ユニット12に流入した高圧冷媒は、暖房運転のときと同様に、室内熱交換器12aで室内空気に放熱し、室内電動弁12bおよび連絡冷媒配管13を通って室外ユニット11の逆止弁回路55へと流れてくる。   The high-pressure refrigerant discharged from the four-stage compressor 20 passes through the fourth four-way switching valve 34 and flows into the indoor unit 12 via the first refrigerant pipe 18 and the communication refrigerant pipe 14 (point Z). The refrigerant flows from the fourth cooling inlet pipe 44f to the fourth heat exchanger 44 through the defrosting pipe 36 and the defrosting three-way valve 37 branched from the first refrigerant pipe 18 (point Z1). The high-pressure refrigerant that has flowed from the first refrigerant pipe 18 to the fourth heat exchanger 44 dissipates heat in the fourth heat exchanger 44 to melt frost, and exits the fourth heat exchanger 44 (point E1). The high-pressure refrigerant that has flowed into one indoor unit 12 radiates heat to the indoor air by the indoor heat exchanger 12a, and the check of the outdoor unit 11 passes through the indoor motor-operated valve 12b and the communication refrigerant pipe 13, as in the heating operation. It flows to the valve circuit 55.

第4熱交換器44を出て逆止弁回路55の入口逆止弁55aを通過した冷媒と、室内熱交換器12aを出て室内電動弁12bで少し減圧されて逆止弁回路55の入口逆止弁55bを通過した冷媒とは、合流してエコノマイザ熱交換器61に流れ込む(点J)。   The refrigerant exiting the fourth heat exchanger 44 and passing through the inlet check valve 55a of the check valve circuit 55 and the refrigerant exiting the indoor heat exchanger 12a and slightly depressurized by the indoor electric valve 12b are introduced into the check valve circuit 55. The refrigerant that has passed through the check valve 55b joins and flows into the economizer heat exchanger 61 (point J).

エコノマイザ熱交換器61から室外電動弁50を通過するまでの動作は、暖房運転時と同じである。室外電動弁50を通過した低圧冷媒は、高圧冷媒が流れる第4熱交換器44には流れ込まないため、3路に分流されて第1〜第3逆止弁51,52,53を通過し(点AC)、第1〜第3熱交換器41〜43に流入する。各路の低圧冷媒は、それぞれの熱交換器41〜43において外気から熱を奪って蒸発し、過熱のついた低圧のガス冷媒となって第1〜第3四路切換弁31〜33を通過して合流する(点AD)。合流後の低圧冷媒(点AD)は、暖房運転時と同じく、内部熱交換器62を通って第1吸入管21aから四段圧縮機20へと戻っていく。   The operation from the economizer heat exchanger 61 to the outdoor electric valve 50 is the same as that during the heating operation. Since the low-pressure refrigerant that has passed through the outdoor electric valve 50 does not flow into the fourth heat exchanger 44 through which the high-pressure refrigerant flows, the low-pressure refrigerant is divided into three paths and passes through the first to third check valves 51, 52, 53 ( Point AC), and flows into the first to third heat exchangers 41 to 43. The low-pressure refrigerant in each path takes heat from the outside air in each heat exchanger 41-43 and evaporates, and passes through the first to third four-way switching valves 31-33 as a superheated low-pressure gas refrigerant. To join (point AD). The low-pressure refrigerant (point AD) after joining returns to the four-stage compressor 20 from the first suction pipe 21a through the internal heat exchanger 62 as in the heating operation.

以上のように冷媒が冷媒回路内を循環することにより、空気調和装置10は、室内熱交換器12aで室内空気に放熱して暖房機能を継続させつつ、まず除霜運転の第1ステージで室外の第4熱交換器44の霜を溶かして取り除く。   As described above, the refrigerant circulates in the refrigerant circuit, so that the air conditioner 10 radiates the indoor air in the indoor heat exchanger 12a to continue the heating function, and at the first stage of the defrosting operation, first, the outdoor The frost of the fourth heat exchanger 44 is melted and removed.

(2−3−2)除霜運転の第2ステージ
除霜運転の第2ステージでは、第4熱交換器44の真下に位置する第3熱交換器43の霜を取り除く。ここでは、図10に示す冷媒配管に沿った矢印の方向に冷媒が流れる。四路切換弁31,32,34は、暖房運転時と同じ状態であるが、第3四路切換弁33が、冷房運転のときと同じ状態に切り換わる。また、除霜用三方弁37は、暖房運転時と同じ第1状態に切り換わる。以下、除霜運転の第2ステージにおける空気調和装置10の動作について、暖房運転の動作と同じ部分を省略しながら説明を行う。
(2-3-2) Second Stage of Defrosting Operation In the second stage of the defrosting operation, the frost of the third heat exchanger 43 located immediately below the fourth heat exchanger 44 is removed. Here, the refrigerant flows in the direction of the arrow along the refrigerant pipe shown in FIG. The four-way switching valves 31, 32, and 34 are in the same state as in the heating operation, but the third four-way switching valve 33 is switched to the same state as in the cooling operation. Moreover, the three-way valve 37 for defrosting switches to the same 1st state as the time of heating operation. Hereinafter, operation | movement of the air conditioning apparatus 10 in the 2nd stage of a defrost operation is demonstrated, abbreviate | omitting the part same as the operation | movement of heating operation.

第1吸入管21aから四段圧縮機20に吸い込まれる低圧のガス冷媒(点A)が、第3圧縮部23の第3吐出管23bに吐出される(点G)までは、暖房運転と同じである。   Until the low-pressure gas refrigerant (point A) sucked into the four-stage compressor 20 from the first suction pipe 21a is discharged to the third discharge pipe 23b of the third compressor 23 (point G), it is the same as the heating operation. It is.

第3吐出管23bから吐出された中間圧冷媒(点G)は、第3四路切換弁33を通過し、放熱器として機能する第3熱交換器43に向かう(点G1)。第3熱交換器43では、中間圧の冷媒が放熱して霜を溶かす。放熱して温度が下がった状態の第3熱交換器43を出た中間圧冷媒は、(点E2)、第3インタークーラ管43aを介して第4吸入管24aに流れ込む(点H)。   The intermediate pressure refrigerant (point G) discharged from the third discharge pipe 23b passes through the third four-way switching valve 33 and goes to the third heat exchanger 43 that functions as a radiator (point G1). In the third heat exchanger 43, the intermediate pressure refrigerant dissipates heat and melts frost. The intermediate pressure refrigerant that has exited the third heat exchanger 43 in a state where the temperature has decreased due to heat dissipation (point E2) flows into the fourth suction pipe 24a via the third intercooler pipe 43a (point H).

第4吸入管24aから第4圧縮部24に吸い込まれた冷媒は、暖房運転時と同じく、圧縮されて第4吐出管24bに吐出され、第4四路切換弁34を通過し、連絡冷媒配管14を介して室内ユニット12に流入する(点Z)。   The refrigerant sucked into the fourth compression section 24 from the fourth suction pipe 24a is compressed and discharged to the fourth discharge pipe 24b as in the heating operation, passes through the fourth four-way switching valve 34, and communicates with the refrigerant pipe. 14 flows into the indoor unit 12 via the point 14 (point Z).

室内ユニット12に流入してから室外電動弁50を通過するまでの動作は、暖房運転時と同じである。室外電動弁50を通過した低圧冷媒は、中間圧冷媒が流れる第3熱交換器43には流れ込まないため、3路に分流されて第1,第2,第4逆止弁51,52,54を通過し(点AC)、第1,第2,第4熱交換器41,42,44に流入する。各路の低圧冷媒は、それぞれの熱交換器41,42,44において外気から熱を奪って蒸発し、過熱のついた低圧のガス冷媒となって第1,第2,第4四路切換弁31,32,34を通過して合流する(点AD)。合流後の低圧冷媒(点AD)は、暖房運転時と同じく、内部熱交換器62を通って第1吸入管21aから四段圧縮機20へと戻っていく。   The operation from the flow into the indoor unit 12 to the passage through the outdoor motor operated valve 50 is the same as in the heating operation. Since the low-pressure refrigerant that has passed through the outdoor electric valve 50 does not flow into the third heat exchanger 43 through which the intermediate-pressure refrigerant flows, the low-pressure refrigerant is divided into three passages, and the first, second, and fourth check valves 51, 52, and 54. (Point AC) and flows into the first, second, and fourth heat exchangers 41, 42, and 44. The low-pressure refrigerant in each passage takes heat from the outside air in each heat exchanger 41, 42, 44 and evaporates to become a superheated low-pressure gas refrigerant, and the first, second and fourth four-way switching valves. It passes through 31, 32, 34 and merges (point AD). The low-pressure refrigerant (point AD) after joining returns to the four-stage compressor 20 from the first suction pipe 21a through the internal heat exchanger 62 as in the heating operation.

以上のように冷媒が冷媒回路内を循環することにより、空気調和装置10は、室内熱交換器12aで室内空気に放熱して暖房機能を継続させつつ、除霜運転の第2ステージで室外の第3熱交換器43の霜を溶かして取り除く。   As described above, the refrigerant circulates in the refrigerant circuit, so that the air conditioner 10 radiates the indoor air in the indoor heat exchanger 12a and continues the heating function, while the outdoor function is maintained in the second stage of the defrosting operation. The frost in the third heat exchanger 43 is melted and removed.

(2−3−3)除霜運転の第3ステージ
除霜運転の第3ステージでは、第3熱交換器43の真下に位置する第2熱交換器42の霜を取り除く。ここでは、図12に示す冷媒配管に沿った矢印の方向に冷媒が流れる。四路切換弁31,33,34および除霜用三方弁37は、暖房運転時と同じ状態であるが、第2四路切換弁32が、冷房運転のときと同じ状態に切り換わる。以下、除霜運転の第3ステージにおける空気調和装置10の動作について、暖房運転の動作と同じ部分を省略しながら説明を行う。
(2-3-3) Third Stage of Defrosting Operation In the third stage of the defrosting operation, the frost of the second heat exchanger 42 located immediately below the third heat exchanger 43 is removed. Here, the refrigerant flows in the direction of the arrow along the refrigerant pipe shown in FIG. The four-way switching valves 31, 33, 34 and the three-way defrosting valve 37 are in the same state as in the heating operation, but the second four-way switching valve 32 is switched to the same state as in the cooling operation. Hereinafter, the operation of the air conditioner 10 in the third stage of the defrosting operation will be described while omitting the same parts as the operation of the heating operation.

第1吸入管21aから四段圧縮機20に吸い込まれる低圧のガス冷媒(点A)が、第2圧縮部22の第2吐出管22bに吐出される(点D)までは、暖房運転と同じである。   Until the low-pressure gas refrigerant (point A) sucked into the four-stage compressor 20 from the first suction pipe 21a is discharged to the second discharge pipe 22b of the second compression section 22 (point D), it is the same as the heating operation. It is.

第2吐出管22bから吐出された中間圧冷媒(点D)は、第2四路切換弁32を通過し、放熱器として機能する第2熱交換器42に向かう(点D1)。第2熱交換器42では、中間圧の冷媒が放熱して霜を溶かす。放熱して温度が下がった状態で第2熱交換器42を出た中間圧冷媒は(点E3)、第2インタークーラ管42aに流れ込む。第2インタークーラ管42aを流れる冷媒は、エコノマイザ熱交換器61において熱交換されてインジェクション配管61aを流れてくる中間圧の冷媒(点L)と合流した後、第3吸入管23aに流れ込む(点F)。   The intermediate pressure refrigerant (point D) discharged from the second discharge pipe 22b passes through the second four-way switching valve 32 and travels to the second heat exchanger 42 that functions as a radiator (point D1). In the second heat exchanger 42, the intermediate-pressure refrigerant dissipates heat and melts frost. The intermediate pressure refrigerant that has exited the second heat exchanger 42 in a state where the temperature has decreased due to heat dissipation (point E3) flows into the second intercooler pipe 42a. The refrigerant flowing through the second intercooler pipe 42a is heat-exchanged in the economizer heat exchanger 61 and merged with the intermediate pressure refrigerant (point L) flowing through the injection pipe 61a, and then flows into the third suction pipe 23a (point). F).

第3吸入管23aから第3圧縮部23に吸い込まれてから四段圧縮機20を出て室内熱交換器12bおよび膨張機構70を経て室外電動弁50を通過するまでの冷媒の流れ等については、暖房運転時と同じである。室外電動弁50を通過した低圧冷媒は、中間圧冷媒が流れる第2熱交換器42には流れ込まないため、3路に分流されて第1,第3,第4逆止弁51,53,54を通過し(点AC)、第1,第3,第4熱交換器41,43,44に流入する。各路の低圧冷媒は、それぞれの熱交換器41,43,44において外気から熱を奪って蒸発し、過熱のついた低圧のガス冷媒となって第1,第3,第4四路切換弁31,33,34を通過して合流する(点AD)。合流後の低圧冷媒(点AD)は、暖房運転時と同じく、内部熱交換器62を通って第1吸入管21aから四段圧縮機20へと戻っていく。   Regarding the flow of refrigerant, etc., from the third suction pipe 23a to the third compression section 23 until it leaves the four-stage compressor 20 and passes through the indoor heat exchanger 12b and the expansion mechanism 70 and the outdoor electric valve 50, etc. The same as during heating operation. Since the low-pressure refrigerant that has passed through the outdoor motor-operated valve 50 does not flow into the second heat exchanger 42 through which the intermediate-pressure refrigerant flows, the low-pressure refrigerant is divided into three passages, and the first, third, and fourth check valves 51, 53, and 54. (Point AC) and flows into the first, third, and fourth heat exchangers 41, 43, and 44. The low-pressure refrigerant in each passage takes heat from the outside air in each heat exchanger 41, 43, 44 and evaporates to become a superheated low-pressure gas refrigerant, and the first, third and fourth four-way switching valves. Passes 31, 33, 34 and merges (point AD). The low-pressure refrigerant (point AD) after joining returns to the four-stage compressor 20 from the first suction pipe 21a through the internal heat exchanger 62 as in the heating operation.

以上のように冷媒が冷媒回路内を循環することにより、空気調和装置10は、室内熱交換器12aで室内空気に放熱して暖房機能を継続させつつ、除霜運転の第3ステージで室外の第2熱交換器42の霜を溶かして取り除く。   As described above, the refrigerant circulates in the refrigerant circuit, so that the air conditioner 10 radiates the indoor air in the indoor heat exchanger 12a and continues the heating function, while the outdoor function is maintained in the third stage of the defrosting operation. The frost of the second heat exchanger 42 is melted and removed.

(2−3−4)除霜運転の第4ステージ
除霜運転の第4ステージでは、第2熱交換器42の真下に位置する第1熱交換器41の霜を取り除く。ここでは、図14に示す冷媒配管に沿った矢印の方向に冷媒が流れる。四路切換弁32〜34および除霜用三方弁37は、暖房運転時と同じ状態であるが、第1四路切換弁31が、冷房運転のときと同じ状態に切り換わる。以下、除霜運転の第4ステージにおける空気調和装置10の動作について、暖房運転の動作と同じ部分を省略しながら説明を行う。
(2-3-4) Fourth Stage of Defrosting Operation In the fourth stage of the defrosting operation, the frost of the first heat exchanger 41 located immediately below the second heat exchanger 42 is removed. Here, the refrigerant flows in the direction of the arrow along the refrigerant pipe shown in FIG. The four-way switching valves 32 to 34 and the defrosting three-way valve 37 are in the same state as in the heating operation, but the first four-way switching valve 31 is switched to the same state as in the cooling operation. Hereinafter, operation | movement of the air conditioning apparatus 10 in the 4th stage of a defrost operation is demonstrated, abbreviate | omitting the part same as the operation | movement of heating operation.

第1吸入管21aから四段圧縮機20に吸い込まれる低圧のガス冷媒(点A)は、第1圧縮部21で圧縮されて、第1吐出管21bへと吐出される(点B)。吐出された中間圧冷媒は、第1四路切換弁31を通過し、放熱器として機能する第1熱交換器41に向かう(点B1)。第1熱交換器41では、中間圧の冷媒が放熱して霜を溶かす。放熱して温度が下がった状態で第1熱交換器41を出た中間圧冷媒は(点E4)、第1インタークーラ管41aを介して第2吸入管22aに流れ込む(点C)。   The low-pressure gas refrigerant (point A) sucked into the four-stage compressor 20 from the first suction pipe 21a is compressed by the first compression section 21 and discharged to the first discharge pipe 21b (point B). The discharged intermediate pressure refrigerant passes through the first four-way switching valve 31 and travels toward the first heat exchanger 41 that functions as a radiator (point B1). In the first heat exchanger 41, the intermediate-pressure refrigerant dissipates heat and melts frost. The intermediate pressure refrigerant that has exited the first heat exchanger 41 in a state where the temperature has decreased due to heat dissipation (point E4) flows into the second suction pipe 22a via the first intercooler pipe 41a (point C).

第2吸入管22aから第2圧縮部22に吸い込まれてから四段圧縮機20を出て室内熱交換器12bおよび膨張機構70を経て室外電動弁50を通過するまでの冷媒の流れ等については、暖房運転時と同じである。室外電動弁50を通過した低圧冷媒は、中間圧冷媒が流れる第1熱交換器41には流れ込まないため、3路に分流されて第2〜第4逆止弁52〜54を通過し(点AC)、第2〜第4熱交換器42〜44に流入する。各路の低圧冷媒は、それぞれの熱交換器42〜44において外気から熱を奪って蒸発し、過熱のついた低圧のガス冷媒となって第2〜第4四路切換弁32〜34を通過して合流する(点AD)。合流後の低圧冷媒(点AD)は、暖房運転時と同じく、内部熱交換器62を通って第1吸入管21aから四段圧縮機20へと戻っていく。   Regarding the flow of refrigerant, etc., from the second suction pipe 22a to the second compression section 22 until it exits the four-stage compressor 20 and passes through the indoor heat exchanger 12b and the expansion mechanism 70 and the outdoor electric valve 50, etc. The same as during heating operation. Since the low-pressure refrigerant that has passed through the outdoor electric valve 50 does not flow into the first heat exchanger 41 through which the intermediate-pressure refrigerant flows, the low-pressure refrigerant is divided into three paths and passes through the second to fourth check valves 52 to 54 (points). AC), flows into the second to fourth heat exchangers 42 to 44. The low-pressure refrigerant in each path takes heat from the outside air in each heat exchanger 42 to 44 and evaporates, and becomes a low-pressure gas refrigerant with overheating and passes through the second to fourth four-way switching valves 32 to 34. To join (point AD). The low-pressure refrigerant (point AD) after joining returns to the four-stage compressor 20 from the first suction pipe 21a through the internal heat exchanger 62 as in the heating operation.

以上のように冷媒が冷媒回路内を循環することにより、空気調和装置10は、室内熱交換器12aで室内空気に放熱して暖房機能を継続させつつ、除霜運転の第4ステージで室外の第1熱交換器41の霜を溶かして取り除く。   As described above, the refrigerant circulates in the refrigerant circuit, so that the air conditioner 10 radiates the indoor air in the indoor heat exchanger 12a and continues the heating function, while maintaining the heating function in the fourth stage of the defrosting operation. The frost in the first heat exchanger 41 is melted and removed.

制御部10aは、それぞれ予め決められている時間の間だけ実行される除霜運転の第1〜第4ステージが終わると、自動的に暖房運転に戻す。   The controller 10a automatically returns to the heating operation when the first to fourth stages of the defrosting operation that are executed for a predetermined time are finished.

(3)空気調和装置の特徴
(3−1)
本実施形態に係る空気調和装置10では、除霜運転において、暖房運転時と同じく利用側熱交換器である室内熱交換器12aを放熱器として機能させて室内空気を暖めつつ、熱源側の第1〜第4熱交換器41〜44の一部を蒸発器として機能させて残りを放熱器として機能させることで、室外熱交換器40の除霜を行っている。この除霜運転では、室内熱交換器12aが室内空気に放熱を続けるため、室内に居る空気調和装置10の利用者が除霜運転時に寒さを我慢するといった不具合が殆どなくなっている。
(3) Features of the air conditioner (3-1)
In the air conditioning apparatus 10 according to the present embodiment, in the defrosting operation, the indoor heat exchanger 12a, which is the use-side heat exchanger as in the heating operation, functions as a radiator to warm the indoor air, The outdoor heat exchanger 40 is defrosted by causing a part of the first to fourth heat exchangers 41 to 44 to function as an evaporator and the rest to function as a radiator. In this defrosting operation, since the indoor heat exchanger 12a continues to radiate heat to the room air, there is almost no problem that the user of the air conditioner 10 in the room endures cold during the defrosting operation.

(3−2)
この空気調和装置10では、除霜運転において、図7の(B)〜(E)に示すような第1ステージ〜第4ステージを実行し、第1〜第4熱交換器41〜44を順番に1つずつ放熱器として働かせることで、除霜を行っている。このため、少し時間はかかるが、除霜運転の各ステージにおいて、室外ユニット11の3つの熱交換器を蒸発器として確保し、室内熱交換器12aを放熱器として機能させ続けることができている。このため、除霜運転モードのときの暖房能力の低下が小さく抑えられ、利用者が暖房能力の低下に不満を持つ場合であっても利用者の不快度合いを小さく抑えることができる。
(3-2)
In this air conditioning apparatus 10, in the defrosting operation, the first stage to the fourth stage as shown in FIGS. 7B to 7E are executed, and the first to fourth heat exchangers 41 to 44 are sequentially operated. Defrosting is performed by making each work as a radiator. For this reason, although it takes a little time, at each stage of the defrosting operation, the three heat exchangers of the outdoor unit 11 can be secured as evaporators, and the indoor heat exchanger 12a can continue to function as a radiator. . For this reason, the fall of the heating capability at the time of a defrost operation mode is suppressed small, and even if it is a case where a user is dissatisfied with the fall of a heating capability, a user's discomfort degree can be suppressed small.

(3−3)
この空気調和装置10では、上述のように、室外ユニット11の第1〜第4熱交換器41〜44のうち、上に配置されているものから順に、四段圧縮機20からの高圧あるいは中間圧の冷媒を流している。すなわち、第1〜第4熱交換器41〜44のうち、下に配置されている熱交換器よりも上に配置されている熱交換器を優先して放熱器として機能させ、順に下に配置されている熱交換器を放熱器として機能させている。
(3-3)
In the air conditioner 10, as described above, among the first to fourth heat exchangers 41 to 44 of the outdoor unit 11, the high pressure or intermediate voltage from the four-stage compressor 20 in order from the one arranged above. The refrigerant of pressure is flowing. That is, among the first to fourth heat exchangers 41 to 44, the heat exchanger disposed above the heat exchanger disposed below is given priority to function as a radiator, and disposed below in order. The heat exchanger that is being used is functioning as a radiator.

このため、除霜運転の第1ステージにおいて、まず最も上に位置する第4熱交換器44の霜が溶け、霜が溶けて温度が上がった水となって、その下の第3熱交換器43へと流れていく。これにより、第3熱交換器43の霜が少し溶けることになり、その第3熱交換器43を放熱器として霜を溶かす除霜運転の第2ステージに要する時間が短くなる。同様に、除霜運転の第3ステージおよび第4ステージに要する時間も短くなっている。   For this reason, in the first stage of the defrosting operation, the frost of the fourth heat exchanger 44 located at the top is first melted, and the frost is melted to become water whose temperature has risen, and the third heat exchanger below it It flows to 43. Thereby, the frost of the 3rd heat exchanger 43 will melt a little, and the time which the 2nd stage of the defrost operation which melt | dissolves frost by using the 3rd heat exchanger 43 as a heat radiator shortens. Similarly, the time required for the third stage and the fourth stage of the defrosting operation is also shortened.

(3−4)
この空気調和装置10では、冷房運転時には室内熱交換器12aで蒸発した低圧冷媒が流れ且つ暖房運転時には四段圧縮機20の最も高段の第4圧縮部24から吐出された高圧冷媒が室内熱交換器12aに向かって流れる、第1冷媒配管18から、第4熱交換器44に向かう除霜用配管36を分岐させている。さらに、空気調和装置10では、除霜運転の第1ステージのみ、除霜用配管36と第4熱交換器44の第4冷房入口配管44fとを連通させる第2状態に切り換わる、除霜用三方弁37を設けている。これにより、四段圧縮機20から吐出された高温の高圧冷媒を、室内熱交換器12aに流すとともに室外の第4熱交換器44(冷房運転時にガスクーラとして機能する熱源側熱交換器)に流すことができ、除霜運転時に室内熱交換器12aを放熱器として機能させつつ第4熱交換器44に付いた霜を溶かすことができている。
(3-4)
In the air conditioner 10, the low-pressure refrigerant evaporated in the indoor heat exchanger 12a flows during the cooling operation, and the high-pressure refrigerant discharged from the highest-stage fourth compression unit 24 of the four-stage compressor 20 is heated in the indoor operation. A defrosting pipe 36 directed to the fourth heat exchanger 44 is branched from the first refrigerant pipe 18 flowing toward the exchanger 12a. Further, in the air conditioner 10, only for the first stage of the defrosting operation, the defrosting is switched to the second state in which the defrosting pipe 36 and the fourth cooling inlet pipe 44f of the fourth heat exchanger 44 are communicated. A three-way valve 37 is provided. As a result, the high-temperature high-pressure refrigerant discharged from the four-stage compressor 20 is allowed to flow to the indoor heat exchanger 12a and to the outdoor fourth heat exchanger 44 (a heat source side heat exchanger that functions as a gas cooler during cooling operation). The frost attached to the fourth heat exchanger 44 can be melted while the indoor heat exchanger 12a functions as a radiator during the defrosting operation.

(4)変形例
(4−1)変形例A
上記実施形態では、除霜運転を第1〜第4ステージに分けているが、第1〜第4熱交換器41〜44のうち2つを蒸発器として機能させ残りの2つを放熱器として機能させる除霜運転を行わせることも可能である。例えば、第1ステージにおいて第2および第3熱交換器42,43を放熱器として機能させ、第2ステージにおいて第1および第4熱交換器41,44を放熱器として機能させ、両ステージにおいて室内熱交換器12aを放熱器として機能させ続けることも可能である。
(4) Modification (4-1) Modification A
In the above embodiment, the defrosting operation is divided into the first to fourth stages, but two of the first to fourth heat exchangers 41 to 44 function as evaporators and the remaining two serve as radiators. It is also possible to perform a defrosting operation to function. For example, the second and third heat exchangers 42 and 43 function as heat radiators in the first stage, the first and fourth heat exchangers 41 and 44 function as heat radiators in the second stage, and indoors in both stages. It is also possible to keep the heat exchanger 12a functioning as a radiator.

また、第1ステージにおいて第4熱交換器44を放熱器として機能させ且つ第1〜第3熱交換器41〜43を蒸発器として機能させ、第2ステージにおいて逆に容積が大きい第4熱交換器44を蒸発器として機能させ且つ第1〜第3熱交換器41〜43を放熱器として機能させ、両ステージにおいて室内熱交換器12aを放熱器として機能させ続けることも可能である。   In addition, the fourth heat exchanger 44 functions as a radiator in the first stage and the first to third heat exchangers 41 to 43 function as evaporators. It is also possible to cause the chamber 44 to function as an evaporator and the first to third heat exchangers 41 to 43 to function as radiators and to keep the indoor heat exchanger 12a functioning as a radiator in both stages.

(4−2)変形例B
上記実施形態では、四段圧縮機20を備え、室外熱交換器40を4つの熱交換器41〜44で構成している空気調和装置10に本発明を適用しているが、二段圧縮機を備えた冷凍装置に本発明を適用することもできる。
(4-2) Modification B
In the above embodiment, the present invention is applied to the air-conditioning apparatus 10 that includes the four-stage compressor 20 and the outdoor heat exchanger 40 includes the four heat exchangers 41 to 44. However, the two-stage compressor The present invention can also be applied to a refrigeration apparatus including

図16〜図18に、変形例Bに係る空気調和装置110の冷媒回路および冷媒の流れを示す。ここでは、除霜運転が、第1ステージおよび第2ステージから構成される。図16は、暖房運転時において冷媒回路を循環する冷媒の流れを表している。図17は、除霜運転の第1ステージにおいて冷媒回路を循環する冷媒の流れを表している。図18は、除霜運転の第2ステージにおいて冷媒回路を循環する冷媒の流れを表している。   16 to 18 show the refrigerant circuit of the air-conditioning apparatus 110 according to Modification B and the refrigerant flow. Here, the defrosting operation includes a first stage and a second stage. FIG. 16 shows the flow of the refrigerant circulating in the refrigerant circuit during the heating operation. FIG. 17 shows the flow of the refrigerant circulating in the refrigerant circuit in the first stage of the defrosting operation. FIG. 18 shows the flow of the refrigerant circulating in the refrigerant circuit in the second stage of the defrosting operation.

空気調和装置110について、以下、上記の空気調和装置10との相違点を中心に説明する。   Hereinafter, the air conditioner 110 will be described focusing on differences from the air conditioner 10 described above.

空気調和装置110の冷媒回路は、主として、二段圧縮機120、第1切換機構としての第1,第2四路切換弁131,134、第2切換機構としての除霜用三方弁137、室外熱交換器140、室外電動弁50、逆止弁回路55、エコノマイザ熱交換器61、内部熱交換器62、膨張機構70、レシーバ80、過冷却熱交換器90、室内熱交換器12aおよび室内電動弁12bから成る。室外熱交換器140は、並列に配置された、第1熱交換器141および第2熱交換器144から成る。   The refrigerant circuit of the air conditioner 110 mainly includes a two-stage compressor 120, first and second four-way switching valves 131 and 134 as a first switching mechanism, a defrosting three-way valve 137 as a second switching mechanism, and an outdoor unit. Heat exchanger 140, outdoor electric valve 50, check valve circuit 55, economizer heat exchanger 61, internal heat exchanger 62, expansion mechanism 70, receiver 80, supercooling heat exchanger 90, indoor heat exchanger 12a, and indoor electric motor It consists of a valve 12b. The outdoor heat exchanger 140 includes a first heat exchanger 141 and a second heat exchanger 144 arranged in parallel.

二段圧縮機120は、低段圧縮部121、高段圧縮部124および圧縮機駆動モータ(図示せず)が収容された、密閉式の圧縮機である。圧縮機駆動モータは、駆動軸を介して、2つの圧縮部121,124を駆動する。低段圧縮部121は、低段吸入管121aから冷媒を吸い込み、低段吐出管121bへと冷媒を吐出する。高段圧縮部124は、高段吸入管124aから冷媒を吸い込み、高段吐出管124bへと冷媒を吐出する。   The two-stage compressor 120 is a hermetic compressor in which a low-stage compressor 121, a high-stage compressor 124, and a compressor drive motor (not shown) are accommodated. The compressor drive motor drives the two compression units 121 and 124 via the drive shaft. The low stage compression unit 121 sucks the refrigerant from the low stage suction pipe 121a and discharges the refrigerant to the low stage discharge pipe 121b. The high stage compression unit 124 sucks the refrigerant from the high stage suction pipe 124a and discharges the refrigerant to the high stage discharge pipe 124b.

第1四路切換弁131および第2四路切換弁134は、冷媒回路内における冷媒の流れの方向を切り換えて、冷房運転サイクルと暖房運転サイクルとを切り換えるために設けられている切換機構である。第1四路切換弁131は、低段吐出管121b、高段吸入管124a、第1熱交換器141に延びる第1冷房入口配管141f、および低圧冷媒配管19と接続されている。第2四路切換弁134は、高段吐出管124b、連絡冷媒配管14に延びる第1冷媒配管118、第2熱交換器144に延びる第2冷媒配管144g、および低圧冷媒配管19と接続されている。   The first four-way switching valve 131 and the second four-way switching valve 134 are switching mechanisms that are provided to switch between the cooling operation cycle and the heating operation cycle by switching the direction of the refrigerant flow in the refrigerant circuit. . The first four-way switching valve 131 is connected to the low-stage discharge pipe 121b, the high-stage suction pipe 124a, the first cooling inlet pipe 141f extending to the first heat exchanger 141, and the low-pressure refrigerant pipe 19. The second four-way switching valve 134 is connected to the high-stage discharge pipe 124 b, the first refrigerant pipe 118 extending to the communication refrigerant pipe 14, the second refrigerant pipe 144 g extending to the second heat exchanger 144, and the low-pressure refrigerant pipe 19. Yes.

第2四路切換弁134に接続された第2冷媒配管144gと、第2熱交換器144の冷房運転時の入口側端部に接続された第2冷房入口配管144fとの間には、除霜用三方弁137が設けられている。除霜用三方弁137には、更に、第2四路切換弁134と連絡冷媒配管14とを結ぶ第1冷媒配管118から分岐している除霜用配管136が接続されている。除霜用三方弁137は、第2冷媒配管144gと第2冷房入口配管144fとを連通させて第2四路切換弁134と第2熱交換器144とを結ぶ第1状態と、除霜用配管136と第2冷房入口配管144fとを連通させる第2状態とを切り換える。除霜用三方弁137は、除霜運転の第1ステージのときのみ第2状態となり、それ以外の冷房運転、暖房運転および除霜運転の第2ステージのときには第1状態となる。   Between the second refrigerant pipe 144g connected to the second four-way selector valve 134 and the second cooling inlet pipe 144f connected to the inlet side end of the second heat exchanger 144 during the cooling operation, there is no removal. A three-way valve 137 for frost is provided. The defrosting three-way valve 137 is further connected with a defrosting pipe 136 branched from the first refrigerant pipe 118 connecting the second four-way switching valve 134 and the communication refrigerant pipe 14. The defrosting three-way valve 137 communicates the second refrigerant piping 144g and the second cooling inlet piping 144f to connect the second four-way switching valve 134 and the second heat exchanger 144, and the defrosting The second state is switched between the pipe 136 and the second cooling inlet pipe 144f. The defrosting three-way valve 137 is in the second state only during the first stage of the defrosting operation, and is in the first state during the other stages of cooling operation, heating operation, and defrosting operation.

室外熱交換器140は、冷房運転時には、第1熱交換器141が、圧縮途中の冷媒(中間圧冷媒)を冷やすインタークーラとして機能し、第2熱交換器144が、高圧の冷媒を冷やすガスクーラとして機能する。暖房運転時には、第1熱交換器141も第2熱交換器144も、低圧の冷媒の蒸発器として機能する。第1熱交換器141は、第2熱交換器144の上に積み上げられるように配置されている。また、第1熱交換器141の室外電動弁50側の配管からは、高段吸入管124aに向かって、分岐管であるインタークーラ管141aが延びている。インタークーラ管141aには、図16に示すように、逆止弁が設けられている。   In the outdoor heat exchanger 140, during the cooling operation, the first heat exchanger 141 functions as an intercooler that cools the refrigerant being compressed (intermediate pressure refrigerant), and the second heat exchanger 144 is a gas cooler that cools the high-pressure refrigerant. Function as. During the heating operation, both the first heat exchanger 141 and the second heat exchanger 144 function as a low-pressure refrigerant evaporator. The first heat exchanger 141 is arranged to be stacked on the second heat exchanger 144. Further, an intercooler pipe 141a that is a branch pipe extends from the pipe on the outdoor electric valve 50 side of the first heat exchanger 141 toward the high stage suction pipe 124a. As shown in FIG. 16, the intercooler pipe 141a is provided with a check valve.

暖房運転時は、図16に示す冷媒配管に沿った矢印の方向に、冷媒が、二段圧縮機120、室内熱交換器12a、膨張機構70、室外熱交換器140の順に冷媒回路内を循環する。四路切換弁131,134は、暖房運転時において、二段圧縮機120によって圧縮された冷媒の冷却器(放熱器)として室内熱交換器12aを機能させ、かつ、膨張機構70および室外電動弁50を通過して膨張した冷媒の蒸発器として室外熱交換器140を機能させるように、図16に示す状態になる。また、除霜用三方弁137は、第2冷媒配管144gと第2冷房入口配管144fとを連通させて第2四路切換弁134と第2熱交換器144とを結ぶ第1状態になっている。低段吸入管121aから二段圧縮機120に吸い込まれる低圧のガス冷媒は、低段圧縮部121で圧縮されて、低段吐出管121bに吐出される。吐出された中間圧冷媒は、第1四路切換弁131を通過し、高段吸入管124aを流れる。高段圧縮部124に吸い込まれた冷媒は、圧縮されて高段吐出管124bに吐出される。吐出された高圧冷媒は、第2四路切換弁134を通過し、連絡冷媒配管14を介して室内ユニット12に流入する。室内ユニット12に流入してから室外電動弁50を通過するまでの動作は、上記の空気調和装置10の暖房運転時と同じである。室外電動弁50および2路分流後のキャピラリーチューブにおいて減圧・膨張された気液二相の低圧冷媒は、第1熱交換器141および第2熱交換器144に流入する。そして、各路の低圧冷媒は、それぞれの熱交換器141,144において外気から熱を奪って蒸発し、過熱のついた低圧のガス冷媒となって低圧冷媒配管19で合流する。合流後の低圧冷媒は、過冷却熱交換器90から流れてくる低圧冷媒と合流し、内部熱交換器62を通って低段吸入管121aから二段圧縮機120へと戻っていく。   During the heating operation, the refrigerant circulates in the refrigerant circuit in the order of the two-stage compressor 120, the indoor heat exchanger 12a, the expansion mechanism 70, and the outdoor heat exchanger 140 in the direction of the arrow along the refrigerant pipe shown in FIG. To do. The four-way switching valves 131 and 134 cause the indoor heat exchanger 12a to function as a refrigerant cooler (radiator) compressed by the two-stage compressor 120 during heating operation, and the expansion mechanism 70 and the outdoor electric valve It will be in the state shown in FIG. 16 so that the outdoor heat exchanger 140 may function as an evaporator of the refrigerant | coolant expanded through 50. FIG. Further, the defrosting three-way valve 137 is in a first state in which the second four-way switching valve 134 and the second heat exchanger 144 are connected by communicating the second refrigerant pipe 144g and the second cooling inlet pipe 144f. Yes. The low-pressure gas refrigerant sucked into the two-stage compressor 120 from the low-stage suction pipe 121a is compressed by the low-stage compression section 121 and discharged to the low-stage discharge pipe 121b. The discharged intermediate pressure refrigerant passes through the first four-way switching valve 131 and flows through the high stage suction pipe 124a. The refrigerant sucked into the high stage compression unit 124 is compressed and discharged to the high stage discharge pipe 124b. The discharged high-pressure refrigerant passes through the second four-way switching valve 134 and flows into the indoor unit 12 through the communication refrigerant pipe 14. The operation from the flow into the indoor unit 12 to the passage through the outdoor motor operated valve 50 is the same as that during the heating operation of the air conditioner 10 described above. The gas-liquid two-phase low-pressure refrigerant decompressed and expanded in the outdoor electric valve 50 and the capillary tube after the two-way split flows into the first heat exchanger 141 and the second heat exchanger 144. And the low-pressure refrigerant | coolant of each path takes heat from outside air in each heat exchanger 141,144, evaporates, turns into a low-pressure gas refrigerant with overheating, and merges in the low-pressure refrigerant piping 19. The merged low-pressure refrigerant merges with the low-pressure refrigerant flowing from the supercooling heat exchanger 90, and returns to the two-stage compressor 120 from the low-stage intake pipe 121a through the internal heat exchanger 62.

除霜運転の第1ステージでは、図17に示す冷媒配管に沿った矢印の方向に冷媒が流れる。四路切換弁131,134は、暖房運転時と同じ状態であるが、除霜用三方弁137が、除霜用配管136と第2冷房入口配管144fとを連通させる第2状態に切り換わる。これにより、二段圧縮機120から吐出された高圧の冷媒は、第2四路切換弁134を通過し、第1冷媒配管118および連絡冷媒配管14を介して室内ユニット12に流入するとともに、第1冷媒配管118から分岐する除霜用配管136および除霜用三方弁137を経て、第2冷房入口配管144fから第2熱交換器144に流れる。第1冷媒配管118から第2熱交換器144に流れた高圧冷媒は、第2熱交換器144で放熱して霜を溶かす。一方の室内ユニット12に流入した高圧冷媒は、暖房運転のときと同様に、室内熱交換器12aで室内空気に放熱し、室内電動弁12bおよび連絡冷媒配管13を通って室外ユニット11の逆止弁回路55へと流れてくる。第2熱交換器144を出て逆止弁回路55の入口逆止弁55aを通過した冷媒と、室内熱交換器12aを出て室内電動弁12bで少し減圧されて逆止弁回路55の入口逆止弁55bを通過した冷媒とは、合流してエコノマイザ熱交換器61に流れ込む。エコノマイザ熱交換器61から室外電動弁50を通過するまでの動作は、上記の空気調和装置10の暖房運転時と同じである。室外電動弁50を通過した低圧冷媒は、高圧冷媒が流れる第2熱交換器144には流れ込まないため、第1逆止弁151を通過して第1熱交換器141に流入する。第1熱交換器141において外気から熱を奪って蒸発し、過熱のついた低圧のガス冷媒は、第1四路切換弁131を通過して、低圧冷媒配管19から内部熱交換器62を通り、低段吸入管121aから二段圧縮機120へと戻っていく。このように冷媒が冷媒回路内を循環することにより、空気調和装置110は、室内熱交換器12aで室内空気に放熱して暖房機能を継続させつつ、まず除霜運転の第1ステージで室外の第2熱交換器144の霜を溶かして取り除く。   In the first stage of the defrosting operation, the refrigerant flows in the direction of the arrow along the refrigerant pipe shown in FIG. The four-way switching valves 131 and 134 are in the same state as in the heating operation, but the defrosting three-way valve 137 switches to the second state in which the defrosting pipe 136 and the second cooling inlet pipe 144f are communicated. As a result, the high-pressure refrigerant discharged from the two-stage compressor 120 passes through the second four-way switching valve 134 and flows into the indoor unit 12 via the first refrigerant pipe 118 and the communication refrigerant pipe 14, and It flows from the second cooling inlet pipe 144f to the second heat exchanger 144 through the defrosting pipe 136 and the defrosting three-way valve 137 branched from the first refrigerant pipe 118. The high-pressure refrigerant flowing from the first refrigerant pipe 118 to the second heat exchanger 144 dissipates heat in the second heat exchanger 144 and melts frost. The high-pressure refrigerant that has flowed into one indoor unit 12 radiates heat to the indoor air by the indoor heat exchanger 12a, and the check of the outdoor unit 11 passes through the indoor motor-operated valve 12b and the communication refrigerant pipe 13, as in the heating operation. It flows to the valve circuit 55. The refrigerant that has exited the second heat exchanger 144 and passed through the inlet check valve 55a of the check valve circuit 55 and the refrigerant that has exited the indoor heat exchanger 12a and is slightly depressurized by the indoor motor operated valve 12b are introduced into the check valve circuit 55. The refrigerant that has passed through the check valve 55 b joins and flows into the economizer heat exchanger 61. The operation from the economizer heat exchanger 61 through the outdoor electric valve 50 is the same as that during the heating operation of the air conditioner 10 described above. Since the low-pressure refrigerant that has passed through the outdoor electric valve 50 does not flow into the second heat exchanger 144 through which the high-pressure refrigerant flows, the low-pressure refrigerant passes through the first check valve 151 and flows into the first heat exchanger 141. In the first heat exchanger 141, heat is removed from the outside air to evaporate, and the superheated low-pressure gas refrigerant passes through the first four-way switching valve 131 and passes through the internal heat exchanger 62 from the low-pressure refrigerant pipe 19. Then, the low-stage suction pipe 121a returns to the two-stage compressor 120. As the refrigerant circulates in the refrigerant circuit in this way, the air conditioner 110 radiates heat to the indoor air by the indoor heat exchanger 12a and continues the heating function, while at the first stage of the defrosting operation, The frost in the second heat exchanger 144 is melted and removed.

除霜運転の第2ステージでは、第2熱交換器144の下に位置する第1熱交換器141の霜を取り除く。ここでは、図18に示す冷媒配管に沿った矢印の方向に冷媒が流れる。第2四路切換弁134は、暖房運転時と同じ状態になり、第1四路切換弁131が、冷房運転のときと同じ状態に切り換わる。また、除霜用三方弁137は、暖房運転時と同じ第1状態に切り換わる。低段吸入管121aから二段圧縮機120に吸い込まれる低圧のガス冷媒は、低段圧縮部121で圧縮されて、低段吐出管121bへと吐出される。吐出された冷媒は、第1四路切換弁131を通過し、放熱器として機能する第1熱交換器141に向かう。第1熱交換器141では、中間圧の冷媒が放熱して霜を溶かす。放熱して温度が下がった状態で第1熱交換器141を出た中間圧冷媒は、インタークーラ管141aを介して高段吸入管124aに流れ込む。二段圧縮機120の高段圧縮部124から吐出され室内熱交換器12bおよび膨張機構70を経て室外電動弁50を通過するまでの冷媒の流れ等については、上記の空気調和装置10の暖房運転時と同じである。室外電動弁50を通過した低圧冷媒は、中間圧冷媒が流れる第1熱交換器141には流れ込まないため、第2逆止弁152を通過して、第2熱交換器144に流入する。この低圧冷媒は、第2熱交換器144において外気から熱を奪って蒸発し、過熱のついた低圧のガス冷媒となって除霜用三方弁137および第2四路切換弁134を通過して、低圧冷媒配管19に流れる。その後、過冷却熱交換器90から流れてくる冷媒と合流した低圧冷媒は、内部熱交換器62を通って低段吸入管121aから二段圧縮機120へと戻っていく。   In the second stage of the defrosting operation, the frost of the first heat exchanger 141 located under the second heat exchanger 144 is removed. Here, the refrigerant flows in the direction of the arrow along the refrigerant pipe shown in FIG. The second four-way switching valve 134 is in the same state as in the heating operation, and the first four-way switching valve 131 is switched to the same state as in the cooling operation. In addition, the defrosting three-way valve 137 switches to the same first state as in the heating operation. The low-pressure gas refrigerant sucked into the two-stage compressor 120 from the low-stage intake pipe 121a is compressed by the low-stage compressor 121 and discharged to the low-stage discharge pipe 121b. The discharged refrigerant passes through the first four-way switching valve 131 and travels to the first heat exchanger 141 that functions as a radiator. In the first heat exchanger 141, the intermediate-pressure refrigerant dissipates heat and melts frost. The intermediate pressure refrigerant that has exited the first heat exchanger 141 in a state where the temperature has decreased due to heat dissipation flows into the high-stage suction pipe 124a via the intercooler pipe 141a. As for the flow of the refrigerant discharged from the high-stage compressor 124 of the two-stage compressor 120 and passing through the indoor heat exchanger 12b and the expansion mechanism 70 and the outdoor electric valve 50, the heating operation of the air conditioner 10 described above is performed. Same as time. Since the low-pressure refrigerant that has passed through the outdoor electric valve 50 does not flow into the first heat exchanger 141 through which the intermediate-pressure refrigerant flows, the low-pressure refrigerant passes through the second check valve 152 and flows into the second heat exchanger 144. This low-pressure refrigerant takes heat from the outside air in the second heat exchanger 144 and evaporates to become a superheated low-pressure gas refrigerant that passes through the defrosting three-way valve 137 and the second four-way switching valve 134. The low-pressure refrigerant pipe 19 flows. Thereafter, the low-pressure refrigerant joined with the refrigerant flowing from the supercooling heat exchanger 90 returns to the two-stage compressor 120 from the low-stage suction pipe 121a through the internal heat exchanger 62.

以上のように冷媒が除霜運転の第1および第2ステージにおいて冷媒回路内を循環することにより、空気調和装置110は、室内熱交換器12aで室内空気に放熱して暖房機能を継続させつつ、除霜運転の第1ステージで室外の第2熱交換器144の霜を溶かし、除霜運転の第2ステージで室外の第1熱交換器141の霜を溶かす。除霜運転の第1,第2ステージが終わると、空気調和装置110は自動的に暖房運転に戻る。   As described above, the refrigerant circulates in the refrigerant circuit in the first and second stages of the defrosting operation, whereby the air conditioner 110 radiates heat to the indoor air in the indoor heat exchanger 12a and continues the heating function. The frost of the outdoor second heat exchanger 144 is melted in the first stage of the defrosting operation, and the frost of the outdoor first heat exchanger 141 is melted in the second stage of the defrosting operation. When the first and second stages of the defrosting operation are finished, the air conditioner 110 automatically returns to the heating operation.

10 空気調和装置(冷凍装置)
10a 制御部
12a 室内熱交換器(利用側熱交換器)
18 第1冷媒配管
20 四段圧縮機(複数段圧縮機構)
21 第1圧縮部(低段圧縮部)
22 第2圧縮部(高段圧縮部;第2段圧縮部)
23 第3圧縮部(高段圧縮部;第3段圧縮部)
24 第4圧縮部(高段圧縮部)
31 第1四路切換弁(第1切換機構)
32 第2四路切換弁(第1切換機構)
33 第3四路切換弁(第1切換機構)
34 第4四路切換弁(第1切換機構)
36 除霜用配管
37 除霜用三方弁(第2切換機構)
40 室外熱交換器
41 第1熱交換器(熱源側サブ熱交換器;熱源側第1サブ熱交換器)
42 第2熱交換器(熱源側サブ熱交換器;熱源側第2サブ熱交換器)
43 第3熱交換器(熱源側サブ熱交換器)
44 第4熱交換器(熱源側メイン熱交換器)
44f 第2冷媒配管
70 膨張機構
120 二段圧縮機(複数段圧縮機構)
121 低段圧縮部
124 高段圧縮部
136 除霜用配管
137 除霜用三方弁(第2切換機構)
140 室外熱交換器
141 第1熱交換器(熱源側サブ熱交換器)
144 第2熱交換器(熱源側メイン熱交換器)
144f 第2冷媒配管
10 Air conditioning equipment (refrigeration equipment)
10a Control unit 12a Indoor heat exchanger (use side heat exchanger)
18 First refrigerant piping 20 Four-stage compressor (multi-stage compression mechanism)
21 1st compression part (low stage compression part)
22 2nd compression part (high stage compression part; 2nd stage compression part)
23 3rd compression part (high stage compression part; 3rd stage compression part)
24 4th compression part (high stage compression part)
31 First four-way switching valve (first switching mechanism)
32 Second four-way switching valve (first switching mechanism)
33 Third four-way switching valve (first switching mechanism)
34 Fourth four-way switching valve (first switching mechanism)
36 Piping for defrosting 37 Three-way valve for defrosting (second switching mechanism)
40 Outdoor heat exchanger 41 1st heat exchanger (heat source side sub heat exchanger; heat source side 1st sub heat exchanger)
42 2nd heat exchanger (heat source side sub heat exchanger; heat source side second sub heat exchanger)
43 3rd heat exchanger (heat source side sub heat exchanger)
44 4th heat exchanger (heat source side main heat exchanger)
44f Second refrigerant pipe 70 Expansion mechanism 120 Two-stage compressor (multiple-stage compression mechanism)
121 Low stage compression section 124 High stage compression section 136 Defrosting pipe 137 Defrosting three-way valve (second switching mechanism)
140 Outdoor heat exchanger 141 1st heat exchanger (heat source side sub heat exchanger)
144 2nd heat exchanger (heat source side main heat exchanger)
144f Second refrigerant pipe

特開2010−112618号公報JP 2010-112618 A

Claims (5)

低段圧縮部(21)と、高段圧縮部(22,23,24)とが、直列に接続された、複数段圧縮機構(20)と、
冷房運転時に、放熱器として機能し、暖房運転時に、蒸発器として機能する、熱源側メイン熱交換器(44)と、
冷房運転時に、前記高段圧縮部に吸入される圧縮途中の中間圧冷媒を冷やす放熱器として機能し、暖房運転時に、蒸発器として機能する、熱源側サブ熱交換器(41〜43)と、
冷房運転時に、蒸発器として機能し、暖房運転時に、放熱器として機能する、利用側熱交換器(12a)と、
冷房運転時には、前記熱源側メイン熱交換器から前記利用側熱交換器に冷媒が送られ、暖房運転時には、前記利用側熱交換器から前記熱源側メイン熱交換器および前記熱源側サブ熱交換器に冷媒が送られるように、状態が切り換わる、第1切換機構(31〜34)と、
冷房運転時に、前記熱源側メイン熱交換器から前記利用側熱交換器に送られる冷媒を減圧し、暖房運転時に、前記利用側熱交換器から前記熱源側メイン熱交換器および前記熱源側サブ熱交換器に送られる冷媒を減圧する、膨張機構(70)と、
冷房運転と、暖房運転と、前記熱源側メイン熱交換器および前記熱源側サブ熱交換器に付着した霜を溶かす除霜運転とを選択的に行う制御部(10a)と、
を備え、
前記制御部は、前記除霜運転において、前記熱源側メイン熱交換器(44)および前記熱源側サブ熱交換器(41〜43)のうち少なくとも1つの熱交換器を蒸発器として機能させ且つ他の熱交換器を放熱器として機能させ、前記利用側熱交換器(12a)を放熱器として機能させる、
冷凍装置(10)。
A multi-stage compression mechanism (20) in which a low-stage compression section (21) and a high-stage compression section (22, 23, 24) are connected in series;
A heat source side main heat exchanger (44) that functions as a radiator during cooling operation and functions as an evaporator during heating operation;
A heat source side sub heat exchanger (41-43) that functions as a radiator that cools the intermediate pressure refrigerant in the middle of compression sucked into the high-stage compression section during cooling operation, and functions as an evaporator during heating operation;
A use side heat exchanger (12a) that functions as an evaporator during cooling operation and functions as a radiator during heating operation;
During the cooling operation, the refrigerant is sent from the heat source side main heat exchanger to the use side heat exchanger, and during the heating operation, the heat source side main heat exchanger and the heat source side sub heat exchanger are transferred from the use side heat exchanger. A first switching mechanism (31-34), the state of which is switched so that the refrigerant is sent to
During the cooling operation, the refrigerant sent from the heat source side main heat exchanger to the use side heat exchanger is decompressed, and during the heating operation, the heat source side main heat exchanger and the heat source side sub heat are transferred from the use side heat exchanger. An expansion mechanism (70) for depressurizing the refrigerant sent to the exchanger;
A controller (10a) that selectively performs a cooling operation, a heating operation, and a defrosting operation for melting frost attached to the heat source side main heat exchanger and the heat source side sub heat exchanger;
With
In the defrosting operation, the control unit causes at least one of the heat source side main heat exchanger (44) and the heat source side sub heat exchanger (41 to 43) to function as an evaporator and the other. And the heat exchanger (12a) is made to function as a radiator.
Refrigeration equipment (10).
前記制御部は、除霜運転において、前記熱源側メイン熱交換器(44)および前記熱源側サブ熱交換器(41〜43)のうち放熱器として機能させる熱交換器を順に切り換える、
請求項1に記載の冷凍装置。
In the defrosting operation, the control unit sequentially switches a heat exchanger that functions as a radiator among the heat source side main heat exchanger (44) and the heat source side sub heat exchanger (41 to 43).
The refrigeration apparatus according to claim 1.
前記熱源側メイン熱交換器(44)および前記熱源側サブ熱交換器(41〜43)は、それぞれ平面的に重なるように上下に配置されており、
前記制御部は、除霜運転において、前記熱源側メイン熱交換器(44)および前記熱源側サブ熱交換器(41〜43)のうち下に配置されている熱交換器よりも上に配置されている熱交換器を優先して放熱器として機能させ、順に下に配置されている熱交換器を放熱器として機能させていく、
請求項2に記載の冷凍装置。
The heat source side main heat exchanger (44) and the heat source side sub heat exchangers (41 to 43) are arranged vertically so as to overlap each other in a plane,
In the defrosting operation, the control unit is disposed above a heat exchanger disposed below the heat source side main heat exchanger (44) and the heat source side sub heat exchanger (41 to 43). The heat exchanger that is being used is given priority to function as a radiator, and the heat exchangers that are arranged below are functioned as radiators in order.
The refrigeration apparatus according to claim 2.
冷房運転時に、前記利用側熱交換器で蒸発した低圧冷媒が流れ、暖房運転時に、前記複数段圧縮機構の最も高段の高段圧縮部(24)から吐出された高圧冷媒が前記利用側熱交換器に向かって流れる、第1冷媒配管(18)と、
前記第1冷媒配管(18)から分岐して、前記熱源側メイン熱交換器が放熱器として機能するときの入口配管となる第2冷媒配管(44f)に向かう除霜用配管(36)と、
前記第1冷媒配管(18)、前記除霜用配管(36)および前記第2冷媒配管(44f)が連通する連通状態と、連通しない非連通状態とを切り換える、第2切換機構(37)と、
をさらに備える、請求項1から3のいずれかに記載の冷凍装置。
During the cooling operation, the low-pressure refrigerant evaporated in the use-side heat exchanger flows, and during the heating operation, the high-pressure refrigerant discharged from the highest-stage high-stage compression unit (24) of the multistage compression mechanism is the use-side heat. A first refrigerant pipe (18) flowing toward the exchanger;
A defrosting pipe (36) branched from the first refrigerant pipe (18) and directed to a second refrigerant pipe (44f) serving as an inlet pipe when the heat source side main heat exchanger functions as a radiator;
A second switching mechanism (37) for switching between a communication state in which the first refrigerant pipe (18), the defrosting pipe (36) and the second refrigerant pipe (44f) communicate with each other and a non-communication state in which the first refrigerant pipe (18), the defrosting pipe (44f) does not communicate with each other; ,
The refrigeration apparatus according to any one of claims 1 to 3, further comprising:
前記高段圧縮部は、前記低段圧縮部から吐出された冷媒を吸入する第2段圧縮部(22)と、前記第2段圧縮部から吐出された冷媒を吸入する第3段圧縮部(23)とを含み、
前記熱源側サブ熱交換器は、冷房運転時に前記低段圧縮部から吐出され前記第2段圧縮部に吸入される冷媒を冷やす熱源側第1サブ熱交換器(41)と、冷房運転時に前記第2段圧縮部から吐出され前記第3段圧縮部に吸入される冷媒を冷やす熱源側第2サブ熱交換器(42)とを含み、
前記制御部は、除霜運転において、前記熱源側メイン熱交換器および前記熱源側サブ熱交換器のうち1つの熱交換器を放熱器として機能させ且つ残りの熱交換器を蒸発器として機能させ、前記利用側熱交換器(12a)を放熱器として機能させる、
請求項1から4のいずれかに記載の冷凍装置。
The high-stage compression section includes a second-stage compression section (22) that sucks the refrigerant discharged from the low-stage compression section, and a third-stage compression section (suction) that sucks the refrigerant discharged from the second-stage compression section. 23),
The heat source side sub heat exchanger includes a heat source side first sub heat exchanger (41) that cools the refrigerant discharged from the low stage compression unit and sucked into the second stage compression unit during cooling operation, and the heat source side sub heat exchanger during the cooling operation. A heat source side second sub heat exchanger (42) for cooling the refrigerant discharged from the second stage compression section and sucked into the third stage compression section,
In the defrosting operation, the controller causes one heat exchanger of the heat source side main heat exchanger and the heat source side sub heat exchanger to function as a radiator and the remaining heat exchanger to function as an evaporator. , Causing the use side heat exchanger (12a) to function as a radiator,
The refrigeration apparatus according to any one of claims 1 to 4.
JP2012081363A 2012-03-30 2012-03-30 Refrigerating apparatus Pending JP2013210161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081363A JP2013210161A (en) 2012-03-30 2012-03-30 Refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081363A JP2013210161A (en) 2012-03-30 2012-03-30 Refrigerating apparatus

Publications (1)

Publication Number Publication Date
JP2013210161A true JP2013210161A (en) 2013-10-10

Family

ID=49528141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081363A Pending JP2013210161A (en) 2012-03-30 2012-03-30 Refrigerating apparatus

Country Status (1)

Country Link
JP (1) JP2013210161A (en)

Similar Documents

Publication Publication Date Title
JP5288020B1 (en) Refrigeration equipment
JP6685409B2 (en) Air conditioner
JP5239824B2 (en) Refrigeration equipment
JP3775358B2 (en) Refrigeration equipment
JP6678332B2 (en) Outdoor unit and control method for air conditioner
CN103635754A (en) Air conditioner
JP2008128565A (en) Air conditioner
JP7096511B2 (en) Refrigeration cycle device
WO2005033593A1 (en) Freezer
JP6160725B1 (en) Refrigeration equipment
JP5237157B2 (en) Air heat source turbo heat pump
JP2015132413A (en) Refrigeration device
JP2010078165A (en) Refrigeration and air conditioning device
KR102549600B1 (en) Air conditioner
JP5958022B2 (en) Refrigeration equipment
JP4023386B2 (en) Refrigeration equipment
JP5895662B2 (en) Refrigeration equipment
JP2013210158A (en) Refrigerating device
JP6042037B2 (en) Refrigeration cycle equipment
JP2013210160A (en) Refrigerating apparatus
JP6354209B2 (en) Refrigeration equipment
JP6398363B2 (en) Refrigeration equipment
JP2013210161A (en) Refrigerating apparatus
JP5991196B2 (en) Refrigeration equipment
JP2014126324A (en) Refrigeration device