JP2013210057A - Wear-resistant coat coating structure - Google Patents

Wear-resistant coat coating structure Download PDF

Info

Publication number
JP2013210057A
JP2013210057A JP2012081092A JP2012081092A JP2013210057A JP 2013210057 A JP2013210057 A JP 2013210057A JP 2012081092 A JP2012081092 A JP 2012081092A JP 2012081092 A JP2012081092 A JP 2012081092A JP 2013210057 A JP2013210057 A JP 2013210057A
Authority
JP
Japan
Prior art keywords
sliding surface
coating
lubricating oil
wear
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081092A
Other languages
Japanese (ja)
Inventor
Masayuki Kureya
真之 呉屋
Shinichiro Asaumi
慎一郎 浅海
Toshiya Watanabe
俊哉 渡辺
Takashi Ishide
孝 石出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012081092A priority Critical patent/JP2013210057A/en
Publication of JP2013210057A publication Critical patent/JP2013210057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure that makes lubricant stored in a recess on a slide surface actively advance around the recess to improve lubricity and wear-resistance of the sliding surface.SOLUTION: A first bearing 1 in which a plurality of recesses 3 for storing lubricant supplied to a space 20 between a bearing sliding surface 1a and a rotation shaft sliding surface 4a that are mechanically faced are disposed on at least one side of the sliding surface, and a water repellent coat coating 5 which is formed as a film on the bearing sliding surface 1a, and advances the lubricant stored in the recesses 3 to a bank part around the recesses to accelerate lubrication on the sliding surface, are provided.

Description

本発明は基材の相手部材との接触面に耐摩耗被膜をコーティングするコーティング構造に関するものである。   The present invention relates to a coating structure in which a contact surface of a base material with a mating member is coated with a wear-resistant coating.

例えば、軸と軸受、エンジンのシリンダライナとピストンリング間等の相対的に動く摺動面では摩耗が発生し、摩耗量が限度をこえるような場合には、当該部品の交換が必要になる。
摺動面には、潤滑装置を用いてその接触面に油膜を作ることにより、摩擦を減らして、摩耗や発熱を少なくすることが行われている。
ところが、摺動面には、構造上の問題、軸の捩り変形、エンジンのピストンに発生する負荷変動等により、潤滑油が十分に行渡らない場合が生じることがある。
この場合、摺動面間の焼付き、異常摩耗等が発生する場合があり、このような場合には継続使用ができなくなり、当該部品の即時交換が必要となる。
For example, when sliding occurs on a relatively moving sliding surface such as a shaft and a bearing, or between a cylinder liner and a piston ring of an engine, the amount of wear exceeds a limit.
On the sliding surface, an oil film is formed on the contact surface using a lubrication device to reduce friction and reduce wear and heat generation.
However, there may be a case where the lubricating oil does not reach the sliding surface sufficiently due to structural problems, torsional deformation of the shaft, load fluctuations generated in the engine piston, and the like.
In this case, seizure between the sliding surfaces, abnormal wear, and the like may occur. In such a case, continuous use cannot be performed, and immediate replacement of the part is necessary.

このような場合の対応に関する先行技術として、特開2000−35042号公報(特許文献1)が存在している。
特許文献1によると、相対運動を行う2つの固体のいずれか一方又は、両方の接触面に、多数の微小な窪みを並べて凹設し、これら各窪みの中に潤滑油を供給する技術開示が成されている。
JP-A-2000-35042 (Patent Document 1) exists as a prior art for dealing with such a case.
According to Patent Document 1, there is a technical disclosure in which a large number of minute depressions are arranged side by side on one or both contact surfaces of two solid bodies that perform relative motion, and lubricating oil is supplied into each of these depressions. It is made.

特開2000−35042号公報JP 2000-35042 A

ところが、特許文献1による構造では、摺動面が高圧・高速滑り条件下において、凹部の深さ(摺動面からの深さ)が摩耗により消失する可能性がある。
従って、適正なアスペクト比(深さ/径)よりも高いアスペクト比とする必要がある。
この場合、製品の使用初期においては、凹部深さが深すぎるため、凹部内の潤滑油の入替えが生起されず、潤滑油の劣化、摺動面の潤滑性能低下が生ずる不具合が想定される。
However, in the structure according to Patent Document 1, there is a possibility that the depth of the recess (depth from the sliding surface) may disappear due to wear when the sliding surface is under high-pressure and high-speed sliding conditions.
Therefore, it is necessary to set an aspect ratio higher than an appropriate aspect ratio (depth / diameter).
In this case, since the depth of the concave portion is too deep in the initial use of the product, replacement of the lubricating oil in the concave portion does not occur, and a problem that the lubricating oil is deteriorated and the sliding performance of the sliding surface is deteriorated is assumed.

そこで、本発明はこのような不具合に鑑み成されたもので、摺動面の凹部に貯溜された潤滑油を凹部の周囲へ積極的に進出させて、摺動面の潤滑性と耐摩耗性を向上させる構造の提供を目的とする。   Accordingly, the present invention has been made in view of such problems, and the lubricating oil stored in the concave portion of the sliding surface is actively advanced to the periphery of the concave portion, so that the lubricity and wear resistance of the sliding surface are increased. The object is to provide a structure that improves the above.

本発明はかかる目的を達成するもので、機械的に対向する摺動面に供給された潤滑油を貯溜する複数の凹部を前記摺動面の少なくとも一側に散在配置した被処理基材と、
前記被処理基材の前記摺動面に成膜され、前記凹部に貯溜した潤滑油を前記摺動面の前記凹部周囲の岸部に進出させて、前記摺動面の潤滑を促進させる潤滑促進被膜と、を備えたことを特徴とする。
The present invention achieves such an object, and a substrate to be treated in which a plurality of recesses for storing lubricating oil supplied to mechanically opposed sliding surfaces are scattered and arranged on at least one side of the sliding surface;
Lubrication promoting film that is formed on the sliding surface of the substrate to be treated and advances the lubricating oil stored in the concave portion to the shore around the concave portion of the sliding surface to promote lubrication of the sliding surface. And.

かかる発明において、凹部を設けた面に、潤滑促進被膜を成膜したので、供給された潤滑油を凹部に貯溜させ、該貯溜部の潤滑油を摺動面に進出させることにより、潤滑油供給部からの潤滑油が直接かからない部分で、凹部周囲の岸部の摺動面に油膜を形成させて摺動面の耐摩耗性を向上させることができる。   In this invention, since the lubrication promoting film is formed on the surface provided with the recess, the supplied lubricant is stored in the recess, and the lubricant in the reservoir is advanced to the sliding surface to supply the lubricant. It is possible to improve the wear resistance of the sliding surface by forming an oil film on the sliding surface of the shore around the recess at a portion where the lubricating oil from the portion is not directly applied.

また、本願発明において好ましくは、前記潤滑促進被膜は撥油性物質によって成膜されると共に、該撥油性物質上に前記潤滑油を滴下した際の表面張力による表面と前記撥油物質の被膜面とが成す接触角が50度以上であるとよい。   Preferably, in the present invention, the lubrication promoting coating is formed of an oil repellent material, and a surface due to surface tension when the lubricating oil is dropped onto the oil repellent material, and a coating surface of the oil repellent material, It is preferable that the contact angle formed by is 50 degrees or more.

このような構成にすることにより、撥油性物質の物性を潤滑油との接触角が50度以上とすることで、潤滑油の摺動面への進出量を確保して、摺動面の性能を保持することができる。   By adopting such a configuration, the oil repellent material has a physical contact angle with the lubricating oil of 50 degrees or more, so that the advance amount of the lubricating oil to the sliding surface is secured, and the sliding surface performance. Can be held.

また、本願発明において好ましくは、前記凹部の孔径は50〜500μm、前記摺動面からの深さは50〜150μmにするとよい。   In the present invention, preferably, the recess has a hole diameter of 50 to 500 μm and a depth from the sliding surface of 50 to 150 μm.

このような構成にすることにより、潤滑促進被膜の物性を撥油性とすることで、凹部に貯溜した潤滑油を、凹部から積極的に摺動面に進出させることができ、更に、孔径を50〜500μm、深さを50〜150μmとすることで、潤滑油の貯溜量が大きくなり、且つ、潤滑油の表面張力による膨出で対向面との接触量が多くなり、摺動面への進出量も増加させることができる。
従って、耐摩耗性効果が大きいと共に、摺動面負荷の大きい部分にも対応できる効果を有している。
By adopting such a configuration, by making the physical property of the lubrication promoting coating oil-repellent, the lubricating oil stored in the concave portion can be actively advanced from the concave portion to the sliding surface, and the hole diameter can be reduced to 50. By setting the depth to 50 to 150 μm, the storage amount of the lubricating oil increases, and the amount of contact with the opposing surface increases due to the bulging due to the surface tension of the lubricating oil, so that it advances to the sliding surface. The amount can also be increased.
Therefore, the wear resistance effect is great, and it has the effect of being able to cope with a portion with a large sliding surface load.

また、本願発明において好ましくは、前記撥油性物質の被膜は、少なくとも前記凹部の内周壁面に成膜されているとよい。   In the present invention, preferably, the film of the oil repellent material is formed on at least the inner peripheral wall surface of the recess.

このような構成にすることにより、撥油性物質を凹部の内周壁面に成膜したので、凹部に貯溜した潤滑油が排出され易く、凹部内の潤滑油の入替えが促進され、潤滑油の昇温及び劣化が防止され、摺動面の耐摩耗性が向上する。   With this configuration, since the oil-repellent substance is formed on the inner peripheral wall surface of the recess, the lubricating oil stored in the recess is easily discharged, the replacement of the lubricating oil in the recess is promoted, and the lubricating oil rises. Temperature and deterioration are prevented, and wear resistance of the sliding surface is improved.

また、本願発明において好ましくは、前記潤滑促進被膜の物性は親油性物質によって成膜されると共に、該親油性物質上に前記潤滑油を滴下した際の表面張力による表面と前記親油物質の被膜面とが成す接触角が10度以下とするとよい。   Preferably, in the present invention, the physical property of the lubrication promoting coating is formed by a lipophilic substance, and the surface by the surface tension when the lubricating oil is dropped on the lipophilic substance and the coating of the lipophilic substance. The contact angle formed by the surface is preferably 10 degrees or less.

このような構成にすることにより、撥油性物質の物性を潤滑油との接触角が10度以下とすることで、潤滑油の摺動面への進出量を確保して、摺動面の性能を保持することができる。   By adopting such a configuration, the oil repellent material has a physical contact angle with the lubricating oil of 10 degrees or less, so that the advance amount of the lubricating oil to the sliding surface is ensured, and the sliding surface performance. Can be held.

また、本願発明において好ましくは、前記凹部の開口は50〜500μm、前記摺動面からの深さは10〜20μmにするとよい。   In the present invention, preferably, the opening of the recess is 50 to 500 μm, and the depth from the sliding surface is 10 to 20 μm.

このような構成にすることにより、潤滑促進被膜の物性を親油性とすることで、凹部に貯溜した潤滑油を、凹部から積極的に摺動面に進出させることができ、更に、開口を50〜500μm、深さを10〜20μmとすることで、凹部に貯溜された潤滑油が摺動面に浸透し易くすると共に、凹部の潤滑油の入替えが促進されて、潤滑油の昇温及び劣化が防止され、摺動面の耐摩耗性が向上する。   By adopting such a configuration, by making the physical property of the lubrication promoting coating oleophilic, the lubricating oil stored in the concave portion can be actively advanced from the concave portion to the sliding surface, and further, the opening 50 can be opened. By setting the depth to 500 μm and the depth to 10 to 20 μm, the lubricant stored in the recesses can easily penetrate into the sliding surface, and the replacement of the lubricant in the recesses is promoted. Is prevented, and the wear resistance of the sliding surface is improved.

また、本願発明において好ましくは、前記親油性物質の被膜は少なくとも前記凹部の開口縁周辺に成膜されているとよい。   In the present invention, preferably, the film of the lipophilic substance is formed at least around the opening edge of the recess.

このような構成にすることにより、親油性物質を凹部の開口縁周辺に成膜することで、凹部の潤滑油を摺動面の凹部が設けられていない所謂岸部の摺動面に積極的に浸透させて、摺動部の耐摩耗性を向上させる。   With such a configuration, a lipophilic substance is formed around the opening edge of the recess, so that the lubricating oil in the recess is positively applied to the so-called shore sliding surface where the sliding surface recess is not provided. Improve the wear resistance of the sliding part.

また、本願発明において好ましくは、前記摺動面に形成される前記複数の凹部の総面積は、前記摺動面積に対する比が5〜50%とするとよい。   In the present invention, the total area of the plurality of recesses formed on the sliding surface is preferably 5 to 50% with respect to the sliding area.

このような構成にすることにより、摺動面に作用する面圧(負荷)が大きい場合には凹部が形成される面積比を大きくして、摺動面への潤滑量を多くして、摺動面の潤滑性を確保する。
一方、面圧(負荷)が小さい場合には凹部が形成される面積比を小さくして、凹部形成の加工費を低減させると共に、潤滑油供給量を減少させて、潤滑油の消費量(摺動部から他部への流出)を低減させる。
With such a configuration, when the surface pressure (load) acting on the sliding surface is large, the area ratio in which the recess is formed is increased, the amount of lubrication to the sliding surface is increased, and the sliding surface is increased. Ensure the lubricity of the moving surface.
On the other hand, when the surface pressure (load) is small, the area ratio in which the recesses are formed is reduced to reduce the processing costs for forming the recesses, and the lubricant supply amount is reduced to reduce the lubricant consumption (sliding). Outflow from moving parts to other parts) is reduced.

本発明によれば、摺動面に設けた凹部に貯溜される潤滑油を凹部の周囲へ積極的に進出させて、摺動面の潤滑性と耐摩耗性を向上させることができる。   According to the present invention, it is possible to improve the lubricity and wear resistance of the sliding surface by positively advancing the lubricating oil stored in the recessed portion provided on the sliding surface around the recess.

本発明が実施される軸受部の概略構造図を示す。1 shows a schematic structural diagram of a bearing portion in which the present invention is implemented. 本発明の第1実施形態に係る撥油性被膜コーティングをした場合で、(A)は図1M部の部分拡大図を示し、(B)は(A)のN−N矢視図を示し、(C)は他の撥油性被膜コーティング例を示す。When the oil-repellent film coating according to the first embodiment of the present invention is applied, (A) shows a partially enlarged view of FIG. 1M part, (B) shows an NN arrow view of (A), ( C) shows another oil-repellent coating coating example. 本発明の第2実施形態に係る親油性被膜コーティングをした場合で、(A)は図1M部の部分拡大図を示し、(B)は(A)のP−P矢視図を示し、(C)は他の親油性被膜コーティング例を示す。In the case of the lipophilic film coating according to the second embodiment of the present invention, (A) shows a partially enlarged view of FIG. 1M part, (B) shows a PP arrow view of (A), ( C) shows another example of lipophilic film coating. 本発明の第3実施形態に係る凹溝に親油性被膜コーティングが実施される場合の概略構造図を示し、(B)は凹溝の形成パターンの一例を示し、(C)は他のパターンを示す。The schematic structure figure when a lipophilic film coating is implemented to the ditch | groove which concerns on 3rd Embodiment of this invention is shown, (B) shows an example of the formation pattern of a ditch | groove, (C) shows another pattern. Show. 潤滑油の接触角の説明図を示す。The explanatory view of the contact angle of lubricating oil is shown.

以下、本発明を図に示した実施形態を用いて詳細に説明する。
但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to specific examples unless otherwise specifically described. Only.

(第1実施形態)
図1は本発明が実施される軸受部の概略構造図を示す。
軸受構造は、第1軸受1と、該第1軸受1の断面が円形の筒状部に、該筒状部の軸線を中心にして回動自在に嵌着された回転軸4と、該回転軸4と筒状部との隙間(空間部)に潤滑油を圧送するオイルポンプ2とで構成されている。
第1軸受1は、摺動面1aが半円形状に形成されている被処理基材である軸受部材Aと、摺動面1aと対向して配設された摺動面1bが半円形状に形成されている被処理基材である軸受部材Bと、軸受部材Aと軸受部材Bとを軸受部材B設けられた雌ネジ25を介して締結される締結ボルト24にて構成されている。
尚、説明を簡略化するため、以後、摺動面1aと摺動面1bとを総称して、「軸受摺動面1c」と記載する。
回転軸4の回転軸摺動面4aと対向する軸受摺動面1cとで形成する空間部20に潤滑油が供給され潤滑油膜が形成される構造になっている。
潤滑油膜は、オイルポンプ2によって、軸受部材B内に設けられた第1油路15を介して空間部20に圧送される。圧送された潤滑油は空間部20内を循環して、軸受部材Aに設けられた第2油路16、該第2油路16に接続し、軸受部材Bに配設された第3油路17を流れて、オイルポンプ2を介して図示されないオイルタンクに戻され、該オイルタンクで潤滑油が冷却される。
(First embodiment)
FIG. 1 is a schematic structural view of a bearing portion in which the present invention is implemented.
The bearing structure includes a first bearing 1, a rotating shaft 4 fitted in a cylindrical portion having a circular cross section of the first bearing 1 around the axis of the cylindrical portion, and the rotation It is comprised with the oil pump 2 which pumps lubricating oil to the clearance gap (space part) of the axis | shaft 4 and a cylindrical part.
The first bearing 1 has a bearing member A, which is a substrate to be processed, in which the sliding surface 1a is formed in a semicircular shape, and a sliding surface 1b disposed so as to face the sliding surface 1a. The bearing member B, which is a substrate to be processed, is formed by a fastening bolt 24 that fastens the bearing member A and the bearing member B via a female screw 25 provided on the bearing member B.
In order to simplify the description, the sliding surface 1a and the sliding surface 1b are hereinafter collectively referred to as “bearing sliding surface 1c”.
Lubricating oil is supplied to the space 20 formed by the rotating shaft sliding surface 4a of the rotating shaft 4 and the bearing sliding surface 1c facing the rotating shaft sliding surface 4a, and a lubricating oil film is formed.
The lubricating oil film is pumped by the oil pump 2 to the space portion 20 via the first oil passage 15 provided in the bearing member B. The pumped lubricating oil circulates in the space 20 and is connected to the second oil passage 16 provided in the bearing member A and the second oil passage 16, and the third oil passage provided in the bearing member B. 17, the oil is returned to an oil tank (not shown) via the oil pump 2, and the lubricating oil is cooled in the oil tank.

図2は図1のM部の部分拡大図を示し、図2(A)には第1軸受1と回転軸4とが対向した摺動面間には潤滑油膜が形成される空間部20が形成されている。
軸受摺動面1c側には円柱形状の凹部3が複数散在配置されている。
凹部3は、孔径D1=50〜500μm、軸受摺動面1cから凹部3の底面までの深さH1=50〜150μmの形状に形成されている。
そして、凹部3の摺動面全体の面積(軸受摺動面1cの面積)に対する凹部の開口総面積比率は5〜50%とした。
開口総面積比率が<5%の場合には、軸受摺動面1c全面に潤滑油が十分にいきわたらない場合が生じて本発明の効果が得られ難い。
また、開口総面積比率>50%になると、凹部以外の摺動面での面圧が高くなり本発明の効果が得られ難い。
更に、凹部3の内周壁面1bを含むに軸受摺動面1cは、潤滑促進被膜である、撥油物質のPTFE(ポリテトラフルオロエチレン)含有Ni−Pメッキを施した撥油性被膜コーティング5が成膜されている。
尚、本実施形態では、撥油コーティングとしてPTFE含有Niを使用したが、他に、PEEK(ポリエーテルエーテルケトン)、TiO(酸化チタン)による皮膜層を形成してもよいし、シランカップリング材による表面の改質を図る方法でもよい。
FIG. 2 is a partially enlarged view of a portion M in FIG. 1. FIG. 2A shows a space portion 20 in which a lubricating oil film is formed between sliding surfaces where the first bearing 1 and the rotating shaft 4 face each other. Is formed.
A plurality of cylindrical recesses 3 are scattered and arranged on the bearing sliding surface 1c side.
The recess 3 is formed in a shape with a hole diameter D1 = 50 to 500 μm and a depth H1 = 50 to 150 μm from the bearing sliding surface 1 c to the bottom surface of the recess 3.
And the opening total area ratio of the recessed part with respect to the area of the whole sliding surface of the recessed part 3 (area of the bearing sliding surface 1c) was 5 to 50%.
When the total opening area ratio is <5%, the lubricating oil may not be sufficiently spread over the entire bearing sliding surface 1c, and it is difficult to obtain the effects of the present invention.
Further, when the total opening area ratio is greater than 50%, the surface pressure on the sliding surface other than the concave portion is increased, and it is difficult to obtain the effect of the present invention.
Further, the bearing sliding surface 1c including the inner peripheral wall surface 1b of the concave portion 3 is provided with an oil-repellent coating coating 5 which is provided with an oil-repellent PTFE (polytetrafluoroethylene) -containing Ni—P plating which is a lubrication promoting coating. A film is formed.
In this embodiment, PTFE-containing Ni is used as the oil-repellent coating, but in addition, a coating layer of PEEK (polyether ether ketone) or TiO 2 (titanium oxide) may be formed, or silane coupling. A method of modifying the surface with a material may be used.

凹部3の孔径D1=50〜500μm、底面までの深さH1=50〜150μmの形状とした理由は、凹部3に貯溜される潤滑油量は、潤滑油が凹部3の開口外周縁周辺に進出して、空間部20に油膜を形成するために必要な油量を確保できると共に、貯溜された潤滑油の入替えを促進させることができる形状となっている。
深さH1>150μmになると潤滑油の入替えが十分に行われず、潤滑油の温度が高くなる。
従って、潤滑油の入替えに伴い軸受摺動面1c及び、回転軸摺動面4aの冷却ができ、且つ潤滑油の劣化を防止できると共に、高速、高負荷で摺動する部分に適用することができ、摺動面の耐摩耗性を向上させることができる。
例えば、ターボチャージャのスラスト軸受部等においてはよい結果を得ている。
また、凹部3の孔径、深さ及び、凹部の開口総面積比率は、摺動部(軸受摺動面1c及び回転軸摺動面4a)に作用する回転速度、摺動面に作用する圧力等の使用条件に基づいて逐次設定すればよい。
The reason why the hole diameter D1 of the concave portion 3 is 50 to 500 μm and the depth H1 to the bottom surface is H1 = 50 to 150 μm is that the amount of lubricating oil stored in the concave portion 3 advances to the periphery of the opening outer peripheral edge of the concave portion 3 Thus, the oil amount necessary for forming the oil film in the space portion 20 can be secured and the replacement of the stored lubricating oil can be promoted.
When the depth H1> 150 μm, the replacement of the lubricating oil is not sufficiently performed, and the temperature of the lubricating oil becomes high.
Therefore, the bearing sliding surface 1c and the rotating shaft sliding surface 4a can be cooled in accordance with the replacement of the lubricating oil, the deterioration of the lubricating oil can be prevented, and it can be applied to a portion that slides at a high speed and a high load. And the wear resistance of the sliding surface can be improved.
For example, good results have been obtained in a thrust bearing portion of a turbocharger.
Further, the hole diameter and depth of the recess 3 and the total opening area ratio of the recess are the rotational speed acting on the sliding portion (the bearing sliding surface 1c and the rotating shaft sliding surface 4a), the pressure acting on the sliding surface, etc. It may be set sequentially based on the use conditions.

また、撥油物質は、凹部3の形状において接触角θ≧50度の撥油性を有しているものであれば摺動部の湯膜が確保できることが判明した。
接触角とは、図5に示すように、撥油性被膜コーティング表面Fに潤滑油を滴下し、潤滑油が撥油性被膜コーティング表面Fにて球面状に生起した状態で、球面状表面と撥油性被膜コーティング表面Fとの接触部の球面状表面の接線Lと、撥油性被膜コーティング表面Fとが成す角度を接触角度と称している。
接触角が大きいほど、撥油性が高いことを示している。
撥油性被膜コーティング5の膜厚H2は数μm(例えば、4〜7μm)とした。
図2(B)はN−N線矢視図(第1軸受摺動面1aの平面図)を示しており、軸受摺動面1cの凹部3の開口縁周囲である岸部3a及び、凹部3の内部壁面に撥油被膜コーティング5が成膜されている。
尚、凹部3の形成は、レーザパルス、又は型押し、エッチング等の方法で容易にできる。
また、凹部3の配置パターンについて、図2では整然とした配置パターンにしたが、隣接する凹部3間の距離が略同等になれば、配置パターンについては規定するものではない。
更に、本実施形態では軸受摺動面1c側のみに凹部3を形成したが、回転軸摺動面4a側に設けるか、又は両面に設けても同様の効果を得ることができる。
Further, it has been found that if the oil repellent substance has an oil repellency with a contact angle θ ≧ 50 degrees in the shape of the recess 3, a hot water film in the sliding portion can be secured.
As shown in FIG. 5, the contact angle refers to the spherical surface and the oil repellency in the state where the lubricating oil is dropped on the oil repellent coating surface F and the lubricating oil occurs in a spherical shape on the oil repellent coating surface F. The angle formed between the tangent L of the spherical surface of the contact portion with the coating film surface F and the oil repellent coating film surface F is referred to as a contact angle.
The larger the contact angle, the higher the oil repellency.
The film thickness H2 of the oil-repellent film coating 5 was several μm (for example, 4 to 7 μm).
FIG. 2B is a view taken along the line NN (a plan view of the first bearing sliding surface 1a). The shore portion 3a and the concave portion 3 around the opening edge of the concave portion 3 of the bearing sliding surface 1c. An oil-repellent coating 5 is formed on the inner wall surface.
In addition, formation of the recessed part 3 can be easily performed by methods, such as a laser pulse or embossing and an etching.
Further, although the arrangement pattern of the recesses 3 is an orderly arrangement pattern in FIG. 2, the arrangement pattern is not defined as long as the distance between the adjacent recesses 3 becomes substantially equal.
Further, in the present embodiment, the concave portion 3 is formed only on the bearing sliding surface 1c side, but the same effect can be obtained by providing it on the rotating shaft sliding surface 4a side or on both surfaces.

このような撥油性物質のコーティング構造とすることで、オイルポンプ2により圧送された潤滑油は、第1油路15を介して、空間部20において潤滑油膜を形成するが、第1油路15に近い部分は潤滑油が十分に供給されるが、第1油路15から遠い部分は、油圧が低下する部分が発生する。
しかし、オイルポンプ2からの潤滑油供給と、回転軸4の回転により凹部3に潤滑油が貯溜され、凹部3に貯溜された潤滑油は撥油性被覆コーティング5により、表面張力によって潤滑油が球状に生起し、回転軸摺動面4aと接触しながら凹部3の開口縁外周部である岸部に流出(進出)し、軸受摺動面1caとの間に油膜を形成して、摺動面の耐摩耗性を向上させている。
With such a coating structure of the oil repellent material, the lubricating oil pumped by the oil pump 2 forms a lubricating oil film in the space portion 20 via the first oil passage 15, but the first oil passage 15 The portion close to is sufficiently supplied with lubricating oil, but the portion far from the first oil passage 15 has a portion where the hydraulic pressure decreases.
However, the lubricating oil is stored in the concave portion 3 by the supply of the lubricating oil from the oil pump 2 and the rotation of the rotating shaft 4, and the lubricating oil stored in the concave portion 3 is spherical due to the surface tension by the oil repellent coating 5. And flows out (advances) to the shore part which is the outer periphery of the opening edge of the recess 3 while being in contact with the rotating shaft sliding surface 4a, and an oil film is formed between the bearing sliding surface 1ca and the sliding surface Improves wear resistance.

尚、本実施形態では、製造コストを低減するため、軸受摺動面1c(含む凹部3の開口縁周囲である岸部3a)及び、凹部3の内部壁面に撥油コーティング5の成膜を実施したが、図3(C)に示すように、凹部3の内周壁1bに撥油性被覆コーティングが実施されていれば、凹部3内の潤滑油は表面張力により球状に生起されて、空間部20に進出されるので、同様の効果を得ることができる。   In this embodiment, in order to reduce the manufacturing cost, the oil repellent coating 5 is formed on the bearing sliding surface 1c (including the shore portion 3a around the opening edge of the recessed portion 3) and the inner wall surface of the recessed portion 3. However, as shown in FIG. 3C, if the oil repellent coating is applied to the inner peripheral wall 1b of the recess 3, the lubricating oil in the recess 3 is generated in a spherical shape by the surface tension, and is formed in the space portion 20. The same effect can be obtained because it is expanded.

(第2実施形態)
本実施形態は、第1実施形態に対して、潤滑促進被膜の材質が撥油性→親油性に変り、それに伴い凹部の形状が変わる以外は同じなので、同じものは同一の符号を付して、説明を省略する。
図3(A)は図1におけるM部の部分拡大図を示し、図3(B)は図3(A)のP−P矢視図を示す。尚、軸受部全体構造は実施形態1と同じなので説明を省略する。
(Second Embodiment)
Since this embodiment is the same as the first embodiment except that the material of the lubrication promoting coating changes from oil repellency to oleophilicity and the shape of the recess changes accordingly, the same parts are given the same reference numerals, Description is omitted.
FIG. 3A shows a partially enlarged view of the portion M in FIG. 1, and FIG. 3B shows a view taken along the line P-P in FIG. In addition, since the whole bearing part structure is the same as Embodiment 1, description is abbreviate | omitted.

図3(A)は第2軸受6と回転軸4との間には潤滑油膜が形成される空間部20を介して夫々の摺動面が対向している。
尚、説明を簡略化するため、以後、図1の軸受部材Aの摺動面と軸受部材Bの摺動面とを総称して、「軸受摺動面6a」と記載する。
軸受部の軸受摺動面6aには円柱形状の凹部8が複数散在配置されている。
凹部8は、孔径D2=50〜500μm、軸受摺動面6aからの深さH5=10〜20μmの形状に形成されている。
そして、凹部8の摺動面全体の面積(軸受摺動面6a)に対する凹部の開口総面積比率は5〜50%とした。
更に、凹部8の内周壁面6bを含む軸受摺動面6aには、潤滑促進被膜である親油性物質のシラン系カップリング剤が用いられている。
尚、カップリング剤としては、ビニルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン等を用いることができる。
In FIG. 3A, the sliding surfaces of the second bearing 6 and the rotary shaft 4 are opposed to each other through a space 20 in which a lubricating oil film is formed.
In order to simplify the description, hereinafter, the sliding surface of the bearing member A and the sliding surface of the bearing member B in FIG. 1 are collectively referred to as “bearing sliding surface 6a”.
A plurality of cylindrical concave portions 8 are scattered and arranged on the bearing sliding surface 6a of the bearing portion.
The recess 8 is formed in a shape with a hole diameter D2 = 50 to 500 μm and a depth H5 = 10 to 20 μm from the bearing sliding surface 6a.
And the opening total area ratio of the recessed part with respect to the area (bearing sliding surface 6a) of the whole sliding surface of the recessed part 8 was 5 to 50%.
Furthermore, the bearing sliding surface 6a including the inner peripheral wall surface 6b of the recess 8 uses a lipophilic silane coupling agent as a lubrication promoting coating.
As coupling agents, vinyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, etc. Can be used.

既述の通り、凹部8は、孔径D2=50〜500μm、底面までの深さH5=10〜20μmの形状とした理由は、凹部8に貯溜される潤滑油量は、潤滑油が凹部3の開口外周縁周辺の岸部8aに進出して、空間部20に油膜を形成するために必要な油量を確保できると共に、貯溜された潤滑油の入替えを促進させることができる形状となっている。
また、底面までの深さH5=10〜20μmと浅く(撥油性被膜より浅い)することにより、凹部8に貯溜された潤滑油が、親油剤の親和性作用により空間部20(潤滑油膜形成部)に積極的に進出し易いようにしてある。
従って、潤滑油の入替えに伴い摺動面(軸受摺動面6a及び、回転軸摺動面4a)の冷却及び、潤滑油の劣化が防止できると共に、高速、高負荷で摺動する部分に適用することができ、摺動面の耐摩耗性を向上させることができる。
例えば、潤滑油が不足しがちな圧縮機やエンジン内部などで良い効果が得られる。
また、凹部8の孔径D2、深さH5及び、凹部の開口総面積比率は、摺動部に作用する回転速度、摺動面に作用する圧力等の条件に基づいて逐次設定すればよい。
As described above, the recess 8 has a shape with a hole diameter D2 = 50 to 500 μm and a depth H5 = 10 to 20 μm to the bottom surface. The amount of the lubricating oil stored in the recess 8 is that the lubricant is in the recess 3. The shape advances to the shore portion 8a around the outer periphery of the opening to ensure the amount of oil necessary for forming an oil film in the space portion 20 and to facilitate replacement of the stored lubricating oil.
Further, by making the depth to the bottom surface H5 = 10 to 20 μm shallow (shallow than the oil-repellent coating), the lubricating oil stored in the concave portion 8 can be separated into the space portion 20 (lubricating oil film forming portion) by the affinity action of the lipophilic agent. ) Is easy to make a positive entry.
Therefore, the sliding surfaces (bearing sliding surface 6a and rotating shaft sliding surface 4a) can be cooled and the deterioration of the lubricating oil can be prevented with the replacement of the lubricating oil, and applied to the portion that slides at high speed and high load. And the wear resistance of the sliding surface can be improved.
For example, a good effect can be obtained in a compressor or an engine inside where lubricating oil tends to be insufficient.
Further, the hole diameter D2 and depth H5 of the recess 8 and the total opening area ratio of the recess may be sequentially set based on conditions such as the rotational speed acting on the sliding portion and the pressure acting on the sliding surface.

また、親油物質は、凹部8の形状において接触角度θ≦10度の親油性を有しているものであれば摺動部への潤滑油の進出が十分に促進され、摺動部の耐摩耗性が向上することが判明した。
接触角とは、図5に示すように、親油性被覆コーティング表面Fに潤滑油を滴下し、潤滑油が親油性被覆コーティング表面Gにて半球面状に生起した状態で、半球面状表面と親油性被膜コーティング表面Fとの接触部の半球面状表面の接線Lと、親油性被覆コーティング表面Fとが成す角度θを接触角度と称している。
親油性被覆コーティング5の膜厚は数μm(例えば、4〜7μm)とした。
図3(B)はP−P矢視図(第3軸受摺動面6aの平面図)を示しており、第3及び第4軸受摺動面6a,7a(図1参照)の凹部3の開口縁周囲である岸部及び、凹部8の内部壁面に撥油コーティング5が成膜されている。
尚、凹部8の形成は、レーザパルス、又は型押し等の方法で容易にできる。
また、凹部8の配置パターンについて、図3(B)では整然とした配置パターンにしたが、隣接する凹部3間の距離が略同等になれば、配置パターンについては規定するものではない。
Further, if the lipophilic substance has a lipophilicity with a contact angle θ ≦ 10 degrees in the shape of the concave portion 8, the advance of the lubricating oil to the sliding portion is sufficiently promoted, and the resistance of the sliding portion is improved. It has been found that wear is improved.
As shown in FIG. 5, the contact angle refers to a hemispherical surface in a state where lubricating oil is dropped on the lipophilic coating coating surface F and the lubricating oil is generated in a hemispherical shape on the lipophilic coating coating surface G. An angle θ formed by the tangent L of the hemispherical surface of the contact portion with the lipophilic coating coating surface F and the lipophilic coating coating surface F is referred to as a contact angle.
The film thickness of the oleophilic coating 5 was several μm (for example, 4 to 7 μm).
FIG. 3 (B) shows a PP arrow view (plan view of the third bearing sliding surface 6a), and shows the recess 3 of the third and fourth bearing sliding surfaces 6a, 7a (see FIG. 1). The oil repellent coating 5 is formed on the shore around the opening edge and the inner wall surface of the recess 8.
In addition, formation of the recessed part 8 can be easily performed by methods, such as a laser pulse or an embossing.
The arrangement pattern of the recesses 8 is an orderly arrangement pattern in FIG. 3B, but the arrangement pattern is not defined if the distance between the adjacent recesses 3 becomes substantially equal.

このような親油性物質のコーティング構造とすることで、オイルポンプ2により圧送された潤滑油は、第1油路15を介して、空間部20において潤滑用の油膜を形成するが、第1油路15に近い部分は潤滑油が十分に供給されるが、第1油路15から遠い部分は、油圧が低下する部分が発生する。
しかし、凹部に貯留された潤滑油は親油性被膜コーティングし、軸受摺動面6aから底面までの深さH5=10〜20μmと浅く(撥油性被膜より浅い)することにより、凹部8に貯溜された潤滑油が、親油剤の親和性作用により空間部20(潤滑油膜形成部)に積極的に進出し易いようにして、摺動面の耐摩耗性を向上させている。
With such a lipophilic material coating structure, the lubricating oil pumped by the oil pump 2 forms a lubricating oil film in the space 20 via the first oil passage 15. Lubricating oil is sufficiently supplied to the portion close to the passage 15, but a portion where the hydraulic pressure decreases is generated in a portion far from the first oil passage 15.
However, the lubricating oil stored in the concave portion is coated in an oleophilic coating and stored in the concave portion 8 by making the depth H5 = 10 to 20 μm from the bearing sliding surface 6a to the bottom surface (shallow than the oil-repellent coating). Thus, the lubricating oil can easily advance into the space portion 20 (lubricating oil film forming portion) by the affinity action of the lipophilic agent to improve the wear resistance of the sliding surface.

尚、本実施形態では、製造工数を低減するため、軸受摺動面6a(含む凹部8の開口縁周囲である岸部8a)及び、凹部8の内部壁面に撥油コーティング5の成膜を実施した。
しかし、凹部3の底面までの深さH5が10〜20μmと浅く且つ、凹部8の開口縁外周の岸部8aに親油性被膜コーティング9に成膜されていれば、凹部8内の潤滑油は親和性作用により、空間部20に進出して摺動面の耐摩耗性を向上させることができる。
従って、凹部3の開口周縁外周部にだけに親油コーティングを実施することで、摺動部の耐摩耗性を向上させると共に、親油コーティング剤の使用量を減少させて、コスト低減を図ることもできる。
In this embodiment, the oil-repellent coating 5 is formed on the bearing sliding surface 6a (including the shore portion 8a around the opening edge of the recess 8) and the inner wall surface of the recess 8 in order to reduce the number of manufacturing steps. .
However, if the depth H5 to the bottom surface of the concave portion 3 is as shallow as 10 to 20 μm and the lipophilic film coating 9 is formed on the shore portion 8a on the outer periphery of the opening edge of the concave portion 8, the lubricating oil in the concave portion 8 is compatible. By virtue of the sexual effect, it is possible to advance into the space 20 and improve the wear resistance of the sliding surface.
Therefore, by implementing the lipophilic coating only on the outer peripheral edge of the opening periphery of the recess 3, the wear resistance of the sliding portion is improved and the amount of the lipophilic coating agent used is reduced to reduce the cost. You can also.

(第3実施形態)
本実施形態は、第2実施形態の凹部の形状が円形状に対し、凹部の形状が溝状になる以外は同じなので、同じ作用をするものは同一符号を付して、説明は省略する。
(Third embodiment)
This embodiment is the same as the second embodiment except that the shape of the concave portion is circular, except that the shape of the concave portion is a groove shape, and thus the same function is denoted by the same reference numeral and description thereof is omitted.

図4(A)は図1M部分の軸受部材Aを部分拡大したものである。非処理基材である第3軸受11は回転軸4との間には潤滑油膜が形成される空間部20を介して夫々の摺動面が対向している。
尚、第3軸受11は、構造の説明を簡略化するため、図1に示す軸受部材Aの摺動面と軸受部材Bの摺動面とを総称して、「軸受摺動面11a」と記載する。
第3軸受部11の軸受摺動面11aには、凹部である断面矩形状の凹溝15が略平行に間隔を有して複数配置されている。
凹溝15は、溝の幅W=50〜500μm、軸受摺動面11aからの深さH5=10〜20μmの形状に形成されている。
図4(B)に示すように、凹溝15は回転軸4の軸線CLに対して角度α有して傾斜しており、且つ、凹溝15は軸受摺動面全体(軸受摺動面11a)の面積に対する凹溝15の開口総面積比率を5〜50%とした。
更に、本実施形態では凹溝15の端縁近傍の軸受摺動面11aのみに、潤滑促進被膜である親油物質のシラン系カップリング剤のコーティング(親油性被膜コーティング9)を実施した。
4A is a partially enlarged view of the bearing member A in FIG. 1M. The sliding surfaces of the third bearing 11, which is a non-treated base material, face each other through the space 20 where a lubricating oil film is formed.
In order to simplify the description of the structure of the third bearing 11, the sliding surface of the bearing member A and the sliding surface of the bearing member B shown in FIG. 1 are collectively referred to as “bearing sliding surface 11a”. Describe.
On the bearing sliding surface 11 a of the third bearing portion 11, a plurality of concave grooves 15 having a rectangular cross section, which is a concave portion, are arranged substantially in parallel with an interval.
The concave groove 15 is formed in a shape having a groove width W = 50 to 500 μm and a depth H5 = 10 to 20 μm from the bearing sliding surface 11a.
As shown in FIG. 4B, the groove 15 is inclined with an angle α with respect to the axis CL of the rotating shaft 4, and the groove 15 is formed on the entire bearing sliding surface (the bearing sliding surface 11a). The ratio of the total area of the openings of the concave grooves 15 to the area of
Furthermore, in this embodiment, only the bearing sliding surface 11a in the vicinity of the edge of the groove 15 is coated with a silane coupling agent (lipophilic coating coating 9) of a lipophilic substance that is a lubrication promoting coating.

親油性被膜コーティング9を凹溝15の端縁近傍の摺動面11aのみにした理由は、凹溝15の側壁にも親油性被膜コーティングがされていると、凹溝15に流入した潤滑油が凹溝15の端縁近傍の摺動面11aに進出する潤滑油と、凹溝15に沿って流出する潤滑油とが生じて、空間部20への潤滑油供給量が不足する場合がある。   The reason why the lipophilic film coating 9 is only the sliding surface 11a in the vicinity of the edge of the groove 15 is that if the side wall of the groove 15 is also coated with the lipophilic film, the lubricating oil flowing into the groove 15 Lubricating oil that advances to the sliding surface 11 a in the vicinity of the edge of the groove 15 and lubricating oil that flows out along the groove 15 may be generated, and the amount of lubricating oil supplied to the space 20 may be insufficient.

摺動部の凹部を凹溝15形状にすることにより、摺動部全体に潤滑用油路が形成された状態になり、オイルポンプ2からの潤滑油の摺動面への供給が均一化され、潤滑油の凹溝15からの入替え量が多くなり、親油性被膜コーティングの作用効果に加え、潤滑油入替えによる潤滑油の温度が低下するので、摺動部の冷却による潤滑油の粘性が維持され、摺動部の耐摩耗向上し、高速摺動、高負荷の軸受部においての耐久性向上が得られる。   By forming the concave portion of the sliding portion into the shape of the concave groove 15, a lubricating oil passage is formed in the entire sliding portion, and the supply of lubricating oil from the oil pump 2 to the sliding surface is made uniform. In addition to the effect of the oleophilic coating coating, the temperature of the lubricating oil decreases due to the replacement of the lubricating oil, so that the viscosity of the lubricating oil is maintained by cooling the sliding portion. As a result, the wear resistance of the sliding portion is improved, and the durability of the high-speed sliding and high-load bearing portion is improved.

また、図4(C)は図4(B)に対し、回転軸4の軸線CLを基準にして、角度βを有して傾斜した凹溝15を交差させたもので、凹溝15の配置パターンを変えた以外は同じである。
このような凹溝15の配置パターンを回転軸4が正逆回転するような装置に使用することにより、親油性コーティングの作用効果に加えて、回転軸4と潤滑油との粘性による空間部への潤滑油進出性が向上し、摺動部の耐摩耗性向上、摺動抵抗の軽減、高速摺動、高負荷の軸受として耐久性が向上する。
4C is a crossing of the groove 15 inclined at an angle β with respect to the axis CL of the rotating shaft 4 with respect to FIG. 4B. The same except for changing the pattern.
By using such an arrangement pattern of the grooves 15 in an apparatus in which the rotating shaft 4 rotates forward and backward, in addition to the effect of the oleophilic coating, to the space due to the viscosity of the rotating shaft 4 and the lubricating oil. As a result, the wear resistance of the sliding part is improved, the sliding resistance is reduced, the sliding speed is high, and the durability of the bearing is increased.

基材の相手部材との接触面に耐摩耗性部材をコーティングするコーティング構造に適用することができる。   The present invention can be applied to a coating structure in which a contact surface of a substrate with a mating member is coated with a wear resistant member.

1 第1軸受(被服処理基材)
1c、6a、11a 軸受摺動面
3、8,15 凹部
4 回転軸
4a 回転軸摺動面
5 撥油性被膜コーティング(潤滑促進被膜)
6 第2軸受(被服処理基材)
9 親油性被膜コーティング(潤滑促進被膜)
11 第3軸受(被服処理基材)
20 空間部(潤滑油膜形成部)
CL 回転軸の軸線
D1、D2 孔径
H1 凹部深さ
H2 膜厚
1 First bearing (clothing substrate)
1c, 6a, 11a Bearing sliding surface 3, 8, 15 Recess 4 Rotating shaft 4a Rotating shaft sliding surface 5 Oil-repellent coating (lubrication promoting coating)
6 Second bearing (clothing substrate)
9 Lipophilic coating (Lubrication promotion coating)
11 Third bearing (clothing substrate)
20 Space part (lubricating oil film forming part)
CL axis of rotation axis D1, D2 hole diameter H1 recess depth H2 film thickness

Claims (8)

機械的に対向する摺動面に供給された潤滑油を貯溜する複数の凹部を前記摺動面の少なくとも一側に散在配置した被処理基材と、
前記被処理基材の前記摺動面に成膜され、前記凹部に貯溜した潤滑油を前記摺動面の前記凹部周囲の岸部に進出させて、前記摺動面の潤滑を促進させる潤滑促進被膜と、を備えたことを特徴とする耐摩耗被膜コーティング構造。
A substrate to be treated in which a plurality of recesses for storing lubricating oil supplied to mechanically opposed sliding surfaces are scattered and disposed on at least one side of the sliding surface;
Lubrication promoting film that is formed on the sliding surface of the substrate to be treated and advances the lubricating oil stored in the concave portion to the shore around the concave portion of the sliding surface to promote lubrication of the sliding surface. And a wear-resistant coating structure characterized by comprising:
前記潤滑促進被膜は撥油性物質によって成膜されると共に、該撥油性物質上に前記潤滑油を滴下した際の表面張力による表面と前記撥油物質の被膜面とが成す接触角が50度以上であることを特徴とする請求項1記載の耐摩耗被膜コーティング構造。   The lubrication promoting coating is formed of an oil repellent material, and a contact angle formed by a surface tension when the lubricating oil is dropped on the oil repellent material and a coating surface of the oil repellent material is 50 degrees or more. The wear-resistant coating film structure according to claim 1, wherein 前記凹部の孔径は50〜500μm、前記摺動面からの深さは50〜150μmとしたことを特徴とする請求項1又は2記載の耐摩耗被膜コーティング構造。   The wear resistant coating structure according to claim 1 or 2, wherein a hole diameter of the concave portion is 50 to 500 µm, and a depth from the sliding surface is 50 to 150 µm. 前記撥油性物質の被膜は、少なくとも前記凹部の内周壁面に成膜されていることを特徴とする請求項2又は3記載の耐摩耗被膜コーティング構造。   4. The wear-resistant coating structure according to claim 2, wherein the coating of the oil repellent material is formed on at least an inner peripheral wall surface of the recess. 前記潤滑促進被膜の物性は親油性物質によって成膜されると共に、該親油性物質上に前記潤滑油を滴下した際の表面張力による表面と前記親油物質の被膜面とが成す接触角が10度以下であることを特徴とする請求項1記載の耐摩耗被膜コーティング構造。   The physical property of the lubrication promoting coating is formed by a lipophilic substance, and the contact angle formed by the surface due to the surface tension when the lubricating oil is dropped on the lipophilic substance and the coating surface of the lipophilic substance is 10 The wear-resistant coating film structure according to claim 1, wherein the wear-resistant film coating structure is less than or equal to a degree. 前記凹部の開口は50〜500μm、前記摺動面からの深さは10〜20μmとしたことを特徴とする請求項1又は5記載の耐摩耗被膜コーティング構造。   6. The wear-resistant coating film structure according to claim 1, wherein the opening of the recess is 50 to 500 [mu] m and the depth from the sliding surface is 10 to 20 [mu] m. 前記親油性物質の被膜は少なくとも前記凹部の開口縁周辺に成膜されていることを特徴とする請求項5又は6記載の耐摩耗被膜コーティング構造。   The wear-resistant film coating structure according to claim 5 or 6, wherein the film of the lipophilic substance is formed at least around the opening edge of the recess. 前記摺動面に形成される前記複数の凹部の総面積は、前記摺動面積に対する比が5〜50%としたことを特徴とする請求項1乃至7のいずれか1項に記載の耐摩耗被膜コーティング構造。
The wear resistance according to any one of claims 1 to 7, wherein a total area of the plurality of concave portions formed on the sliding surface is 5 to 50% of the sliding area. Film coating structure.
JP2012081092A 2012-03-30 2012-03-30 Wear-resistant coat coating structure Pending JP2013210057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081092A JP2013210057A (en) 2012-03-30 2012-03-30 Wear-resistant coat coating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081092A JP2013210057A (en) 2012-03-30 2012-03-30 Wear-resistant coat coating structure

Publications (1)

Publication Number Publication Date
JP2013210057A true JP2013210057A (en) 2013-10-10

Family

ID=49528058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081092A Pending JP2013210057A (en) 2012-03-30 2012-03-30 Wear-resistant coat coating structure

Country Status (1)

Country Link
JP (1) JP2013210057A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183797A (en) * 2014-03-25 2015-10-22 大豊工業株式会社 bearing
JP2015183799A (en) * 2014-03-25 2015-10-22 大豊工業株式会社 bearing
JP2015183798A (en) * 2014-03-25 2015-10-22 大豊工業株式会社 bearing
JP2016023672A (en) * 2014-07-17 2016-02-08 日本ピラー工業株式会社 Slide material and support device
JP2016136039A (en) * 2015-01-23 2016-07-28 高知県公立大学法人 Fracture suppressing method of lubrication layer and structure having sliding part
JP2018128444A (en) * 2017-02-10 2018-08-16 セイコーインスツル株式会社 Machine component, mechanism module, movement, and watch
JP2021095939A (en) * 2019-12-16 2021-06-24 マツダ株式会社 Oil lubrication bearing structure
US11327441B2 (en) 2017-02-10 2022-05-10 Seiko Instruments Inc. Mechanical component, mechanism module, movement, and timepiece

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183797A (en) * 2014-03-25 2015-10-22 大豊工業株式会社 bearing
JP2015183799A (en) * 2014-03-25 2015-10-22 大豊工業株式会社 bearing
JP2015183798A (en) * 2014-03-25 2015-10-22 大豊工業株式会社 bearing
JP2016023672A (en) * 2014-07-17 2016-02-08 日本ピラー工業株式会社 Slide material and support device
JP2016136039A (en) * 2015-01-23 2016-07-28 高知県公立大学法人 Fracture suppressing method of lubrication layer and structure having sliding part
JP2018128444A (en) * 2017-02-10 2018-08-16 セイコーインスツル株式会社 Machine component, mechanism module, movement, and watch
US11327441B2 (en) 2017-02-10 2022-05-10 Seiko Instruments Inc. Mechanical component, mechanism module, movement, and timepiece
JP2021095939A (en) * 2019-12-16 2021-06-24 マツダ株式会社 Oil lubrication bearing structure
JP7443742B2 (en) 2019-12-16 2024-03-06 マツダ株式会社 Oil lubricated bearing structure

Similar Documents

Publication Publication Date Title
JP2013210057A (en) Wear-resistant coat coating structure
JP5980396B2 (en) mechanical seal
CN1782358B (en) Piston for internal combustion engine
KR102156455B1 (en) Thrust washer
US10487944B2 (en) Slide component
JP5386213B2 (en) Combination of cylinder and piston
JP4865019B2 (en) Connecting rod bearing for internal combustion engine
JP6159410B2 (en) Piston ring with periodically different grooves
JP5933979B2 (en) Radial plain bearing
JP6876766B2 (en) Half bearings and plain bearings
JP2010133320A (en) Swash plate hydraulic rotating machine
KR20200020779A (en) Mechanical systems comprising shafts coupled to bearings and methods of manufacturing such systems
CN110242575B (en) Friction piece, compressor, air conditioner and friction surface treatment method
CN105121849A (en) Hemispherical shoe for swash plate compressor, and swash plate compressor
JP6552022B2 (en) Valve lifter
US20200063797A1 (en) Half bearing
JP2013036618A (en) Bearing device for supporting crank shaft of internal combustion engine
US10962054B2 (en) Half bearing
JP5983061B2 (en) Plain bearing
JP2020041573A (en) Piston ring and manufacturing method of the same
US10851836B2 (en) Half bearing
US10962048B2 (en) Half bearing
JP5107972B2 (en) Bearing device for supporting a crankshaft of an internal combustion engine
JP6195814B2 (en) Radial piston type hydraulic machine, hydraulic transmission and wind power generator
JP2010127142A (en) Piston for internal combustion engine