JP2013209724A - Ag ALLOY FILM AND METHOD FOR FORMING THE SAME - Google Patents

Ag ALLOY FILM AND METHOD FOR FORMING THE SAME Download PDF

Info

Publication number
JP2013209724A
JP2013209724A JP2012081961A JP2012081961A JP2013209724A JP 2013209724 A JP2013209724 A JP 2013209724A JP 2012081961 A JP2012081961 A JP 2012081961A JP 2012081961 A JP2012081961 A JP 2012081961A JP 2013209724 A JP2013209724 A JP 2013209724A
Authority
JP
Japan
Prior art keywords
film
resistance
alloy
alloy film
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012081961A
Other languages
Japanese (ja)
Other versions
JP5920659B2 (en
Inventor
Hiromi Nakazawa
弘実 中澤
Fumitake Kikuchi
文武 菊池
Hiroshi Ishii
石井  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012081961A priority Critical patent/JP5920659B2/en
Publication of JP2013209724A publication Critical patent/JP2013209724A/en
Application granted granted Critical
Publication of JP5920659B2 publication Critical patent/JP5920659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Ag alloy film having excellent resistance such as moisture resistance, sulphur resistance and heat resistance, also having high reflectance and having low resistivity, and a method for forming the same.SOLUTION: An Ag-Sb alloy film is formed by heat-treating an Ag alloy film-formed by performing sputtering on a substrate using an Ag-Sb alloy target essentially composed of Ag and including 0.5 to 2.0 at% Sb at 150 to 450°C. By the heat treatment, the crystal grains of the Ag-Sb alloy grow in an in-plane direction, and large crystal grains are formed to improve its reflectance. Further, accumulated Sb forms oxides on the surfaces and grain boundaries of the crystal grains, thus it has excellent resistance in heat resistance, salt water resistance and sulfur resistance, and the resistivity of the film itself is reduced as well.

Description

本発明は、Ag合金膜に関するものであり、特に、耐湿性、耐硫化性、耐熱性などの耐性に優れ、かつ、反射率が高く、抵抗率が低いAg合金膜及びその形成方法に関する。   The present invention relates to an Ag alloy film, and more particularly to an Ag alloy film having excellent resistance to moisture, sulfidation, heat resistance, and the like, a high reflectance, and a low resistivity, and a method for forming the same.

有機EL、光記録ディスク、光学機器用反射ミラーなどにおける反射膜や反射電極では、耐湿性、耐硫化性、耐熱性などの耐性を持った反射率が高く、抵抗率の低いAg合金膜が必要で、これまで、Pd、Cu、Ge、Bi、Au、Sn、希土類元素などを添加したAg合金膜が用いられている。また、そのAg合金膜に熱処理を施したり、酸化物のキャップ層を付けたりすることにより、耐硫化性などの耐性をさらに向上させたAg合金膜が開発されている。また、AgにBi、Sbを添加して、それらの添加元素を表面に濃集させて、凝集性(耐熱性)を向上させたAg合金膜が開発されている。   For reflective films and reflective electrodes in organic EL, optical recording disks, reflective mirrors for optical equipment, etc., an Ag alloy film with high resistance and low resistance such as moisture resistance, sulfidation resistance and heat resistance is required. So far, Ag alloy films to which Pd, Cu, Ge, Bi, Au, Sn, rare earth elements and the like are added have been used. Further, an Ag alloy film having further improved resistance such as sulfidation resistance has been developed by heat-treating the Ag alloy film or attaching an oxide cap layer. Further, an Ag alloy film has been developed in which Bi and Sb are added to Ag, and these additive elements are concentrated on the surface to improve the cohesiveness (heat resistance).

従来から、反射膜の材料には、アルミニウム(Al)やAlを主成分とする合金が、耐熱性に優れているということで多く使用されてきたが、高反射率、低抵抗率が求められるようになって、銀(Ag)が反射材として多用されてきた。純Agによる膜が反射率としては最も高いものであったが、この純Ag膜は、耐候性などに問題があった。そこで、耐候性を向上するものとして、Ag−パラジウム(Pd)−銅(Cu)系銀合金が提案された。しかしながら、このAg−Pd−Cu系合金による膜は、加熱工程を経ると、表面ラフネスの成長やヒロックの発生が生じ、その結果、その膜の反射率が低下した。さらに、その膜が加熱されることにより、硫化が促進されて、膜の黄色化が起き、その膜の耐硫化性にも問題があった。そこで、より高い耐熱性と耐硫化性を向上したものとして、Ag−Pd−Cu系合金にゲルマニウム(Ge)を含有させたAg−Pd−Cu−Ge系合金により膜を形成することが提案された(例えば、特許文献1を参照)。   Conventionally, aluminum (Al) or an alloy containing Al as a main component has been used as a material for a reflective film because of its excellent heat resistance, but high reflectivity and low resistivity are required. Thus, silver (Ag) has been frequently used as a reflector. The pure Ag film had the highest reflectance, but this pure Ag film had a problem in weather resistance and the like. Therefore, an Ag-palladium (Pd) -copper (Cu) -based silver alloy has been proposed as a means for improving weather resistance. However, when the film of this Ag—Pd—Cu alloy is subjected to a heating step, surface roughness grows and hillocks are generated, and as a result, the reflectivity of the film decreases. Furthermore, when the film is heated, sulfidation is promoted, the film is yellowed, and there is a problem with the sulfidation resistance of the film. Then, as what improved higher heat resistance and sulfidation resistance, it was proposed to form a film with an Ag—Pd—Cu—Ge alloy in which germanium (Ge) is contained in an Ag—Pd—Cu alloy. (For example, see Patent Document 1).

また、Agを主成分として、Cuの他に、金(Au)、チタン(Ti)、ジルコニウム(Zr)などの元素を添加することにより、そのAg基合金による膜において、低電気抵抗性や耐熱性を確保できることも知られている。この様なAg基合金による膜の場合、複数回の高温加熱に対する耐熱性として耐凝集性に優れていることが重要となるが、低電気抵抗率や、真空化での高耐熱性の確保は達成できても、低電気抵抗率を維持したままで、この耐凝集性までは確保できない。そこで、高耐凝集性と低電気抵抗率との両方を兼備した膜として、ビスマス(Bi)を含有させたAg基合金により形成することが提案されている(例えば、特許文献2を参照)。   In addition, by adding elements such as gold (Au), titanium (Ti), zirconium (Zr), etc. in addition to Cu with Ag as a main component, low electrical resistance and heat resistance can be achieved in the film made of the Ag-based alloy. It is also known that sex can be secured. In the case of such an Ag-based alloy film, it is important to have excellent cohesion resistance as heat resistance against multiple high-temperature heating, but ensuring low electrical resistivity and high heat resistance in a vacuum is important. Even if it can be achieved, this resistance to aggregation cannot be ensured while maintaining a low electrical resistivity. Thus, it has been proposed to form a film having both high agglomeration resistance and low electrical resistivity with an Ag-based alloy containing bismuth (Bi) (see, for example, Patent Document 2).

一方、Agは、一般に、耐環境性に乏しいことも知られている。上述した加熱による凝集が生じることの他に、腐食により黒色に変色して、反射率や透過率を低下させるという問題がある。耐環境性、即ち、耐熱性、耐湿性、耐硫化性を確保し、この膜の反射率や透過率の低下を抑制するため、Agを主成分として、イットリウム(Y)、スカンジウム(Sc)、ランタノイドからなる希土類元素から選択される少なくとも1種を含有させたAg基合金を用いることが提案されている(例えば、特許文献3を参照)。
また、耐凝集性及び耐硫化性を向上させたAg合金膜も提案されている(例えば、特許文献4を参照)。このAg合金には、Au、又は、Au、Bi、錫(Sn)の2種以上が含有されており、そのAg合金による薄膜は、130〜200℃の不活性ガス雰囲気で熱処理される。この加熱処理により、耐硫化性を向上させている。
On the other hand, Ag is generally known to have poor environmental resistance. In addition to the above-described aggregation caused by heating, there is a problem that the color changes to black due to corrosion and the reflectance and transmittance are lowered. In order to ensure environmental resistance, that is, heat resistance, moisture resistance, and sulfidation resistance, and to suppress a decrease in reflectance and transmittance of this film, Ag as a main component, yttrium (Y), scandium (Sc), It has been proposed to use an Ag-based alloy containing at least one selected from lanthanoid rare earth elements (see, for example, Patent Document 3).
Further, an Ag alloy film with improved aggregation resistance and sulfidation resistance has also been proposed (see, for example, Patent Document 4). The Ag alloy contains two or more of Au, Au, Bi, and tin (Sn), and the thin film made of the Ag alloy is heat-treated in an inert gas atmosphere at 130 to 200 ° C. This heat treatment improves sulfidation resistance.

また、過酷な耐腐食性試験でも反射率が劣化することがないAg系の膜が提案されている(例えば、特許文献5を参照)。このAg系の膜においては、純Ag膜や、Ag−Au系、Ag−Au−Sn系、Ag−Pd系、Ag−Pd−Cu系の合金膜の表面に、ITO、ZnO、IZO、SnOなどの酸化物、シリコン(Si)、Al、Ti及びタンタル(Ta)の酸化物、Si、Al、Ti及びTaの窒化物から選ばれた材料による極薄のキャップ層が積層されている。 In addition, an Ag-based film has been proposed in which the reflectance does not deteriorate even in a severe corrosion resistance test (see, for example, Patent Document 5). In this Ag-based film, a pure Ag film or an Ag-Au-based, Ag-Au-Sn-based, Ag-Pd-based, or Ag-Pd-Cu-based alloy film has ITO, ZnO, IZO, SnO on the surface thereof. A very thin cap layer made of a material selected from oxides such as 2 , oxides of silicon (Si), Al, Ti, and tantalum (Ta), and nitrides of Si, Al, Ti, and Ta is laminated.

さらに、Ag合金膜は、時間の経過とともに、Agの凝集が進行してAg合金膜が劣化するという問題があった。これは、Ag合金膜がコーティングされている面を大気中に露出した状態で使用すると、Ag合金膜を覆っている透明膜の欠陥部を中心にAgの凝集が生じるためである。この問題に対処するものとして、Bi及び/又はSbの添加量を適切に制御して、Agの表面拡散に起因する結晶粒の成長を効果的に抑制することにより、Agの凝集抑止効果を高めたAg合金膜が提案されている(例えば、特許文献6を参照)。ここでは、Ag合金膜表面が酸素の存在する雰囲気に曝されると、Ag合金膜中のBi及び/又はSbがAg合金膜の表面に拡散して濃縮し、Bi及び/又はSbの酸化物層が形成され、この酸化物層が環境との接触を遮断している。これによって、Ag合金膜の劣化を防止している。   Furthermore, the Ag alloy film has a problem that Ag aggregation progresses with time and the Ag alloy film deteriorates. This is because, when the surface coated with the Ag alloy film is used in a state where it is exposed to the atmosphere, Ag agglomeration occurs around the defective portion of the transparent film covering the Ag alloy film. In order to cope with this problem, the addition amount of Bi and / or Sb is appropriately controlled to effectively suppress the growth of crystal grains due to the surface diffusion of Ag, thereby enhancing the Ag aggregation suppressing effect. An Ag alloy film has been proposed (see, for example, Patent Document 6). Here, when the surface of the Ag alloy film is exposed to an atmosphere in which oxygen is present, Bi and / or Sb in the Ag alloy film diffuses and concentrates on the surface of the Ag alloy film, and oxides of Bi and / or Sb. A layer is formed and this oxide layer blocks contact with the environment. This prevents the deterioration of the Ag alloy film.

国際公開WO2005/031016International Publication WO2005 / 031016 特許第4264397号明細書Japanese Patent No. 4264397 国際公開WO2006/132416International Publication WO2006 / 132416 特開2008−101269号公報JP 2008-101269 A 特開2006−98856号公報JP 2006-98856 A 特開2004−263290号公報JP 2004-263290 A

Ag系膜においては、その膜の反射率は、純Ag膜が最も高いが、この純Ag膜は、耐硫化性、耐湿性、耐熱性などが低い。そのため、上記特許文献1乃至3に示されるように、Pd、Cu、Ge、Bi、Au、Sn、希土類元素などを添加して、それらの膜の耐性、例えば、耐硫化性、耐熱性を改善している。しかしながら、それらの元素を添加することにより、その膜の反射率は、純Ag膜より低下する。   In the Ag-based film, the reflectance of the film is the highest in the pure Ag film, but this pure Ag film has low sulfur resistance, moisture resistance, heat resistance, and the like. Therefore, as shown in the above Patent Documents 1 to 3, Pd, Cu, Ge, Bi, Au, Sn, rare earth elements, etc. are added to improve the resistance of these films, such as sulfidation resistance and heat resistance. doing. However, by adding these elements, the reflectance of the film is lower than that of a pure Ag film.

また、上記特許文献4に示されるように、Bi、Au、Snを添加したAg合金膜を不活性ガス中で熱処理し、或いは、上記特許文献5に示されるように、純Ag膜、又は、Au、Sn、Pd、Cuのうちの一つ以上の元素を添加したAg合金膜の上に、酸化物層などのキャップ層を付けた積層構造とし、その膜を、大気、真空、不活性ガス中で熱処理することにより、反射率の減少を抑制し、耐硫化性をさらに向上させる工夫がなされている。しかしながら、特許文献5に示された組成の膜では、熱処理を行なうと、大きな結晶粒の成長が起こり、結晶性の向上(移動度、伝導率の増加)による反射率の増加の効果を、成長した大きな結晶粒による光の散乱で弱める結果となる。   Further, as shown in Patent Document 4, Ag alloy film added with Bi, Au, and Sn is heat-treated in an inert gas, or as shown in Patent Document 5, a pure Ag film, or A laminated structure in which a cap layer such as an oxide layer is formed on an Ag alloy film to which one or more elements of Au, Sn, Pd, and Cu are added, and the film is formed in the atmosphere, vacuum, or inert gas. By heat-treating inside, the device which suppresses the reduction | decrease in a reflectance and improves a sulfide resistance further is made | formed. However, in the film having the composition shown in Patent Document 5, when heat treatment is performed, growth of large crystal grains occurs, and the effect of increasing reflectivity due to improvement in crystallinity (increasing mobility and conductivity) is obtained. As a result, light is scattered by the large crystal grains.

また、上記特許文献6に示されるように、Bi、Sbが表面に拡散して濃縮されたAg合金膜により、凝集を抑制する工夫がなされている。しかしながら、このAg合金膜は耐硫化性、耐塩水性などが劣るため、他の膜で表面をコートする必要があり、用途が電磁波防止などに限られ、また、反射率も低下する。しかも、その表面のコートには、手間を要し、コストの増大を招く。   Moreover, as shown in the above-mentioned patent document 6, a device for suppressing aggregation is made by an Ag alloy film in which Bi and Sb are diffused and concentrated on the surface. However, since this Ag alloy film is inferior in sulfidation resistance, salt water resistance, etc., it is necessary to coat the surface with another film, the use is limited to prevention of electromagnetic waves and the like, and the reflectance is also lowered. In addition, the coating on the surface requires labor and increases costs.

以上から、Ag合金膜が用いられる装置の性能をより向上させるためには、膜の耐硫化性、耐熱性、耐塩水性などの耐性を落とさずに、高い反射率を持ったAg合金膜の開発が課題となる。
そこで、本発明は、耐硫化性、耐熱性、耐塩水性などの耐性を落とさずに、高い反射率を持ち、しかも、配線電極膜としても適用可能とする低抵抗率を実現したAg合金膜及びその形成方法を提供することを目的とする。
From the above, in order to further improve the performance of devices using Ag alloy films, development of Ag alloy films with high reflectivity without reducing the resistance to sulfidation, heat resistance, salt water resistance, etc. of the film Is an issue.
Therefore, the present invention provides an Ag alloy film that has high reflectivity without reducing resistance such as sulfidation resistance, heat resistance, salt water resistance, and the like, and that realizes low resistivity that can be applied as a wiring electrode film. An object is to provide a method for forming the same.

本発明者らは、種々の研究により、Agを主成分としてSbを含有させたAg合金ターゲットを用いて基板上にスパッタリング成膜したAg―Sb合金膜を熱処理(アニール)することにより、Ag−Sb合金膜中の結晶粒が面内方向に成長し、大きな結晶粒を生成できること、さらには、この結晶粒の粒界には、Sbが濃集されることが判明した。この結晶粒が面内方向に大きく成長したAg―Sb合金膜では、移動度、伝導率の向上と平坦性の維持によって低抵抗率化と高反射率化が実現できるとともに、この熱処理によって結晶粒の表面及び界面に濃集されたSbが、酸素(O)と反応して酸化物となり、この酸化物が、耐硫化性、耐熱性、耐塩水性の向上に大きく寄与するという知見が得られた。   As a result of various studies, the inventors of the present invention heat treated (annealed) an Ag—Sb alloy film formed by sputtering on a substrate using an Ag alloy target containing Ag as a main component and containing Sb. It has been found that the crystal grains in the Sb alloy film grow in the in-plane direction and large crystal grains can be generated, and that Sb is concentrated at the grain boundaries of the crystal grains. In the Ag-Sb alloy film in which the crystal grains are greatly grown in the in-plane direction, low resistivity and high reflectivity can be realized by improving mobility and conductivity and maintaining flatness. It was found that Sb concentrated on the surface and the interface of this material reacts with oxygen (O) to become an oxide, and that this oxide greatly contributes to the improvement of sulfidation resistance, heat resistance and salt water resistance. .

そこで、これらの知見に基づいて、本発明の具体例として、Sbが1.0at%含まれたAg合金ターゲットを用いて、室温の基板上にスパッタ成膜を行ってAg−Sb合金膜を成膜した。その後に、成膜したAg−Sb合金膜に対して、真空雰囲気中で、300℃の温度で熱処理を行った。   Therefore, based on these findings, as a specific example of the present invention, an Ag—Sb alloy film is formed by performing sputter deposition on a substrate at room temperature using an Ag alloy target containing 1.0 at% Sb. Filmed. After that, the formed Ag—Sb alloy film was heat-treated at a temperature of 300 ° C. in a vacuum atmosphere.

ここで、Ag−Sb合金がスパッタリングで堆積されたままの状態(以下、as depo.状態と称す)の膜表面について、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)、オージェ電子分光法(AES)による面分析により得られた画像が図1に示されている。SEM、AES、AFMのいずれの画像においても、as depo.状態においては、Ag−Sb合金の結晶粒が細かく、表面の凹凸は小さいことが確認された。AFM画像にみられるように、そのAg−Sb合金膜の表面粗さRaは、0.59nmであった。このas depo.状態のAg−Sb合金膜では、その反射率は、純Ag膜の反射率より低いものであった。   Here, a scanning electron microscope (SEM), an atomic force microscope (AFM), Auger electron spectroscopy is performed on the film surface in a state where the Ag—Sb alloy is deposited by sputtering (hereinafter referred to as an as depo. State). An image obtained by surface analysis by the method (AES) is shown in FIG. In any of SEM, AES, and AFM images, it was confirmed that in the as depo. State, the crystal grains of the Ag—Sb alloy were fine and the surface irregularities were small. As can be seen from the AFM image, the surface roughness Ra of the Ag—Sb alloy film was 0.59 nm. In this as depo. Ag-Sb alloy film, the reflectance was lower than that of a pure Ag film.

また、as depo.状態のAg−Sb合金膜について、耐熱試験(300℃、1時間、大気中アニール)、耐硫化試験(0.01at%のNaS溶液に1時間浸漬)、耐塩水試験(5at%のNaCl溶液に12時間浸漬)を行ったが、試験後に反射率を測定した結果では、膜の反射率が低下し、耐塩水性、耐硫化性が無いことが確認された。 In addition, as-depo. Ag-Sb alloy film, heat resistance test (300 ° C., 1 hour, annealing in air), sulfur resistance test (immersion in 0.01 at% Na 2 S solution for 1 hour), salt water resistance test (Immersion in a 5 at% NaCl solution for 12 hours) The reflectance was measured after the test, and it was confirmed that the reflectance of the film was reduced and there was no saltwater resistance or sulfidation resistance.

次に、as depo.状態のAg−Sb合金膜を、真空雰囲気中で、300℃の熱処理を施したところ、図2に示されるような結果が得られた。図2のSEM、AES、AFMの各画像によれば、Ag−Sb合金膜における結晶粒が、熱処理によって成長し、as depo.状態よりも面内方向に大きくなっていることが確認された。特に、図2のAES画像にみられるように、熱処理により、Ag−Sb合金の結晶粒中のSbがその表面及び粒界に濃集していることが観察された。即ち、画像中の濃い部分が結晶粒であり、その結晶粒を取り囲むように存在する淡い部分がSbの濃集を表している。この結晶粒の表面では、Sbの多くが、酸化物として存在していることをX線光電子分光(XPS)により確認した。   Next, the Ag-Sb alloy film in the as depo. State was subjected to a heat treatment at 300 ° C. in a vacuum atmosphere, and the result as shown in FIG. 2 was obtained. According to the images of SEM, AES, and AFM in FIG. 2, it was confirmed that the crystal grains in the Ag—Sb alloy film grew by heat treatment and became larger in the in-plane direction than the as depo. State. In particular, as seen in the AES image of FIG. 2, it was observed that Sb in the crystal grains of the Ag—Sb alloy was concentrated on the surface and grain boundaries by the heat treatment. That is, the dark part in the image is a crystal grain, and the light part existing so as to surround the crystal grain represents the concentration of Sb. It was confirmed by X-ray photoelectron spectroscopy (XPS) that most of Sb was present as an oxide on the surface of the crystal grains.

また、図2のAFMの画像では、熱処理後においても、as depo. 状態よりも凹凸はやや大きくなっているが、ある程度の平坦度を保持していることが観察される。これは、SEMの画像で見られるように、as depo. 状態のAg−Sb合金膜に対する熱処理によって、膜を構成する結晶粒はその面内方向に成長しやすい傾向があることを示している。結果として、膜の平坦度は保持されたまま、結晶性が向上することとなる。この平坦性の維持と結晶性の向上による移動度、伝導率の増加によって、熱処理後のAg−Sb合金膜では、可視域(400nm〜700nm)の光において、純Ag膜を超える反射率が計測された。また、結晶粒内のSbが粒界に濃集することにより、Sbに由来する結晶粒内の欠陥が減少し、結晶性の良い大きな結晶粒が形成されることで、移動度が向上し、膜の抵抗率も低下することが確認された。   In addition, in the AFM image of FIG. 2, it is observed that the unevenness is slightly larger than that in the as depo. State even after the heat treatment, but a certain degree of flatness is maintained. This shows that the crystal grains constituting the film tend to grow in the in-plane direction by heat treatment on the as-depo. Ag-Sb alloy film, as seen in the SEM image. As a result, the crystallinity is improved while the flatness of the film is maintained. Due to the increase in mobility and conductivity by maintaining the flatness and improving the crystallinity, the Ag—Sb alloy film after heat treatment measures the reflectance exceeding the pure Ag film in the light in the visible region (400 nm to 700 nm). It was done. In addition, the concentration of Sb in the crystal grains concentrates at the grain boundary, thereby reducing defects in the crystal grains derived from Sb and forming large crystal grains with good crystallinity, thereby improving mobility. It was confirmed that the resistivity of the film also decreased.

さらに、熱処理後のAg−Sb合金膜について、上述した試験と同様に、耐熱試験、耐硫化試験、耐塩水試験を行い、試験後に反射率を測定した結果、同様の試験後の純Ag膜よりもかなり高い反射率が得られ、耐熱性、耐塩水性、耐硫化性に優れていることが確認できた。これら耐熱性、耐塩水性、耐硫化性の向上は、Ag−Sb合金の結晶粒の表面に濃集したSbが、成膜中に混入した、或いは、成膜後において膜表面に付着したOと反応し、その酸化膜が存在することに起因する。この酸化膜が、Sと塩水に対するバリア性や耐凝集性の効果を持っていることによる。   Further, as to the Ag—Sb alloy film after the heat treatment, the heat resistance test, the sulfidation resistance test, and the salt water resistance test were performed in the same manner as the above-described test, and the reflectance was measured after the test. As a result, it was confirmed that the film had excellent heat resistance, salt water resistance and sulfidation resistance. These improvements in heat resistance, salt water resistance, and sulfidation resistance are due to the fact that Sb concentrated on the surface of the crystal grains of the Ag-Sb alloy was mixed during the film formation or adhered to the film surface after the film formation. The reaction is caused by the presence of the oxide film. This is because this oxide film has an effect of barrier property against S and salt water and aggregation resistance.

上述した本発明の具体例として、成膜後のas depo.状態のAg−Sb合金膜に対して、真空雰囲気中で熱処理を施した場合について説明したが、真空雰囲気中で熱処理する代わりに、窒素(N)雰囲気中で熱処理を施しても、同様の結果が得られた。また、これらの雰囲気の代わりに、大気中で、300℃の温度で熱処理を施したところ、図3に示されるように、図2に示された真空雰囲気中で熱処理を施した場合と同様の結果が得られた。 As a specific example of the present invention described above, the case where heat treatment is performed in a vacuum atmosphere on an as-depo. Ag-Sb alloy film after film formation has been described. Similar results were obtained when heat treatment was performed in a nitrogen (N 2 ) atmosphere. Further, instead of these atmospheres, when heat treatment was performed in the atmosphere at a temperature of 300 ° C., as shown in FIG. 3, the same as the case where heat treatment was performed in the vacuum atmosphere shown in FIG. Results were obtained.

図3のSEM、AES、AFMの各画像によれば、Ag−Sb合金膜における結晶粒が、熱処理によって成長し、as depo.状態よりも面内方向に大きくなっていること、図3のAES画像にみられるように、画像中の濃い部分が結晶粒であり、その結晶粒を取り囲むように淡い部分が存在するので、熱処理により、Ag−Sb合金の結晶粒内のSbがその表面及び粒界に濃集する様子が観察できる。ここでも、この結晶粒の表面では、濃集したSbの多くが、酸化物として存在していることをX線光電子分光(XPS)により確認した。   According to the SEM, AES, and AFM images in FIG. 3, the crystal grains in the Ag—Sb alloy film grow by heat treatment and are larger in the in-plane direction than the as depo. State, and the AES in FIG. As seen in the image, the dark portion in the image is a crystal grain, and there is a light portion so as to surround the crystal grain, so that the heat treatment causes Sb in the crystal grain of the Ag-Sb alloy to have its surface and grains. You can observe the concentration in the world. Again, it was confirmed by X-ray photoelectron spectroscopy (XPS) that much of the concentrated Sb was present as an oxide on the surface of this crystal grain.

一方、銅(Cu)や、パラジウム(Pd)の貴金属元素を添加したAg合金膜は、300℃程度の温度で熱処理を施すと純Ag膜と同様に結晶粒の成長が起こり、凝集するため、大きな表面凹凸による光の散乱で反射率が低下する。また、アルミニウム(Al)、ガリウム(Ga)、マンガン(Mn)、Sbなどの易酸化元素を添加したAg合金膜は、結晶粒の成長、表面粗さRaの増加が起こるものの、凝集することはない。しかしながら、これらの内、Al、Ga、Mnについては、300℃の温度で熱処理を施すと、それらの結晶粒は、面内方向ではなく、面に垂直な方向に成長してしまう。その結果、凹凸が現われ、膜の平坦性を保持できないため、凹凸による光の散乱で反射率が低下する。ところが、Sbに関しては、大気中で、300℃の温度で熱処理を施しても、面内方向の結晶粒成長が面垂直方向に対して優勢であるため、面内方向に成長した大きな結晶粒を形成することとなって、膜の平坦性を保持でき、高い反射率を得ることができる。   On the other hand, an Ag alloy film to which a noble metal element such as copper (Cu) or palladium (Pd) is added is subjected to heat treatment at a temperature of about 300 ° C., so that crystal grains grow and aggregate in the same manner as a pure Ag film. Reflectance decreases due to light scattering due to large surface irregularities. In addition, Ag alloy films to which easily oxidizable elements such as aluminum (Al), gallium (Ga), manganese (Mn), and Sb are added cause crystal grain growth and increase in surface roughness Ra, but do not aggregate. Absent. However, among these, when Al, Ga, and Mn are heat-treated at a temperature of 300 ° C., their crystal grains grow not in the in-plane direction but in the direction perpendicular to the plane. As a result, irregularities appear and the flatness of the film cannot be maintained, and thus the reflectance is reduced due to light scattering by the irregularities. However, with regard to Sb, even if heat treatment is performed in the atmosphere at a temperature of 300 ° C., since the crystal grain growth in the in-plane direction is dominant over the vertical direction, large crystal grains grown in the in-plane direction are As a result, the flatness of the film can be maintained, and a high reflectance can be obtained.

したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
(1)本発明のAg−Sb合金膜は、Agを主成分とし、Sbを含有するAg合金において、前記Sbが、Ag合金膜の表面及び結晶粒界に濃集していることを特徴としている。
(2)(1)に記載のAg合金膜において、前記Sbは、0.5〜2.0at%含有されていることを特徴としている。
(3)本発明のAg−Sb合金膜の形成方法は、Agを主成分とし、Sbを含有するAg−Sb合金ターゲットを用いて基板上にスパッタリングしてAg−Sb合金膜を成膜し、成膜されたAg合金膜を熱処理することを特徴としている。
(4)(3)に記載のAg−Sb合金膜の形成方法においては、前記熱処理の温度は、150〜450℃であることを特徴としている。
Therefore, the present invention has been obtained from the above findings, and the following configuration has been adopted in order to solve the above problems.
(1) The Ag—Sb alloy film of the present invention is characterized in that, in an Ag alloy containing Ag as a main component and containing Sb, the Sb is concentrated on the surface of the Ag alloy film and the crystal grain boundary. Yes.
(2) The Ag alloy film described in (1) is characterized in that the Sb is contained in an amount of 0.5 to 2.0 at%.
(3) The method for forming an Ag—Sb alloy film of the present invention is a method of forming an Ag—Sb alloy film by sputtering on a substrate using an Ag—Sb alloy target containing Ag as a main component and containing Sb. The Ag alloy film thus formed is heat-treated.
(4) In the method for forming an Ag—Sb alloy film described in (3), the temperature of the heat treatment is 150 to 450 ° C.

ここで、本発明のAg−Sb合金膜において、Ag−Sb合金のSbの添加濃度を0.5〜2.0at%とすることが好ましい。その理由は、添加元素の濃度が0.5at%より少ないと、成膜後の熱処理によって、大きな結晶粒の成長が起こり、反射率が低下する。一方、その濃度が2.0at%を超えて大きいと、成膜後の熱処理による反射率の向上効果が小さくなる。   Here, in the Ag—Sb alloy film of the present invention, it is preferable that the additive concentration of Sb in the Ag—Sb alloy is 0.5 to 2.0 at%. The reason for this is that if the concentration of the additive element is less than 0.5 at%, large crystal grains grow due to the heat treatment after the film formation, and the reflectance decreases. On the other hand, if the concentration is higher than 2.0 at%, the effect of improving the reflectance by heat treatment after film formation is reduced.

また、Ag−Sb合金膜の結晶粒の面内方向のサイズが100nm以上であることが好ましく、結晶粒の面内方向のサイズが100nm未満であると、移動度、伝導率が十分大きくならず、反射率の向上効果が小さくなる。また、膜表面の粗さRaが2nm以下であることが好ましい。膜表面の粗さRaが2nmより大きいと、表面の凹凸が大きくなり、光の散乱が増加し、反射率が低下する。   In addition, the in-plane size of the crystal grains of the Ag—Sb alloy film is preferably 100 nm or more, and if the in-plane size of the crystal grains is less than 100 nm, the mobility and conductivity are not sufficiently increased. As a result, the effect of improving the reflectance is reduced. The film surface roughness Ra is preferably 2 nm or less. When the roughness Ra of the film surface is larger than 2 nm, the unevenness of the surface becomes large, light scattering increases, and the reflectance decreases.

また、150℃以下の基板温度でスパッタ成膜を行なったAg−Sb合金膜を、大気、N等の不活性ガス、真空等の雰囲気中で、150〜450℃の温度で、適度な時間(5min〜2.0h程度)の熱処理を施すことが好ましい。成膜時の温度を制御して作製する場合、熱処理の温度が150℃より低いと、Ag−Sb合金膜における結晶性があまり向上せず、移動度、伝導率の増加が十分でなく、反射率の向上効果が小さくなる。また、450℃より高い温度での熱処理では、Ag−Sb合金膜において、大きな結晶粒の成長が起こってしまい、膜の反射率が低下する。 Further, an Ag—Sb alloy film formed by sputtering at a substrate temperature of 150 ° C. or lower is subjected to an appropriate time at a temperature of 150 to 450 ° C. in an atmosphere such as air, an inert gas such as N 2, or a vacuum. It is preferable to perform heat treatment (about 5 min to 2.0 h). When manufacturing by controlling the temperature at the time of film formation, if the temperature of the heat treatment is lower than 150 ° C., the crystallinity in the Ag—Sb alloy film is not improved so much, and the mobility and conductivity are not sufficiently increased, and reflection The rate improvement effect is reduced. Further, in the heat treatment at a temperature higher than 450 ° C., large crystal grains grow in the Ag—Sb alloy film, and the reflectance of the film decreases.

なお、成膜後に熱処理を施してAg−Sb合金膜を作製する場合には、成膜時の温度が150℃より大きいと、as depo.状態において既に大きな結晶粒から成る膜となり、熱処理後はさらに大きな結晶粒に成長してしまい、その大きな結晶粒の散乱によって、膜の反射率が低下する。   When an Ag—Sb alloy film is manufactured by performing heat treatment after film formation, if the temperature at the time of film formation is higher than 150 ° C., the film is already made of large crystal grains in the as depo. State. The film grows into larger crystal grains, and the reflectance of the film decreases due to scattering of the large crystal grains.

以上のように、本発明によれば、Agを主成分としてSbを含有させたAg−Sb合金ターゲットを用いて基板上にスパッタリング成膜したAg−Sb合金膜を熱処理(アニール)することにより、面内方向へ成長した大きい結晶粒を形成できるので、膜の結晶性が向上して移動度、伝導率が増加するのと同時に平坦性が保持され、Ag−Sb合金膜の反射率が向上する。しかも、結晶粒が面内方向に成長する際、合金中のSbが粒界に濃集されるので、耐熱性、耐塩水性、耐硫化性に優れた耐性を持つとともに、膜自体の低抵抗率化も実現できる。そのため、有機EL、太陽電池用反射膜(Si系など)、光記録ディスク、光学機器用反射ミラー、光通信機器用反射膜、熱線反射膜などに用いる配線電極として利用可能となる。   As described above, according to the present invention, by heat-treating (annealing) an Ag—Sb alloy film formed by sputtering on a substrate using an Ag—Sb alloy target containing Ag as a main component and containing Sb, Since large crystal grains grown in the in-plane direction can be formed, the crystallinity of the film is improved, the mobility and conductivity are increased, and at the same time, the flatness is maintained, and the reflectivity of the Ag—Sb alloy film is improved. . Moreover, when the crystal grains grow in the in-plane direction, Sb in the alloy is concentrated at the grain boundaries, so that it has excellent heat resistance, salt water resistance, sulfidation resistance and low resistivity of the film itself. Can also be realized. Therefore, it can be used as a wiring electrode used for an organic EL, a reflective film for a solar cell (such as Si), an optical recording disk, a reflective mirror for an optical device, a reflective film for an optical communication device, a heat ray reflective film, and the like.

as depo.状態のAg−Sb合金膜表面について、SEM、AFM、AESによる面分析により得られた画像を示す。The image obtained by the surface analysis by SEM, AFM, and AES is shown about the Ag-Sb alloy film surface of an as depo. state. 真空雰囲気中で熱処理された本発明に係るAg−Sb合金膜の表面について、SEM、AFM、AESによる面分析により得られた画像を示す。The image obtained by the surface analysis by SEM, AFM, and AES is shown about the surface of the Ag-Sb alloy film concerning the present invention heat-treated in a vacuum atmosphere. 大気中で熱処理された本発明に係るAg−Sb合金膜の表面について、SEM、AFM、AESによる面分析により得られた画像を示す。The image obtained by the surface analysis by SEM, AFM, and AES is shown about the surface of the Ag-Sb alloy film which concerns on this invention heat-processed in air | atmosphere.

つぎに、本発明のAg−Sb合金膜及びその製造方法について、以下に、真空雰囲気中で熱処理を施す場合と、N雰囲気中で熱処理を施す場合と、大気中で熱処理を施す場合とに分けて、実施例及び比較例を示して具体的に説明する。 Next, regarding the Ag—Sb alloy film of the present invention and the method for producing the same, the case where heat treatment is performed in a vacuum atmosphere, the case where heat treatment is performed in an N 2 atmosphere, and the case where heat treatment is performed in the air are described below. It divides and demonstrates concretely, showing an Example and a comparative example.

〔実施例1〜14〕
実施例1〜14は、真空雰囲気中で熱処理を施す場合である。Ag−Sb合金ターゲットを用いて、スパッタ法で、室温でガラス基板上に形成したAg−Sb合金膜を、真空雰囲気中で、1時間の熱処理を施し、実施例1〜14のAg−Sb合金膜を作製した。
[Examples 1 to 14]
Examples 1 to 14 are cases where heat treatment is performed in a vacuum atmosphere. The Ag—Sb alloy film formed on a glass substrate at room temperature by sputtering using an Ag—Sb alloy target was heat-treated in a vacuum atmosphere for 1 hour, and the Ag—Sb alloys of Examples 1 to 14 A membrane was prepared.

そして、各実施例と比較するため、上記実施例と同様にAg−Sb合金膜(as depo.状態)を成膜し、成膜後に熱処理を施さない場合の比較例1〜5のAg−Sb合金膜を作製した。
さらに、標準的なAg系の膜として、純Agターゲット、及びPdまたはCuが1.0at%含まれたAg−Pd、Ag−Cu合金ターゲットを用いて上記実施例と同様の作製方法で純Ag膜又はAg合金膜を作製し、比較例6〜11の膜とした。
And in order to compare with each Example, the Ag-Sb alloy film (as depo. State) was formed similarly to the said Example, and heat processing is not performed after film-forming. Ag-Sb of Comparative Examples 1-5 An alloy film was prepared.
Further, as a standard Ag-based film, pure Ag target, and Ag—Pd and Ag—Cu alloy target containing 1.0 at% of Pd or Cu are used to produce pure Ag by the same production method as in the above example. A film or an Ag alloy film was produced and used as films of Comparative Examples 6-11.

なお、Ag−Sb合金膜、Ag−Pd合金膜、Ag−Cu合金膜および純Ag膜のスパッタ成膜条件を以下に示す。
(スパッタリング成膜条件)
スパッタリング装置:DCマグネトロンスパッタ装置(アルバック社製 CS−200)
磁界強度:1000Gauss(ターゲット直上、垂直成分)
到達真空度:<5×10−5Pa
スパッタリングガス:Ar
スパッタリングガス圧:0.5Pa
スパッタリングパワー:DC200W
基板:50×50×1mmt 無アルカリガラス
膜厚:100nm
Note that sputtering conditions for an Ag—Sb alloy film, an Ag—Pd alloy film, an Ag—Cu alloy film, and a pure Ag film are shown below.
(Sputtering film formation conditions)
Sputtering device: DC magnetron sputtering device (ULVAC CS-200)
Magnetic field intensity: 1000 Gauss (directly above the target, vertical component)
Ultimate vacuum: <5 × 10 −5 Pa
Sputtering gas: Ar
Sputtering gas pressure: 0.5 Pa
Sputtering power: DC200W
Substrate: 50 × 50 × 1 mmt Non-alkali glass film thickness: 100 nm

実施例1〜14のいずれの膜も、結晶粒の面内方向のサイズが100nm以上あり、面粗さRaが2nm以下であり、結晶粒の粒界に、SbとOが濃集していることをSEM、AFM、AESによる面分析により確認した。また、実施例1〜14及び比較例1〜11の膜について、表面の結晶粒内と結晶粒界におけるSbとOの濃度をAESによる定量分析により求めた。その結果を表1、2に示す。
ここで、表面形状は、AFM(セイコーインスッル社製の原子間力顕微鏡、SPI4000)を用いて測定した。SEM観察、表面の元素分布及び元素濃度の分析は、SEM観察機能が備わったAES(アルバック・ファイ社製のオージェ電子分光装置、PHI 700)を用いて測定した。
In any of the films of Examples 1 to 14, the in-plane direction size of the crystal grains is 100 nm or more, the surface roughness Ra is 2 nm or less, and Sb and O are concentrated at the grain boundaries of the crystal grains. This was confirmed by surface analysis using SEM, AFM, and AES. Moreover, about the film | membrane of Examples 1-14 and Comparative Examples 1-11, the density | concentration of Sb and O in the surface crystal grain and a crystal grain boundary was calculated | required by the quantitative analysis by AES. The results are shown in Tables 1 and 2.
Here, the surface shape was measured using AFM (Atomic Force Microscope manufactured by Seiko Instruments Inc., SPI4000). SEM observation, surface element distribution, and analysis of element concentration were measured using AES (Auger Electron Spectrometer manufactured by ULVAC-PHI, PHI 700) equipped with an SEM observation function.



次に、実施例1〜14、比較例1〜11の膜について、抵抗率、反射率、耐性試験後の反射率を測定した。反射率は、分光光度計(日立ハイテクノロジーズ社製の分光光度計、U4100)を用い、波長が400〜800nmの光を用いて測定したが、代表的な波長である400nm、550nm、700nmでの反射率で示した。また、耐性に関して、耐熱試験(300℃、1時間、大気中アニール)、耐硫化試験(0.01at%のNaS溶液に1時間浸漬)、耐塩水試験(5at%のNaCl溶液に12時間浸漬)を実施した後に、波長が400〜800nmの光を用いて、試験後の反射率を測定した。試験後の反射率については、400〜800nmの波長範囲での平均反射率で示した。これらの測定結果が、表3,4に示されている。 Next, with respect to the films of Examples 1 to 14 and Comparative Examples 1 to 11, the resistivity, the reflectance, and the reflectance after the resistance test were measured. The reflectance was measured using a spectrophotometer (Hitachi High-Technologies spectrophotometer, U4100) using light having a wavelength of 400 to 800 nm, but the typical wavelengths are 400 nm, 550 nm, and 700 nm. The reflectance is shown. In addition, regarding heat resistance, heat resistance test (300 ° C., 1 hour, annealing in air), sulfidation resistance test (immersion in 0.01 at% Na 2 S solution for 1 hour), salt resistance test (12 hours in 5 at% NaCl solution) After the immersion), the reflectance after the test was measured using light having a wavelength of 400 to 800 nm. About the reflectance after a test, it showed by the average reflectance in the wavelength range of 400-800 nm. These measurement results are shown in Tables 3 and 4.



〔実施例15〜28〕
実施例15〜28は、N雰囲気中で熱処理を施す場合である。これらの実施例では、真空雰囲気をN雰囲気に代えた以外、実施例1〜14と同様の手順に従って、Ag−Sb合金膜を作製し、評価した。作製条件と評価の結果を、表5および表6に示す。
[Examples 15 to 28]
Examples 15 to 28 are cases where heat treatment is performed in an N 2 atmosphere. In these examples, an Ag—Sb alloy film was prepared and evaluated according to the same procedure as in Examples 1 to 14 except that the vacuum atmosphere was changed to an N 2 atmosphere. Production conditions and evaluation results are shown in Tables 5 and 6.



〔実施例29〜42〕
実施例29〜42は、大気雰囲気中で熱処理を施す場合である。これらの実施例では、真空雰囲気を大気雰囲気に代えた以外、実施例1〜14と同様の手順に従って、Ag−Sb合金膜を作製し、評価した。作製条件と評価の結果を、表7および表8に示す。
[Examples 29 to 42]
Examples 29 to 42 are cases where heat treatment is performed in an air atmosphere. In these examples, an Ag—Sb alloy film was prepared and evaluated according to the same procedure as in Examples 1 to 14 except that the vacuum atmosphere was changed to an air atmosphere. The production conditions and the results of evaluation are shown in Table 7 and Table 8.



表1〜8に示された結果によれば、実施例の膜は、少なくとも比較例の膜の抵抗率と同等かそれより低く、低抵抗率化を図ることができた。また、反射率に関しても、いずれも400〜700nmの波長範囲で、as depo.状態の純Ag膜と同等かそれ以上の反射率が計測され、反射率の向上が見られた。さらに、耐熱試験、耐硫化試験、耐塩水試験を実施したそれぞれの後に測定された実施例の膜の平均反射率は、比較例の膜の平均反射率と同等かそれより高くなっている。このことは、実施例の膜が、熱処理により、耐性が向上したことを示している。   According to the results shown in Tables 1 to 8, the film of the example was at least equal to or lower than the resistivity of the film of the comparative example, and a low resistivity could be achieved. In addition, regarding the reflectance, in the wavelength range of 400 to 700 nm, a reflectance equal to or higher than that of a pure Ag film in an as depo. State was measured, and an improvement in reflectance was observed. Furthermore, the average reflectance of the film of the example measured after each of the heat resistance test, the sulfurization resistance test, and the salt water resistance test is equal to or higher than the average reflectance of the film of the comparative example. This indicates that the film of the example has improved resistance by the heat treatment.

さらに詳細を述べると、Sbの添加濃度が0.5at%と低いときには、100℃の温度で熱処理を施した場合でも、そのAg−Sb合金膜の反射率は、他の実施例と遜色ない結果が得られている。これは、Sbの濃度が低いと、低温でも結晶粒の成長が促進され、抵抗率の低下と反射率の向上とが起こると考えられる。   More specifically, when the additive concentration of Sb is as low as 0.5 at%, even when heat treatment is performed at a temperature of 100 ° C., the reflectance of the Ag—Sb alloy film is comparable to the other examples. Is obtained. This is considered to be because when the Sb concentration is low, the growth of crystal grains is promoted even at a low temperature, and a decrease in resistivity and an increase in reflectance occur.

また、Sbの添加濃度が1.0at%のとき、200〜400℃の温度で熱処理を施した実施例では、耐熱性、耐硫化性、耐塩水性のいずれにおいても良好な結果が得られた。一方、150℃以下の温度で熱処理を施した実施例では、結晶粒の成長が十分でなく、抵抗率が低下せず、450℃以上の温度で熱処理が施された場合には、大きな結晶粒成長が起こって膜の表面の凹凸が大きくなり反射率が低めであった。   Moreover, in the example which heat-processed at the temperature of 200-400 degreeC when the addition density | concentration of Sb was 1.0 at%, the favorable result was obtained in any of heat resistance, sulfidation resistance, and salt water resistance. On the other hand, in the example in which the heat treatment was performed at a temperature of 150 ° C. or less, the crystal grains did not grow sufficiently, the resistivity did not decrease, and when the heat treatment was performed at a temperature of 450 ° C. or more, large crystal grains As the growth occurred, the irregularities on the surface of the film increased and the reflectivity was low.

さらに、Sbの添加濃度が、2.0at%と高い場合、500℃の温度で熱処理した場合でも、そのAg−Sb合金膜の反射率は、他の実施例と遜色ない結果が得られている。これは、Sb濃度が高いと、高温の熱処理でも、結晶の成長が抑制され、表面凹凸が大きくならないためと考えられる。一方、150℃の熱処理では、Sbの濃度が高く結晶の成長が十分起こらないため、抵抗が下がらず、反射率が低めであった。   Further, when the additive concentration of Sb is as high as 2.0 at%, even when heat treatment is performed at a temperature of 500 ° C., the reflectance of the Ag—Sb alloy film is inferior to other examples. . This is presumably because, when the Sb concentration is high, crystal growth is suppressed even in high-temperature heat treatment, and the surface unevenness does not increase. On the other hand, in the heat treatment at 150 ° C., the concentration of Sb is high and crystal growth does not occur sufficiently, so that the resistance is not lowered and the reflectance is low.

表1〜8に示された結果によれば、実施例の膜では、いずれも表面に2.7at%以上のSb,Oが存在し、ターゲットの最大濃度2.5at%よりも大きく、表面にSbが濃集していることが分かる。さらに、その表面において、結晶粒界の方が結晶粒内よりもSb濃度が0.6at%以上高く、結晶粒界にSbが濃集していることが分かる。   According to the results shown in Tables 1 to 8, in the films of the examples, Sb, O of 2.7 at% or more is present on the surface, and the maximum concentration of the target is larger than 2.5 at%. It can be seen that Sb is concentrated. Further, it can be seen that the Sb concentration is 0.6 at% or more higher in the crystal grain boundary than in the crystal grain on the surface, and Sb is concentrated in the crystal grain boundary.

以上のように、実施例のAg−Sb合金膜によれば、Agを主成分としてSbを含有させたAg−Sb合金ターゲットを用いて基板上にスパッタリング成膜したAg−Sb合金膜を熱処理(アニール)することにより、結晶粒の面内方向への成長が促進されて、大きな結晶粒が形成できたので、結晶性が向上して移動度、伝導率が増加するのと同時に膜の平坦性が保持され、熱処理されたAg−Sb合金膜の反射率が、as depo.状態の純Ag膜、Ag―Pd、Ag−Cu及びAg―Sb合金膜の場合より向上することが確認できた。さらに、結晶粒が面内方向に成長する際、合金結晶粒内のSbが粒界に濃集されるので、耐熱性、耐塩水性、耐硫化性に優れた耐性を持つとともに、膜自体の抵抗率を低下させることが確認された。そのため、本発明によるAg−Sb合金膜は、有機EL、太陽電池用反射膜(Si系など)、光記録ディスク、光学機器用反射ミラー、光通信機器用反射膜、熱線反射膜などに用いる反射膜、液晶やタッチパネルなどに用いる配線電極膜として好適であり、産業上優れたものである。   As described above, according to the Ag—Sb alloy film of the example, the Ag—Sb alloy film formed by sputtering on the substrate using the Ag—Sb alloy target containing Ag as a main component and containing Sb is heat-treated ( Annealing) promoted the growth of crystal grains in the in-plane direction, and formed large crystal grains. As a result, crystallinity was improved and mobility and conductivity were increased. It was confirmed that the reflectance of the Ag—Sb alloy film that was retained and heat-treated was improved as compared with the pure Ag film, Ag—Pd, Ag—Cu, and Ag—Sb alloy film in the as depo. Furthermore, when the crystal grains grow in the in-plane direction, Sb in the alloy crystal grains is concentrated at the grain boundary, so that the film has excellent resistance to heat resistance, salt water resistance, and sulfidation resistance, and the resistance of the film itself. It was confirmed that the rate was lowered. Therefore, the Ag—Sb alloy film according to the present invention is used for organic EL, solar cell reflective films (Si-based, etc.), optical recording disks, optical equipment reflective mirrors, optical communication equipment reflective films, heat ray reflective films, and the like. It is suitable as a wiring electrode film used for a film, a liquid crystal, a touch panel, etc., and is industrially excellent.

Claims (4)

Agを主成分とし、Sbを含有するAg−Sb合金膜であって、
前記Sbが、Ag−Sb合金膜の表面及び結晶粒界に濃集していることを特徴とするAg−Sb合金膜。
An Ag—Sb alloy film containing Ag as a main component and containing Sb,
The Ag-Sb alloy film, wherein the Sb is concentrated on the surface of the Ag-Sb alloy film and the crystal grain boundary.
前記Sbは、0.5〜2.0at%含有されていることを特徴とする請求項1に記載のAg−Sb合金膜。   2. The Ag—Sb alloy film according to claim 1, wherein the Sb is contained in an amount of 0.5 to 2.0 at%. Agを主成分とし、Sbを含有するAg−Sb合金ターゲットを用いて基板上にスパッタリングしてAg合金膜を成膜し、成膜されたAg−Sb合金膜を熱処理することを特徴とするAg合金膜の形成方法。   Ag is formed by sputtering an Ag alloy film on a substrate using an Ag—Sb alloy target containing Ag as a main component and containing Sb, and heat-treating the formed Ag—Sb alloy film. Method for forming an alloy film. 前記熱処理の温度は、150〜450℃であることを特徴とする請求項3に記載のAg−Sb合金膜の形成方法。


The method of forming an Ag-Sb alloy film according to claim 3, wherein the temperature of the heat treatment is 150 to 450 ° C.


JP2012081961A 2012-03-30 2012-03-30 Ag alloy film and method for forming the same Expired - Fee Related JP5920659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081961A JP5920659B2 (en) 2012-03-30 2012-03-30 Ag alloy film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081961A JP5920659B2 (en) 2012-03-30 2012-03-30 Ag alloy film and method for forming the same

Publications (2)

Publication Number Publication Date
JP2013209724A true JP2013209724A (en) 2013-10-10
JP5920659B2 JP5920659B2 (en) 2016-05-18

Family

ID=49527815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081961A Expired - Fee Related JP5920659B2 (en) 2012-03-30 2012-03-30 Ag alloy film and method for forming the same

Country Status (1)

Country Link
JP (1) JP5920659B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151554A (en) * 2014-02-10 2015-08-24 三菱マテリアル株式会社 SPUTTERING TARGET FOR FORMING Ag ALLOY FILM AND Ag ALLOY FILM
JP2015178239A (en) * 2014-03-19 2015-10-08 三菱マテリアル株式会社 laminated film
KR20220107191A (en) 2019-12-02 2022-08-02 미쓰비시 마테리알 가부시키가이샤 Ag alloy film, Ag alloy sputtering target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263290A (en) * 2002-08-09 2004-09-24 Kobe Steel Ltd Electromagnetic-shielding ag alloy film, electromagnetic-shielding ag alloy film formed body, and ag alloy sputtering target for depositing electromagnetic-shielding ag alloy film
JP2006037169A (en) * 2004-07-27 2006-02-09 Furuya Kinzoku:Kk Silver alloy, sputtering target thereof and thin film thereby
JP2006284880A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Light reflecting film and light reflector
WO2006132414A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy having excellent reflectivity/transmissivity maintaining characteristics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263290A (en) * 2002-08-09 2004-09-24 Kobe Steel Ltd Electromagnetic-shielding ag alloy film, electromagnetic-shielding ag alloy film formed body, and ag alloy sputtering target for depositing electromagnetic-shielding ag alloy film
JP2006037169A (en) * 2004-07-27 2006-02-09 Furuya Kinzoku:Kk Silver alloy, sputtering target thereof and thin film thereby
JP2006284880A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Light reflecting film and light reflector
WO2006132414A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy having excellent reflectivity/transmissivity maintaining characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151554A (en) * 2014-02-10 2015-08-24 三菱マテリアル株式会社 SPUTTERING TARGET FOR FORMING Ag ALLOY FILM AND Ag ALLOY FILM
JP2015178239A (en) * 2014-03-19 2015-10-08 三菱マテリアル株式会社 laminated film
KR20220107191A (en) 2019-12-02 2022-08-02 미쓰비시 마테리알 가부시키가이샤 Ag alloy film, Ag alloy sputtering target

Also Published As

Publication number Publication date
JP5920659B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
TWI527919B (en) Ag alloy film for reflective electrode and reflective electrode
JP4888119B2 (en) Transparent conductive film and method for producing the same, transparent conductive substrate, and light-emitting device
TWI513834B (en) Transparent conductive film
Kim et al. Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices
TWI485269B (en) A silver alloy film used for a reflective film and / or a film, or an electrical wiring and / or an electrode, and a silver alloy sputtering target and a silver alloy filler
US20170330643A1 (en) Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target
JP5920659B2 (en) Ag alloy film and method for forming the same
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
JP5928218B2 (en) Ag alloy film and manufacturing method thereof
TWI485270B (en) Sputtering target for forming ag alloy film, ag alloy film, ag alloy reflecting film, ag alloy conducting film, and ag alloy semitransmitting film
Zhang et al. Optimization of photoelectric properties and temporal stability of AZO/Ti/Cu/AZO films by insertion of Ti layer for low emissivity applications
JP6375658B2 (en) Laminated film
KR20150022704A (en) Silver alloy material
TWI530573B (en) Silver alloy material
TW201538754A (en) Ag alloy film, Ag alloy reflective film, Ag alloy conductive film and Ag alloy semi-transmissive film
JP2021143418A (en) Laminated film
JP2004204254A (en) Ag ALLOY FILM, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION
TW201815567A (en) Reflection electrode and al alloy sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160331

R150 Certificate of patent or registration of utility model

Ref document number: 5920659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees