JP2013210031A - Bearing device, pump, method for assembling bearing device, and method for adjusting position of oil drain groove - Google Patents

Bearing device, pump, method for assembling bearing device, and method for adjusting position of oil drain groove Download PDF

Info

Publication number
JP2013210031A
JP2013210031A JP2012079783A JP2012079783A JP2013210031A JP 2013210031 A JP2013210031 A JP 2013210031A JP 2012079783 A JP2012079783 A JP 2012079783A JP 2012079783 A JP2012079783 A JP 2012079783A JP 2013210031 A JP2013210031 A JP 2013210031A
Authority
JP
Japan
Prior art keywords
bearing
bearing member
oil
rotating shaft
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012079783A
Other languages
Japanese (ja)
Other versions
JP6022185B2 (en
Inventor
Masafumi Inoue
雅史 井上
Akira Shozaki
晃 庄崎
Hiroki Hosomi
弘樹 細見
Tasuke Nakano
太輔 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012079783A priority Critical patent/JP6022185B2/en
Publication of JP2013210031A publication Critical patent/JP2013210031A/en
Application granted granted Critical
Publication of JP6022185B2 publication Critical patent/JP6022185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Reciprocating Pumps (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive bearing device having a simple configuration and capable of adjusting the positions of an oil supply groove and an oil drain groove according to a direction of a load applied to a rotary shaft changing according to use conditions.SOLUTION: A bearing member 11 is provided in a bearing housing 12 and a rotary shaft 5 is inserted into the bearing member 11. The bearing member 11 includes oil supply holes 19a and 19b for supplying lubricating oil 18 between the rotary shaft 5 and the bearing member 11 and an oil drain hole 21 for draining the lubricating oil 18 from between the rotary shaft 5 and the bearing member 11. An oil supply groove 23 communicated with the oil supply holes 19a and 19b and an oil drain groove 24 communicated with the oil drain hole 21 are formed on an inner peripheral surface of the bearing member 11. The bearing member 11 is rotatable in a peripheral direction of the rotary shaft 5 in relation to the bearing housing 12 and a positioning means 32 is provided to position the bearing member 11 in the bearing housing 12 in the peripheral direction.

Description

本発明は、ポンプ等に用いられる軸受装置、および、軸受装置を備えたポンプ、ならびに、軸受装置の組立方法および排油溝位置調整方法に関する。   The present invention relates to a bearing device used for a pump and the like, a pump including the bearing device, a method for assembling the bearing device, and a method for adjusting an oil drain groove position.

従来、この種の軸受装置としては、例えば図18に示すように、荷重点の垂直面からの偏位量に応じて、軸受101の分割面102を水平面に対して偏位方向と同方向に傾斜させたジャーナル軸受103が開示されている。これにより、給油溝104と排油溝105とを最適な位置に設けることができる。尚、このようなジャーナル軸受103は例えば下記特許文献1に記載されている。   Conventionally, as this type of bearing device, for example, as shown in FIG. 18, the split surface 102 of the bearing 101 is set in the same direction as the displacement direction with respect to the horizontal plane in accordance with the amount of displacement of the load point from the vertical surface. An inclined journal bearing 103 is disclosed. Thereby, the oil supply groove | channel 104 and the oil drain groove | channel 105 can be provided in an optimal position. Such a journal bearing 103 is described in, for example, Patent Document 1 below.

特開平2−159411JP-A-2-159411 特開平8−128441JP-A-8-128441

しかしながら上記の従来形式では、回転軸106に加わる荷重Fが特定の方向Sである場合を想定しており、従って、同じポンプを異なる回転数で使用する場合や配管の圧損の変化又は水槽の水位の変化等のポンプの使用条件の変化によって荷重Fが特定の方向Sとは異なった他の方向に加わる場合、上記の従来例では十分に対応し切れないといった問題がある。   However, in the above-described conventional type, it is assumed that the load F applied to the rotating shaft 106 is in a specific direction S. Therefore, when the same pump is used at different rotational speeds, the pressure loss of the piping, or the water level of the water tank When the load F is applied in another direction different from the specific direction S due to a change in the use condition of the pump, such as a change in the above, there is a problem that the above conventional example cannot sufficiently cope with it.

これに対し、上記特許文献2には、図19に示すように、軸受メタル111をピニオン112により回動して、給油ポケット113の位置を調節可能とする構成が開示されている。この場合、軸受メタル111を回動自在に支持するための支持部材(ベアリング等:図示無し)やピニオン112を回転駆動するためのモータ114等が必要となり、さらには、軸受メタル111の外周に、ピニオン112に歯合する複数の歯を形成する必要があるため、構成が非常に複雑になりコストアップするといった問題がある。   On the other hand, Patent Document 2 discloses a configuration in which the bearing metal 111 is rotated by a pinion 112 and the position of the oil supply pocket 113 can be adjusted as shown in FIG. In this case, a support member (bearing or the like: not shown) for rotatably supporting the bearing metal 111, a motor 114 for rotationally driving the pinion 112, and the like are further required. Since it is necessary to form a plurality of teeth that mesh with the pinion 112, there is a problem that the configuration becomes very complicated and the cost increases.

本発明は、使用条件により変化する回転軸に加わる荷重の方向に応じて、給油溝と排油溝との位置を調整できると共に、簡便な構成で安価な軸受装置およびポンプならびに軸受装置の組立方法および排油溝位置調整方法を提供することを目的とする。   The present invention can adjust the positions of the oil supply groove and the oil discharge groove according to the direction of the load applied to the rotating shaft that changes depending on the use conditions, and has a simple structure and an inexpensive bearing device and pump, and a method for assembling the bearing device It is another object of the present invention to provide an oil drain groove position adjusting method.

上記目的を達成するために、本第1発明は、軸孔を有する軸受部材が軸受ハウジング内に設けられ、
回転軸が軸受部材の軸孔に挿通されて支持される軸受装置であって、
軸受部材に、潤滑油を回転軸と軸受部材との間に供給する給油孔と、潤滑油を回転軸と軸受部材との間から排出する排油孔とが設けられ、
軸受部材の内周面に、給油孔に連通する給油溝と、排油孔に連通する排油溝とが形成され、
軸受部材は、軸受ハウジングに対して、回転軸の周方向へ回動自在であり、
軸受部材を周方向において軸受ハウジングに位置決めする位置決め手段が設けられているものである。
In order to achieve the above object, according to the first invention, a bearing member having a shaft hole is provided in a bearing housing,
A bearing device in which a rotating shaft is inserted into and supported by a shaft hole of a bearing member,
The bearing member is provided with an oil supply hole for supplying lubricating oil between the rotating shaft and the bearing member, and an oil draining hole for discharging the lubricating oil from between the rotating shaft and the bearing member,
An oil supply groove communicating with the oil supply hole and an oil discharge groove communicating with the oil discharge hole are formed on the inner peripheral surface of the bearing member.
The bearing member is rotatable in the circumferential direction of the rotation shaft with respect to the bearing housing,
Positioning means for positioning the bearing member on the bearing housing in the circumferential direction is provided.

これによると、回転軸に加わる荷重の方向を予め想定し、この荷重の方向に応じて、軸受部材を回転軸の周方向へ回動することにより、容易に、給油溝と排油溝とを最適な位置にすることができる。また、その後、給油溝と排油溝との位置を容易に変更することも可能となる。   According to this, the direction of the load applied to the rotating shaft is assumed in advance, and by rotating the bearing member in the circumferential direction of the rotating shaft according to the direction of the load, the oil supply groove and the oil draining groove can be easily formed. An optimal position can be obtained. Further, thereafter, the positions of the oil supply groove and the oil discharge groove can be easily changed.

この際、位置決め手段で軸受部材を軸受ハウジングに位置決めすることにより、軸受部材が不用意に回動することはなく、給油溝と排油溝との位置が最適な位置からずれることはない。   At this time, by positioning the bearing member on the bearing housing by the positioning means, the bearing member does not rotate carelessly, and the positions of the oil supply groove and the oil discharge groove do not deviate from the optimum positions.

本第2発明における軸受装置は、位置決め手段はピンであり、
ピンが、回転軸の周方向において、軸受部材と軸受ハウジングとに係合するものである。
これによると、ピンで軸受部材を軸受ハウジングに位置決めすることができるため、軸受装置の構成が簡便化され、安価になる。
In the bearing device according to the second invention, the positioning means is a pin,
The pin is engaged with the bearing member and the bearing housing in the circumferential direction of the rotating shaft.
According to this, since the bearing member can be positioned on the bearing housing with the pin, the configuration of the bearing device is simplified and the cost is reduced.

本第3発明における軸受装置は、ピンの一端部が係合可能な第1係合部を、軸受部材の周方向における複数箇所に設け、
ピンの他端部が係合可能な第2係合部を、軸受ハウジングに設けたものである。
The bearing device according to the third aspect of the present invention is provided with first engaging portions that can engage with one end of the pin at a plurality of locations in the circumferential direction of the bearing member,
A second engaging portion that can engage with the other end of the pin is provided in the bearing housing.

これによると、ピンの一端部を第1係合部に係合し、ピンの他端部を第2係合部に係合することにより、ピンを介して軸受部材を軸受ハウジングに位置決めすることができる。この際、回転軸に加わる荷重の方向に応じて、複数の第1係合部のうちから最適な位置にある第1係合部を選択することにより、荷重の方向が異なった場合でも、給油溝と排油溝とを最適な位置に調整することができる。   According to this, the bearing member is positioned on the bearing housing via the pin by engaging one end portion of the pin with the first engaging portion and engaging the other end portion of the pin with the second engaging portion. Can do. At this time, according to the direction of the load applied to the rotating shaft, the first engagement portion at the optimum position is selected from the plurality of first engagement portions, so that the oil supply can be performed even when the load direction is different. The groove and the oil drain groove can be adjusted to the optimum positions.

本第4発明における軸受装置は、位置決め手段は軸受部材の軸受ハウジングによる締り嵌めであるものである。
これによると、軸受部材を軸受ハウジングによって締り嵌めすることで、軸受部材が軸受ハウジング内に位置決めされるため、例えばピン等で位置決めする場合よりも細かく軸受部材の角度調整を行うことができ、また、軸受装置の構成が簡便化され、安価になる。
In the bearing device according to the fourth aspect of the invention, the positioning means is an interference fit of the bearing member by the bearing housing.
According to this, since the bearing member is positioned in the bearing housing by tightly fitting the bearing member with the bearing housing, the angle of the bearing member can be adjusted more finely than when positioning with a pin or the like, and The structure of the bearing device is simplified and the cost is reduced.

本第5発明における軸受装置は、軸受部材は、回転軸を縦断する切断面によって、一方および他方の軸受片に二分割され、
軸受ハウジングは、回転軸を縦断する切断面によって、一方および他方のハウジング部に二分割されているものである。
In the bearing device according to the fifth aspect of the invention, the bearing member is divided into one and the other bearing piece by a cut surface that vertically cuts the rotating shaft,
The bearing housing is divided into one and the other housing part by a cut surface that vertically cuts the rotating shaft.

本第6発明は、上記第1発明から第5発明のいずれか1項に記載の軸受装置によって回転軸が支持されていることを特徴とするポンプである。
本第7発明は、軸孔を有する分割可能な軸受部材が分割可能な軸受ハウジング内の嵌込部に設けられ、
回転軸が軸受部材の軸孔に挿通されて支持され、
軸受部材に、潤滑油を回転軸と軸受部材との間に供給する給油孔と、潤滑油を回転軸と軸受部材との間から排出する排油孔とが設けられ、
軸受部材の内周面に、給油孔に連通する給油溝と、排油孔に連通する排油溝とが形成された軸受装置の組立方法であって、
軸受ハウジングを一方および他方のハウジング部に分割し、
軸受部材を一方および他方の軸受片に分割し、
一方の軸受片を、回転軸の周方向へ回動して、回転軸と一方のハウジング部内の嵌込部との間に嵌め込み、
他方の軸受片を一方の軸受片に接合して軸受部材を組立てることにより、軸受部材を回転軸に外嵌し、
軸受部材を回転軸の周方向へ回動して位置決め手段により位置決めし、
他方のハウジング部を一方のハウジング部に接合して軸受ハウジングを組立てるものである。
The sixth invention is a pump characterized in that a rotating shaft is supported by the bearing device according to any one of the first to fifth inventions.
In the seventh aspect of the present invention, a splittable bearing member having a shaft hole is provided in a fitting portion in a splittable bearing housing,
The rotating shaft is inserted and supported in the shaft hole of the bearing member,
The bearing member is provided with an oil supply hole for supplying lubricating oil between the rotating shaft and the bearing member, and an oil draining hole for discharging the lubricating oil from between the rotating shaft and the bearing member,
An assembly method of a bearing device in which an oil supply groove communicating with an oil supply hole and an oil discharge groove communicating with an oil discharge hole are formed on an inner peripheral surface of the bearing member,
Dividing the bearing housing into one and the other housing part,
Dividing the bearing member into one and the other bearing piece;
One bearing piece is rotated in the circumferential direction of the rotation shaft, and is fitted between the rotation shaft and the fitting portion in one housing portion,
By assembling the bearing member by joining the other bearing piece to the one bearing piece, the bearing member is externally fitted to the rotating shaft,
The bearing member is rotated in the circumferential direction of the rotating shaft and positioned by positioning means,
A bearing housing is assembled by joining the other housing part to one housing part.

これによると、軸受装置を組み立てる際、予め想定された回転軸に加わる荷重の方向に応じて、容易に、給油溝と排油溝とを最適な位置に調整することができる。
本第8発明は、上記第6発明に記載されたポンプにおける軸受装置の排油溝位置調整方法であって、
回転軸を有する回転体の重量から求められる鉛直方向の荷重と、ポンプの計画運転点から求められる吐出反力とを合成して、運転時に回転体に作用する運転荷重の方向を求め、
回転軸の軸心を通る鉛直方向の直線から運転荷重の方向までの運転荷重角度と、運転荷重の方向から回転軸と軸受部材との間の油膜厚さが最小となる最小油膜厚さの位置までの最小油膜角度と、吐出反力変動角度とを求め、
軸受部材を回転軸の周方向へ回動して、回転軸の回転方向における鉛直方向の直線から排油溝までの角度が運転荷重角度と最小油膜角度と吐出反力変動角度とを足し合わせた角度になるように排油溝を位置させ、
この位置で軸受部材を位置決め手段により固定するものである。
According to this, when assembling the bearing device, it is possible to easily adjust the oil supply groove and the oil discharge groove to the optimal positions according to the direction of the load applied to the rotating shaft that is assumed in advance.
The eighth aspect of the present invention is a method for adjusting the oil drain groove position of the bearing device in the pump described in the sixth aspect of the present invention,
By combining the vertical load obtained from the weight of the rotating body having the rotating shaft and the discharge reaction force obtained from the planned operating point of the pump, the direction of the operating load acting on the rotating body during operation is obtained,
Operating load angle from the vertical straight line passing through the axis of the rotating shaft to the operating load direction, and the position of the minimum oil film thickness at which the oil film thickness between the rotating shaft and the bearing member is minimum from the operating load direction Find the minimum oil film angle and discharge reaction force fluctuation angle until
The bearing member is rotated in the circumferential direction of the rotating shaft, and the angle from the vertical straight line to the oil drain groove in the rotating direction of the rotating shaft is the sum of the operating load angle, the minimum oil film angle, and the discharge reaction force fluctuation angle. Position the oil drain groove at an angle,
At this position, the bearing member is fixed by positioning means.

これによると、鉛直方向の直線から排油溝までの角度が運転荷重角度と最小油膜角度と吐出反力変動角度とを足し合わせた角度になることにより、回転軸と軸受部材との間に形成される油膜の圧力分布が軸受部材の排油溝で寸断されるのを防止することができる。これにより、油膜の最高圧力を低く抑えて油膜の厚さを十分に確保し、油膜を軸受部材と回転軸との間に確実に介在させることができ、薄くなった油膜が排油溝などにより途切れて回転軸が軸受部材に直接接触してしまうのを防止することができる。   According to this, the angle from the straight line in the vertical direction to the oil drain groove is an angle obtained by adding the operating load angle, the minimum oil film angle, and the discharge reaction force fluctuation angle, thereby forming between the rotating shaft and the bearing member. It is possible to prevent the pressure distribution of the oil film to be cut off at the oil drain groove of the bearing member. As a result, the maximum pressure of the oil film is kept low to ensure a sufficient thickness of the oil film, and the oil film can be surely interposed between the bearing member and the rotating shaft. It is possible to prevent the rotating shaft from coming into direct contact with the bearing member due to interruption.

以上のように本発明によると、回転軸に加わる荷重の方向に応じて、軸受装置の給油溝と排油溝との位置を調整できると共に、軸受装置を簡便な構成で且つ安価にすることができる。   As described above, according to the present invention, the positions of the oil supply groove and the oil discharge groove of the bearing device can be adjusted according to the direction of the load applied to the rotating shaft, and the bearing device can be made simple and inexpensive. it can.

本発明の第1の実施の形態における軸受装置を備えたポンプの図である。It is a figure of the pump provided with the bearing apparatus in the 1st Embodiment of this invention. 同、軸受装置の断面図である。It is a sectional view of the bearing device. 図2におけるX−X矢視図である。FIG. 3 is an XX arrow view in FIG. 2. 同、軸受装置の軸受部材の一部切欠き正面図である。It is a partially cutaway front view of the bearing member of the same bearing device. 図4におけるX−X矢視図である。It is a XX arrow line view in FIG. 図4におけるY−Y矢視図である。It is a YY arrow line view in FIG. 図4におけるZ−Z矢視図である。It is a ZZ arrow line view in FIG. 同、軸受装置の軸受ハウジングの一部切欠き正面図である。FIG. 3 is a partially cutaway front view of the bearing housing of the bearing device. 図8におけるX−X矢視図である。It is a XX arrow line view in FIG. 同、軸受装置の組立方法を示す図である。It is a figure which shows the assembly method of a bearing apparatus equally. 同、軸受装置の組立方法を示す図である。It is a figure which shows the assembly method of a bearing apparatus equally. 同、軸受装置の組立方法を示す図である。It is a figure which shows the assembly method of a bearing apparatus equally. 同、軸受装置の組立方法を示す図である。It is a figure which shows the assembly method of a bearing apparatus equally. 同、軸受装置の組立方法を示す図である。It is a figure which shows the assembly method of a bearing apparatus equally. 同、ポンプの吐出量を100%にしたときの軸受装置の油溝の最適な位置を示す概略図である。It is the schematic which shows the optimal position of the oil groove of a bearing apparatus when the discharge amount of a pump is 100% similarly. 同、ポンプの吐出量を100%より減らしたときの軸受装置の油溝の最適な位置を示す概略図である。It is the schematic which shows the optimal position of the oil groove of a bearing apparatus when the discharge amount of a pump is reduced from 100% similarly. 参考例として、ポンプの吐出量を100%にしたときの軸受装置の油溝の不適切な位置を示す概略図である。As a reference example, it is the schematic which shows the inappropriate position of the oil groove of a bearing apparatus when the discharge amount of a pump is 100%. 従来の軸受装置の図である。It is a figure of the conventional bearing apparatus. 別の従来の軸受装置の図である。It is a figure of another conventional bearing apparatus.

以下、本発明における実施の形態を、図面を参照して説明する。
(第1の実施の形態)
第1の実施の形態では、図1に示すように、1は横軸多段式のポンプであり、吐出口2側には、吐出流量を調節する流量調節弁3が接続されている。また、ポンプ1は、ケーシング4内において横方向に配設された回転軸5と一体的に回転自在な羽根車6と、回転軸5を支持する滑り軸受装置7とを有している。尚、回転軸5と羽根車6とで回転体8が構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
In the first embodiment, as shown in FIG. 1, reference numeral 1 denotes a horizontal-axis multistage pump, and a flow rate adjusting valve 3 for adjusting the discharge flow rate is connected to the discharge port 2 side. Further, the pump 1 includes an impeller 6 that can rotate integrally with a rotating shaft 5 that is disposed in a lateral direction in the casing 4, and a sliding bearing device 7 that supports the rotating shaft 5. The rotating shaft 5 and the impeller 6 constitute a rotating body 8.

滑り軸受装置7は以下のような構成を有している。
図2,図3に示すように、滑り軸受装置7は、軸孔10を有する軸受部材11と、軸受ハウジング12とを有している。回転軸5は、軸本体5aと、軸受箇所において軸本体5aに外嵌された円筒状のスリーブ5bとを有しており、スリーブ5bの取付部分が軸受部材11の軸孔10に挿通されて支持される。
The plain bearing device 7 has the following configuration.
As shown in FIGS. 2 and 3, the plain bearing device 7 includes a bearing member 11 having a shaft hole 10 and a bearing housing 12. The rotary shaft 5 has a shaft body 5a and a cylindrical sleeve 5b that is externally fitted to the shaft body 5a at the bearing location. Supported.

軸受ハウジング12はポンプ1のケーシング4に着脱自在に取り付けられている。軸受ハウジング12内には、回転軸5の軸心方向Aにおける両端面に開口する嵌込孔14(嵌込部の一例)が形成されている。軸受部材11は、嵌込孔14に嵌め込まれて、軸受ハウジング12内に設けられている。   The bearing housing 12 is detachably attached to the casing 4 of the pump 1. In the bearing housing 12, fitting holes 14 (an example of fitting portions) are formed that are open at both end surfaces in the axial direction A of the rotating shaft 5. The bearing member 11 is fitted in the fitting hole 14 and is provided in the bearing housing 12.

図4〜図7に示すように、軸受部材11は、円環状の軸受バックメタル16と、軸受バックメタル16の内周に設けられた軸受メタル17とを有している。軸受部材11の外周面と嵌込孔14の内周面とはそれぞれ同径の球面状に形成されている。   As shown in FIGS. 4 to 7, the bearing member 11 includes an annular bearing back metal 16 and a bearing metal 17 provided on the inner periphery of the bearing back metal 16. The outer peripheral surface of the bearing member 11 and the inner peripheral surface of the fitting hole 14 are each formed in a spherical shape having the same diameter.

図2,図4に示すように、軸受部材11には、潤滑油18を回転軸5のスリーブ5bの外周面と軸受部材11の内周面との間に供給する二本(複数本)の給油孔19a,19bと、潤滑油18をスリーブ5bの外周面と軸受部材11の内周面との間から排出する一本(単数本)の排油孔21とが形成されている。   As shown in FIGS. 2 and 4, the bearing member 11 includes two (a plurality of) lubricant oils 18 that are supplied between the outer peripheral surface of the sleeve 5 b of the rotating shaft 5 and the inner peripheral surface of the bearing member 11. Oil supply holes 19a and 19b and one (single) oil discharge hole 21 for discharging the lubricating oil 18 from between the outer peripheral surface of the sleeve 5b and the inner peripheral surface of the bearing member 11 are formed.

給油孔19a,19bと排油孔21とは、回転軸5の周方向Bにおいて180°振り分けられた位置に形成されている。また、軸心方向Aにおいて、両給油孔19a,19bは軸受部材11の両端部に位置し、排油孔21は両給油孔19a,19b間に位置している。   The oil supply holes 19 a and 19 b and the oil discharge hole 21 are formed at positions separated by 180 ° in the circumferential direction B of the rotating shaft 5. Further, in the axial direction A, both the oil supply holes 19a, 19b are located at both ends of the bearing member 11, and the oil discharge hole 21 is located between the both oil supply holes 19a, 19b.

図4,図6,図7に示すように、軸受部材11の内周面には、軸心方向Aに細長い給油溝23と排油溝24とが形成されている。一方の給油孔19aの一端部は給油溝23の一端部に開口している。また、図2,図5に示すように、一方の給油孔19aの他端部は、軸受部材11の外周面に全周にわたり形成された一方の供給用周溝26aに開口している。同様に、他方の給油孔19bの一端部は給油溝23の他端部に開口している。また、他方の給油孔19bの他端部は、軸受部材11の外周面に全周にわたり形成された他方の供給用周溝26bに開口している。   As shown in FIGS. 4, 6, and 7, an oil supply groove 23 and an oil discharge groove 24 that are elongated in the axial direction A are formed on the inner peripheral surface of the bearing member 11. One end of one oil supply hole 19 a is open to one end of the oil supply groove 23. As shown in FIGS. 2 and 5, the other end of the one oil supply hole 19 a is open to one supply circumferential groove 26 a formed on the outer peripheral surface of the bearing member 11 over the entire circumference. Similarly, one end portion of the other oil supply hole 19 b opens to the other end portion of the oil supply groove 23. The other end of the other oil supply hole 19b is open to the other supply circumferential groove 26b formed on the outer peripheral surface of the bearing member 11 over the entire circumference.

図2,図8,図9に示すように、軸受ハウジング12には、一方の供給用周溝26aに連通する一方の給油通路27aと、他方の供給用周溝26bに連通する他方の給油通路27bとが形成されている。尚、これら給油通路27a,27bには、給油用ポンプ等を用いて潤滑油18を軸受装置7に供給する給油用配管等(図示省略)が接続されている。   As shown in FIGS. 2, 8, and 9, the bearing housing 12 has one oil supply passage 27a communicating with one supply circumferential groove 26a and the other oil supply passage communicating with the other supply circumferential groove 26b. 27b is formed. The oil supply passages 27a and 27b are connected to an oil supply pipe or the like (not shown) for supplying the lubricating oil 18 to the bearing device 7 using an oil supply pump or the like.

また、軸受ハウジング12の嵌込孔14の内周面には、排出用周溝29が全周にわたり形成されている。尚、排油孔21の一端部は排油溝24の中央部に開口し、排油孔21の他端部は排出用周溝29に開口している。さらに、軸受ハウジング12には、排出用周溝29に連通する排油通路30が形成されている。尚、排油通路30には、軸受装置7から排出された潤滑油18を回収する回収用配管等(図示省略)が接続されている。   Further, a discharge peripheral groove 29 is formed over the entire circumference on the inner peripheral surface of the fitting hole 14 of the bearing housing 12. Note that one end of the oil drain hole 21 opens at the center of the oil drain groove 24, and the other end of the oil drain hole 21 opens at the discharge peripheral groove 29. Further, the bearing housing 12 is formed with an oil discharge passage 30 communicating with the discharge peripheral groove 29. The oil drain passage 30 is connected to a recovery pipe or the like (not shown) for recovering the lubricating oil 18 discharged from the bearing device 7.

図3に示すように、軸受部材11は、軸受ハウジング12に対して、周方向Bへ回動自在である。また、軸受ハウジング12内には、軸受部材11を周方向Bにおいて軸受ハウジング12に位置決めするピン32(位置決め手段の一例)が設けられている。   As shown in FIG. 3, the bearing member 11 is rotatable in the circumferential direction B with respect to the bearing housing 12. Further, in the bearing housing 12, a pin 32 (an example of a positioning unit) that positions the bearing member 11 on the bearing housing 12 in the circumferential direction B is provided.

図4,図5に示すように、軸受部材11の外周部には、複数の係合孔34(第1係合部の一例)が周方向Bにおける複数箇所に所定角度おきに形成されている。図3,図8,図9に示すように、軸受ハウジング12の嵌込孔14の内周には、径方向外向きに窪んだ係合凹部35(第2係合部の一例)が形成されている。ピン32の一端部が係合孔34に挿入されると共に他端部が係合凹部35に嵌まり込むことにより、ピン32は、周方向Bにおいて軸受部材11と軸受ハウジング12とに係合し、軸受部材11の周方向Bへの回動を防止し、位置決めの役割を果たす。   As shown in FIGS. 4 and 5, a plurality of engagement holes 34 (an example of a first engagement portion) are formed at a plurality of locations in the circumferential direction B at predetermined angles on the outer peripheral portion of the bearing member 11. . As shown in FIGS. 3, 8, and 9, an engagement recess 35 (an example of a second engagement portion) recessed outward in the radial direction is formed on the inner periphery of the fitting hole 14 of the bearing housing 12. ing. One end of the pin 32 is inserted into the engagement hole 34 and the other end is fitted into the engagement recess 35, whereby the pin 32 is engaged with the bearing member 11 and the bearing housing 12 in the circumferential direction B. The bearing member 11 is prevented from rotating in the circumferential direction B and plays a role of positioning.

図4,図6,図7に示すように、軸受部材11は、軸心方向Aに沿って回転軸5を縦断する切断面によって、一方および他方の軸受片11a,11bに二分割されている。これら両軸受片11a,11bは、複数のねじ37(接合具の一例)によって、分割可能に接合されている。   As shown in FIGS. 4, 6, and 7, the bearing member 11 is divided into one and the other bearing pieces 11 a and 11 b by a cut surface that vertically cuts the rotating shaft 5 along the axial direction A. . Both the bearing pieces 11a and 11b are joined to each other by a plurality of screws 37 (an example of a joining tool) so as to be divided.

また、図8に示すように、軸受ハウジング12は、軸受部材11と同様に、軸心方向Aに沿って回転軸5を縦断する切断面によって、一方および他方のハウジング部12a,12bに二分割されている。これら両ハウジング部12a,12bは、複数のボルト38(接合具の一例)によって、分割可能に接合されている。   Further, as shown in FIG. 8, the bearing housing 12 is divided into one and the other housing parts 12 a and 12 b by a cut surface that vertically cuts the rotary shaft 5 along the axial direction A, like the bearing member 11. Has been. Both the housing parts 12a and 12b are joined in a separable manner by a plurality of bolts 38 (an example of a joining tool).

以下、上記構成における作用を説明する。
ポンプ1を運転して回転軸5が回転している際、図2に示すように、潤滑油18は、両給油通路27a,27bから両供給用周溝26a,26bを経て両給油孔19a,19bを流れ、両給油孔19a,19bから給油溝23に流入し、給油溝23からスリーブ5bの外周面と軸受部材11の内周面との間に供給される。
Hereinafter, the operation of the above configuration will be described.
When the pump 1 is operated and the rotary shaft 5 is rotating, as shown in FIG. 2, the lubricating oil 18 passes through both supply circumferential grooves 26a, 26b from both supply passages 27a, 27b, The oil flows through the oil supply holes 19a and 19b into the oil supply groove 23, and is supplied from the oil supply groove 23 between the outer peripheral surface of the sleeve 5b and the inner peripheral surface of the bearing member 11.

また、スリーブ5bの外周面と軸受部材11の内周面との間の潤滑油18は、排油溝24に集められ、排油溝24から排油孔21を通って排出用周溝29に流入し、排出用周溝29から排油通路30を通って軸受装置7から排出される。これにより、スリーブ5bの外周面と軸受部材11の内周面との間に潤滑油18の油膜が形成される。   Further, the lubricating oil 18 between the outer peripheral surface of the sleeve 5 b and the inner peripheral surface of the bearing member 11 is collected in the oil drain groove 24 and passes from the oil drain groove 24 through the oil drain hole 21 to the drain peripheral groove 29. It flows in and is discharged from the bearing device 7 through the discharge peripheral groove 29 through the oil discharge passage 30. As a result, an oil film of the lubricating oil 18 is formed between the outer peripheral surface of the sleeve 5 b and the inner peripheral surface of the bearing member 11.

この際、図3に示すように、ピン32の一端部がいずれかの係合孔34に挿入されると共に他端部が係合凹部35に嵌まり込むことにより、ピン32は周方向Bにおいて軸受部材11と軸受ハウジング12とに係合し、これにより、軸受部材11は周方向Bにおいて軸受ハウジング12に対して位置決めされ、軸受部材11が不用意に周方向Bに回動することはなく、給油溝23と排油溝24とが最適な位置からずれることはない。   At this time, as shown in FIG. 3, one end of the pin 32 is inserted into one of the engagement holes 34 and the other end is fitted into the engagement recess 35, so that the pin 32 is in the circumferential direction B. The bearing member 11 and the bearing housing 12 are engaged with each other, whereby the bearing member 11 is positioned with respect to the bearing housing 12 in the circumferential direction B, and the bearing member 11 is not inadvertently rotated in the circumferential direction B. The oil supply groove 23 and the oil discharge groove 24 do not deviate from the optimum positions.

また、ピン32で軸受部材11を軸受ハウジング12に位置決めすることができるため、軸受装置7の構成が簡便化され、安価になるとともに組立も容易に行える。
以下に、軸受装置7の組立方法を説明する。
Further, since the bearing member 11 can be positioned with respect to the bearing housing 12 by the pin 32, the configuration of the bearing device 7 is simplified, the cost is reduced, and the assembly can be easily performed.
Below, the assembly method of the bearing apparatus 7 is demonstrated.

組立手順1
先ず、図10に示すように、軸受ハウジング12のいずれか一方のハウジング部12bをポンプ1のケーシング4に取り付ける。尚、この際、ケーシング4が上下二分割される構成の横軸ポンプ等の場合においては、分割した下部のケーシング側に一方のハウジング部12bを取付けると、作業性が良い。
Assembly procedure 1
First, as shown in FIG. 10, one of the housing portions 12 b of the bearing housing 12 is attached to the casing 4 of the pump 1. In this case, in the case of a horizontal shaft pump or the like having a configuration in which the casing 4 is divided into two parts, the workability is good if one housing part 12b is attached to the divided lower casing side.

組立手順2
次に、ねじ37を取り外して、軸受部材11を一方および他方の軸受片11a,11bに分割し、いずれか一方の軸受片11aを、回転軸5の周方向Bへ回動して、図11に示すように、回転軸5と一方のハウジング部12b内の嵌込孔14との間に嵌め込む。
Assembly procedure 2
Next, the screw 37 is removed, the bearing member 11 is divided into one and the other bearing pieces 11a and 11b, and either one of the bearing pieces 11a is rotated in the circumferential direction B of the rotating shaft 5, and FIG. As shown in Fig. 5, the rotary shaft 5 is fitted between the rotary shaft 5 and the fitting hole 14 in the one housing portion 12b.

組立手順3
その後、ねじ37を用いて、図12に示すように、他方の軸受片11bを一方の軸受片11aに接合する。これにより、軸受部材11が組み立てられて回転軸5に外嵌される。
Assembly procedure 3
Then, as shown in FIG. 12, the other bearing piece 11b is joined to one bearing piece 11a using the screw 37. As a result, the bearing member 11 is assembled and fitted onto the rotary shaft 5.

組立手順4
次に、最適な位置の係合孔34にピン32の一端部を挿入し、図13に示すように、軸受部材11を回転軸5の周方向Bへ回動して、給油溝23と排油溝24の位置を最適な位置にし、ピン32の他端部を係合凹部35に嵌め込むことによって、軸受部材11を軸受ハウジング12に位置決めする。
Assembly procedure 4
Next, one end of the pin 32 is inserted into the engagement hole 34 at the optimum position, and the bearing member 11 is rotated in the circumferential direction B of the rotary shaft 5 as shown in FIG. The bearing member 11 is positioned on the bearing housing 12 by setting the oil groove 24 to an optimal position and fitting the other end of the pin 32 into the engagement recess 35.

組立手順5
その後、ボルト38を用いて、図14に示すように、他方のハウジング部12aを一方のハウジング部12bに接合し、軸受ハウジング12を組み立てることにより、軸受装置7がポンプ1に取り付けられる。
Assembly procedure 5
Thereafter, as shown in FIG. 14, the bearing device 7 is attached to the pump 1 by joining the other housing portion 12 a to the one housing portion 12 b and assembling the bearing housing 12 using the bolts 38.

尚、ポンプ1の運転時、図1に示すように、吐出口2からの吐出量は流量調節弁3によって調節される。この際、回転軸5と羽根車6とからなる回転体8に作用する運転荷重Fの方向は、回転体8の重量から求められる鉛直方向の荷重と、ポンプ1の計画運転点の吐出量および揚程から求められる吐出反力とを合成した力の方向に相当する。   During the operation of the pump 1, the discharge amount from the discharge port 2 is adjusted by the flow rate adjusting valve 3 as shown in FIG. At this time, the direction of the operating load F acting on the rotating body 8 composed of the rotating shaft 5 and the impeller 6 is the vertical load obtained from the weight of the rotating body 8, the discharge amount of the planned operating point of the pump 1, and This corresponds to the direction of the force combined with the discharge reaction force obtained from the lift.

次に、軸受装置7の排油溝位置調整方法を説明する。
例えば、図15に示すように、流量調節弁3を開いてポンプ1の吐出量を100%にして使用する場合、上記のように鉛直方向の荷重と吐出反力とを合成して運転荷重Fの方向を予め求め、さらに、回転軸5の軸心を通る鉛直方向の直線Dから運転荷重Fの方向までの運転荷重角度α1を求める。
Next, a method for adjusting the oil drain groove position of the bearing device 7 will be described.
For example, as shown in FIG. 15, when the flow rate adjustment valve 3 is opened and the discharge amount of the pump 1 is set to 100%, the load in the vertical direction and the discharge reaction force are combined as described above to obtain the operating load F. The operation load angle α1 from the vertical straight line D passing through the axis of the rotating shaft 5 to the operation load F is determined.

また、運転荷重Fの方向から回転軸5の外周面と軸受部材11の内周面との間の油膜厚さTが最小となる最小油膜厚さの位置P1までの最小油膜角度β1を求める。尚、この最小油膜角度は、流体潤滑設計に基づいて、軸受部材11の内径や幅、ジャーナルの外径、潤滑油18の比熱、密度、粘度、外部放熱量、軸受部材11の荷重、ジャーナルの回転速度などから求められる。また、運転荷重Fと油膜の最小厚さ箇所とはそれぞれ、鉛直方向の直線Dから回転軸5の回転方向Cへずれた位置に生じる。   Further, the minimum oil film angle β1 from the direction of the operating load F to the position P1 of the minimum oil film thickness at which the oil film thickness T between the outer peripheral surface of the rotating shaft 5 and the inner peripheral surface of the bearing member 11 is minimum is obtained. The minimum oil film angle is determined based on the fluid lubrication design. The inner diameter and width of the bearing member 11, the outer diameter of the journal, the specific heat, the density, the viscosity, the external heat radiation amount of the lubricating oil 18, the load of the bearing member 11, the journal It is calculated from the rotation speed. Further, the operating load F and the minimum thickness portion of the oil film are generated at positions shifted from the straight line D in the vertical direction in the rotational direction C of the rotary shaft 5.

さらに、吐出反力変動角度γ1を求める。尚、吐出反力変動角度γ1とは、ポンプ1を運転しているときの駆動機や吐出条件の変動に伴う吐出反力の変化による角度変化であり、本説明では回転軸5の回転方向Cへの変化分をγ1とする。但し、変動は正・負両方に生じるので、回転方向Cとは反対方向にも同様に−γ1の変化が発生することがあり、吐出反力変動角度の全幅としては2×γ1となる。   Further, the discharge reaction force fluctuation angle γ1 is obtained. The discharge reaction force fluctuation angle γ1 is an angle change caused by a change in the discharge reaction force caused by a change in the driving machine and discharge conditions when the pump 1 is operated. In this description, the rotation direction C of the rotary shaft 5 Let γ1 be the amount of change to. However, since the fluctuation occurs in both positive and negative directions, a change of −γ1 may occur in the opposite direction to the rotation direction C, and the full width of the discharge reaction force fluctuation angle is 2 × γ1.

ここで、吐出反力変動角度は、ポンプ1の口径やプラントの構成により変るが、大き過ぎると、給油溝23の位置が油膜にかかって不具合が生じるため、一般的に5°〜15°の範囲で設定される。   Here, the discharge reaction force fluctuation angle varies depending on the diameter of the pump 1 and the configuration of the plant. However, if the discharge reaction force fluctuation angle is too large, the position of the oil supply groove 23 is applied to the oil film, causing a problem. Set by range.

上記のように運転荷重角度α1と最小油膜角度β1と吐出反力変動角度γ1とを求めた後、上記組立手順4と同様にして、軸受部材11を回転軸5の周方向Bへ回動し、回転方向Cにおける鉛直方向の直線Dから排油溝24までの角度が運転荷重角度α1と最小油膜角度β1と吐出反力変動角度γ1とを足し合わせた角度になるように、排油溝24を位置させる。   After obtaining the operating load angle α1, the minimum oil film angle β1, and the discharge reaction force fluctuation angle γ1 as described above, the bearing member 11 is rotated in the circumferential direction B of the rotating shaft 5 in the same manner as in the assembling procedure 4. The oil drain groove 24 is such that the angle from the straight line D in the rotation direction C to the oil drain groove 24 is the sum of the operating load angle α1, the minimum oil film angle β1, and the discharge reaction force fluctuation angle γ1. Position.

その後、上記組立手順4と同様にして、ピン32を用いて軸受部材11を軸受ハウジング12に位置決めすることにより、容易に、給油溝23と排油溝24とが最適な位置に固定される。尚、この際、予め開けておいた複数の係合孔34のうちから最適な位置の係合孔34を選択し、選択した係合孔34にピン32を挿入する。ここで、上記最適な位置の係合孔34とは、運転荷重角度α1と最小油膜角度β1とを足し合わせた角度よりも大きく、運転荷重角度α1と最小油膜角度β1と吐出反力変動角度γ1とを足し合わせた角度に一番近い位置にある係合孔34のことである。   Thereafter, the oil supply groove 23 and the oil discharge groove 24 are easily fixed at the optimum positions by positioning the bearing member 11 on the bearing housing 12 using the pins 32 in the same manner as in the assembly procedure 4 described above. At this time, the engagement hole 34 at the optimum position is selected from the plurality of engagement holes 34 previously opened, and the pin 32 is inserted into the selected engagement hole 34. Here, the engagement hole 34 at the optimum position is larger than an angle obtained by adding the operation load angle α1 and the minimum oil film angle β1, and the operation load angle α1, the minimum oil film angle β1, and the discharge reaction force fluctuation angle γ1. This is the engagement hole 34 that is closest to the angle obtained by adding together.

その後、上記組立手順5と同様にして、他方のハウジング部12aを一方のハウジング部12bに接合し、軸受ハウジング12を組み立てる。
或は、図16に示すように、流量調節弁3の開度を絞ってポンプ1の吐出量を100%よりも減らして使用する場合、運転荷重Fの方向が変化し、求められる運転荷重角度、最小油膜角度、吐出反力変動角度はそれぞれ、α2,β2,γ2となる。
Thereafter, in the same manner as in the assembling procedure 5, the other housing portion 12a is joined to the one housing portion 12b, and the bearing housing 12 is assembled.
Alternatively, as shown in FIG. 16, when the flow rate adjustment valve 3 is throttled to reduce the discharge amount of the pump 1 to less than 100%, the direction of the operating load F changes and the required operating load angle is obtained. The minimum oil film angle and the discharge reaction force fluctuation angle are α2, β2, and γ2, respectively.

この場合も、上記と同様に、軸受部材11を回転軸5の周方向Bへ回動し、回転方向Cにおける鉛直方向の直線Dから排油溝24までの角度が運転荷重角度α2と最小油膜角度β2と吐出反力変動角度γ2とを足し合わせた角度になるように、排油溝24を位置させ、その後、最適な位置の係合孔34を選択し、ピン32を挿入して位置決めすることにより、給油溝23と排油溝24とを最適な位置に固定すればよい。これにより、運転荷重Fの方向が異なった場合でも、容易に給油溝23と排油溝24とを最適な位置に調整することができる。   Also in this case, the bearing member 11 is rotated in the circumferential direction B of the rotating shaft 5 in the same manner as described above, and the angle from the straight line D in the rotating direction C to the oil drain groove 24 is the operating load angle α2 and the minimum oil film. The oil drain groove 24 is positioned so that the angle β2 and the discharge reaction force fluctuation angle γ2 are added together, and then the engagement hole 34 at the optimum position is selected, and the pin 32 is inserted and positioned. Thus, the oil supply groove 23 and the oil discharge groove 24 may be fixed at optimum positions. Thereby, even when the direction of the operating load F is different, the oil supply groove 23 and the oil discharge groove 24 can be easily adjusted to the optimum positions.

尚、図15,図16に示すように、運転荷重Fの方向が変化しても、それに応じて鉛直方向の直線Dから排油溝24までの角度を運転荷重角度α1,α2と最小油膜角度β1,β2と吐出反力変動角度γ1,γ2とを足し合わせた角度にすることにより、回転軸5の外周面と軸受部材11の内周面との間に形成される油膜の圧力分布Gが排油溝24で寸断されるのを防止することができる。これにより、油膜の最高圧力を低く抑えて油膜の厚さTを十分に確保し、油膜を回転軸5の外周面と軸受部材11の内周面との間に確実に介在させることができ、薄くなった油膜が排油溝24などにより途切れて回転軸5の外周面が軸受部材11の内周面に直接接触するのを防止することができる。   As shown in FIGS. 15 and 16, even if the direction of the operating load F changes, the angle from the straight line D in the vertical direction to the oil drain groove 24 is accordingly changed to the operating load angles α1, α2 and the minimum oil film angle. By setting β1, β2 and the discharge reaction force fluctuation angles γ1, γ2 to an angle, the pressure distribution G of the oil film formed between the outer peripheral surface of the rotating shaft 5 and the inner peripheral surface of the bearing member 11 is increased. It is possible to prevent the oil drain groove 24 from being cut off. Thereby, the maximum pressure of the oil film is kept low to ensure a sufficient thickness T of the oil film, and the oil film can be reliably interposed between the outer peripheral surface of the rotating shaft 5 and the inner peripheral surface of the bearing member 11, It is possible to prevent the thinned oil film from being interrupted by the oil drain groove 24 or the like and the outer peripheral surface of the rotating shaft 5 to directly contact the inner peripheral surface of the bearing member 11.

尚、図15に対する参考例として、図17に示すように、ポンプ1の吐出量を100%にして使用する場合、鉛直方向の直線Dから排油溝24までの角度が運転荷重角度α1と最小油膜角度β1と吐出反力変動角度γ1とを足し合わせた角度よりも大幅に小さいと、油膜の圧力分布Gが排油溝24で寸断されてしまう。これにより、油膜の圧力が高くなって油膜の厚さTが薄くなり、最小油膜厚さの位置P1付近において油膜が途切れ、回転軸5の外周面が軸受部材11の内周面に直接接触する虞がある。   As a reference example for FIG. 15, as shown in FIG. 17, when the discharge amount of the pump 1 is set to 100%, the angle from the straight line D to the oil drain groove 24 is the minimum of the operating load angle α1. If the oil film angle β1 and the discharge reaction force fluctuation angle γ1 are significantly smaller than the sum of the oil film angle β1 and the discharge reaction force fluctuation angle γ1, the oil film pressure distribution G is cut off at the oil drain groove 24. As a result, the pressure of the oil film increases, the thickness T of the oil film decreases, the oil film is interrupted in the vicinity of the position P1 of the minimum oil film thickness, and the outer peripheral surface of the rotating shaft 5 directly contacts the inner peripheral surface of the bearing member 11. There is a fear.

上記実施の形態では、図4に示すように、複数の係合孔34を45°のピッチで軸受部材11に設けているが、45°のピッチに限定されるものではなく、さらに細かいピッチ(例えば30°や15°ピッチ)であってもよい。或は、均等なピッチではなく、位置決めする可能性の高い位置(頻度の多い位置)に、細かいピッチで係合孔34を設けてもよい。   In the above embodiment, as shown in FIG. 4, the plurality of engagement holes 34 are provided in the bearing member 11 at a pitch of 45 °, but the pitch is not limited to a pitch of 45 °, and a finer pitch ( For example, the pitch may be 30 ° or 15 °. Alternatively, the engagement holes 34 may be provided at fine pitches at positions (positions with high frequency) that are likely to be positioned, rather than at equal pitches.

(第2の実施の形態)
第1の実施の形態では、位置決め手段の一例としてピン32を用いたが、第2の実施の形態では、位置決め手段の別の例として、軸受部材11が嵌込孔14に締り嵌めによって嵌め込まれて、軸受ハウジング12内に位置決めされている。
(Second Embodiment)
In the first embodiment, the pin 32 is used as an example of the positioning means. However, in the second embodiment, as another example of the positioning means, the bearing member 11 is fitted into the fitting hole 14 by an interference fit. And positioned in the bearing housing 12.

以下、上記構成における作用を説明する。
上記組立手順4と同様にして、軸受部材11を回転軸5の周方向Bへ回動し、給油溝23と排油溝24の位置を最適な位置にした後、上記組立手順5と同様にして、他方のハウジング部12aを一方のハウジング部12bに接合し、軸受ハウジング12を組み立てる。これにより、軸受部材11が軸受ハウジング12の嵌込孔14に締り嵌めによって嵌め込まれるため、上記第1の実施の形態におけるピン32等の特別な部材を使用せずに、軸受部材11を任意の位置に位置決めすることができる。これにより、ピン32を用いる場合よりも細かく給油溝23と排油溝24の位置を決めることができるとともに、係合孔34や係合凹部35も不要になるため、軸受装置7の構成が簡便化され、安価になる。
Hereinafter, the operation of the above configuration will be described.
In the same manner as in the assembling procedure 4, the bearing member 11 is rotated in the circumferential direction B of the rotary shaft 5 so that the positions of the oil supply groove 23 and the oil draining groove 24 are optimized. Then, the other housing part 12a is joined to one housing part 12b, and the bearing housing 12 is assembled. As a result, the bearing member 11 is fitted into the fitting hole 14 of the bearing housing 12 by an interference fit, so that the bearing member 11 can be arbitrarily set without using a special member such as the pin 32 in the first embodiment. Can be positioned. Accordingly, the positions of the oil supply groove 23 and the oil discharge groove 24 can be determined more finely than when the pin 32 is used, and the engagement hole 34 and the engagement recess 35 are not required, so that the configuration of the bearing device 7 is simple. Become cheaper.

上記各実施の形態では、図2に示すように、回転軸5は軸本体5aとスリーブ5bとを有しているが、スリーブ5bを備えていない回転軸5であってもよい。尚、この場合は、軸受部材11の内周面と軸本体5aの外周面との間に油膜が形成される。   In each of the above embodiments, as shown in FIG. 2, the rotary shaft 5 has the shaft body 5a and the sleeve 5b, but may be the rotary shaft 5 that does not include the sleeve 5b. In this case, an oil film is formed between the inner peripheral surface of the bearing member 11 and the outer peripheral surface of the shaft body 5a.

上記各実施の形態では、図1に示すように、軸受装置7を横軸多段式のポンプ1に設けたが、横軸多段式以外の他の形式のポンプに設けてもよい。また、ポンプ1以外の、回転軸5を備えた機器に設けてもよい。   In each of the above embodiments, as shown in FIG. 1, the bearing device 7 is provided in the horizontal-axis multistage pump 1, but may be provided in other types of pumps other than the horizontal-axis multistage pump. Moreover, you may provide in apparatuses provided with the rotating shaft 5 other than the pump 1. FIG.

1 ポンプ
5 回転軸
7 軸受装置
8 回転体
10 軸孔
11 軸受部材
11a,11b 軸受片
12 軸受ハウジング
12a,12b ハウジング部
14 嵌込孔(嵌込部)
18 潤滑油
19a,19b 給油孔
20 排油孔
23 給油溝
24 排油溝
32 ピン(位置決め手段)
34 係合孔(第1係合部)
35 係合凹部(第2係合部)
B 周方向
C 回転方向
D 鉛直方向の直線
F 運転荷重
T 油膜厚さ
α1,α2 運転荷重角度
β1,β2 最小油膜角度
γ1,β2 吐出反力変動角度
DESCRIPTION OF SYMBOLS 1 Pump 5 Rotating shaft 7 Bearing apparatus 8 Rotating body 10 Shaft hole 11 Bearing member 11a, 11b Bearing piece 12 Bearing housing 12a, 12b Housing part 14 Fitting hole (fitting part)
18 Lubricating oil 19a, 19b Oil supply hole 20 Oil discharge hole 23 Oil supply groove 24 Oil discharge groove 32 Pin (positioning means)
34 Engagement hole (first engagement part)
35 Engaging recess (second engaging part)
B Circumferential direction C Rotational direction D Straight line F Operating load T Oil film thickness α1, α2 Operating load angle β1, β2 Minimum oil film angle γ1, β2 Discharge reaction force fluctuation angle

Claims (8)

軸孔を有する軸受部材が軸受ハウジング内に設けられ、
回転軸が軸受部材の軸孔に挿通されて支持される軸受装置であって、
軸受部材に、潤滑油を回転軸と軸受部材との間に供給する給油孔と、潤滑油を回転軸と軸受部材との間から排出する排油孔とが設けられ、
軸受部材の内周面に、給油孔に連通する給油溝と、排油孔に連通する排油溝とが形成され、
軸受部材は、軸受ハウジングに対して、回転軸の周方向へ回動自在であり、
軸受部材を周方向において軸受ハウジングに位置決めする位置決め手段が設けられていることを特徴とする軸受装置。
A bearing member having a shaft hole is provided in the bearing housing;
A bearing device in which a rotating shaft is inserted into and supported by a shaft hole of a bearing member,
The bearing member is provided with an oil supply hole for supplying lubricating oil between the rotating shaft and the bearing member, and an oil draining hole for discharging the lubricating oil from between the rotating shaft and the bearing member,
An oil supply groove communicating with the oil supply hole and an oil discharge groove communicating with the oil discharge hole are formed on the inner peripheral surface of the bearing member.
The bearing member is rotatable in the circumferential direction of the rotation shaft with respect to the bearing housing,
A bearing device comprising positioning means for positioning the bearing member in the circumferential direction on the bearing housing.
位置決め手段はピンであり、
ピンが、回転軸の周方向において、軸受部材と軸受ハウジングとに係合することを特徴とする請求項1記載の軸受装置。
The positioning means is a pin,
The bearing device according to claim 1, wherein the pin is engaged with the bearing member and the bearing housing in a circumferential direction of the rotating shaft.
ピンの一端部が係合可能な第1係合部を、軸受部材の周方向における複数箇所に設け、
ピンの他端部が係合可能な第2係合部を、軸受ハウジングに設けたことを特徴とする請求項2記載の軸受装置。
The first engaging portion that can engage with one end of the pin is provided at a plurality of locations in the circumferential direction of the bearing member,
The bearing device according to claim 2, wherein a second engagement portion that can engage with the other end portion of the pin is provided in the bearing housing.
位置決め手段は軸受部材の軸受ハウジングによる締り嵌めであることを特徴とする請求項1記載の軸受装置。 2. The bearing device according to claim 1, wherein the positioning means is an interference fit by a bearing housing of the bearing member. 軸受部材は、回転軸を縦断する切断面によって、一方および他方の軸受片に二分割され、
軸受ハウジングは、回転軸を縦断する切断面によって、一方および他方のハウジング部に二分割されていることを特徴とする請求項1から請求項4のいずれか1項に記載の軸受装置。
The bearing member is divided into two bearing pieces, one and the other, by a cut surface that vertically cuts the rotating shaft,
The bearing device according to any one of claims 1 to 4, wherein the bearing housing is divided into one and the other housing part by a cut surface that vertically cuts the rotating shaft.
上記請求項1から請求項5のいずれか1項に記載の軸受装置によって回転軸が支持されていることを特徴とするポンプ。 A rotary shaft is supported by the bearing device according to any one of claims 1 to 5. 軸孔を有する分割可能な軸受部材が分割可能な軸受ハウジング内の嵌込部に設けられ、
回転軸が軸受部材の軸孔に挿通されて支持され、
軸受部材に、潤滑油を回転軸と軸受部材との間に供給する給油孔と、潤滑油を回転軸と軸受部材との間から排出する排油孔とが設けられ、
軸受部材の内周面に、給油孔に連通する給油溝と、排油孔に連通する排油溝とが形成された軸受装置の組立方法であって、
軸受ハウジングを一方および他方のハウジング部に分割し、
軸受部材を一方および他方の軸受片に分割し、
一方の軸受片を、回転軸の周方向へ回動して、回転軸と一方のハウジング部内の嵌込部との間に嵌め込み、
他方の軸受片を一方の軸受片に接合して軸受部材を組立てることにより、軸受部材を回転軸に外嵌し、
軸受部材を回転軸の周方向へ回動して位置決め手段により位置決めし、
他方のハウジング部を一方のハウジング部に接合して軸受ハウジングを組立てることを特徴とする軸受装置の組立方法。
A separable bearing member having a shaft hole is provided at a fitting portion in the separable bearing housing,
The rotating shaft is inserted and supported in the shaft hole of the bearing member,
The bearing member is provided with an oil supply hole for supplying lubricating oil between the rotating shaft and the bearing member, and an oil draining hole for discharging the lubricating oil from between the rotating shaft and the bearing member,
An assembly method of a bearing device in which an oil supply groove communicating with an oil supply hole and an oil discharge groove communicating with an oil discharge hole are formed on an inner peripheral surface of the bearing member,
Dividing the bearing housing into one and the other housing part,
Dividing the bearing member into one and the other bearing piece;
One bearing piece is rotated in the circumferential direction of the rotation shaft, and is fitted between the rotation shaft and the fitting portion in one housing portion,
By assembling the bearing member by joining the other bearing piece to the one bearing piece, the bearing member is externally fitted to the rotating shaft,
The bearing member is rotated in the circumferential direction of the rotating shaft and positioned by positioning means,
A method for assembling a bearing device, comprising assembling a bearing housing by joining the other housing part to one housing part.
上記請求項6に記載されたポンプにおける軸受装置の排油溝位置調整方法であって、
回転軸を有する回転体の重量から求められる鉛直方向の荷重と、ポンプの計画運転点から求められる吐出反力とを合成して、運転時に回転体に作用する運転荷重の方向を求め、
回転軸の軸心を通る鉛直方向の直線から運転荷重の方向までの運転荷重角度と、運転荷重の方向から回転軸と軸受部材との間の油膜厚さが最小となる最小油膜厚さの位置までの最小油膜角度と、吐出反力変動角度とを求め、
軸受部材を回転軸の周方向へ回動して、回転軸の回転方向における鉛直方向の直線から排油溝までの角度が運転荷重角度と最小油膜角度と吐出反力変動角度とを足し合わせた角度になるように排油溝を位置させ、
この位置で軸受部材を位置決め手段により固定することを特徴とする軸受装置の排油溝位置調整方法。
An oil drain groove position adjusting method for a bearing device in a pump according to claim 6,
By combining the vertical load obtained from the weight of the rotating body having the rotating shaft and the discharge reaction force obtained from the planned operating point of the pump, the direction of the operating load acting on the rotating body during operation is obtained,
Operating load angle from the vertical straight line passing through the axis of the rotating shaft to the operating load direction, and the position of the minimum oil film thickness at which the oil film thickness between the rotating shaft and the bearing member is minimum from the operating load direction Find the minimum oil film angle and discharge reaction force fluctuation angle until
The bearing member is rotated in the circumferential direction of the rotating shaft, and the angle from the vertical straight line to the oil drain groove in the rotating direction of the rotating shaft is the sum of the operating load angle, the minimum oil film angle, and the discharge reaction force fluctuation angle. Position the oil drain groove at an angle,
An oil drain groove position adjusting method for a bearing device, wherein the bearing member is fixed by positioning means at this position.
JP2012079783A 2012-03-30 2012-03-30 Bearing device, pump, assembling method of bearing device, and oil drain groove position adjusting method Active JP6022185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079783A JP6022185B2 (en) 2012-03-30 2012-03-30 Bearing device, pump, assembling method of bearing device, and oil drain groove position adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079783A JP6022185B2 (en) 2012-03-30 2012-03-30 Bearing device, pump, assembling method of bearing device, and oil drain groove position adjusting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016196863A Division JP6239074B2 (en) 2016-10-05 2016-10-05 Bearing device, pump, assembling method of bearing device, and oil drain groove position adjusting method

Publications (2)

Publication Number Publication Date
JP2013210031A true JP2013210031A (en) 2013-10-10
JP6022185B2 JP6022185B2 (en) 2016-11-09

Family

ID=49528038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079783A Active JP6022185B2 (en) 2012-03-30 2012-03-30 Bearing device, pump, assembling method of bearing device, and oil drain groove position adjusting method

Country Status (1)

Country Link
JP (1) JP6022185B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000484B2 (en) 2018-09-28 2024-06-04 Inpro/Seal Llc Shaft seal assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888224A (en) * 1981-11-19 1983-05-26 Toshiba Corp Bearing oil film pressure adjuster
JPS5888226A (en) * 1981-11-19 1983-05-26 Toshiba Corp Tilting pad bearing
DE3507259A1 (en) * 1985-03-01 1986-09-04 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden Bearing arrangement with a radial sliding bearing and at least one axial sliding bearing
JPH02159411A (en) * 1988-12-13 1990-06-19 Toshiba Eng Co Ltd Journal bearing for horizontal shaft divided into two pieces
JPH0480922U (en) * 1990-11-27 1992-07-14
JP2000145781A (en) * 1998-11-12 2000-05-26 Hitachi Ltd Bearing device
JP2002122143A (en) * 2000-10-12 2002-04-26 Hitachi Ltd Bearing, and reduction gear mounting the bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888224A (en) * 1981-11-19 1983-05-26 Toshiba Corp Bearing oil film pressure adjuster
JPS5888226A (en) * 1981-11-19 1983-05-26 Toshiba Corp Tilting pad bearing
DE3507259A1 (en) * 1985-03-01 1986-09-04 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden Bearing arrangement with a radial sliding bearing and at least one axial sliding bearing
JPH02159411A (en) * 1988-12-13 1990-06-19 Toshiba Eng Co Ltd Journal bearing for horizontal shaft divided into two pieces
JPH0480922U (en) * 1990-11-27 1992-07-14
JP2000145781A (en) * 1998-11-12 2000-05-26 Hitachi Ltd Bearing device
JP2002122143A (en) * 2000-10-12 2002-04-26 Hitachi Ltd Bearing, and reduction gear mounting the bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000484B2 (en) 2018-09-28 2024-06-04 Inpro/Seal Llc Shaft seal assembly

Also Published As

Publication number Publication date
JP6022185B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5844596B2 (en) Rolling bearing device
JPWO2016104535A1 (en) Slide bearing and pump
JP2015178166A (en) Main spindle device
JP5581440B2 (en) Scroll compressor
CN101432535A (en) Hydrodynamic axial plain bearing and associated operating method
JP2014238009A (en) Supercharger
TW201807329A (en) Ball bearing, ball bearing device, and machine tool
JP6239074B2 (en) Bearing device, pump, assembling method of bearing device, and oil drain groove position adjusting method
CN102632257B (en) Spindle device for hydrodynamic journal bearing
US9618048B2 (en) Reverse bypass cooling for tilted pad journal and tilting pad thrust bearings
JP6022185B2 (en) Bearing device, pump, assembling method of bearing device, and oil drain groove position adjusting method
CN109322840B (en) Centrifugal refrigerant pump
WO2016101425A1 (en) Lubrication branch of planetary gear train
JP2020020266A (en) Bearing device and turbocharger
JP2008008412A (en) Journal bearing unit
JP2014077475A (en) Bearing structure and water injection type air compression device
CN103939472B (en) Sliding bearing of double-screw compressor
JP2013177900A (en) Bearing device
WO2016088166A1 (en) Journal bearing
JP2014005794A (en) Internal gear pump and fluid pressure control device including the same
CN102635568B (en) Multi-stage centrifugal pump axial force balance device
JP2016008600A (en) Bearing mechanism and supercharger
JP2018178826A (en) Horizontal shaft pump
JP2007078170A (en) Mechanical seal for concentric multi shaft rotating device
JP2006234036A (en) Liquid lubrication foil type dynamic pressure bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161005

R150 Certificate of patent or registration of utility model

Ref document number: 6022185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150