JP2013210128A - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP2013210128A
JP2013210128A JP2012080376A JP2012080376A JP2013210128A JP 2013210128 A JP2013210128 A JP 2013210128A JP 2012080376 A JP2012080376 A JP 2012080376A JP 2012080376 A JP2012080376 A JP 2012080376A JP 2013210128 A JP2013210128 A JP 2013210128A
Authority
JP
Japan
Prior art keywords
channel
moisture
flow passage
wet
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012080376A
Other languages
Japanese (ja)
Other versions
JP5932438B2 (en
Inventor
Masakatsu Taguchi
雅旦 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012080376A priority Critical patent/JP5932438B2/en
Publication of JP2013210128A publication Critical patent/JP2013210128A/en
Application granted granted Critical
Publication of JP5932438B2 publication Critical patent/JP5932438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system capable of obtaining high cooling capacity with a simple construction by combining a desiccant humidity control device with an indirect evaporative cooling device.SOLUTION: A cooling system includes: an indirect evaporative cooling device 1 including a dry flow passage 11, a wet flow passage 12, which can exchange heat with each other, and a liquid supply means 13, and cooling a gas flowing in the dry flow passage 11 without humidifying the same by drawing heat from the surroundings as evaporation heat when liquid supplied to the wet flow passage 12 is evaporated by a gas flowing in the wet flow passage 12; and a desiccant humidity control device 2 including a moisture absorption flow passage 21, a moisture desorption flow passage 22 and a desiccant rotor 20, and performing moisture absorption to a gas flowing in the moisture absorption flow passage 21 and moisture desorption in the moisture desorption flow passage 22. An inlet of the dry flow passage 11 and an outlet of the wet flow passage 12 are brought in communication with the outdoors, a connection flow passage is connected between an outlet of the dry flow passage 11 and an inlet of the moisture desorption flow passage 22, a connection flow passage is connected between an outlet of the moisture absorption flow passage 21 and an inlet of the wet flow passage 12, and an outlet of the moisture desorption flow passage 22 and an inlet of the moisture absorption flow passage 21 are brought in communication with the interior.

Description

本発明は、間接気化冷却装置とデシカント調湿装置とを備えた冷房システムに関するものである。   The present invention relates to a cooling system including an indirect vaporization cooling device and a desiccant humidity control device.

互いに熱交換が可能な乾流路と湿流路の二つの気体の流路と、湿流路に設けられる液体供給手段と、を備え、湿流路を流れる気体により該湿流路に供給された液体が蒸発する際に気化熱として周囲から熱を奪うことにより、乾流路を流れる気体が冷却されることで、乾流路を流れる気体を加湿することなく冷却する間接気化冷却装置が知られている(例えば特許文献1参照)。   Two gas channels, a dry channel and a wet channel, that can exchange heat with each other, and liquid supply means provided in the wet channel, are supplied to the wet channel by the gas flowing in the wet channel An indirect evaporative cooling device that cools the gas flowing in the dry flow path without humidification by cooling the gas flowing in the dry flow path by removing heat from the surroundings as the heat of vaporization when the liquid is evaporated is known. (See, for example, Patent Document 1).

この間接気化冷却装置にあっては、乾流路と湿流路を流れる気体の流量と、湿流路に供給する液体の流量を制御することで、乾流路を流通して得られる冷却空気の温度を間接的に調節していたが、誤差が大きいものであった。   In this indirect evaporative cooling device, the cooling air obtained through the dry flow path is controlled by controlling the flow rate of the gas flowing through the dry flow path and the wet flow path and the flow rate of the liquid supplied to the wet flow path. The temperature was adjusted indirectly, but the error was large.

乾流路を流通して得られる冷却空気の温度を調節するにあたり、別の方法が考えられる。すなわち、間接気化冷却装置にあっては、湿流路を流れる気体の湿度が低い程、この湿流路での蒸発(気化)が促進されて、湿流路を流れる気体が奪われる熱が大きくなり、この結果、乾流路を流れる気体の冷却が促進される。このため、湿流路に流入する気体の湿度を制御することで、乾流路を流通して得られる冷却空気の温度を調節することが可能である。   In adjusting the temperature of the cooling air obtained through the dry flow path, another method can be considered. That is, in the indirect evaporative cooling device, the lower the humidity of the gas flowing in the wet flow path, the more the evaporation (vaporization) in the wet flow path is promoted, and the heat deprived of the gas flowing in the wet flow path becomes larger. As a result, cooling of the gas flowing through the dry flow path is promoted. For this reason, it is possible to adjust the temperature of the cooling air obtained by circulating the dry flow path by controlling the humidity of the gas flowing into the wet flow path.

そこで、吸湿流路と放湿流路の二つの気体の流路と、この流路間に跨って回転するデシカントロータと、を備え、吸湿流路を流れる気体に対し吸湿(除湿)を行うとともに、放湿流路においてデシカントロータの再生を行うデシカント調湿装置(例えば特許文献2参照)を組み合わせることが考えられるものである。   Therefore, the apparatus includes two gas channels, a moisture absorption channel and a moisture release channel, and a desiccant rotor that rotates across the channel, and performs moisture absorption (dehumidification) on the gas flowing through the moisture absorption channel. It is conceivable to combine a desiccant humidity control device (for example, refer to Patent Document 2) that regenerates the desiccant rotor in the moisture discharge channel.

特開2008−101890号公報JP 2008-101890 A 特開2008−164203号公報JP 2008-164203 A

本発明は上記従来の問題点に鑑みて発明したものであって、その目的とするところは、間接気化冷却装置にデシカント調湿装置を組み合わせ、簡単な構成で高い冷房能力が得られる冷房システムを提供することを課題とするものである。   The present invention was invented in view of the above-described conventional problems, and the object of the present invention is to combine a desiccant humidity control device with an indirect vaporization cooling device, and to provide a cooling system capable of obtaining a high cooling capacity with a simple configuration. The issue is to provide.

上記課題を解決するために、請求項1に係る発明は、
互いに熱交換が可能な乾流路11および湿流路12と、湿流路12に設けられる液体供給手段13と、を備え、湿流路12を流れる気体により湿流路12に供給された液体が蒸発する際に気化熱として周囲から熱を奪うことにより乾流路11を流れる気体を加湿することなく冷却する間接気化冷却装置1と、
吸湿流路21および放湿流路22と、吸湿流路21と放湿流路22との間に跨って回転するデシカントロータ20と、放湿流路22に設けられる再生手段23と、を備え、吸湿流路21を流れる気体に対し吸湿を行うとともに、放湿流路22においてデシカントロータ20の再生を行うデシカント調湿装置2と、
を備えた冷房システムであって、
乾流路11の入口と湿流路12の出口とを屋外に連通させ、
乾流路11の出口と放湿流路22の入口との間に接続流路を接続し、
吸湿流路21の出口と湿流路12の入口との間に接続流路を接続し、
放湿流路22の出口と吸湿流路21の入口とを屋内に連通させることを特徴とする。
In order to solve the above problems, the invention according to claim 1
A liquid supplied to the wet flow path 12 by the gas flowing through the wet flow path 12, comprising a dry flow path 11 and a wet flow path 12 that can exchange heat with each other, and a liquid supply means 13 provided in the wet flow path 12. An indirect evaporative cooling device 1 that cools the gas flowing through the dry flow path 11 without humidification by removing heat from the surroundings as the heat of vaporization when evaporating,
A moisture absorbing channel 21 and a moisture releasing channel 22; a desiccant rotor 20 that rotates between the moisture absorbing channel 21 and the moisture releasing channel 22; and a regenerating means 23 provided in the moisture releasing channel 22. A desiccant humidity control apparatus 2 that performs moisture absorption on the gas flowing through the moisture absorption channel 21 and regenerates the desiccant rotor 20 in the moisture release channel 22;
A cooling system comprising:
The inlet of the dry flow channel 11 and the outlet of the wet flow channel 12 are communicated with the outdoors,
Connecting a connection channel between the outlet of the dry channel 11 and the inlet of the moisture release channel 22;
Connecting a connection channel between the outlet of the moisture absorption channel 21 and the inlet of the moisture channel 12;
The outlet of the moisture discharge channel 22 and the inlet of the moisture absorption channel 21 are communicated indoors.

請求項2に係る発明は、
互いに熱交換が可能な乾流路11および湿流路12と、湿流路12に設けられる液体供給手段13と、を備え、湿流路12を流れる気体により湿流路12に供給された液体が蒸発する際に気化熱として周囲から熱を奪うことにより乾流路11を流れる気体を加湿することなく冷却する間接気化冷却装置1と、
吸湿流路21および放湿流路22と、吸湿流路21と放湿流路22との間に跨って回転するデシカントロータ20と、放湿流路22に設けられる再生手段23と、を備え、吸湿流路21を流れる気体に対し吸湿を行うとともに、放湿流路22においてデシカントロータ20の再生を行うデシカント調湿装置2と、
を備えた冷房システムであって、
乾流路11の入口と湿流路12の出口とを屋外に連通させ、
乾流路11の出口を屋内に連通させ、
吸湿流路21の出口と湿流路12の入口との間に接続流路を接続し、
放湿流路22の出口を屋外に連通させ、
吸湿流路21の入口を屋内に連通させ、
放湿流路22の入口を屋内または屋外に連通させることを特徴とする。
The invention according to claim 2
A liquid supplied to the wet flow path 12 by the gas flowing through the wet flow path 12, comprising a dry flow path 11 and a wet flow path 12 that can exchange heat with each other, and a liquid supply means 13 provided in the wet flow path 12. An indirect evaporative cooling device 1 that cools the gas flowing through the dry flow path 11 without humidification by removing heat from the surroundings as the heat of vaporization when evaporating,
A moisture absorbing channel 21 and a moisture releasing channel 22; a desiccant rotor 20 that rotates between the moisture absorbing channel 21 and the moisture releasing channel 22; and a regenerating means 23 provided in the moisture releasing channel 22. A desiccant humidity control apparatus 2 that performs moisture absorption on the gas flowing through the moisture absorption channel 21 and regenerates the desiccant rotor 20 in the moisture release channel 22;
A cooling system comprising:
The inlet of the dry flow channel 11 and the outlet of the wet flow channel 12 are communicated with the outdoors,
Let the outlet of the dry channel 11 communicate indoors,
Connecting a connection channel between the outlet of the moisture absorption channel 21 and the inlet of the moisture channel 12;
Let the outlet of the moisture release channel 22 communicate with the outdoors,
The entrance of the moisture absorption channel 21 is communicated indoors,
The inlet of the moisture release channel 22 is communicated indoors or outdoors.

本発明の冷房システムにあっては、間接気化冷却装置にデシカント調湿装置を組み合わせ、簡単な構成で高い冷房能力が得られる。   In the cooling system of the present invention, the desiccant humidity control device is combined with the indirect vaporization cooling device, and a high cooling capacity can be obtained with a simple configuration.

本発明の第一の実施形態の概略構成図である。It is a schematic block diagram of 1st embodiment of this invention. 本発明の第二の実施形態の概略構成図である。It is a schematic block diagram of 2nd embodiment of this invention. 本発明の第三の実施形態の概略構成図である。It is a schematic block diagram of 3rd embodiment of this invention. 運転を説明するフロー図である。It is a flowchart explaining a driving | operation. 運転の一部を説明するフロー図である。It is a flowchart explaining a part of driving | operation.

以下、本発明の一実施形態に基いて説明する。まず、間接気化冷却装置とデシカント調湿装置について説明する。   Hereinafter, a description will be given based on an embodiment of the present invention. First, an indirect vaporization cooling device and a desiccant humidity control device will be described.

間接気化冷却装置は、乾流路と湿流路の二つの流路を備え、この流路間で熱交換を行うものである。乾流路と湿流路の間には、熱伝導性部材が介在しており、この熱伝導性部材により、各流路を流れる気体間で熱交換が行われる。湿流路には、液体供給手段および液体保持手段が設けられ、液体供給手段により液体が供給され、供給された液体は液体保持手段により保持される。液体保持手段において、液体は、湿流路を流れる気体と直接接触可能に保持される。   The indirect evaporative cooling device includes two flow paths, a dry flow path and a wet flow path, and performs heat exchange between the flow paths. A heat conductive member is interposed between the dry flow channel and the wet flow channel, and heat exchange is performed between the gas flowing through each flow channel by the heat conductive member. The wet flow path is provided with a liquid supply means and a liquid holding means. The liquid is supplied by the liquid supply means, and the supplied liquid is held by the liquid holding means. In the liquid holding means, the liquid is held so as to be in direct contact with the gas flowing in the wet flow path.

この間接気化冷却装置は、乾流路に冷却対象となる気体を流通させ、湿流路には、相対湿度が100%未満の気体を流通させるのであるが、この気体の相対湿度は低い程好ましいものである。そして、液体保持手段により供給された液体が液体保持手段に保持された状態で、乾流路と湿流路とに気体が流れると、湿流路において、液体保持手段に保持されている液体が湿流路を流れる気体により気化されていく。この時、液体保持手段に保持されている液体が蒸発する際に気化熱として周囲から熱を奪うことにより、乾流路を流れる気体が冷却される。これにより、乾流路を流れる気体は、加湿されることなく冷却されるものである。   In this indirect evaporative cooling device, a gas to be cooled is circulated in the dry flow path, and a gas having a relative humidity of less than 100% is circulated in the wet flow path. The lower the relative humidity of this gas is, the better. Is. When the gas supplied to the liquid holding unit is held by the liquid holding unit and the gas flows through the dry channel and the wet channel, the liquid held by the liquid holding unit in the wet channel is It is vaporized by the gas flowing through the wet channel. At this time, when the liquid held in the liquid holding means evaporates, the gas flowing through the dry flow path is cooled by removing heat from the surroundings as the heat of vaporization. Thereby, the gas flowing through the dry flow path is cooled without being humidified.

間接気化冷却装置としては、特許文献1に記載されたものが利用可能であるが、特にこれに限定されない。間接気化冷却装置の一具体例について概略説明する。本例では、乾流路と湿流路とを、セルロース系紙に、通気性を有さず熱伝導性を有する合成樹脂製フィルムを貼り合わせた仕切りにて、セルロース系紙が湿流路側に面するようにして仕切る。セルロース系紙が液体保持手段として機能し、合成樹脂製フィルムが熱伝導性部材として機能する。この場合、液体が蒸発する際に乾流路を流れる気体が奪われる熱は、主に、湿流路の乾流路側の壁面に保持されていた液体が、気化熱として、乾流路から直接的に奪う熱であるが、液体が蒸発する際に湿流路から熱を奪うことで湿流路の温度が低下し、これにより奪われる熱もある。   Although what was described in patent document 1 can be utilized as an indirect vaporization cooling device, it is not specifically limited to this. A specific example of the indirect evaporative cooling device will be schematically described. In this example, the cellulosic paper is placed on the wet flow channel side in a partition in which the dry flow channel and the wet flow channel are bonded to the cellulosic paper with a synthetic resin film having no air permeability and heat conductivity. Partition to face. Cellulosic paper functions as a liquid holding means, and a synthetic resin film functions as a heat conductive member. In this case, the heat deprived of the gas flowing through the dry flow path when the liquid evaporates is mainly caused by the liquid held on the dry flow path side of the wet flow path directly from the dry flow path as the heat of vaporization. However, when the liquid evaporates, heat is taken away from the wet flow path to lower the temperature of the wet flow path, and there is also heat taken away by this.

液体供給手段は、チューブと、ポンプと、ポンプを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、タンク等の液体貯留部と、を備える。チューブの一端は液体貯留部に接続され、チューブの他端は湿流路のセルロース系紙付近に配置される。   The liquid supply means includes a tube, a pump, drive means such as a motor that drives the pump, a control unit that includes a microcomputer that controls the drive means, and a liquid storage part such as a tank. One end of the tube is connected to the liquid storage part, and the other end of the tube is disposed near the cellulosic paper in the wet flow path.

この乾流路と湿流路は交互に積層され、各乾流路の入口および出口、各湿流路の入口および出口はそれぞれ一つの入口および出口に集約される。   The dry flow channel and the wet flow channel are alternately stacked, and the inlet and the outlet of each dry flow channel, and the inlet and the outlet of each wet flow channel are integrated into one inlet and an outlet, respectively.

乾流路と湿流路には、それぞれ送風手段が設けられる。送風手段は、ファンと、ファンを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、を備える。   Air blowing means is provided in each of the dry flow path and the wet flow path. The blowing unit includes a fan, a driving unit such as a motor that drives the fan, and a control unit that includes a microcomputer that controls the driving unit.

乾流路と湿流路とを流れる気体の流量と、湿流路に供給される液体の流量を制御部により制御することで、乾流路を流れて得られる冷却空気の量、温度がある程度調節可能となっている。   By controlling the flow rate of the gas flowing through the dry flow channel and the wet flow channel and the flow rate of the liquid supplied to the wet flow channel by the control unit, the amount and temperature of the cooling air obtained by flowing through the dry flow channel are to some extent It is adjustable.

また、湿流路を流れる気体中の蒸気が結露して液体となった場合に、この液体を排出する排出手段を備えている。この排出手段としては、湿流路と外部とを連通する流路となる管等を備え、途中に逆止弁やポンプを有するものが用いられるが、特に限定されない。   Moreover, when the vapor | steam in the gas which flows through a moisture flow path condenses and becomes a liquid, the discharge means which discharges this liquid is provided. As this discharging means, a means that includes a pipe or the like that becomes a flow path that communicates the wet flow path and the outside and has a check valve or a pump in the middle is used, but is not particularly limited.

なお、上記のような間接気化冷却装置は一例であってこれに限定されない。また、液体としては水が好適に用いられるが、他の液体が用いられてもよく、この場合には揮発性の高い液体が好ましい。また、乾流路と湿流路とを流れる気体は空気が好適に用いられるが、特に限定されない。   In addition, the above indirect vaporization cooling apparatus is an example, and is not limited to this. Further, water is preferably used as the liquid, but other liquids may be used. In this case, a highly volatile liquid is preferable. In addition, air is preferably used as the gas flowing through the dry flow path and the wet flow path, but is not particularly limited.

デシカント調湿装置は、放湿流路と吸湿流路とからなる二つの流路と、この流路間に跨って回転するデシカントロータと、デシカントロータを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、を備え、吸湿流路を流れる気体に対し吸湿を行うとともに、放湿流路を流れる気体に対し放湿を行うものである。デシカントロータは、通常は円盤状をしたもので、その中心軸(回転軸)方向に通気性を有する。なお、デシカントロータは円盤状に限定されない。そして、デシカントロータの表面に吸湿材(デシカント)が担持されている。また、放湿流路には、デシカントロータの上流側に、デシカントロータを再生するための加熱手段からなる再生手段を備えている。加熱手段(再生手段)としては、例えば気−液熱交換器と、熱媒と、循環路と、ポンプと、ポンプを駆動するモータ等の駆動手段と、熱媒を加熱するガスバーナ等の加熱部と、を備えた温水コイルが好適に用いられるが、特に限定されず、電熱ヒータ等であってもよい。   The desiccant humidity control apparatus includes two channels including a moisture release channel and a moisture absorption channel, a desiccant rotor that rotates between the channels, a driving unit such as a motor that drives the desiccant rotor, and a driving unit. And a control unit composed of a microcomputer or the like that controls moisture, absorbs moisture from the gas flowing in the moisture absorption channel, and releases moisture from the gas flowing in the moisture release channel. The desiccant rotor is usually disk-shaped and has air permeability in the direction of its central axis (rotating axis). The desiccant rotor is not limited to a disk shape. A moisture absorbent (desiccant) is carried on the surface of the desiccant rotor. Further, the moisture discharge passage is provided with a regenerating means including a heating means for regenerating the desiccant rotor on the upstream side of the desiccant rotor. Examples of the heating means (regeneration means) include a gas-liquid heat exchanger, a heat medium, a circulation path, a pump, a driving means such as a motor that drives the pump, and a heating unit such as a gas burner that heats the heat medium. Are preferably used, but are not particularly limited, and may be an electric heater or the like.

二つの流路には、それぞれ送風手段が設けられる。送風手段は、ファンと、ファンを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、を備えている。   The two flow paths are respectively provided with air blowing means. The blowing unit includes a fan, a driving unit such as a motor that drives the fan, and a control unit including a microcomputer that controls the driving unit.

なお、上記に加え、二つの流路間に跨って回転する顕熱交換ロータと、顕熱交換ロータを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、を備えていてもよい。顕熱交換ロータは、吸湿流路のデシカントロータよりも上流側の部分と、放湿流路のデシカントロータよりも下流側の部分に跨るように回転する。また、顕熱交換ロータに代えて、間に熱伝導性部材を介在させて二つの流路を仕切る一般的な熱交換器を備えてもよい。   In addition to the above, a sensible heat exchange rotor that rotates across the two flow paths, a drive unit such as a motor that drives the sensible heat exchange rotor, and a control unit that includes a microcomputer that controls the drive unit, May be provided. The sensible heat exchange rotor rotates so as to straddle the portion of the moisture absorption channel upstream of the desiccant rotor and the portion of the moisture release channel downstream of the desiccant rotor. Further, instead of the sensible heat exchange rotor, a general heat exchanger that partitions the two flow paths with a heat conductive member interposed therebetween may be provided.

このデシカント調湿装置は、除湿対象とする気体を吸湿流路に流通させ、除湿対象となる気体がデシカントロータを通過すると、吸湿材に液体の蒸気が吸収され、除湿された気体となって流出する。放湿流路においては、再生手段(加熱手段)によりデシカントロータが加熱され、気体がデシカントロータを通過する際、デシカントロータが吸湿材が吸収していた液体を気体中に蒸気として放出し、吸湿材が再生される。   This desiccant humidity control device distributes the gas to be dehumidified through the moisture absorption channel, and when the gas to be dehumidified passes through the desiccant rotor, the liquid vapor is absorbed by the moisture absorbent and flows out as dehumidified gas. To do. In the moisture discharge channel, the desiccant rotor is heated by the regeneration means (heating means), and when the gas passes through the desiccant rotor, the desiccant rotor releases the liquid absorbed by the moisture absorbent as vapor into the gas and absorbs moisture. The material is regenerated.

また、顕熱交換ロータを備えている場合には、顕熱交換ロータを回転させることで、放湿流路から流出する気体から熱を奪うとともに吸湿流路に流入する気体に放熱し、熱の回収が行われる。顕熱交換ロータでなく一般的な熱交換器の場合も同様である。   In addition, when a sensible heat exchange rotor is provided, by rotating the sensible heat exchange rotor, heat is taken away from the gas flowing out from the moisture discharge passage and is also dissipated to the gas flowing into the moisture absorption passage. Recovery is performed. The same applies to a general heat exchanger instead of a sensible heat exchange rotor.

吸湿流路と放湿流路とを流れる気体の流量と、加熱手段による加熱量と、場合によってはデシカントロータの回転速度を制御部により制御することで、吸湿流路から流出する除湿気体の量、湿度が調節可能である。   The amount of dehumidified gas flowing out from the moisture absorption channel by controlling the flow rate of the gas flowing through the moisture absorption channel and the moisture release channel, the amount of heating by the heating means, and, in some cases, the rotational speed of the desiccant rotor by the control unit. The humidity is adjustable.

なお、上記のようなデシカント調湿装置は一例であって、これに限定されない。   In addition, the above desiccant humidity control apparatus is an example, and is not limited to this.

以下、本発明の冷房システムの第一の実施形態について図1に基づいて説明する。   Hereinafter, a first embodiment of the cooling system of the present invention will be described with reference to FIG.

間接気化冷却装置1の乾流路11および湿流路12、デシカント調湿装置2の吸湿流路21および放湿流路22は、送風手段による送風方向が定まっており、入口および出口が固定されている。湿流路12には、流路の途中に液体供給手段13および液体保持手段(不図示)、排出手段14が設けられ、出口に温度センサ15が設けられている。放湿流路22には、再生手段23が設けられている。   The dry flow path 11 and the wet flow path 12 of the indirect vaporization cooling device 1 and the moisture absorption flow path 21 and the moisture discharge flow path 22 of the desiccant humidity control device 2 have a fixed blowing direction by the blowing means, and the inlet and the outlet are fixed. ing. The wet flow path 12 is provided with a liquid supply means 13, a liquid holding means (not shown) and a discharge means 14 in the middle of the flow path, and a temperature sensor 15 is provided at the outlet. A regeneration means 23 is provided in the moisture discharge channel 22.

本実施形態では、再生手段23として気−液熱交換器が用いられ、熱媒と、循環路と、ポンプと、ポンプを駆動するモータ等の駆動手段と、熱媒を加熱するガスバーナ等を備えた熱源と、を備える。熱源および熱媒は、他の温水暖房システム等の熱源および熱媒が好適に用いられ、熱源にて所定の温度(例えば80℃)となった熱媒が利用可能である。この場合、再生手段23の気−液熱交換器を介して供給する熱量を制御するには、気−液熱交換器を流れる熱媒を流す時間の割合、すなわち、全体の時間に対する熱媒を流通させる時間の比(=デューティ比)を変化させる所謂デューティ制御を行う。そして、熱媒要求レベルはデューティ比が異なる複数段階が用意されている。   In this embodiment, a gas-liquid heat exchanger is used as the regeneration means 23, and includes a heat medium, a circulation path, a pump, driving means such as a motor for driving the pump, a gas burner for heating the heat medium, and the like. A heat source. As the heat source and the heat medium, a heat source and a heat medium such as another hot water heating system are preferably used, and a heat medium having a predetermined temperature (for example, 80 ° C.) can be used. In this case, in order to control the amount of heat supplied through the gas-liquid heat exchanger of the regeneration means 23, the ratio of the time for which the heat medium flowing through the gas-liquid heat exchanger is flowed, that is, the heat medium for the entire time is set So-called duty control is performed to change the ratio of time for circulation (= duty ratio). A plurality of stages with different duty ratios are prepared for the required heat medium level.

また、吸湿流路21のデシカントロータ20の下流側の部分と、放湿流路22のデシカントロータ20の上流側の部分とで、熱伝導性部材により互いに熱交換を可能とする熱交換器24が設けられてもよいが、熱交換器24は任意の構成である。   Further, the heat exchanger 24 enables heat exchange between the portion of the moisture absorption channel 21 on the downstream side of the desiccant rotor 20 and the portion of the moisture release channel 22 on the upstream side of the desiccant rotor 20 by a heat conductive member. However, the heat exchanger 24 has an arbitrary configuration.

また、マイクロコンピュータからなり、間接気化冷却装置1とデシカント調湿装置2とを制御するとともに、別の温水暖房システムに対し熱媒の供給を指令する、この冷房システム全体の制御部を備えている。そして、冷房システムの運転の開始/停止、冷房レベル(例えば強、中、弱等による目標温度)の設定や直接目標温度の設定を行う操作部が設けられている。   Further, the air conditioning cooling apparatus 1 and the desiccant humidity control apparatus 2 are configured by a microcomputer, and a control unit for the entire cooling system is provided which instructs supply of a heat medium to another hot water heating system. . An operation unit is provided for starting / stopping the operation of the cooling system, setting the cooling level (for example, target temperature due to strong, medium, weak, etc.) and setting the target temperature directly.

乾流路11の入口には、先端が屋外の大気に連通する大気開放端となる外気吸入流路31が接続される。   Connected to the inlet of the dry flow path 11 is an outdoor air intake flow path 31 whose tip is an atmospheric open end communicating with the outdoor air.

湿流路12の出口には、先端が屋外の大気に連通する大気開放端となる外気連通流路32が接続される。   Connected to the outlet of the wet flow path 12 is an outdoor air communication flow path 32 whose tip is an open air end communicating with the outdoor air.

乾流路11の出口と放湿流路22の入口との間には接続流路33が接続され、吸湿流路21の出口と湿流路12の入口との間には接続流路34が接続される。   A connection channel 33 is connected between the outlet of the dry channel 11 and the inlet of the moisture release channel 22, and a connection channel 34 is connected between the outlet of the moisture absorption channel 21 and the inlet of the moisture channel 12. Connected.

放湿流路22の出口には、先端が屋内の空間に連通する内気開放端となる内気連通流路35が接続され、吸湿流路21の入口には、先端が屋内の空間に連通する内気開放端となる内気吸入流路36が接続される。   Connected to the outlet of the moisture discharge channel 22 is an indoor air communication channel 35 whose tip is communicated with the indoor space and serves as an open air open end. The inlet of the moisture absorption channel 21 is connected to the indoor air whose tip communicates with the indoor space. An inside air intake passage 36 serving as an open end is connected.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路33を介してデシカント調湿装置2の放湿流路22に流入する。そして、デシカントロータ20を通過する際に放湿され、熱交換器24がある場合には熱交換器24を通過する際に冷却され、内気連通流路35を介して屋内へ供給される。   The outside air flows into the dry flow path 11 via the external air intake flow path 31 and is cooled without being humidified by the indirect vaporization cooling device 1, and the moisture release flow path of the desiccant humidity control device 2 via the connection flow path 33. 22 flows in. Then, the moisture is released when passing through the desiccant rotor 20, and when there is a heat exchanger 24, it is cooled when passing through the heat exchanger 24, and is supplied indoors through the inside air communication channel 35.

内気は、内気吸入流路36を介してデシカント調湿装置2の吸湿流路21に流入し、デシカントロータ20を通過する際に吸湿されて低湿度となり、接続流路34を介して間接気化冷却装置1の湿流路12に流入する。そして、低湿度となった気体は、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を含んで、外気連通流路32を介して屋外へ排出される。   The inside air flows into the moisture absorption passage 21 of the desiccant humidity control device 2 via the inside air suction passage 36, and is absorbed and becomes low humidity when passing through the desiccant rotor 20, and indirectly vaporized and cooled via the connection passage 34. It flows into the wet flow path 12 of the device 1. The gas having low humidity contains water vapor generated by vaporization of the water held by the water holding means when passing through the wet flow channel 12, and the outdoor gas passes through the outdoor air communication flow channel 32. Is discharged.

第一の実施形態における運転について図4に基づいて説明する。運転をスタートさせると(S1)、制御部は、設定されている冷房レベルに応じた目標温度T0(直接目標温度を設定する場合には設定されている目標温度)が設定される(S2)。   The operation in the first embodiment will be described with reference to FIG. When the operation is started (S1), the control unit sets a target temperature T0 (a target temperature that is set when the target temperature is set directly) corresponding to the set cooling level (S2).

間接気化冷却装置1の動作を開始し、送風手段を動作させ、液体供給手段13および排出手段14を動作させる(S3)。デシカント調湿装置2の動作を開始し、温水暖房システムに対し所望の熱媒を要求し、デシカントロータ20を動作させる(S4)。   The operation of the indirect evaporative cooling device 1 is started, the air blowing means is operated, and the liquid supply means 13 and the discharge means 14 are operated (S3). The operation of the desiccant humidity control device 2 is started, a desired heat medium is requested to the hot water heating system, and the desiccant rotor 20 is operated (S4).

(S4)が実行されてから所定時間Tiが経過したか否かが判定され(S5)、所定時間Tiが経過していない場合には再度(S5)が実行され、所定時間Tiが経過している場合には温度センサ15により湿流路12の出口における温度t1を検出する(S6)。そして、温度t1と目標温度T0との比較が行われ(S7)、温度t1が目標温度T0より高い場合には、熱媒要求レベルを一段階上げる(S8)。熱媒要求レベルは、複数段階のうち低い(デューティ比が小さい)段階からはじめ、一段階ずつ上げていく。熱媒要求レベルを上げることで、放湿流路22におけるデシカントロータ20からの放湿量が増加するとともに吸湿流路21における吸湿量が増加する。これに伴い、湿流路12に流入する気体の湿度が低下し、乾流路11を流れる気体が奪われる熱量が増加して温度が低下する。   It is determined whether or not the predetermined time Ti has elapsed since (S4) was executed (S5). If the predetermined time Ti has not elapsed, (S5) is executed again, and the predetermined time Ti has elapsed. If so, the temperature t1 at the outlet of the wet flow path 12 is detected by the temperature sensor 15 (S6). Then, the temperature t1 is compared with the target temperature T0 (S7). If the temperature t1 is higher than the target temperature T0, the required level of the heat medium is increased by one step (S8). The required level of the heat medium starts from a low level (small duty ratio) among a plurality of levels and is increased step by step. By increasing the heat medium requirement level, the moisture release amount from the desiccant rotor 20 in the moisture release passage 22 increases and the moisture absorption amount in the moisture absorption passage 21 increases. Along with this, the humidity of the gas flowing into the wet flow path 12 decreases, the amount of heat taken away by the gas flowing through the dry flow path 11 increases, and the temperature decreases.

(S8)が実行されると(S5)へ戻り、(S8)が実行されてから所定時間Tiが経過したか否かが判定される。   When (S8) is executed, the process returns to (S5), and it is determined whether or not a predetermined time Ti has elapsed since (S8) was executed.

(S7)において温度t1が目標温度T0以下の場合には、(S7)が実行されてから所定時間Tiが経過したか否かが判定され(S9)、所定時間Tiが経過していない場合には再度(S9)が実行され、所定時間Tiが経過している場合には温度センサ15により湿流路12の出口における温度t2が検出される(S10)。そして、温度t2と温度t1との比較が行われ(S11)、温度t2が温度t1より低い場合には、熱媒要求レベルを一段階下げる(S12)。熱媒要求レベルを下げることで、乾流路11を流れる気体が奪われる熱量が減少して温度が上昇する。(S12)が実行されると(S5)へ戻り、(S12)が実行されてから所定時間Tiが経過したか否かが判定される。以降、運転の停止までこのフローが繰り返される。   When the temperature t1 is equal to or lower than the target temperature T0 in (S7), it is determined whether or not the predetermined time Ti has elapsed since (S7) was executed (S9), and the predetermined time Ti has not elapsed. (S9) is executed again, and when the predetermined time Ti has elapsed, the temperature t2 at the outlet of the wet flow path 12 is detected by the temperature sensor 15 (S10). Then, the temperature t2 is compared with the temperature t1 (S11), and when the temperature t2 is lower than the temperature t1, the required level of the heat medium is lowered by one level (S12). By lowering the heat medium requirement level, the amount of heat taken away by the gas flowing through the dry flow path 11 is reduced and the temperature rises. When (S12) is executed, the process returns to (S5), and it is determined whether or not a predetermined time Ti has elapsed since (S12) was executed. Thereafter, this flow is repeated until the operation is stopped.

また、ステップ(S5)に代えて、図5に示すルーチン(S21)〜(S24)を実行してもよい。これは、温度センサ15により湿流路12の出口における温度t1を検出する(S21)。そして、(S12)が実行されてから所定時間Ti1が経過したか否かが判定され(S22)、所定時間Ti1が経過していない場合には再度(S21)が実行され、所定時間Ti1が経過している場合には温度センサ15により湿流路12の出口における温度t2が検出される(S23)。そして、温度t2と温度t1との差の絶対値と、閾値dとの比較が行われ(S24)、温度t2と温度t1との差の絶対値が閾値dより大きければ、再度(S21)が実行され、温度t2と温度t1との差の絶対値が閾値d以下であれば、このルーチンを終了し、ステップ(S6)へ移行する。   Further, instead of step (S5), routines (S21) to (S24) shown in FIG. 5 may be executed. This detects the temperature t1 at the outlet of the wet flow path 12 by the temperature sensor 15 (S21). Then, it is determined whether or not the predetermined time Ti1 has elapsed since (S12) was executed (S22). If the predetermined time Ti1 has not elapsed, (S21) is executed again and the predetermined time Ti1 has elapsed. If so, the temperature t2 at the outlet of the wet flow path 12 is detected by the temperature sensor 15 (S23). Then, the absolute value of the difference between the temperature t2 and the temperature t1 is compared with the threshold value d (S24). If the absolute value of the difference between the temperature t2 and the temperature t1 is larger than the threshold value d, (S21) is again performed. If the absolute value of the difference between the temperature t2 and the temperature t1 is less than or equal to the threshold value d, this routine is terminated and the process proceeds to step (S6).

なお、上記運転は一例であり、特に限定されない。   In addition, the said driving | operation is an example and is not specifically limited.

第一の実施形態においては、主に夏期に、換気するとともに、取り入れる外気を冷却して供給するものである。この時、湿流路12に流入する気体の湿度が低くなって、湿流路12での気化が促進され、乾流路11を流れる気体の冷却能力が向上し、高い冷房能力が得られるものである。   In the first embodiment, the air is ventilated mainly in summer, and the outside air taken in is cooled and supplied. At this time, the humidity of the gas flowing into the wet flow path 12 is lowered, vaporization in the wet flow path 12 is promoted, the cooling capacity of the gas flowing through the dry flow path 11 is improved, and a high cooling capacity is obtained. It is.

次に、第二の実施形態について図2に基づいて説明する。第二の実施形態においては、間接気化冷却装置1とデシカント調湿装置2は第一の実施形態と同じであり、流路構成の一部が異なるため、同じ部分については同符号を付して説明を省略し、異なる部分について説明する。   Next, a second embodiment will be described based on FIG. In the second embodiment, the indirect evaporative cooling device 1 and the desiccant humidity control device 2 are the same as those in the first embodiment, and a part of the flow path configuration is different. The description will be omitted, and different parts will be described.

乾流路11の出口には、先端が屋内の空間に連通する内気開放端となる内気連通流路37が接続され、乾流路11の出口は内気連通流路37を介して屋内に連通している。   The outlet of the dry channel 11 is connected to an indoor air communication channel 37 whose tip is an open air end communicating with an indoor space, and the outlet of the dry channel 11 communicates indoors via the indoor air communication channel 37. ing.

放湿流路22の入口に、一端が内気吸入流路36に接続される内気吸入流路38の他端が接続され、放湿流路22の入口は内気吸入流路36および内気吸入流路38を介して屋内に連通している。なお、内気吸入流路38の先端が屋内の空間に連通する内気開放端となっていてもよい。   The inlet of the moisture release channel 22 is connected to the other end of the inside air suction channel 38, one end of which is connected to the room air suction channel 36, and the inlet of the moisture release channel 22 is connected to the inside air suction channel 36 and the room air suction channel. 38 is communicated indoors. In addition, the front end of the inside air intake channel 38 may be an inside air open end that communicates with the indoor space.

放湿流路22の出口には、一端が外気連通流路32に接続される外気連通流路39の他端が接続され、放湿流路22の出口は外気連通流路39および外気連通流路32を介して屋外に連通している。なお、外気連通流路39の先端が屋外の空間に連通する外気開放端となっていてもよい。   The outlet of the moisture release channel 22 is connected to the other end of the outside air communication channel 39 whose one end is connected to the outside air communication channel 32, and the outlet of the moisture release channel 22 is connected to the outside air communication channel 39 and the outside air communication flow. The road 32 communicates with the outdoors. In addition, the front-end | tip of the external air communication flow path 39 may be an open-air open end which communicates with the outdoor space.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路37を介して屋内へ供給される。   Outside air flows into the dry flow path 11 via the external air intake flow path 31, is cooled without being humidified by the indirect vaporization cooling device 1, and is supplied indoors via the connection flow path 37.

内気は、内気吸入流路36を介して一部がデシカント調湿装置2の吸湿流路21に流入し、デシカントロータ20を通過する際に吸湿されて低湿度となり、接続流路34を介して間接気化冷却装置1の湿流路12に流入する。そして、低湿度となった気体は、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を含んで、外気連通流路32を介して屋外へ排出される。   A portion of the inside air flows into the moisture absorption passage 21 of the desiccant humidity control device 2 through the inside air intake passage 36 and is absorbed by the moisture when passing through the desiccant rotor 20. It flows into the wet flow path 12 of the indirect evaporative cooling device 1. The gas having low humidity contains water vapor generated by vaporization of the water held by the water holding means when passing through the wet flow channel 12, and the outdoor gas passes through the outdoor air communication flow channel 32. Is discharged.

また、内気吸入流路36を介して吸入される内気の残りがデシカント調湿装置2の放湿流路22に流入する。そして、デシカントロータ20を通過する際に放湿され、熱交換器24がある場合には熱交換器24を通過する際に冷却され、外気連通流路39および外気連通流路32を介して屋外へ排出される。   In addition, the remainder of the inside air sucked through the inside air suction channel 36 flows into the moisture release channel 22 of the desiccant humidity control apparatus 2. And when it passes through the desiccant rotor 20, it is dehumidified, and when there is a heat exchanger 24, it is cooled when it passes through the heat exchanger 24, and is outdoors through the outside air communication channel 39 and the outside air communication channel 32. Is discharged.

第二の実施形態においては、主に夏期に、換気するとともに、取り入れる外気を冷却して供給するものである。この時、湿流路12に流入する気体の湿度が低くなって、湿流路12での気化が促進され、乾流路11を流れる気体の冷却能力が向上し、高い冷房能力が得られるものである。更に、第一の実施形態においては、デシカントロータ20を通過する際に放湿された気体が屋内に供給されていたのに対し、第二の実施形態においては、デシカントロータ20を通過して放湿されることなく、間接気化冷却装置1により加湿されることなく冷却された気体のみが屋内に供給され、湿度の上昇を抑えられる。   In the second embodiment, the air is ventilated mainly in summer and the outside air to be taken in is cooled and supplied. At this time, the humidity of the gas flowing into the wet flow path 12 is lowered, vaporization in the wet flow path 12 is promoted, the cooling capacity of the gas flowing through the dry flow path 11 is improved, and a high cooling capacity is obtained. It is. Furthermore, in the first embodiment, the gas released when passing through the desiccant rotor 20 is supplied indoors, whereas in the second embodiment, the gas passes through the desiccant rotor 20 and is released. Only the gas cooled without being humidified by the indirect evaporative cooling device 1 without being moistened is supplied indoors, and an increase in humidity can be suppressed.

次に、第三の実施形態について図3に基づいて説明する。第三の実施形態においては、間接気化冷却装置1とデシカント調湿装置2は第二の実施形態と同じであり、流路構成の一部が異なるため、同じ部分については同符号を付して説明を省略し、第二の実施形態と異なる部分について説明する。   Next, a third embodiment will be described based on FIG. In the third embodiment, the indirect evaporative cooling device 1 and the desiccant humidity control device 2 are the same as those in the second embodiment, and part of the flow path configuration is different. The description will be omitted, and different parts from the second embodiment will be described.

放湿流路22の入口に、一端が外気吸入流路31に接続される外気吸入流路40の他端が接続され、放湿流路22の入口は外気吸入流路40および外気吸入流路31を介して屋外に連通している。なお、外気吸入流路40の先端が屋外の空間に連通する外気開放端となっていてもよい。   The other end of the outside air suction channel 40 whose one end is connected to the outside air suction channel 31 is connected to the inlet of the moisture release channel 22, and the inlet of the moisture release channel 22 is the outside air suction channel 40 and the outside air suction channel. 31 communicates with the outdoors. In addition, the front-end | tip of the external air intake flow path 40 may be an open-air open end which communicates with the outdoor space.

外気は、外気吸入流路31を介して一部が乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路37を介して屋内へ供給される。   A part of the outside air flows into the dry passage 11 through the outside air intake passage 31, is cooled without being humidified by the indirect evaporative cooling device 1, and is supplied indoors through the connection passage 37.

内気は、内気吸入流路36を介してデシカント調湿装置2の吸湿流路21に流入し、デシカントロータ20を通過する際に吸湿されて低湿度となり、接続流路34を介して間接気化冷却装置1の湿流路12に流入する。そして、低湿度となった気体は、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を含んで、外気連通流路32を介して屋外へ排出される。   The inside air flows into the moisture absorption passage 21 of the desiccant humidity control device 2 via the inside air suction passage 36, and is absorbed and becomes low humidity when passing through the desiccant rotor 20, and indirectly vaporized and cooled via the connection passage 34. It flows into the wet flow path 12 of the device 1. The gas having low humidity contains water vapor generated by vaporization of the water held by the water holding means when passing through the wet flow channel 12, and the outdoor gas passes through the outdoor air communication flow channel 32. Is discharged.

また、外気吸入流路31を介して吸入される外気の残りがデシカント調湿装置2の放湿流路22に流入する。そして、デシカントロータ20を通過する際に放湿され、熱交換器24がある場合には熱交換器24を通過する際に冷却され、外気連通流路39および外気連通流路32を介して屋外へ排出される。   Further, the remainder of the outside air sucked through the outside air suction channel 31 flows into the moisture release channel 22 of the desiccant humidity control device 2. And when it passes through the desiccant rotor 20, it is dehumidified, and when there is a heat exchanger 24, it is cooled when it passes through the heat exchanger 24, and is outdoors through the outside air communication channel 39 and the outside air communication channel 32. Is discharged.

第三の実施形態においては、主に夏期に、換気するとともに、取り入れる外気を冷却して供給するものである。この時、湿流路12に流入する気体の湿度が低くなって、湿流路12での気化が促進され、乾流路11を流れる気体の冷却能力が向上し、高い冷房能力が得られるものである。更に、第一の実施形態においては、デシカントロータ20を通過する際に放湿された気体が屋内に供給されていたのに対し、第三の実施形態においては第二の実施形態と同様に、デシカントロータ20を通過して放湿されることなく、間接気化冷却装置1により加湿されることなく冷却された気体のみが屋内に供給され、湿度の上昇を抑えられる。   In the third embodiment, the air is ventilated mainly in summer and the outside air to be taken in is cooled and supplied. At this time, the humidity of the gas flowing into the wet flow path 12 is lowered, vaporization in the wet flow path 12 is promoted, the cooling capacity of the gas flowing through the dry flow path 11 is improved, and a high cooling capacity is obtained. It is. Furthermore, in the first embodiment, the gas released when passing through the desiccant rotor 20 was supplied indoors, whereas in the third embodiment, as in the second embodiment, Only the gas cooled without being humidified by the indirect evaporative cooling device 1 without being dehumidified through the desiccant rotor 20 is supplied indoors, and an increase in humidity can be suppressed.

1 間接気化冷却装置
11 乾流路
12 湿流路
13 液体供給手段
14 排出手段
15 温度センサ
2 デシカント調湿装置
20 デシカントロータ
21 吸湿流路
22 放湿流路
23 再生手段
24 熱交換器
31 外気吸入流路
32 外気連通流路
33〜34 接続流路
35 内気連通流路
36 内気吸入流路
37 内気連通流路
38 内気吸入流路
39 外気連通流路
40 外気吸入流路
DESCRIPTION OF SYMBOLS 1 Indirect vaporization cooling device 11 Dry flow path 12 Wet flow path 13 Liquid supply means 14 Discharge means 15 Temperature sensor 2 Desiccant humidity control apparatus 20 Desiccant rotor 21 Hygroscopic flow path 22 Humidity release flow path 23 Regeneration means 24 Heat exchanger 31 Outside air intake Channel 32 Outside air communication channel 33 to 34 Connection channel 35 Inside air communication channel 36 Inside air suction channel 37 Inside air communication channel 38 Inside air suction channel 39 Outside air communication channel 40 Outside air suction channel

Claims (2)

互いに熱交換が可能な乾流路および湿流路と、前記湿流路に設けられる液体供給手段と、を備え、前記湿流路を流れる気体により前記湿流路に供給された液体が蒸発する際に気化熱として周囲から熱を奪うことにより前記乾流路を流れる気体を加湿することなく冷却する間接気化冷却装置と、
吸湿流路と放湿流路と、前記吸湿流路と前記放湿流路との間に跨って回転するデシカントロータと、前記放湿流路に設けられる再生手段と、を備え、前記吸湿流路を流れる気体に対し吸湿を行うとともに、前記放湿流路において前記デシカントロータの再生を行うデシカント調湿装置と、
を備えた冷房システムであって、
前記乾流路の入口と前記湿流路の出口とを屋外に連通させ、
前記乾流路の出口と前記放湿流路の入口との間に接続流路を接続し、
前記吸湿流路の出口と前記湿流路の入口との間に接続流路を接続し、
前記放湿流路の出口と前記吸湿流路の入口とを屋内に連通させることを特徴とする冷房システム。
A dry flow channel and a wet flow channel capable of exchanging heat with each other; and a liquid supply means provided in the wet flow channel, and the liquid supplied to the wet flow channel evaporates by the gas flowing through the wet flow channel. Indirect evaporative cooling device that cools without humidifying the gas flowing through the dry flow path by taking heat from the surroundings as heat of vaporization,
A moisture absorption channel, a moisture release channel, a desiccant rotor that rotates between the moisture absorption channel and the moisture release channel, and a regenerating unit provided in the moisture release channel, the moisture absorption flow A desiccant humidity control device that absorbs moisture in the gas flowing through the path and regenerates the desiccant rotor in the moisture release channel;
A cooling system comprising:
Communicating the inlet of the dry channel and the outlet of the wet channel to the outside,
Connecting a connection channel between the outlet of the dry channel and the inlet of the moisture release channel;
Connecting a connection channel between the outlet of the moisture absorption channel and the inlet of the moisture channel;
A cooling system, wherein an outlet of the moisture release channel and an inlet of the moisture absorption channel are communicated indoors.
互いに熱交換が可能な乾流路および湿流路と、前記湿流路に設けられる液体供給手段と、を備え、前記湿流路を流れる気体により前記湿流路に供給された液体が蒸発する際に気化熱として周囲から熱を奪うことにより前記乾流路を流れる気体を加湿することなく冷却する間接気化冷却装置と、
吸湿流路と放湿流路と、前記吸湿流路と前記放湿流路との間に跨って回転するデシカントロータと、前記放湿流路に設けられる再生手段と、を備え、前記吸湿流路を流れる気体に対し吸湿を行うとともに、前記放湿流路において前記デシカントロータの再生を行うデシカント調湿装置と、
を備えた冷房システムであって、
前記乾流路の入口と前記湿流路の出口とを屋外に連通させ、
前記乾流路の出口を屋内に連通させ、
前記吸湿流路の出口と前記湿流路の入口との間に接続流路を接続し、
前記放湿流路の出口を屋外に連通させ、
前記吸湿流路の入口を屋内に連通させ、
前記放湿流路の入口を屋内または屋外に連通させることを特徴とする冷房システム。
A dry flow channel and a wet flow channel capable of exchanging heat with each other; and a liquid supply means provided in the wet flow channel, and the liquid supplied to the wet flow channel evaporates by the gas flowing through the wet flow channel. Indirect evaporative cooling device that cools without humidifying the gas flowing through the dry flow path by taking heat from the surroundings as heat of vaporization,
A moisture absorption channel, a moisture release channel, a desiccant rotor that rotates between the moisture absorption channel and the moisture release channel, and a regenerating unit provided in the moisture release channel, the moisture absorption flow A desiccant humidity control device that absorbs moisture in the gas flowing through the path and regenerates the desiccant rotor in the moisture release channel;
A cooling system comprising:
Communicating the inlet of the dry channel and the outlet of the wet channel to the outside,
Let the outlet of the dry channel communicate indoors;
Connecting a connection channel between the outlet of the moisture absorption channel and the inlet of the moisture channel;
Let the outlet of the moisture release channel communicate with the outdoors,
Let the inlet of the moisture absorption channel communicate indoors;
A cooling system, wherein the inlet of the moisture release channel is communicated indoors or outdoors.
JP2012080376A 2012-03-30 2012-03-30 Cooling system Expired - Fee Related JP5932438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080376A JP5932438B2 (en) 2012-03-30 2012-03-30 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080376A JP5932438B2 (en) 2012-03-30 2012-03-30 Cooling system

Publications (2)

Publication Number Publication Date
JP2013210128A true JP2013210128A (en) 2013-10-10
JP5932438B2 JP5932438B2 (en) 2016-06-08

Family

ID=49528114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080376A Expired - Fee Related JP5932438B2 (en) 2012-03-30 2012-03-30 Cooling system

Country Status (1)

Country Link
JP (1) JP5932438B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173618A (en) * 1997-12-01 1999-07-02 Seibu Giken Co Ltd Air conditioner
JP2001263764A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Humidity regulating system
JP2006145092A (en) * 2004-11-17 2006-06-08 Max Co Ltd Air conditioning system and building
JP2007139333A (en) * 2005-11-18 2007-06-07 Max Co Ltd Ventilating device and building
US20100077783A1 (en) * 2008-09-30 2010-04-01 Bhatti Mohinder S Solid oxide fuel cell assisted air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173618A (en) * 1997-12-01 1999-07-02 Seibu Giken Co Ltd Air conditioner
JP2001263764A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Humidity regulating system
JP2006145092A (en) * 2004-11-17 2006-06-08 Max Co Ltd Air conditioning system and building
JP2007139333A (en) * 2005-11-18 2007-06-07 Max Co Ltd Ventilating device and building
US20100077783A1 (en) * 2008-09-30 2010-04-01 Bhatti Mohinder S Solid oxide fuel cell assisted air conditioning system

Also Published As

Publication number Publication date
JP5932438B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
KR102396679B1 (en) An air conditioning method using a staged process using a liquid desiccant
US10948202B2 (en) Air conditioner capable of controlling heating and humidity, and control method therefor
JP4384699B2 (en) Humidity control device
JP2020091096A (en) Rooftop liquid desiccant systems and methods
US10823437B2 (en) Air conditioner capable of controlling cooling and humidity, and control method therefor
US10775059B2 (en) Air conditioning capable of controlling ventilation and humidity, and control method therefor
WO2009144880A1 (en) Humidity control device
JP5018402B2 (en) Humidity control device
KR20140022785A (en) Method and apparatus for conditioning air
JP5227840B2 (en) Humidity control device
JP5862266B2 (en) Ventilation system
EP3060856B1 (en) Methods for enhancing the dehumidification of heat pumps
JP5104971B2 (en) Humidity control ventilator
JP5934009B2 (en) Cooling dehumidification system
JP6065096B2 (en) Humidity control device
JP5608050B2 (en) Air conditioning system
JP6231418B2 (en) Cooling dehumidification system
JP5628607B2 (en) Air conditioning system
JP5932439B2 (en) Dehumidification system
JP5932438B2 (en) Cooling system
JP6235392B2 (en) Air conditioner
KR102155956B1 (en) Liquid dehumidifier of energy-saving type
JPWO2008117684A1 (en) Humidifier and air conditioner
KR101563696B1 (en) Humidifying and Ventilating Apparatus
JP5906708B2 (en) Humidity control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R150 Certificate of patent or registration of utility model

Ref document number: 5932438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees