JP2013208544A - Degassing composite hollow yarn membrane and hollow yarn membrane module - Google Patents

Degassing composite hollow yarn membrane and hollow yarn membrane module Download PDF

Info

Publication number
JP2013208544A
JP2013208544A JP2012080260A JP2012080260A JP2013208544A JP 2013208544 A JP2013208544 A JP 2013208544A JP 2012080260 A JP2012080260 A JP 2012080260A JP 2012080260 A JP2012080260 A JP 2012080260A JP 2013208544 A JP2013208544 A JP 2013208544A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
layer
composite hollow
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012080260A
Other languages
Japanese (ja)
Other versions
JP6370021B2 (en
Inventor
Noritaka Shibata
規孝 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012080260A priority Critical patent/JP6370021B2/en
Publication of JP2013208544A publication Critical patent/JP2013208544A/en
Application granted granted Critical
Publication of JP6370021B2 publication Critical patent/JP6370021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a degassing composite hollow yarn membrane excellent in gas permeability, less susceptible to influence due to pressure variation or the like during use and capable of obtaining stable degassing performance, to provide a method for manufacturing the degassing composite hollow yarn membrane, and to provide a hollow yarn membrane module.SOLUTION: In a composite hollow yarn membrane having a nonporous homogenous layer capable of permeating gas and a porous support layer for supporting the homogenous layer, the composite hollow yarn membrane is formed as a concentric cylindrical structure having three or more layers and the homogenous layer is arranged in an area of film thickness of 1/10 to 1/4 from the inside in a film thickness direction. By the degassing composite hollow yarn membrane, excellent gas permeability can be obtained, influence due to pressure variation or the like during operation is less susceptible and stable degassing performance can be obtained.

Description

本発明は、脱気複合中空糸膜及びその製造方法、並びに脱気複合中空糸膜を具備する中空糸膜モジュールに関する。   The present invention relates to a deaerated composite hollow fiber membrane, a method for producing the same, and a hollow fiber membrane module including the deaerated composite hollow fiber membrane.

脱気用中空糸膜モジュールは、例えば、水溶液、有機溶剤を主成分とするインクジェット用インク、レジスト液の製造工程、プリンター内における流路等における溶存ガスの脱気に用いることができる。
中空糸膜モジュールは、数百〜数万本の中空糸膜の束を整束し、その中空糸膜束を例えば筒状の形状のハウジングケース内に収納して、その端部をポッティング材(樹脂)で接着固定した構成を有する。前記接着固定方法としては、特に樹脂の充填率が高くなることから、遠心力を利用して液状の未硬化樹脂を中空糸膜間に浸透させた後に硬化させる遠心法が多く用いられる。中空糸膜モジュールにおけるポッティング材としては、耐溶剤性の観点からエポキシ樹脂が用いられている。
The degassing hollow fiber membrane module can be used, for example, for degassing of dissolved gas in an aqueous solution, an inkjet ink mainly composed of an organic solvent, a resist solution manufacturing process, a flow path in a printer, and the like.
A hollow fiber membrane module bundles bundles of hundreds to tens of thousands of hollow fiber membranes, and the hollow fiber membrane bundles are accommodated in, for example, a cylindrical housing case, and an end portion thereof is potted ( Resin). As the adhesive fixing method, since the filling rate of the resin is particularly high, a centrifugal method in which a liquid uncured resin is infiltrated between the hollow fiber membranes using a centrifugal force and then cured is often used. An epoxy resin is used as a potting material in the hollow fiber membrane module from the viewpoint of solvent resistance.

このような中空糸膜モジュールの使用方法としては、例えば、中空糸膜の内部に対象とする液を送液しながら、中空糸膜の外部を減圧することにより、中空糸膜が有する空隙から除去対象物を除去する方法等が挙げられる。この場合、ポッティング材である樹脂が硬化して中空糸膜の端部を接着固定したポッティング部(封止樹脂層)に、対象液の送液による送液方向への圧力と、中空糸膜外部の減圧による減圧方向への引力とが加わる。
中空糸膜がポッティング近傍でハウジングケースに接触すると、ハウジングケースの内壁と中空糸膜との間で、毛細管現象によりポッティング材が中空糸膜の長さ方向中央部に向かって這い上がることがある。これにより形成される樹脂這い上がり部では、中空糸膜がハウジングケースに接着されるため、この部分でもポッティング材の硬化時に前記と同様の剥離が引き起こされてリークに繋がることがあった。
As a method of using such a hollow fiber membrane module, for example, by removing the outside of the hollow fiber membrane while feeding the target liquid into the hollow fiber membrane, the hollow fiber membrane is removed from the voids of the hollow fiber membrane. Examples include a method for removing an object. In this case, the potting material (sealing resin layer) in which the resin as the potting material is cured and the ends of the hollow fiber membrane are bonded and fixed to the pressure in the liquid feeding direction by the liquid feeding of the target liquid, and the outside of the hollow fiber membrane And an attractive force in the pressure reducing direction due to the pressure reduction.
When the hollow fiber membrane comes into contact with the housing case in the vicinity of potting, the potting material may creep up toward the center in the length direction of the hollow fiber membrane between the inner wall of the housing case and the hollow fiber membrane due to capillary action. Since the hollow fiber membrane is adhered to the housing case at the resin creeping-up portion formed by this, the same peeling as that described above may be caused at the time of hardening of the potting material, leading to leakage.

その対策として中空糸膜モジュールの前記中空糸束の端部付近に、中空糸束の太さを規制する部材としてOリングを設けることで硬化収縮などに伴う応力を緩和できることが例示されている(特許文献1)。
気体透過膜では、ポリ−4−メチル−1−ペンテンを主成分とする結晶性熱可塑性樹脂を中空糸状に溶融押出した後、延伸することにより得られる中空糸膜において、中空糸膜が外表面にのみ面積開孔率が3%以下で結晶化度が55%以上の緻密層を有し、且つ膜内部に多孔質層を有するものが例示されている(特許文献1)。
As a countermeasure, it is exemplified that stress associated with curing shrinkage can be relaxed by providing an O-ring as a member for regulating the thickness of the hollow fiber bundle near the end of the hollow fiber bundle of the hollow fiber membrane module ( Patent Document 1).
In the gas permeable membrane, the hollow fiber membrane is obtained by melt-extruding a crystalline thermoplastic resin mainly composed of poly-4-methyl-1-pentene into a hollow fiber shape and then stretching the hollow fiber membrane. Only those having a dense layer with an area open area ratio of 3% or less and a crystallinity of 55% or more and a porous layer inside the film are exemplified (Patent Document 1).

多重円筒型紡糸ノズルを用いて、結晶性の熱可塑性重合体とそれと非晶性で融着性を有する重合体とを2層に配して溶融複合紡糸・延伸して結晶性重合体から成る層のみを多孔質化し、多孔質層と非多孔質層の2層からなる中空糸複合膜が例示されている(特許文献2)。
気体透過膜はその特有の構造から、ポッティング部(封止樹脂層)近傍に、対象液の送液による送液方向への圧力と、中空糸膜外部の減圧による減圧方向への引力とが加わり、その繰り返し応力変動によりポッティング部近傍で破損することが見られる。
その非多孔質層がポッティング樹脂の含浸を阻止するためにポッティング界面付近のアンカー効果が十分に発揮できないという問題があった。
Using a multi-cylindrical spinning nozzle, a crystalline thermoplastic polymer and an amorphous and fusible polymer are arranged in two layers and melt-combined and drawn to form a crystalline polymer. There is exemplified a hollow fiber composite membrane in which only a layer is made porous and is composed of two layers of a porous layer and a non-porous layer (Patent Document 2).
Due to its unique structure, the gas permeable membrane is applied near the potting part (sealing resin layer) with a pressure in the liquid feeding direction due to the feeding of the target liquid and an attractive force in the pressure reducing direction due to the decompression outside the hollow fiber membrane. It can be seen that breakage occurs near the potting portion due to the repeated stress fluctuation.
Since the non-porous layer prevents impregnation of the potting resin, there is a problem that the anchor effect near the potting interface cannot be sufficiently exhibited.

特開2011−136276号公報JP 2011-136276 A 特開平6−210146号公報JP-A-6-210146 特開平7−116483号公報Japanese Patent Application Laid-Open No. 7-116483

特許文献2の複合中空糸膜は、膜の外表面に非多孔質層を有するためポッティング樹脂によるアンカー効果がないため、運用時の圧力変動などによる影響を受けて損傷する可能性があった。
特許文献3の複合中空糸膜には、膜の内表面側に非多孔質層を配する例が開示されている。ポッティング樹脂のアンカー効果は期待されるが、溶融延伸法の製膜時において内層側に非晶性のポリマーを配すると、非結晶性ポリマーの方が多孔質層を形成する結晶性ポリマーに比べ熱変形温度が低いために膜の変形などを招き、非多孔質層の膜厚を制御することが難しく、リークなどを発生する問題を有していた。また三層構造に於いてもモジュールの耐久性の検知から気体分離層をどこに配置するかについては十分に検討されていなかった。
本発明は、気体透過性に優れ、運用時の圧力変動などによる影響を受けにくく安定した脱気性能を得ることができる脱気複合中空糸膜及びその製造方法、並びに前記中空糸膜を含む中空糸膜モジュールを提供することを課題とするものである。
Since the composite hollow fiber membrane of Patent Document 2 has a non-porous layer on the outer surface of the membrane and has no anchoring effect due to the potting resin, there is a possibility that the composite hollow fiber membrane may be damaged by being affected by pressure fluctuation during operation.
The composite hollow fiber membrane of Patent Document 3 discloses an example in which a non-porous layer is disposed on the inner surface side of the membrane. Although the anchoring effect of potting resin is expected, when an amorphous polymer is placed on the inner layer side during film formation by the melt drawing method, the amorphous polymer is more heat-resistant than the crystalline polymer that forms the porous layer. Since the deformation temperature is low, the film is deformed, and it is difficult to control the film thickness of the non-porous layer, which causes problems such as leakage. Even in the case of the three-layer structure, the location of the gas separation layer has not been sufficiently studied from the detection of the durability of the module.
The present invention is a degassing composite hollow fiber membrane that is excellent in gas permeability, is less affected by pressure fluctuations during operation, and can obtain stable degassing performance, a method for producing the same, and a hollow including the hollow fiber membrane It is an object of the present invention to provide a yarn membrane module.

本発明は、以下の構成により前記課題を解決した。
気体を透過する非多孔質の均質層と、該均質層を支持する多孔質支持層とを有する複合中空糸膜において、前記複合中空糸膜を同心円筒状の3層以上の構造とし、前記均質層を、最内面から膜厚方向に膜厚に対して1/10〜1/4の領域に配置することにより、気体透過性に優れ、運用時の圧力変動などによる影響を受けにくく安定した脱気性能を得ることができた。
すなわち、本発明は以下を提供する。
[1]気体を透過する非多孔質の均質層と、該均質層を支持する多孔質支持層とを有する3層以上からなる同心円筒状の複合中空糸膜であって、前記均質層が、膜厚方向に内側から膜厚の1/10〜1/4の領域に配置されていることを特徴とする脱気複合中空糸膜。
[2]均質層の厚さが0.5〜10μmであることを特徴とする[1]記載の脱気複合中空糸膜。
[3]中空糸膜外径が100〜2000μmであることを特徴とする[1]または[2]記載の脱気複合中空糸膜。
[4]上記[1]〜[3]のいずれか一に記載の脱気複合中空糸膜を具備する中空糸膜モジュール。
[5]前記脱気複合中空糸膜束がハウジングケース内に収納されており、前記脱気複合中空糸膜束の少なくとも両先端部がポッティング樹脂により前記ハウジングケースに接着固定された構成を有する[4]記載の中空糸膜モジュール。
The present invention has solved the above problems by the following configuration.
A composite hollow fiber membrane having a non-porous homogeneous layer that transmits gas and a porous support layer that supports the homogeneous layer, wherein the composite hollow fiber membrane has a structure of three or more concentric cylinders, and the homogeneous By disposing the layer in the region of 1/10 to 1/4 of the film thickness from the innermost surface in the film thickness direction, it has excellent gas permeability and is not easily affected by pressure fluctuations during operation. Qi performance was able to be obtained.
That is, the present invention provides the following.
[1] A concentric cylindrical composite hollow fiber membrane comprising three or more layers having a gas-permeable non-porous homogeneous layer and a porous support layer supporting the homogeneous layer, wherein the homogeneous layer comprises: A degassed composite hollow fiber membrane, wherein the membrane is disposed in an area of 1/10 to 1/4 of the film thickness from the inside in the film thickness direction.
[2] The degassed composite hollow fiber membrane according to [1], wherein the thickness of the homogeneous layer is 0.5 to 10 μm.
[3] The degassed composite hollow fiber membrane according to [1] or [2], wherein the outer diameter of the hollow fiber membrane is 100 to 2000 μm.
[4] A hollow fiber membrane module comprising the degassed composite hollow fiber membrane according to any one of [1] to [3] above.
[5] The deaerated composite hollow fiber membrane bundle is housed in a housing case, and at least both ends of the deaerated composite hollow fiber membrane bundle are bonded and fixed to the housing case with a potting resin. [4] The hollow fiber membrane module according to [4].

本発明の脱気複合中空糸膜を用いたモジュールは、ポッティング材の硬化収縮に伴う応力を充分に緩和することで、圧力変動に伴う膜の破損などの影響を抑制することができる。また、それにより長期的に安定して中空糸膜モジュールの機能を発揮できる。   The module using the deaerated composite hollow fiber membrane of the present invention can sufficiently suppress the stress accompanying the shrinkage of the potting material, thereby suppressing the influence of the membrane breakage due to the pressure fluctuation. Further, the function of the hollow fiber membrane module can be exhibited stably for a long time.

(a)実施例1及び2の複合中空糸膜の模式図を示す。(b)実施例1及び2の複合中空糸膜の模式的断面図を示す。(a) The schematic diagram of the composite hollow fiber membrane of Examples 1 and 2 is shown. (b) A schematic cross-sectional view of the composite hollow fiber membranes of Examples 1 and 2 is shown. 比較例1の中空糸膜の模式的断面図を示す。The typical sectional view of the hollow fiber membrane of comparative example 1 is shown. 比較例2の中空糸膜の模式的断面図を示す。The typical sectional view of the hollow fiber membrane of comparative example 2 is shown. 比較例3の中空糸膜の模式的断面図を示す。The typical sectional view of the hollow fiber membrane of comparative example 3 is shown. 比較例4の中空糸膜の模式的断面図を示す。The typical sectional view of the hollow fiber membrane of comparative example 4 is shown.

(脱気複合中空糸膜)
本発明の脱気複合中空糸膜(以下、「本複合中空糸膜」ともいう。)は、気体を透過する非多孔質の均質層と、該均質層を支持する多孔質支持層とを有する3層以上の層からなる複合中空糸膜である。
以下、均質層に含まれるポリマーを「ポリマーA」、多孔質支持層に含まれるポリマーを「ポリマーB」という。
(Degassing composite hollow fiber membrane)
The deaerated composite hollow fiber membrane of the present invention (hereinafter also referred to as “the present composite hollow fiber membrane”) has a non-porous homogeneous layer that allows gas to pass through and a porous support layer that supports the homogeneous layer. It is a composite hollow fiber membrane composed of three or more layers.
Hereinafter, the polymer contained in the homogeneous layer is referred to as “polymer A”, and the polymer contained in the porous support layer is referred to as “polymer B”.

(均質層)
本発明の特徴は、3層以上からなる同心円筒状の複合中空糸膜における気体透過能を有する非多孔質均質層(分離層)の位置を、中空糸膜の最内面から膜厚方向に中空糸膜厚d1の1/10〜1/4の範囲内に配置することである。本明細書において「均質層の位置」とは、中空糸の最内面から、非多孔質均質層の前記最内面に最も近い端面までの距離を意味する(図1のd2)。均質層の位置が、中空糸膜の内側から膜厚方向に1/10〜1/4の範囲内にあるとは、(中空糸最内面から非多孔質均質層の最内面に最も近い端面までの距離d2):(中空糸膜厚d1)が1;10〜1:4であることを意味する。
モジュールに加工した際には、膜の外周方向からポッティング樹脂が含浸しアンカー効果を生じる。非多孔質均質層は非多孔質構造なのでポッティング樹脂がそれより内側に含浸していくことはなく、ポッティング樹脂に包埋されている領域が多いほどポッティング部近傍における圧力変動に伴う屈曲などによる膜の破損を防止することができる。また、非多孔質均質層の内側の多孔質支持層の位置を膜厚の1/10以下の領域にすると、多孔質支持層ポリマーを多孔化するための延伸工程において非多孔質均質層ポリマーが溶着している内層の多孔質支持層ポリマーに引きずられて欠陥を生じる為に好ましくない。
1/4以上の領域にするとポッティング樹脂の包埋領域が少なくなり屈曲などの影響を受けて破損するため好ましくない。
(Homogeneous layer)
The feature of the present invention is that the position of a non-porous homogeneous layer (separation layer) having gas permeability in a concentric cylindrical composite hollow fiber membrane composed of three or more layers is hollowed from the innermost surface of the hollow fiber membrane in the film thickness direction. It is arranged within the range of 1/10 to 1/4 of the yarn film thickness d1. In the present specification, the “position of the homogeneous layer” means a distance from the innermost surface of the hollow fiber to the end surface closest to the innermost surface of the non-porous homogeneous layer (d2 in FIG. 1). The position of the homogeneous layer is in the range of 1/10 to 1/4 in the film thickness direction from the inside of the hollow fiber membrane (from the innermost surface of the hollow fiber to the end surface closest to the innermost surface of the non-porous homogeneous layer) Distance d2): (hollow fiber film thickness d1) is 1;
When processed into a module, the potting resin is impregnated from the outer peripheral direction of the membrane to produce an anchor effect. Since the non-porous homogeneous layer has a non-porous structure, the potting resin will not be impregnated on the inside, and the more the area embedded in the potting resin, the more the membrane will be bent due to pressure fluctuations in the vicinity of the potting part. Can be prevented from being damaged. Further, when the position of the porous support layer inside the non-porous homogeneous layer is set to a region of 1/10 or less of the film thickness, the non-porous homogeneous layer polymer is formed in the stretching step for making the porous support layer polymer porous. This is not preferable because the inner porous support layer polymer is welded to cause defects.
If the area is 1/4 or more, the potting resin embedding area is reduced, and it is not preferable because it is damaged by bending or the like.

均質層の厚さは、0.5〜10μmが好ましい。均質層の厚さが0.5μm以上であれば、耐圧性が向上することと、特に多孔質層を形成するポリマーBとの融着距離以上でないと均質層を形成するポリマーAのみからなる領域を確保することができず十分な気体透過性を得ることができない。均質層の厚さが10μm以上であれば、気体分離能を満足することができるが、気体透過量が低下するため好ましくない。   The thickness of the homogeneous layer is preferably 0.5 to 10 μm. If the thickness of the homogeneous layer is 0.5 μm or more, the pressure resistance is improved, and in particular, the region consisting only of the polymer A that forms the homogeneous layer unless the fusion distance with the polymer B that forms the porous layer is greater than the distance. Cannot be ensured, and sufficient gas permeability cannot be obtained. If the thickness of the homogeneous layer is 10 μm or more, the gas separation ability can be satisfied, but the amount of gas permeation decreases, which is not preferable.

均質層は、気体を透過する非多孔質層である。
本明細書において「気体を透過する」あるいは「気体透過性」とは、液体などを透過することなく気体のみを透過する特性、例えば水は透過しないが、水蒸気は透過する膜を意味する。
本明細書において「非多孔質」とは、実質的に孔径がマイクロメートルオーダーの孔が無く内部が樹脂で詰まった中実の状態を意味する。
このような均質層としては、後述するポリマーAを主成分とする層であることが好ましい。ポリマーAを主成分とする層とは、ポリマーAの含有量が90質量%以上の層である。ポリマーAを主成分とする層におけるポリマーAの含有量は、95質量%以上が好ましく、99質量%以上がより好ましく、100質量%が特に好ましい。
ポリマーAとしては、オレフィンモノマーを主体として得た重合体が挙げられる。オレフィンモノマーのみを用いて得た重合体であってもよいし、オレフィンモノマーと他のモノマーの共重合体であってもよいし、それらの変性樹脂であってもよい。
本発明におけるオレフィンブロック共重合体において、エチレン単位含有量は、好ましくは25〜97モル%、より好ましくは40〜96モル%、さらにより好ましくは55〜95モル%である。
本発明におけるオレフィンブロック共重合体において、メルトフローレート(JIS K7210、190℃、2.16kg)は、0.1〜1.0g/10分であることが好ましく、0.3〜1.0g/10分であることが更に好ましい。前記範囲にあれば気体透過性及び剛性に優れた複合中空糸膜が得られるからである。
その具体例としては、オレフィンブロックコポリマー(OBC)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、直鎖状超低密度ポリエチレン(VLDPE)、リアクターTPO、軟質ポリメチルペンテン等が挙げられる。
The homogeneous layer is a non-porous layer that is permeable to gas.
In the present specification, the term “permeate gas” or “gas permeable” refers to a property of transmitting only gas without transmitting liquid or the like, for example, a film that does not transmit water but transmits water vapor.
In the present specification, “non-porous” means a solid state in which the pores are substantially free of pores having a micrometer order and the inside is clogged with resin.
Such a homogeneous layer is preferably a layer mainly composed of polymer A described later. The layer mainly composed of polymer A is a layer having a content of polymer A of 90% by mass or more. The content of the polymer A in the layer containing the polymer A as a main component is preferably 95% by mass or more, more preferably 99% by mass or more, and particularly preferably 100% by mass.
Examples of the polymer A include polymers obtained mainly from olefin monomers. It may be a polymer obtained using only an olefin monomer, a copolymer of an olefin monomer and another monomer, or a modified resin thereof.
In the olefin block copolymer of the present invention, the ethylene unit content is preferably 25 to 97 mol%, more preferably 40 to 96 mol%, and even more preferably 55 to 95 mol%.
In the olefin block copolymer of the present invention, the melt flow rate (JIS K7210, 190 ° C., 2.16 kg) is preferably 0.1 to 1.0 g / 10 minutes, and preferably 0.3 to 1.0 g / More preferably, it is 10 minutes. This is because a composite hollow fiber membrane excellent in gas permeability and rigidity can be obtained within the above range.
Specific examples thereof include olefin block copolymer (OBC), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), linear very low density polyethylene (VLDPE), reactor TPO, soft polymethylpentene, and the like. Can be mentioned.

また、均質層には、本発明の目的を損なわない範囲内であれば、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、着色剤、難燃化剤等の添加物が添加されていてもよい。
前記均質層の厚さとは、本複合中空糸膜が複数の均質層を有する場合は、そのそれぞれの均質層の厚さである。
In addition, in the homogeneous layer, additives such as an antioxidant, an ultraviolet absorber, a lubricant, an antiblocking agent, a colorant, a flame retardant, etc., if necessary, as long as the purpose of the present invention is not impaired. May be added.
When the present composite hollow fiber membrane has a plurality of homogeneous layers, the thickness of the homogeneous layer is the thickness of each homogeneous layer.

(多孔質支持層)
多孔質支持層は、前記均質層を支持する多孔質層である。
本明細書において「多孔質」であるとは、0.01〜1μm程度の平均径を有する細孔が、少なくとも20体積%の空孔率をもつことをいう。
(Porous support layer)
The porous support layer is a porous layer that supports the homogeneous layer.
In this specification, “porous” means that pores having an average diameter of about 0.01 to 1 μm have a porosity of at least 20% by volume.

本発明の多孔質支持層はポリマーBを主成分として含むことが好ましい。
ポリマーBは、ポリエチレンあるいは、ポリプロピレン、ポリメチルペンテンなど多孔質を形成可能で、均質層を形成するポリマーと相溶性があるようなポリマーであれば特に限定されない。
また、多孔質支持層には、本発明の目的を損なわない範囲内であれば、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、着色剤、難燃化剤等の添加物が添加されていてもよい。
The porous support layer of the present invention preferably contains polymer B as a main component.
The polymer B is not particularly limited as long as the polymer B can form a porous material such as polyethylene, polypropylene, or polymethylpentene and is compatible with the polymer that forms the homogeneous layer.
In addition, the porous support layer may contain an antioxidant, an ultraviolet absorber, a lubricant, an antiblocking agent, a colorant, a flame retardant, etc., if necessary, as long as the purpose of the present invention is not impaired. An additive may be added.

多孔質支持層の空孔率は、多孔質支持層全体100体積%に対して、30〜80体積%が好ましい。空孔率が30体積%以上であれば、優れた気体透過性が得られやすい。空孔率が80体積%以下であれば、耐圧性等の機械的強度が向上する。
多孔質支持層の細孔の大きさは、特に限定されず、充分な気体透過性と機械的強度が満足される大きさであればよい。
As for the porosity of a porous support layer, 30-80 volume% is preferable with respect to 100 volume% of the whole porous support layer. When the porosity is 30% by volume or more, excellent gas permeability is easily obtained. When the porosity is 80% by volume or less, mechanical strength such as pressure resistance is improved.
The size of the pores of the porous support layer is not particularly limited as long as sufficient gas permeability and mechanical strength are satisfied.

本複合中空糸膜の太さは特に限定されないが、中空糸膜外径が100〜2000μmであることが好ましい。中空糸膜外径が100μm以上であれば、中空糸膜モジュールの製造時に中空糸膜間の隙間を充分に取りやすく、中空糸膜間にポッティング用樹脂を侵入させやすくなる。中空糸膜外径が2000μm以下であれば、多数本の中空糸膜を用いた中空糸膜モジュールを製造したときにも、モジュール全体のサイズを小さくできる。これにより、ポッティング加工部の容積も小さくなるので、ポッティング加工時のポッティング用樹脂の収縮による寸法精度の低下を抑制しやすい。   Although the thickness of this composite hollow fiber membrane is not specifically limited, It is preferable that the hollow fiber membrane outer diameter is 100-2000 micrometers. If the outer diameter of the hollow fiber membrane is 100 μm or more, a gap between the hollow fiber membranes can be easily obtained at the time of manufacturing the hollow fiber membrane module, and the potting resin can easily enter between the hollow fiber membranes. When the outer diameter of the hollow fiber membrane is 2000 μm or less, the size of the entire module can be reduced even when a hollow fiber membrane module using a large number of hollow fiber membranes is manufactured. As a result, the volume of the potting process portion is also reduced, and it is easy to suppress a decrease in dimensional accuracy due to the shrinkage of the potting resin during the potting process.

多孔質支持層の厚さは、10〜200μmが好ましい。多孔質支持層の厚さが10μm以上であれば、機械的強度が向上する。多孔質支持層の厚さが200μm以下であれば、本複合中空糸膜の糸外径が太くなりすぎて、膜モジュールへ内蔵する際に膜の容積効率が低くなることを抑制しやすい。
前記多孔質支持層の厚さとは、本複合中空糸膜が複数の多孔質支持層を有する場合は、そのそれぞれの多孔質支持層の厚さである。
The thickness of the porous support layer is preferably 10 to 200 μm. When the thickness of the porous support layer is 10 μm or more, the mechanical strength is improved. If the thickness of the porous support layer is 200 μm or less, the outer diameter of the composite hollow fiber membrane becomes too thick, and it is easy to suppress a decrease in the volumetric efficiency of the membrane when it is incorporated in the membrane module.
When the composite hollow fiber membrane has a plurality of porous support layers, the thickness of the porous support layer is the thickness of each porous support layer.

(脱気複合中空糸膜の製法)
本発明の複合中空糸膜は、多層複合紡糸工程と延伸多孔質化工程により得ることができる。
中空糸膜を構成する複合膜の1つの形態としては、気体透過性能を有する支持層が多孔質支持層で挟まれた同心円筒状の3層複合膜構造である。
(Production method of degassed composite hollow fiber membrane)
The composite hollow fiber membrane of the present invention can be obtained by a multilayer composite spinning process and a stretched porous process.
One form of the composite membrane constituting the hollow fiber membrane is a concentric cylindrical three-layer composite membrane structure in which a support layer having gas permeability is sandwiched between porous support layers.

本複合中空糸膜は、例えば、下記1)紡糸工程及び2)延伸工程を有する方法により製造できる。
1)紡糸工程:例えば、3層構造の本複合中空糸膜であれば、最外層ノズル部、中間層ノズル部及び最内層ノズル部が、同心円状に配された複合ノズル口金を用いる。最外層ノズル部及び最内層ノズル部には、溶融状態のポリマーBを供給し、中間層ノズル部には、溶融状態のポリマーAを供給する。そして、それら各ノズル部からポリマーA及びポリマーBを押し出し、押出速度と巻取速度を適宜調節しつつ未延伸状態で冷却固化する。これにより、未延伸の均質層前駆体が、非多孔質状態である2つの未延伸の多孔質支持層前駆体に挟まれた3層構造を有する中空糸膜前駆体が得られる。
The present composite hollow fiber membrane can be produced, for example, by a method having the following 1) spinning step and 2) stretching step.
1) Spinning step: For example, in the case of the present composite hollow fiber membrane having a three-layer structure, a composite nozzle base in which the outermost layer nozzle portion, the intermediate layer nozzle portion and the innermost layer nozzle portion are arranged concentrically is used. Molten polymer B is supplied to the outermost layer nozzle portion and innermost layer nozzle portion, and molten polymer A is supplied to the intermediate layer nozzle portion. Then, the polymer A and the polymer B are extruded from the respective nozzle portions, and are cooled and solidified in an unstretched state while appropriately adjusting the extrusion speed and the winding speed. Thereby, a hollow fiber membrane precursor having a three-layer structure in which an unstretched homogeneous layer precursor is sandwiched between two unstretched porous support layer precursors in a non-porous state is obtained.

ポリマーA及びポリマーBの吐出温度は、それらが充分に溶融して紡糸できる状態であればよい。
2)延伸工程:溶融紡糸して得た未延伸の中空糸膜前駆体は、延伸前に前記融点以下で定長熱処理(アニール処理)することが好ましい。
定長熱処理は、ポリマーBがポリエチレンであれば105〜120℃で、ポリプロピレンであれば130〜150℃、ポリメチルペンテンであれば150℃〜180℃で、処理時間は8〜16時間、行うことが好ましい。
所定の温度で熱処理することで、延伸時の安定性が向上し、高倍率での延伸が容易になる。また、処理時間が8時間以上であれば、品質の良好な本中空糸膜が得られやすい。
The discharge temperature of the polymer A and the polymer B may be in a state where they can be sufficiently melted and spun.
2) Stretching step: The unstretched hollow fiber membrane precursor obtained by melt spinning is preferably subjected to constant length heat treatment (annealing) at a temperature equal to or lower than the melting point before stretching.
The constant-length heat treatment is performed at 105 to 120 ° C. when the polymer B is polyethylene, 130 to 150 ° C. when the polymer B is polypropylene, 150 to 180 ° C. when the polymethylpentene is used, and the treatment time is 8 to 16 hours. Is preferred.
By performing heat treatment at a predetermined temperature, stability during stretching is improved, and stretching at a high magnification becomes easy. Further, if the treatment time is 8 hours or more, the present hollow fiber membrane having good quality can be easily obtained.

中空糸膜前駆体は、下記(i)及び(ii)の要件を満たす条件で延伸する。
(i)延伸温度T(℃)と、ポリマーAの融点Tm(℃)との関係が、Tm−20≦T≦Tm+40である。
(ii)延伸温度Tが、ポリマーBのビカット軟化点以下である。
延伸温度Tが、Tm−20(℃)以上であれば、多孔質支持層前駆体の多孔質化が容易になり、優れた気体透過性を有する本複合中空糸膜が得られやすい。延伸温度TがTm+40(℃)以下であれば、分子に乱れが生じてピンホール等の欠陥が生じることを抑制しやすい。
また、延伸温度TがポリマーBのビカット軟化点以下であれば、多孔質支持層前駆体の多孔質化が容易になり、優れた気体透過性を有する本複合中空糸膜が得られやすい。
The hollow fiber membrane precursor is stretched under conditions that satisfy the following requirements (i) and (ii).
(I) The relationship between the stretching temperature T (° C.) and the melting point Tm (° C.) of the polymer A is Tm−20 ≦ T ≦ Tm + 40.
(Ii) The stretching temperature T is not higher than the Vicat softening point of the polymer B.
When the stretching temperature T is Tm−20 (° C.) or higher, the porous support layer precursor can be easily made porous, and this composite hollow fiber membrane having excellent gas permeability can be easily obtained. If the stretching temperature T is Tm + 40 (° C.) or less, it is easy to suppress the occurrence of defects such as pinholes due to the disorder of the molecules.
If the stretching temperature T is equal to or lower than the Vicat softening point of the polymer B, the porous support layer precursor can be easily made porous, and the composite hollow fiber membrane having excellent gas permeability can be easily obtained.

延伸工程は、前記延伸温度Tで行う延伸(熱延伸)の前に、冷延伸を行うことが好ましい。すなわち、冷延伸に引続き熱延伸を行う2段延伸、又は冷延伸に引続き、熱延伸を2段以上の多段に分割して行う多段延伸が好ましい。
冷延伸は、比較的低い温度下で膜の構造破壊を起させ、ミクロなクラッキングを発生させる延伸である。冷延伸の温度は、0℃から、Tm−20℃よりも低い温度までの範囲内の比較的低温下で行うことが好ましい。
延伸は、低速延伸が好ましい。低速延伸であれば、延伸時に糸径が細くなりすぎることを抑制しつつ多孔質化することが容易になる。
In the stretching step, it is preferable to perform cold stretching before stretching (hot stretching) performed at the stretching temperature T. That is, two-stage stretching in which hot stretching is performed subsequent to cold stretching, or multi-stage stretching in which hot stretching is divided into two or more multi-stages subsequent to cold stretching is preferable.
Cold stretching is stretching that causes structural cracking of the film at a relatively low temperature and generates microcracking. The temperature of cold drawing is preferably performed at a relatively low temperature within a range from 0 ° C. to a temperature lower than Tm−20 ° C.
The stretching is preferably slow stretching. If it is low speed drawing, it becomes easy to make it porous while suppressing the yarn diameter from becoming too thin during drawing.

延伸倍率は、用いるポリマーA及びポリマーBの種類によっても異なるが、未延伸の中空糸膜前駆体に対する最終的な倍率(総延伸倍率)を2〜5倍とすることが好ましい。総延伸倍率が2倍以上であれば、多孔質支持層の空孔率が向上し、優れた気体透過性が得られやすい。総延伸倍率が5倍以下であれば、本複合中空糸膜の破断伸度が向上する。
さらに、前記延伸により得られた中空糸膜の寸法安定性を向上させるため、該多孔質中空糸膜を定長下、又は、40%以下の範囲内で少し弛緩させた状態で熱セットを行うことが好ましい。
熱セットを効果的に行うためには、熱セット温度は延伸温度以上、融点温度以下であることが好ましい。
The draw ratio varies depending on the types of the polymer A and the polymer B to be used, but the final ratio (total draw ratio) with respect to the unstretched hollow fiber membrane precursor is preferably 2 to 5 times. When the total draw ratio is 2 times or more, the porosity of the porous support layer is improved, and excellent gas permeability is easily obtained. If the total draw ratio is 5 times or less, the breaking elongation of the composite hollow fiber membrane is improved.
Furthermore, in order to improve the dimensional stability of the hollow fiber membrane obtained by stretching, heat setting is performed in a state where the porous hollow fiber membrane is slightly relaxed under a constant length or within a range of 40% or less. It is preferable.
In order to effectively perform heat setting, the heat setting temperature is preferably not less than the stretching temperature and not more than the melting temperature.

以上説明した本複合中空糸膜は、ポリマーAにより形成した非多孔質の均質層と、ポリマーBにより形成した多孔質支持層を有しているため、優れた耐溶剤性と気体透過性を兼ね備えている。また、優れた低溶出性も有している。   Since the composite hollow fiber membrane described above has a non-porous homogeneous layer formed of polymer A and a porous support layer formed of polymer B, it has excellent solvent resistance and gas permeability. ing. It also has excellent low elution properties.

(中空糸膜モジュール)
本発明の中空糸膜モジュールは、前述した本複合中空糸膜を具備するモジュールである。本発明の中空糸膜モジュールは、本複合中空糸膜を用いる以外は、公知の中空糸膜モジュールと同様の形態が用いられる。例えば、本複合中空糸膜を数百本束ねて筒状のハウジングに挿入し、それら本複合中空糸膜を封止材(ポッティング用樹脂)で封止した公知の形態の中空糸膜モジュールが挙げられる。ハウジングの形態は、筒状、箱状、コの字型形状など、様々な形状が知られており、これらの公知のハウジングを本発明の中空糸膜モジュールに使用することができる。
より具体的には、中空糸膜モジュールは、本複合中空糸膜束を、例えば筒状のハウジングケース内に収納して、その少なくとも両先端部をポッティング材(樹脂)で接着固定した構成を有することが好ましい。
これにより、ポッティング部は、ケースの内側である一次側領域と二次側領域とを分離することを可能としている。ポッティング部の材質としては、耐溶剤性や耐水性(膨潤の低減)などの観点から、エポキシ樹脂を使用することが好ましい。また樹脂量も多くなるため反応温度が高くなり、亀裂や容器との剥離が発生しやすくなる。硬化剤としては、脂肪族アミン、芳香族アミン、有機酸無水物系および変性アミン等が使用できるが、中でも脂肪族ポリアミンが好ましく使用できる。
また、反応の進行を抑えるために反応遅延剤を添加してもかまわない。使用する接着剤の粘度としては、封止部への注入性を損なわない粘度である。ポッティング樹脂が膜内の空隙部に浸透することによりアンカー効果が発現し、接着力が強化される。脱気用中空糸膜モジュールは高充填率であることが望ましいので、一般的には遠心法が用いられる。遠心法では回転数により遠心力も変化するため、静置法に比べて高粘度でも膜束内に浸透していく。具体的な粘度としては100〜2,000mPa・sが好ましい。硬化時間としては、48時間以内の硬化が好ましく、さらに24時間以内に硬化できるものが生産効率上より好ましい。
(Hollow fiber membrane module)
The hollow fiber membrane module of the present invention is a module comprising the composite hollow fiber membrane described above. The hollow fiber membrane module of the present invention has the same form as a known hollow fiber membrane module except that the present composite hollow fiber membrane is used. For example, a hollow fiber membrane module of a known form in which several hundreds of the present composite hollow fiber membranes are bundled and inserted into a cylindrical housing, and the composite hollow fiber membranes are sealed with a sealing material (potting resin). It is done. Various shapes such as a cylindrical shape, a box shape, and a U-shaped shape are known as the shape of the housing, and these known housings can be used for the hollow fiber membrane module of the present invention.
More specifically, the hollow fiber membrane module has a configuration in which the composite hollow fiber membrane bundle is accommodated in, for example, a cylindrical housing case, and at least both ends thereof are bonded and fixed with a potting material (resin). It is preferable.
Thereby, the potting part makes it possible to isolate | separate the primary side area | region and secondary side area | region which are the inside of a case. As a material for the potting portion, it is preferable to use an epoxy resin from the viewpoint of solvent resistance and water resistance (reduction of swelling). In addition, since the amount of resin increases, the reaction temperature increases, and cracks and separation from the container tend to occur. As the curing agent, aliphatic amines, aromatic amines, organic acid anhydrides and modified amines can be used, and among them, aliphatic polyamines are preferably used.
Further, a reaction retarder may be added in order to suppress the progress of the reaction. As a viscosity of the adhesive agent to be used, it is a viscosity which does not impair the injection property to a sealing part. When the potting resin penetrates into the voids in the film, an anchor effect is exhibited and the adhesive strength is enhanced. Since it is desirable that the degassing hollow fiber membrane module has a high filling rate, a centrifugal method is generally used. In the centrifugal method, the centrifugal force also changes depending on the number of rotations, so that it penetrates into the membrane bundle even when the viscosity is higher than in the stationary method. The specific viscosity is preferably 100 to 2,000 mPa · s. The curing time is preferably within 48 hours, and more preferably within 24 hours from the viewpoint of production efficiency.

ポッティング加工部容積に対する中空糸膜の充填率が40〜70体積%程度であることが好ましい。
中空糸膜の充填率、すなわち中空糸膜横断面の外輪郭面積の合計が、ハウジングケース内壁の横断面積に占める割合として定義される中空糸膜の充填率は、40〜70%の範囲にするのが良い。中空糸膜の充填率は、40%よりも低すぎるとハウジングケース内で膜の屈曲を引き起こし、また70%を越えて高すぎると膜の扁平を引き起こすので好ましくない。
ポッティング部においては、充填率が40〜70%の範囲内にあっても中空糸膜の偏りが有ることは好ましくなく、発熱を抑える意味からも均等に膜を配置することが好ましい。
It is preferable that the filling rate of the hollow fiber membrane with respect to the potting processed part volume is about 40 to 70% by volume.
The filling rate of the hollow fiber membrane, that is, the filling rate of the hollow fiber membrane defined as the ratio of the outer contour area of the cross section of the hollow fiber membrane to the cross-sectional area of the inner wall of the housing case is in the range of 40 to 70%. Is good. If the filling rate of the hollow fiber membrane is less than 40%, the membrane will be bent in the housing case, and if it exceeds 70%, the membrane will become flat.
In the potting portion, even if the filling rate is in the range of 40 to 70%, it is not preferable that the hollow fiber membrane is biased, and it is preferable to arrange the membrane evenly from the viewpoint of suppressing heat generation.

本発明の脱気膜を用いた脱気方法としては、中空糸膜の内側(一次側)に溶存ガスを含む原溶液を供給し、中空糸膜の外側(二次側)を減圧とし、溶存ガスの分圧差に比例した駆動力により溶存ガスを膜透過させ、中空糸膜の外側に溶存ガスを排出することができる。また、この逆に中空糸膜の外側を一次側とし、中空糸膜の内側を二次側とすることもできる。さらには中空糸膜モジュールを複数本直列につないで対象薬液を所定の脱気水準に脱気することもできるし、また複数本並列につないで多量の薬液の脱気を行うこともできる。   As a degassing method using the degassing membrane of the present invention, a raw solution containing dissolved gas is supplied to the inner side (primary side) of the hollow fiber membrane, and the outer side (secondary side) of the hollow fiber membrane is depressurized and dissolved. The dissolved gas can be permeated through the membrane by a driving force proportional to the partial pressure difference of the gas, and the dissolved gas can be discharged to the outside of the hollow fiber membrane. Conversely, the outside of the hollow fiber membrane can be the primary side and the inside of the hollow fiber membrane can be the secondary side. Furthermore, a plurality of hollow fiber membrane modules can be connected in series to deaerate the target chemical solution to a predetermined deaeration level, or a plurality of the hollow fiber membrane modules can be connected in parallel to deaerate a large amount of chemical solution.

以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
(Tmの測定)
DSC(セイコー電子工業製)を用い、約5mgの試料を200℃で5分間融解後、40℃まで10℃/minの速度で降温して結晶化した後に、更に10℃/minで200℃まで昇温して融解した時の融解ピーク温度及び融解終了温度で評価した。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
(Measurement of Tm)
Using DSC (manufactured by Seiko Denshi Kogyo), about 5 mg of sample was melted at 200 ° C. for 5 minutes, crystallized by cooling to 40 ° C. at a rate of 10 ° C./min, and further to 200 ° C. at 10 ° C./min. Evaluation was made based on the melting peak temperature and the melting end temperature when the mixture was melted by heating.

(メルトフローレート(MFR))
ポリエチレンのMFRについては、JIS K7210のコードD(測定温度:190℃、荷重:2.16kg)に準拠してMFRD(単位:g/10分)を測定した。
(Melt flow rate (MFR))
As for MFR of polyethylene, MFRD (unit: g / 10 minutes) was measured according to JIS K7210 code D (measurement temperature: 190 ° C., load: 2.16 kg).

(密度)
密度(単位:kg/m3)は、JIS K7112に準拠して測定した。
(density)
The density (unit: kg / m 3 ) was measured according to JIS K7112.

(空孔率)
得られたポリエチレン複合中空糸膜の空孔率(単位:体積%)は、水銀ポロシメーター221型(カルロエルバ社製)を用いて測定した。
(Porosity)
The porosity (unit: volume%) of the obtained polyethylene composite hollow fiber membrane was measured using a mercury porosimeter 221 type (manufactured by Carlo Elba).

(気体透過性)
得られたポリエチレン複合中空糸膜をU字型に束ねて中空糸膜の端部をウレタン樹脂で固め、中空糸膜モジュールを作製した。複合中空糸膜の外側から酸素又は窒素を供給し、中空糸膜の内側(中空部分側)を常圧として、25℃における酸素透過速度(QO2)(単位:m/時間・MPa)及び窒素透過速度(QN2)(単位:m/時間・MPa)を測定した。なお、膜面積は、中空糸膜の内径を基に算出した。そして、測定した酸素透過速度(QO2)及び窒素透過速度(QN2)から、分離係数(QO2/QN2)を求めた。
(Gas permeability)
The obtained polyethylene composite hollow fiber membrane was bundled in a U-shape, and the end of the hollow fiber membrane was solidified with urethane resin to produce a hollow fiber membrane module. Oxygen or nitrogen is supplied from the outside of the composite hollow fiber membrane, and the oxygen permeation rate (Q O2 ) (unit: m / hour · MPa) and nitrogen at 25 ° C. with the inside (hollow part side) of the hollow fiber membrane as normal pressure. The permeation rate (Q N2 ) (unit: m / hour · MPa) was measured. The membrane area was calculated based on the inner diameter of the hollow fiber membrane. Then, a separation factor (Q O2 / Q N2 ) was determined from the measured oxygen transmission rate (Q O2 ) and nitrogen transmission rate (Q N2 ).

(繰り返し耐圧試験)
本試験は、前記各中空糸膜モジュールについて、そのポッティング部の一方の端面側を閉塞し、真空ポートより吸引しながら、原水供給ラインに対象液を供給すると共に断続的に水圧を加えた際のポッティング部の割れ、ポッティング部とハウジングケースとの界面の剥離の発生の有無、及び割れ若しくは剥離によりリークを生じた時の水圧付加回数を測定した。
具体的には、実施例及び比較例で得られた中空糸膜モジュールを25℃の恒温槽内に配置した後、これをポンプアップし、0.1[MPa]で中空糸膜モジュールの内側に通液しながら、ついで中空糸膜の外側(2次側)を−100kPaまで減圧し続け、送液については1サイクル:10sec送液/10sec停止の周期で繰り返した。
(Repeated pressure test)
In this test, for each of the hollow fiber membrane modules, one end face side of the potting portion is closed, and the target liquid is supplied to the raw water supply line while being suctioned from the vacuum port, and water pressure is intermittently applied. The presence or absence of occurrence of cracks in the potting portion, the interface between the potting portion and the housing case, and the number of times of water pressure application when a leak occurred due to the crack or separation were measured.
Specifically, after placing the hollow fiber membrane modules obtained in Examples and Comparative Examples in a constant temperature bath at 25 ° C., this was pumped up, and 0.1 [MPa] inside the hollow fiber membrane module. While passing the liquid, the pressure outside the hollow fiber membrane (secondary side) was continuously reduced to −100 kPa, and the liquid feeding was repeated at a cycle of 1 cycle: 10 sec liquid feeding / 10 sec stop.

[実施例1]
三層複合ノズルの最内層及び最外層(いずれも多孔質支持体層)に供給するポリマーとして、高密度ポリエチレン(商品名サンテックHD B161、MFR1.35g/10min、密度0.963g/cm3、融点130℃)を用いた。またこのノズルの均質層(分離層)に供給するポリマー素材としては、メタロセン系触媒により製造された低密度ポリエチレン(商品名「Harmolex NF324A 」、日本ポリエチ社製、MFR:1.0g/10分、密度:0.906g/cm3、融点Tm:120℃、Mw/Mn=3.0)を用いた。
最外層ノズル部、中間層ノズル部及び最内層ノズル部が、同心円状に配された複合ノズル口金を用いた。最外層ノズル部及び最内層ノズル部に溶融状態のポリマーBを供給し、中間層ノズル部に溶融状態のポリマーAを供給し、最外層からポリマーA/ポリマーB/ポリマーAを12/1/2の吐出比率になるように吐出した。これらを用い、吐出口温度200℃、巻取り速度120m/minで溶融紡糸した。
この未延伸中空糸を108℃、10hrにおよぶアニール処理をした。次いで、23±2℃で1.60倍延伸し、引き続き105℃の加熱炉中で5.8倍の延伸を行った上で、100℃の加熱炉中で0.45倍の緩和工程を実施し、最終的に総延伸倍率が4倍になるように成形して総延伸量が4倍になるまで熱延伸を行い、複合中空糸膜を得た。この多層複合中空糸膜は、均質膜(非多孔質薄膜)が二つの多孔質支持層で挟まれた三層構造であった。
[Example 1]
As a polymer to be supplied to the innermost layer and the outermost layer (both porous support layers) of the three-layer composite nozzle, high-density polyethylene (trade name Suntech HD B161, MFR 1.35 g / 10 min, density 0.963 g / cm 3 , melting point 130 ° C.) was used. Moreover, as a polymer material supplied to the homogeneous layer (separation layer) of this nozzle, a low density polyethylene (trade name “Harmolex NF324A” manufactured by Nippon Polyethylene Co., Ltd., MFR: 1.0 g / 10 min. Density: 0.906 g / cm 3 , melting point Tm: 120 ° C., Mw / Mn = 3.0).
A composite nozzle base in which the outermost layer nozzle portion, the intermediate layer nozzle portion, and the innermost layer nozzle portion are arranged concentrically was used. The molten polymer B is supplied to the outermost layer nozzle portion and the innermost layer nozzle portion, the molten polymer A is supplied to the intermediate layer nozzle portion, and polymer A / polymer B / polymer A is supplied from the outermost layer to 12/1/2. It discharged so that it might become a discharge ratio. Using these, melt spinning was performed at a discharge port temperature of 200 ° C. and a winding speed of 120 m / min.
This unstretched hollow fiber was annealed at 108 ° C. for 10 hours. Next, the film was stretched by 1.60 times at 23 ± 2 ° C., then stretched by 5.8 times in a heating furnace at 105 ° C., and then subjected to a relaxation process of 0.45 times in a heating furnace at 100 ° C. And finally, it shape | molded so that the total draw ratio might be set to 4 times, and it heat-stretched until the total amount of stretch became 4 times, and obtained the composite hollow fiber membrane. This multilayer composite hollow fiber membrane had a three-layer structure in which a homogeneous membrane (non-porous thin film) was sandwiched between two porous support layers.

このようにして得られた複合中空糸膜の膜性能を評価した結果、中空糸膜全体の空孔率は64.5体積%、内径161μm、膜総厚50μm、均質層の膜厚3μm、膜最外層から支持層40μm/均質層3μm/支持層6μmの配置となっていた(均質層の位置:中空糸膜の内側から中空糸膜厚方向に6/50)。
三層複合中空糸膜の空気透過速度を測定したところ、室温(20℃)で酸素透過速度(QO2)は0.103m/hr・Mpa、窒素透過速度(QN2)は0.036m/hr・Mpaであり、分離係数(QO2/QN2)は2.8であった。
中空糸膜モジュールは、繰り返し耐圧試験におけるサイクル200000回においてもリークが生じなかった。
As a result of evaluating the membrane performance of the composite hollow fiber membrane thus obtained, the porosity of the entire hollow fiber membrane was 64.5% by volume, the inner diameter was 161 μm, the membrane total thickness was 50 μm, the thickness of the homogeneous layer was 3 μm, the membrane From the outermost layer, the support layer was 40 μm / homogeneous layer 3 μm / support layer 6 μm (position of the homogeneous layer: 6/50 in the hollow fiber film thickness direction from the inside of the hollow fiber membrane).
When the air permeation rate of the three-layer composite hollow fiber membrane was measured, the oxygen permeation rate (Q O2 ) was 0.103 m / hr · Mpa and the nitrogen permeation rate (Q N2 ) was 0.036 m / hr at room temperature (20 ° C.). -It was Mpa and the separation factor ( QO2 / QN2 ) was 2.8.
The hollow fiber membrane module did not leak even after 200000 cycles in the repeated pressure test.

[実施例2]
実施例1と吐出量比を最外層からポリマーA/ポリマーB/ポリマーAで12/1/3になるように供給して他は、実施例1と同様に実施した。
このようにして得られた複合中空糸膜の膜性能を評価した結果、中空糸膜全体の空孔率は66.5体積%、内径163μm、膜総厚48μm、均質層の膜厚2μm、膜最外層から支持層36μm/均質層2μm/支持層10μmの配置となっていた(均質層の位置:中空糸膜の内側から中空糸膜厚方向に10/48)。
三層複合中空糸膜の空気透過速度を測定したところ、室温(20℃)で酸素透過速度(QO2)は0.110m/hr・Mpa、窒素透過速度(QN2)は0.039m/hr・Mpaであり、分離係数(QO2/QN2)は2.8であった。
中空糸膜モジュールは、繰り返し耐圧試験におけるサイクル200000回においてもリークが生じなかった。
[Example 2]
Example 1 was carried out in the same manner as in Example 1 except that the discharge amount ratio with Example 1 was supplied from the outermost layer so that the ratio of Polymer A / Polymer B / Polymer A was 12/3.
As a result of evaluating the membrane performance of the composite hollow fiber membrane thus obtained, the porosity of the entire hollow fiber membrane was 66.5% by volume, the inner diameter was 163 μm, the membrane total thickness was 48 μm, the thickness of the homogeneous layer was 2 μm, the membrane From the outermost layer, the support layer was 36 μm / homogeneous layer 2 μm / support layer 10 μm (position of the homogeneous layer: 10/48 in the hollow fiber film thickness direction from the inside of the hollow fiber membrane).
When the air permeation rate of the three-layer composite hollow fiber membrane was measured, the oxygen permeation rate (Q O2 ) was 0.110 m / hr · Mpa and the nitrogen permeation rate (Q N2 ) was 0.039 m / hr at room temperature (20 ° C.). -It was Mpa and the separation factor ( QO2 / QN2 ) was 2.8.
The hollow fiber membrane module did not leak even after 200000 cycles in the repeated pressure test.

[比較例1]
実施例1と吐出量比を最外層からポリマーA/ポリマーB/ポリマーAで6/1/6になるように供給して他は、実施例1と同様に実施した。
このようにして得られた複合中空糸膜の膜性能を評価した結果、中空糸膜全体の空孔率は66体積%、内径160μm、膜総厚48μm、均質層の膜厚2μm、膜最外層から支持層24μm/均質層2μm/支持層22μmの配置となっていた(均質層の位置:中空糸膜の内側から中空糸膜厚方向に22/48)。
三層複合中空糸膜の空気透過速度を測定したところ、室温(20℃)で酸素透過速度(QO2)は0.10m/hr・Mpa、窒素透過速度(QN2)は0.035m/hr・Mpaであり、分離係数(QO2/QN2)は2.8であった。
中空糸膜モジュールは、繰り返し耐圧試験におけるサイクル140000回においてリークを生じた。
[Comparative Example 1]
Example 1 was carried out in the same manner as in Example 1 except that the discharge amount ratio and that of Example 1 were supplied from the outermost layer such that Polymer A / Polymer B / Polymer A were 6/6.
As a result of evaluating the membrane performance of the composite hollow fiber membrane thus obtained, the porosity of the whole hollow fiber membrane was 66 volume%, the inner diameter was 160 μm, the membrane total thickness was 48 μm, the thickness of the homogeneous layer was 2 μm, and the membrane outermost layer. To support layer 24 μm / homogeneous layer 2 μm / support layer 22 μm (position of homogeneous layer: 22/48 in the hollow fiber film thickness direction from the inside of the hollow fiber membrane).
When the air permeation rate of the three-layer composite hollow fiber membrane was measured, the oxygen permeation rate (Q O2 ) was 0.10 m / hr · Mpa and the nitrogen permeation rate (Q N2 ) was 0.035 m / hr at room temperature (20 ° C.). -It was Mpa and the separation factor ( QO2 / QN2 ) was 2.8.
The hollow fiber membrane module leaked at 140000 cycles in the repeated pressure test.

[比較例2]
実施例1と吐出量比を最外層からポリマーA/ポリマーB/ポリマーAで2/1/12になるように供給して他は、実施例1と同様に実施した。
このようにして得られた複合中空糸膜の膜性能を評価した結果、中空糸膜全体の空孔率は65体積%、内径161μm、膜総厚49μm、均質層の膜厚2μm、膜最外層から支持層6μm/均質層2μm/支持層41μmの配置となっていた(均質層の位置:中空糸膜の内側から中空糸膜厚方向に41/49)。
三層複合中空糸膜の空気透過速度を測定したところ、室温(20℃)で酸素透過速度(QO2)は0.10m/hr・Mpa、窒素透過速度(QN2)は0.035m/hr・Mpaであり、分離係数(QO2/QN2)は2.8であった。
中空糸膜モジュールは、繰り返し耐圧試験におけるサイクル80000回においてリークを生じた。
[Comparative Example 2]
Example 1 was carried out in the same manner as in Example 1 except that the discharge amount ratio and that in Example 1 were supplied from the outermost layer so as to be 2/1/12 of Polymer A / Polymer B / Polymer A.
As a result of evaluating the membrane performance of the composite hollow fiber membrane thus obtained, the porosity of the entire hollow fiber membrane was 65% by volume, the inner diameter was 161 μm, the total membrane thickness was 49 μm, the homogeneous layer thickness was 2 μm, the outermost membrane layer. To support layer 6 μm / homogeneous layer 2 μm / support layer 41 μm (position of homogeneous layer: 41/49 in the hollow fiber film thickness direction from the inside of the hollow fiber membrane).
When the air permeation rate of the three-layer composite hollow fiber membrane was measured, the oxygen permeation rate (Q O2 ) was 0.10 m / hr · Mpa and the nitrogen permeation rate (Q N2 ) was 0.035 m / hr at room temperature (20 ° C.). -It was Mpa and the separation factor ( QO2 / QN2 ) was 2.8.
The hollow fiber membrane module leaked in the cycle 80000 times in the repeated pressure test.

[比較例3]
2層ノズルを用いて、最外層に均質層を配するように実施例1とポリマーの組み合わせを同じにして、吐出量比を最外層からポリマーB/ポリマーAで1/14になるように供給して他は、実施例1と同様に実施した。
このようにして得られた複合中空糸膜の膜性能を評価した結果、中空糸膜全体の空孔率は66体積%、内径159μm、膜総厚50μm、均質層の膜厚2μm、膜最外層から均質層2μm//支持層48μmの配置となっていた(均質層の位置:中空糸膜の内側から中空糸膜厚方向に48/50)。
三層複合中空糸膜の空気透過速度を測定したところ、室温(20℃)で酸素透過速度(QO2)は0.18m/hr・Mpa、窒素透過速度(QN2)は0.09m/hr・Mpaであり、分離係数(QO2/QN2)は2.0であった。
均質層を最外層に持ってきたことにより延伸工程での傷などにより均質層ポリマー本来の分離係数を維持できなかった。
[Comparative Example 3]
Using a two-layer nozzle, the same combination of Example 1 and polymer is used so that a homogeneous layer is arranged in the outermost layer, and the discharge ratio is supplied from the outermost layer to 1/14 of polymer B / polymer A. The others were carried out in the same manner as in Example 1.
As a result of evaluating the membrane performance of the composite hollow fiber membrane thus obtained, the porosity of the entire hollow fiber membrane was 66% by volume, the inner diameter was 159 μm, the membrane total thickness was 50 μm, the thickness of the homogeneous layer was 2 μm, and the membrane outermost layer. To homogeneous layer 2 μm // support layer 48 μm (homogeneous layer position: 48/50 in the hollow fiber film thickness direction from the inside of the hollow fiber membrane).
When the air permeation rate of the three-layer composite hollow fiber membrane was measured, the oxygen permeation rate (Q O2 ) was 0.18 m / hr · Mpa and the nitrogen permeation rate (Q N2 ) was 0.09 m / hr at room temperature (20 ° C.). -It was Mpa and the separation factor ( QO2 / QN2 ) was 2.0.
Since the homogeneous layer was brought to the outermost layer, the original separation factor of the homogeneous layer polymer could not be maintained due to scratches in the stretching process.

[比較例4]
2層ノズルを用いて、最内層に均質層を配するように実施例1とポリマーの組み合わせを同じにして、実施例1と吐出量比を最外層からポリマーA/ポリマーBで12/1になるように供給して他は、実施例1と同様に実施した。
このようにして得られた複合中空糸膜の膜性能を評価した結果、中空糸膜全体の空孔率は66体積%、内径160μm、膜総厚49μm、均質層の膜厚2μm、膜最外層から支持層47μm/均質層2μmの配置となっていた(均質層の位置:中空糸膜の内側から中空糸膜厚方向に2/49)。
三層複合中空糸膜の空気透過速度を測定したところ、室温(20℃)で酸素透過速度(QO2)は0.20m/hr・Mpa、窒素透過速度(QN2)は0.18m/hr・Mpaであり、分離係数(QO2/QN2)は1.2であった。均質層を内層に持ってきたことにより、内層まで不可逆変化が起こり多孔化したため均質層に欠陥を生じた。
[Comparative Example 4]
Using a two-layer nozzle, the combination of Example 1 and the polymer is the same so that a homogeneous layer is arranged in the innermost layer, and the discharge rate ratio in Example 1 is 12/1 from the outermost layer to Polymer A / Polymer B. The procedure was the same as in Example 1 except that the product was supplied.
As a result of evaluating the membrane performance of the composite hollow fiber membrane thus obtained, the porosity of the entire hollow fiber membrane was 66% by volume, the inner diameter was 160 μm, the total membrane thickness was 49 μm, the homogeneous layer thickness was 2 μm, and the membrane outermost layer. To support layer 47 μm / homogeneous layer 2 μm (homogeneous layer position: 2/49 in the hollow fiber film thickness direction from the inside of the hollow fiber membrane).
When the air permeation rate of the three-layer composite hollow fiber membrane was measured, the oxygen permeation rate (Q O2 ) was 0.20 m / hr · Mpa and the nitrogen permeation rate (Q N2 ) was 0.18 m / hr at room temperature (20 ° C.). -It was Mpa, and the separation factor (Q O2 / Q N2 ) was 1.2. By bringing the homogeneous layer into the inner layer, an irreversible change was made up to the inner layer, resulting in porosity, which resulted in defects in the homogeneous layer.

本発明の複合中空糸膜は、半導体の洗浄液に用いられる機能水の製造やインクジェットプリンターのインク中の溶存気体の脱気などに非常に有用である。   The composite hollow fiber membrane of the present invention is very useful for the production of functional water used in semiconductor cleaning liquids and the degassing of dissolved gases in ink for inkjet printers.

1:多孔質支持層(内層)
2:非多孔質均質層
3:多孔質支持層(外層)
d1:中空糸膜厚さ
d2:中空糸膜最内面から非多孔質均質層までの距離
1: Porous support layer (inner layer)
2: Non-porous homogeneous layer 3: Porous support layer (outer layer)
d1: Hollow fiber film thickness d2: Distance from the innermost surface of the hollow fiber membrane to the non-porous homogeneous layer

Claims (5)

気体を透過する非多孔質均質層と、該均質層を支持する多孔質支持層とを有する3層以上からなる同心円筒状の複合中空糸膜であって、前記均質層が、最内面から膜厚方向に1/10〜1/4の領域に配置されていることを特徴とする脱気複合中空糸膜。   A concentric cylindrical composite hollow fiber membrane comprising three or more layers having a gas-permeable non-porous homogeneous layer and a porous support layer for supporting the homogeneous layer, wherein the homogeneous layer is a membrane from the innermost surface. A deaerated composite hollow fiber membrane, which is disposed in a region of 1/10 to 1/4 in the thickness direction. 非多孔質均質層の厚さが0.5〜10μmであることを特徴とする請求項1記載の脱気複合中空糸膜。   The deaerated composite hollow fiber membrane according to claim 1, wherein the thickness of the non-porous homogeneous layer is 0.5 to 10 µm. 中空糸膜外径が100〜2000μmであることを特徴とする請求項1または2記載の脱気複合中空糸膜。   The degassed composite hollow fiber membrane according to claim 1 or 2, wherein the hollow fiber membrane has an outer diameter of 100 to 2000 µm. 請求項1〜3のいずれか一項に記載の脱気複合中空糸膜を具備する中空糸膜モジュール。   The hollow fiber membrane module which comprises the deaeration composite hollow fiber membrane as described in any one of Claims 1-3. 前記脱気複合中空糸膜束がハウジングケース内に収納されており、前記脱気複合中空糸膜束の少なくとも両先端部がポッティング樹脂により前記ハウジングケースに接着固定された構成を有する請求項4記載の中空糸膜モジュール。   The deaerated composite hollow fiber membrane bundle is housed in a housing case, and at least both ends of the deaerated composite hollow fiber membrane bundle are bonded and fixed to the housing case with a potting resin. Hollow fiber membrane module.
JP2012080260A 2012-03-30 2012-03-30 Deaerated composite hollow fiber membrane and hollow fiber membrane module Active JP6370021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080260A JP6370021B2 (en) 2012-03-30 2012-03-30 Deaerated composite hollow fiber membrane and hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080260A JP6370021B2 (en) 2012-03-30 2012-03-30 Deaerated composite hollow fiber membrane and hollow fiber membrane module

Publications (2)

Publication Number Publication Date
JP2013208544A true JP2013208544A (en) 2013-10-10
JP6370021B2 JP6370021B2 (en) 2018-08-08

Family

ID=49526958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080260A Active JP6370021B2 (en) 2012-03-30 2012-03-30 Deaerated composite hollow fiber membrane and hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP6370021B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051647A1 (en) * 2014-09-30 2016-04-07 旭化成ケミカルズ株式会社 Hollow fiber membrane module and method for producing same
JP2017177021A (en) * 2016-03-30 2017-10-05 旭化成株式会社 Hollow fiber membrane module and manufacturing method thereof
WO2018003774A1 (en) * 2016-06-29 2018-01-04 Dic株式会社 Hollow fiber membrane module and production method therefor, and epoxy resin used in hollow fiber membrane and production method
CN114025868A (en) * 2019-06-28 2022-02-08 Dic株式会社 Hollow fiber degassing assembly, ink jet printer and method for degassing liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169303A (en) * 1989-11-28 1991-07-23 Mitsubishi Rayon Co Ltd Removal of dissolved gas
JPH11253768A (en) * 1998-03-13 1999-09-21 Mitsubishi Rayon Co Ltd Composite hollow fiber membrane and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169303A (en) * 1989-11-28 1991-07-23 Mitsubishi Rayon Co Ltd Removal of dissolved gas
JPH11253768A (en) * 1998-03-13 1999-09-21 Mitsubishi Rayon Co Ltd Composite hollow fiber membrane and manufacture thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051647A1 (en) * 2014-09-30 2016-04-07 旭化成ケミカルズ株式会社 Hollow fiber membrane module and method for producing same
JPWO2016051647A1 (en) * 2014-09-30 2017-07-06 旭化成株式会社 Hollow fiber membrane module and manufacturing method thereof
US10159938B2 (en) 2014-09-30 2018-12-25 Asahi Kasei Kabushiki Kaisha Hollow fiber membrane module and method for producing the same
JP2017177021A (en) * 2016-03-30 2017-10-05 旭化成株式会社 Hollow fiber membrane module and manufacturing method thereof
WO2018003774A1 (en) * 2016-06-29 2018-01-04 Dic株式会社 Hollow fiber membrane module and production method therefor, and epoxy resin used in hollow fiber membrane and production method
JPWO2018003774A1 (en) * 2016-06-29 2018-10-11 Dic株式会社 Hollow fiber membrane module, method for producing the same, and epoxy resin used in them
KR20190009780A (en) * 2016-06-29 2019-01-29 디아이씨 가부시끼가이샤 Hollow fiber membrane module and manufacturing method thereof, epoxy resin used therefor
EP3479890A4 (en) * 2016-06-29 2020-02-26 DIC Corporation Hollow fiber membrane module and production method therefor, and epoxy resin used in hollow fiber membrane and production method
KR102195031B1 (en) * 2016-06-29 2020-12-28 디아이씨 가부시끼가이샤 Hollow fiber membrane module and its manufacturing method, epoxy resin used for them
US11478753B2 (en) 2016-06-29 2022-10-25 Dic Corporation Hollow fiber membrane module and production method therefor, and epoxy resin used in hollow fiber membrane and production method
CN114025868A (en) * 2019-06-28 2022-02-08 Dic株式会社 Hollow fiber degassing assembly, ink jet printer and method for degassing liquid

Also Published As

Publication number Publication date
JP6370021B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6347398B2 (en) Composite hollow fiber membrane and hollow fiber membrane module
US10369515B2 (en) Gas separation membrane module and method for gas separation
KR101151189B1 (en) gas separation membrane
JP6370021B2 (en) Deaerated composite hollow fiber membrane and hollow fiber membrane module
CN106659978B (en) Composite hollow fiber membrane module and method for producing same
WO2012043613A1 (en) Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module
JP5500765B2 (en) Composite hollow fiber membrane for deaeration and method for producing the same
JP5393971B2 (en) Composite hollow fiber membrane for deaeration
KR20160116466A (en) Method for manufacturing asymmetric hollow fiber membranes for gas separation using semi-thermally induced phase separation and asymmetric hollow fiber membranes for gas separation manufactured thereby
KR20160108392A (en) Separation membrane, sheet channel material, and separation membrane element
US9694313B2 (en) Composite hollow fiber membrane and hollow fiber membrane module
US20210178327A1 (en) Forward Osmosis Membrane and Membrane Module Including Same
JP2015016400A (en) Hollow fiber membrane and hollow fiber membrane module for deaeration
JP5657852B2 (en) Hollow fiber membrane module and manufacturing method thereof
CN106794432B (en) Hollow fiber membrane and hollow fiber membrane module
CN114746166A (en) Hollow fiber membranes having polydiorganosiloxane polyoxamide copolymer skin layers and methods of making and using the same
JP2015029923A (en) Hollow fiber membrane for degassing and hollow fiber membrane module for degassing
Uenishi et al. Gas-permeable composite hollow-fiber membrane with a three-layered structure
US20230256394A1 (en) Hollow fiber membrane module for cross-flow filtration and operation method thereof
JP2014104445A (en) Method for manufacturing hollow fiber membrane
JPH10202074A (en) Asymmetric structural fluororesin tube, production thereof, deaerating method using the tube and device therefor
WO2022239333A1 (en) Air-supply module
JP2018012071A (en) Gas permeable membrane and production method thereof
WO2024052816A1 (en) Asymmetric hollow fiber membrane
JP2015167939A (en) Deaeration hollow fiber membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161102

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180710

R150 Certificate of patent or registration of utility model

Ref document number: 6370021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150