JP2013206773A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2013206773A
JP2013206773A JP2012075747A JP2012075747A JP2013206773A JP 2013206773 A JP2013206773 A JP 2013206773A JP 2012075747 A JP2012075747 A JP 2012075747A JP 2012075747 A JP2012075747 A JP 2012075747A JP 2013206773 A JP2013206773 A JP 2013206773A
Authority
JP
Japan
Prior art keywords
power generation
fuel cell
time
cell system
shortest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012075747A
Other languages
Japanese (ja)
Other versions
JP6010748B2 (en
Inventor
Takanori Shimada
孝徳 島田
Masashi Fujii
正史 藤井
Gendo Kato
玄道 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012075747A priority Critical patent/JP6010748B2/en
Publication of JP2013206773A publication Critical patent/JP2013206773A/en
Application granted granted Critical
Publication of JP6010748B2 publication Critical patent/JP6010748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in the operation control of a fuel cell system that when the fuel cell system cannot start power generation at a scheduled power generation start time because the temperature of the hot water storage tank is high and power generation is disabled, such as when the tank is filled, activation of the fuel cell system is delayed and the duration of power generation is shortened, and that when the length of power generation time is less than an expected time, resource saving, environment burden and economy of power generation become worse than when the fuel cell is not activated.SOLUTION: To solve the conventional problem, the present invention sets a shortest power generation time which is a minimum value of power generation time with which resource saving or environmental or economical merits can be secured, as compared with the case where the fuel cell is not activated. When a duration until a stop time becomes shorter than the shortest power generation time, the fuel cell system is not activated or the stop time is extended so that the shortest power generation time can be fulfilled.

Description

本発明は、電力および熱を発生する燃料電池システムに関する。   The present invention relates to a fuel cell system that generates electric power and heat.

燃料電池またはガスエンジンを備えた燃料電池システムにおいては、燃料電池で発生した熱を有効利用すべく、冷却水を供給して回収した熱をお湯としてタンクに蓄熱し、そのお湯を給湯などに利用するものが知られている。しかし、タンク内に蓄熱される熱量には上限があり、タンク内に蓄熱された熱量が上限に達している場合には燃料電池で発生した熱を回収できず発電効率が低下してしまう。このため、過去の運転実績に基づいて将来の電力需要及び熱需要を予測し、予測結果とそのときの燃料電池の状態及び蓄熱量とに基づいて燃料電池の運転計画を複数作成し、複数作成した運転計画のうちエネルギー消費量やコストやCO2排出量等の所定の基準に従って1つを選定し、選定した運転計画に基づいて燃料電池の発電の有無を制御する。しかし、どのような運転計画を作成しようとも、実際の電力及び熱の消費が、適用している運転計画の基となった電力及び熱の需要予測からずれることがあり必ずしも効率的な運転ができない。この課題を解決するために、例えば、特許文献1には、発電制限等の理由により実際の負荷が予測からずれて計画運転を停止した場合に、計画時間帯から外れて再起動を禁止する手段が述べられている。   In a fuel cell system equipped with a fuel cell or gas engine, in order to effectively use the heat generated by the fuel cell, the heat collected by supplying cooling water is stored in the tank as hot water, and the hot water is used for hot water supply, etc. What to do is known. However, there is an upper limit to the amount of heat stored in the tank, and when the amount of heat stored in the tank reaches the upper limit, the heat generated in the fuel cell cannot be recovered and the power generation efficiency decreases. For this reason, the future power demand and heat demand are predicted based on the past operation results, and a plurality of fuel cell operation plans are created based on the prediction result and the state and heat storage amount of the fuel cell at that time. One of the selected operation plans is selected according to predetermined criteria such as energy consumption, cost, and CO2 emission, and the presence or absence of power generation of the fuel cell is controlled based on the selected operation plan. However, no matter what operation plan is created, the actual power and heat consumption may deviate from the power and heat demand forecast that is the basis of the applied operation plan. . In order to solve this problem, for example, in Patent Document 1, when the actual load is deviated from the forecast due to reasons such as power generation restrictions and the planned operation is stopped, the means for prohibiting the restart by deviating from the planned time zone Is stated.

特開2011−003483号公報JP 2011-003483 A

しかしながら、貯湯タンクの温度が高く発電禁止状態、例えば満蓄状態にあることによって、燃料電池システムが発電開始時刻になっても発電を開始できない場合、燃料電池システムの起動が遅れ、発電時間が短くなる。そして、発電時間長さが一定時間以下となる場合には、発電すると燃料電池を起動しない場合よりも省資源性または環境性または経済性が悪化するという課題があった。ここで、「満蓄」とは貯湯タンク内の水が十分に熱されてこれ以上蓄熱ができない状態、即ち、貯湯タンク内の温度が第1許容温度(例えば、70℃)以上のことをいう。   However, if the temperature of the hot water storage tank is high and power generation is prohibited, for example, when the fuel cell system is in the full storage state, power generation cannot be started even when the fuel cell system reaches the power generation start time. Become. When the power generation time length is equal to or less than a certain time, there is a problem that when power is generated, resource saving, environmental performance, or economic efficiency is worse than when the fuel cell is not started. Here, “full storage” means that the water in the hot water storage tank is sufficiently heated and cannot store heat any more, that is, the temperature in the hot water storage tank is equal to or higher than a first allowable temperature (for example, 70 ° C.). .

前記従来の課題を解決するために、本発明は、水素を含む燃料ガスと酸化剤ガスとを用いて発電を行う燃料電池を備えている燃料電池システムであって、少なくとも前記燃料電池システムが起動する起動時刻及び停止する停止時刻が定められている運転計画と、前記燃料電池システムが発電を行う最も短い時間である最短発電時間と、を記憶する記憶部と、前記燃料電池システムの発電が禁止される発電禁止状態を検知している場合には前記起動時刻になっても前記燃料電池システムを起動させず、前記発電禁止状態を検知しなくなった後に前記燃料電池システムを起動させるように制御する制御部と、を備えている。そして、特に、前記制御部は、前記発電禁止状態を検知していることにより前記起動時刻に前記燃料電池システムを起動できず、その後、前記発電禁止状態を検知しなくなっても、前記発電禁止状態を検知しなくなったときから前記停止時刻までの時間が前記最短発電時間よりも短くなるときには、前記燃料電池システムを起動させないように制御するものである。   In order to solve the conventional problems, the present invention provides a fuel cell system including a fuel cell that generates power using a fuel gas containing hydrogen and an oxidant gas, and at least the fuel cell system is activated. A storage unit that stores an operation plan in which a start time to perform and a stop time to stop and a shortest power generation time that is the shortest time during which the fuel cell system generates power, and power generation of the fuel cell system are prohibited When the power generation prohibition state is detected, control is performed so that the fuel cell system is not started even when the start time is reached, and the fuel cell system is started after the power generation prohibition state is no longer detected. And a control unit. In particular, the control unit is unable to start the fuel cell system at the start time due to detection of the power generation prohibition state, and even if the power generation prohibition state is not detected thereafter, the power generation prohibition state When the time from the time when the engine is no longer detected until the stop time becomes shorter than the shortest power generation time, the fuel cell system is controlled not to be activated.

本発明は、発電禁止状態を検知していることにより前記起動時刻に前記燃料電池システムを起動できず、その後、前記発電禁止状態を検知しなくなっても、前記発電禁止状態を検知しなくなったときから前記停止時刻までの時間が前記最短発電時間よりも短くなるときには、前記燃料電池システムを起動させない、または最短発電時間を守れるように停止時刻を延長するように制御することにより、省資源性または環境性または経済性が悪化することのない運転をすることができる。   In the present invention, when the power generation prohibition state is detected, the fuel cell system cannot be started at the start time, and then the power generation prohibition state is not detected even if the power generation prohibition state is not detected. When the time from the stop time to the stop time becomes shorter than the shortest power generation time, the fuel cell system is not started, or the stop time is extended so as to keep the shortest power generation time, thereby saving resources or It is possible to drive without deteriorating environmental performance or economy.

本発明の実施の形態1におけるシステムの構成を示すブロック図The block diagram which shows the structure of the system in Embodiment 1 of this invention. 本発明の実施の形態1における発電制限が起きない場合の一例を示す図The figure which shows an example when the electric power generation limitation in Embodiment 1 of this invention does not occur 本発明の実施の形態1における発電制限が運転計画の起動時刻前に起き、最短発電時間前に解除され、燃料電池が起動した一例を示す図The figure which shows an example in which the electric power generation limitation in Embodiment 1 of this invention occurred before the starting time of the operation plan, was canceled before the shortest electric power generation time, and the fuel cell started 本発明の実施の形態1における発電制限が運転計画の起動時刻前に起き、最短発電時間後に解除され、燃料電池が起動しなかった一例を示す図The figure which shows an example in which the electric power generation limitation in Embodiment 1 of this invention occurred before the starting time of the driving plan, was canceled after the shortest electric power generation time, and the fuel cell did not start. 本発明の実施の形態1における制御部の処理を示すフローチャートThe flowchart which shows the process of the control part in Embodiment 1 of this invention. 本発明の実施の形態1における発電制限が運転計画の起動時刻前に起き、最短発電時間後に解除され、燃料電池が起動し停止時刻を延長して発電した一例を示す図The figure which shows an example which the electric power generation limitation in Embodiment 1 of this invention occurred before the starting time of the driving | operation plan, was cancelled | released after the shortest electric power generation time, and the fuel cell started and extended and stopped time was generated. 本発明の実施の形態1における制御部の図6における処理を示すフローチャートThe flowchart which shows the process in FIG. 6 of the control part in Embodiment 1 of this invention.

第1の発明は、水素を含む燃料ガスと酸化剤ガスとを用いて発電を行う燃料電池を備えている燃料電池システムであって、少なくとも前記燃料電池システムが起動する起動時刻及び停止する停止時刻が定められている運転計画と、前記燃料電池システムが発電を行う最も短い時間である最短発電時間と、を記憶する記憶部と、前記燃料電池システムの発電が禁止される発電禁止状態を検知している場合には前記起動時刻になっても前記燃料電池システムを起動させず、前記発電禁止状態を検知しなくなった後に前記燃料電池システムを起動させるように制御する制御部と、を備えている。そして、前記制御部は、前記発電禁止状態を検知していることにより前記起動時刻に前記燃料電池システムを起動できず、その後、前記発電禁止状態を検知しなくなっても、前記発電禁止状態を検知しなくなったときから前記停止時刻までの時間が前記最短発電時間よりも短くなるときには、前記燃料電池システムを起動させないように制御する、燃料電池システムである。   1st invention is a fuel cell system provided with the fuel cell which generates electric power using fuel gas and oxidant gas containing hydrogen, Comprising: At least the starting time which the said fuel cell system starts, and the stop time which stops A storage unit that stores an operation plan in which the fuel cell system generates power and a shortest power generation time that is the shortest time for generating power, and a power generation prohibition state in which power generation of the fuel cell system is prohibited is detected. A control unit that does not start the fuel cell system even when the start time is reached, and controls the fuel cell system to start after the power generation prohibition state is no longer detected. . The control unit detects the power generation prohibition state even if the fuel cell system cannot be started at the start time due to the detection of the power generation prohibition state and thereafter the power generation prohibition state is not detected. The fuel cell system is configured to control the fuel cell system not to be activated when the time from when it stops to the stop time becomes shorter than the shortest power generation time.

第1の発明により、停止時刻までの時間が最短発電時間よりも短い場合には発電しないことで、発電効率の悪い運転を避けることができる。   According to the first invention, when the time until the stop time is shorter than the shortest power generation time, the power generation efficiency is not generated, so that the operation with poor power generation efficiency can be avoided.

第2の発明は、電力および熱を供給する燃料電池と前記熱電供給装置が供給した熱を蓄熱する蓄熱器と、蓄熱器の熱量から利用者の消費する熱負荷を検知する熱量検知器と、利用者が発電開始時刻、または発電開始時刻と発電停止時刻の両方を設定するリモコンと、燃料電池を制御する制御部と、を備えている。そして、前記制御部は、利用者の消費するエネルギー負荷である電力負荷及び熱負荷を元に燃料電池の最適な発電開始時刻と停止時刻を決定する運転計画手段と、現在時刻から前記発電停止時刻までの時間が最短発電時間より長い場合、発電許可を出す最短発電時間判定手段と、前記電力負荷及び熱負荷と、前記発電開始時刻と停止時刻と、を記憶する記憶部と、時計機能とカレンダー機能とを備え、前記発電禁止状態を検知していることにより前記起動時刻に前記燃料電池システムを起動できず、その後、前記発電禁止状態を検知しなくなった場合にも、起動し最短発電時間の長さ以上を発電するように制御する、燃料電池システムである。   A second invention includes a fuel cell for supplying electric power and heat, a heat accumulator for accumulating heat supplied by the thermoelectric supply device, a heat amount detector for detecting a heat load consumed by a user from the amount of heat of the heat accumulator, A remote control for setting a power generation start time or both a power generation start time and a power generation stop time by a user, and a control unit for controlling the fuel cell are provided. The control unit is configured to determine an optimal power generation start time and stop time of the fuel cell based on an electric power load and a heat load that are energy loads consumed by the user, and the power generation stop time from a current time. If the time until is longer than the shortest power generation time, the shortest power generation time determination means for granting power generation, the storage unit for storing the power load and heat load, the power generation start time and the stop time, a clock function and a calendar And when the fuel cell system cannot be started at the start time by detecting the power generation prohibition state, and when the power generation prohibition state is not detected thereafter, it is started and the shortest power generation time is It is a fuel cell system that controls to generate more power than the length.

第2の発明により、停止時刻までの時間が最短発電時間よりも短い場合には停止時刻を延長することで、発電効率の悪い運転を避けることができる。   According to the second invention, when the time to the stop time is shorter than the shortest power generation time, the operation with poor power generation efficiency can be avoided by extending the stop time.

第3の発明は、特に第1または第2の発明において、前記燃料電池の発電で発生した熱を蓄える蓄熱器と、前記蓄熱器に蓄えられている熱量を検知する熱量検知器と、をさらに備えた燃料電池システムにおいて、前記発電禁止状態は、前記熱量検知器で検知された熱量が予め定められた第1熱量以上となっている満畜状態であるものとした。   According to a third aspect of the invention, particularly in the first or second aspect of the invention, further comprising: a heat accumulator that stores heat generated by power generation of the fuel cell; and a heat amount detector that detects the amount of heat stored in the heat accumulator. In the fuel cell system provided, the power generation prohibition state is a full state in which the amount of heat detected by the heat amount detector is equal to or greater than a predetermined first amount of heat.

ここで、熱量検知器は蓄熱器に備えられた温度センサーでも良いし、冷却水の温度を測定する温度センサーでも良い。他にも、発電量を調べて畜熱量を推察する方法でも良い。   Here, the heat quantity detector may be a temperature sensor provided in the regenerator, or a temperature sensor that measures the temperature of the cooling water. In addition, a method of inspecting the amount of livestock heat by examining the amount of power generation may be used.

第4の発明は、特に第1〜第3の発明において、前記発電禁止状態は、利用者が前記蓄熱器を利用しない状態で前記燃料電池の運転計画の停止時刻まで発電を継続すると、前記熱量検知器で検知された熱量が予め定められた第1熱量以上となることが予測されるとき、前記燃料電池が前記発電禁止状態にあると判断するものとした。   In a fourth aspect of the invention, in particular, in the first to third aspects of the invention, the power generation prohibition state is obtained when the user continues power generation until the stop time of the fuel cell operation plan without using the heat accumulator. When the amount of heat detected by the detector is predicted to be equal to or greater than a predetermined first amount of heat, it is determined that the fuel cell is in the power generation prohibited state.

第4の発明により、利用者のお湯の使用の如何にかかわらず運転計画の停止時刻までは満畜とならずに発電を継続することができる。   According to the fourth invention, power generation can be continued without becoming full until the stop time of the operation plan regardless of whether the user uses hot water.

第5の発明は、特に第1〜第4の発明において、前記燃料電池は一定の発電量で定格運転を行うものとし、前記制御部は、機器の運転に必要なエネルギーロスに応じて前記最短発電時間を設定するものとした。   According to a fifth aspect of the invention, particularly in the first to fourth aspects of the invention, the fuel cell performs a rated operation with a constant power generation amount, and the control unit is configured to perform the shortest operation according to an energy loss required for operation of the device. The power generation time was set.

第5の発明により、機器の運転に必要なエネルギーロスが小さい場合には最短発電時間を短くして設定できるため、発電予定時間が短くても省資源性または環境性または経済性のメリットを確保して燃料電池を運転することができる。   According to the fifth invention, when the energy loss required for the operation of the device is small, the shortest power generation time can be set to be short, so that even if the scheduled power generation time is short, resource saving or environmental or economic merit is secured. Thus, the fuel cell can be operated.

以下、本発明の実施の形態について図面を用いて説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明における燃料電池システム100の構成図である。図1を参照し、本発明の構成について以下に説明する。
(Embodiment 1)
FIG. 1 is a configuration diagram of a fuel cell system 100 according to the present invention. The configuration of the present invention will be described below with reference to FIG.

図1において、燃料電池システム100は、電力および熱を供給する燃料電池101と、熱電供給装置が供給した熱を蓄熱する蓄熱器102と、蓄熱器102内の熱量から利用者の消費する熱負荷を検知する熱量検知器103と、利用者が発電開始時刻、または発電開始時刻と発電停止時刻の両方を設定するリモコン104と、燃料電池を制御する制御部105と、を備えている。そして特に、制御部105は、利用者の消費するエネルギー負荷である電力負荷及び熱負荷を元に燃料電池の最適な発電開始時刻と停止時刻を決定する運転計画手段106と、現在時刻から発電停止時刻までの時間が最短発電時刻より長い場合、発電許可を出す最短発電時間判定手段107と、電力負荷及び熱負荷と、発電開始時刻と停止時刻と、を記憶する記憶部108と、時計機能とカレンダー機能とを備えている。そして、制御部105は、発電禁止状態を検知していることにより起動時刻に燃料電池システムを起動できず、その後、発電禁止状態を検知しなくなった場合にも、最短発電時間判定手段が発電許可を出している間のみ起動するように制御するものである。   In FIG. 1, a fuel cell system 100 includes a fuel cell 101 that supplies electric power and heat, a heat accumulator 102 that accumulates heat supplied by a thermoelectric supply device, and a heat load consumed by a user from the amount of heat in the heat accumulator 102. And a remote controller 104 for setting a power generation start time or both a power generation start time and a power generation stop time, and a control unit 105 for controlling the fuel cell. In particular, the control unit 105 determines the optimal power generation start time and stop time of the fuel cell based on the power load and heat load that are energy loads consumed by the user, and the power generation stop from the current time. If the time until the time is longer than the shortest power generation time, the shortest power generation time determination means 107 that gives power generation permission, the power load and the heat load, the storage unit 108 that stores the power generation start time and the stop time, and a clock function It has a calendar function. The control unit 105 detects that the power generation prohibition state has failed to start the fuel cell system at the start time, and when the power generation prohibition state is not detected after that, the shortest power generation time determination unit determines that the power generation permission is permitted. It is controlled to start only during

蓄熱器は、バーナーを備え、外気温の低下により凍結の恐れがあり凍結を予防する(以後、凍結予防)場合、または蓄熱器の溶媒の衛生状態が劣化している恐れがあり溶媒の殺菌を行う(以後、再加熱)場合、燃料電池のガス消費が少ないためにガスメーターがガス漏洩していると誤審することを防ぐ(以後、ガスメーター遮断回避)場合にはバーナーを点火する。   The heat accumulator is equipped with a burner, which may freeze due to a decrease in the outside air temperature and prevent freezing (hereinafter referred to as freezing prevention), or the sanitary condition of the solvent in the heat accumulator may be deteriorated. When performing (hereinafter referred to as reheating), the burner is ignited in order to prevent misjudgment that the gas meter is leaking gas because the gas consumption of the fuel cell is small (hereinafter referred to as avoiding shutting off the gas meter).

制御部は、時計機能とカレンダー機能とを備え、発電禁止状態を検知していることにより起動時刻に燃料電池システムを起動できず、その後、発電禁止状態を検知しなくなっても、発電禁止状態を検知しなくなったときから停止時刻までの時間が最短発電時間よりも短くなるときには、燃料電池システムを起動させない、または最短発電時間を守れるように停止時刻を延長するように制御する、燃料電池システムである。   The control unit is equipped with a clock function and a calendar function, and since it cannot detect the power generation prohibition state, it cannot start the fuel cell system at the start time. In a fuel cell system that controls the fuel cell system not to start or to extend the stop time so that the shortest power generation time can be observed when the time from when it is no longer detected until the stop time becomes shorter than the shortest power generation time. is there.

運転計画作成部が利用者の電力負荷及び熱負荷を元に燃料電池の発電開始時刻と停止時刻とを算出する手段としては特許文献2〜特許文献5のように基準パタンを参照する方法と電力負荷または熱負荷から当日の負荷を予測し、予測に基づいて計画を立てる方法がある。   As a means for the operation plan creation unit to calculate the power generation start time and the stop time of the fuel cell based on the user's power load and heat load, a method of referring to a reference pattern and power as in Patent Documents 2 to 5 There is a method of predicting the load of the day from the load or heat load and making a plan based on the prediction.

最短発電時間とは、燃料電池を起動しない場合と比較して省資源性または環境性または経済性のメリットを確保できる発電時間の最小値のことである。最短発電時間は運転に必要な機器のエネルギーロスによって決定される。ここで、省資源性とは、例えばエネルギー削減量のことである。環境性とは、例えばCO2削減量のことである。経済性とは、例えばガス料金のことである。   The shortest power generation time is the minimum value of the power generation time that can secure the merit of resource saving, environmental performance, and economic efficiency as compared with the case where the fuel cell is not started. The shortest power generation time is determined by the energy loss of equipment required for operation. Here, resource saving refers to, for example, energy reduction. Environmentality is, for example, the amount of CO2 reduction. The economy is, for example, a gas fee.

発電禁止状態とは、満蓄状態、凍結予防、再加熱、ガスメーター遮断回避、酷暑対応の夫々の状態に関する情報のことである。   The power generation prohibition state is information on each state of full storage state, freezing prevention, reheating, avoidance of gas meter shutoff, and extreme heat response.

これによって、発電時間長さが一定時間以下となる場合には、燃料電池を起動しない場合よりも省資源性または環境性または経済性が悪化することのない運転をすることができる。   As a result, when the power generation time length is equal to or less than a predetermined time, it is possible to perform an operation with less resource saving, environmental performance, or economic efficiency than when the fuel cell is not started.

燃料電池システム100における発電禁止状態を検知しない場合の一例について構成図である図1と、発電制限が起きない場合の一例を示す図2と、制御部の処理を示すフローチャートである図5と、を参照して説明する。   FIG. 1 which is a configuration diagram of an example when a power generation prohibition state in the fuel cell system 100 is not detected, FIG. 2 which shows an example when power generation restriction does not occur, and FIG. 5 which is a flowchart showing processing of a control unit, Will be described with reference to FIG.

運転計画手段106は一定時刻に、例えば1日1回0:00、記憶部108に記憶する利用者の電力負荷と熱負荷を下に運転計画として12:00から20:00まで発電する計画を出力した場合を示す。制御部の処理は一定時間間隔、例えば5秒、毎に実行する。   The operation plan means 106 plans to generate power from 12:00 to 20:00 at a certain time, for example, once a day at 0:00, with the user's power load and heat load stored in the storage unit 108 as the operation plan. Indicates the output case. The processing of the control unit is executed at regular time intervals, for example, every 5 seconds.

図2において現在時刻が11:59の場合、制御部の処理を呼び出す(S100)と、現在時刻は発電開始時刻から発電停止時刻の間かを判定する(S101)。現在時刻11:59は発電開始時刻12:00より前と判断した場合(S101でN)、停止指示を出して(S105)、終了する(S106)。図2において現在時刻が12:00の場合、制御部の処理を呼び出す(S100)と、現在時刻12:00は発電開始時刻12:00と発電停止時刻20:00の間に入ると判断した場合(S101でY)、更に発電制限が出ているか否か判断する(S102)。発電制限が出ていない場合(S102でY)、発電停止時刻20:00と最短発電時間2時間から最短発電時間の開始時刻を18:00と算出する(S103)。現在時刻12:00は最短発電時間の開始時刻18:00より前であると判断し(S104)、発電指示を出して(S105)、終了する(S107)。図2において現在時刻が20:01の場合、制御部の処理を呼び出す(S100)と、現在時刻20:01は発電終了時刻20:01より後と判断し(S101)、停止指示を出して(S106)、終了する(S107)。   In FIG. 2, when the current time is 11:59, when the process of the control unit is called (S100), it is determined whether the current time is between the power generation start time and the power generation stop time (S101). When it is determined that the current time 11:59 is before the power generation start time 12:00 (N in S101), a stop instruction is issued (S105), and the process ends (S106). When the current time is 12:00 in FIG. 2, when the process of the control unit is called (S100), the current time 12:00 is determined to be between the power generation start time 12:00 and the power generation stop time 20:00. (Y in S101), it is further determined whether or not there is a power generation limitation (S102). When the power generation limit is not set (Y in S102), the start time of the shortest power generation time is calculated as 18:00 from the power generation stop time 20:00 and the shortest power generation time 2 hours (S103). It is determined that the current time 12:00 is before the start time 18:00 of the shortest power generation time (S104), a power generation instruction is issued (S105), and the process ends (S107). In FIG. 2, when the current time is 20:01, when the process of the control unit is called (S100), it is determined that the current time 20:01 is later than the power generation end time 20:01 (S101), and a stop instruction is issued ( S106) and the process ends (S107).

次に、燃料電池システム100における発電禁止状態を検知していることにより起動時刻に燃料電池システムを起動できず、その後、発電禁止状態を検知しなくなった場合の一例について構成図である図1と、発電制限が運転計画の起動時刻前に起き、最短発電時間
前に解除され、燃料電池が起動した一例を示す図3と、制御部の処理を示すフローチャートである図5と、を参照して説明する。
Next, FIG. 1 is a configuration diagram of an example in which the fuel cell system cannot be activated at the activation time due to detection of the power generation prohibition state in the fuel cell system 100 and thereafter the power generation prohibition state is not detected. Referring to FIG. 3 showing an example in which the power generation restriction occurs before the start time of the operation plan, is released before the shortest power generation time, and the fuel cell is started, and FIG. 5 is a flowchart showing the processing of the control unit. explain.

運転計画手段106は一定時刻に、例えば1日1回0:00、記憶部108に記憶する利用者の電力負荷と熱負荷を下に運転計画として12:00から20:00まで発電する計画を出力した場合を示す。制御部の処理は一定時間間隔、例えば5秒、毎に実行する。   The operation plan means 106 plans to generate power from 12:00 to 20:00 at a certain time, for example, once a day at 0:00, with the user's power load and heat load stored in the storage unit 108 as the operation plan. Indicates the output case. The processing of the control unit is executed at regular time intervals, for example, every 5 seconds.

図3において発電制限が11:58に発生し16:00に解除されている。最短発電時間は2時間とする。現在時刻が11:59の場合、制御部の処理を呼び出す(S100)と、現在時刻11:59は発電開始時刻12:00より前と判断し(S101)、停止指示を出して(S105)、終了する(S106)。図3において現在時刻が12:00の場合、制御部の処理を呼び出す(S100)と、現在時刻12:00は発電開始時刻12:00と発電停止時刻20:00の間に入ると判断し(S101)、更に発電制限が出ていると判断し(S102)、停止指示を出して(S105)、終了する(S106)。現在時刻が16:00の場合、発電制限が解除された後、制御部の処理を呼び出す(S100)と、現在時刻16:00は発電開始時刻12:00と発電停止時刻20:00の間に入ると判断し(S101)、更に発電制限が出ていないと判断し(S102)、発電停止時刻20:00と最短発電時間2時間から最短発電時間の開始時刻を18:00と算出する(S103)。現在時刻16:00は最短発電時間の開始時刻18:00より前であると判断し(S104)、発電指示を出して(S105)、終了する(S107)。   In FIG. 3, the power generation restriction occurs at 11:58 and is released at 16:00. The minimum power generation time is 2 hours. When the current time is 11:59, when the process of the control unit is called (S100), it is determined that the current time 11:59 is before the power generation start time 12:00 (S101), a stop instruction is issued (S105), The process ends (S106). In FIG. 3, when the current time is 12:00, when the process of the control unit is called (S100), it is determined that the current time 12:00 falls between the power generation start time 12:00 and the power generation stop time 20:00 ( In step S101, it is determined that the power generation limit is further imposed (S102), a stop instruction is issued (S105), and the process ends (S106). When the current time is 16:00, the process of the control unit is called after the power generation restriction is released (S100), the current time 16:00 is between the power generation start time 12:00 and the power generation stop time 20:00. It is determined that the power generation is entered (S101), it is further determined that there is no power generation restriction (S102), and the start time of the shortest power generation time is calculated as 18:00 from the power generation stop time 20:00 and the shortest power generation time 2 hours (S103). ). It is determined that the current time 16:00 is before the start time 18:00 of the shortest power generation time (S104), a power generation instruction is issued (S105), and the process ends (S107).

次に、燃料電池システム100における発電禁止状態を検知していることにより起動時刻に燃料電池システムを起動できず、その後、発電禁止状態を検知しなくなった場合にも、最短発電時間判定手段が発電許可を出している間のみ起動する処理の一例について構成図である図1と、発電制限が運転計画の起動時刻前に起き、最短発電時間後に解除され、燃料電池が起動しなかった一例を示す図4と、制御部の処理を示すフローチャートである図5と、を参照して説明する。   Next, even if the fuel cell system cannot be started at the start time due to the detection of the power generation prohibition state in the fuel cell system 100, and the power generation prohibition state is not detected thereafter, the shortest power generation time determination means generates power. FIG. 1 which is a block diagram of an example of a process that is activated only while permission is issued, and an example in which power generation restriction occurs before the start time of the operation plan, is released after the shortest power generation time, and the fuel cell does not start. A description will be given with reference to FIG. 4 and FIG. 5 which is a flowchart showing processing of the control unit.

運転計画手段106は一定時刻に、例えば1日1回0:00、記憶部108に記憶する利用者の電力負荷と熱負荷を下に運転計画として12:00から20:00まで発電する計画を出力した場合を示す。制御部の処理は一定時間間隔、例えば5秒、毎に実行する。   The operation plan means 106 plans to generate power from 12:00 to 20:00 at a certain time, for example, once a day at 0:00, with the user's power load and heat load stored in the storage unit 108 as the operation plan. Indicates the output case. The processing of the control unit is executed at regular time intervals, for example, every 5 seconds.

図4において発電制限が11:58に発生し18:03に解除されている。最短発電時間は2時間とする。現在時刻が11:59の場合、制御部の処理を呼び出す(S100)と、現在時刻11:59は発電開始時刻12:00より前と判断し(S101)、停止指示を出して(S106)、終了する(S107)。図4において現在時刻が12:00の場合、制御部の処理を呼び出す(S100)と、現在時刻12:00は発電開始時刻12:00と発電停止時刻20:00の間に入ると判断し(S101)、更に発電制限が出ていると判断し(S102)、停止指示を出して(S106)、終了する(S107)。現在時刻が18:03の場合、発電制限が解除された後、制御部の処理を呼び出す(S100)と、現在時刻18:03は発電開始時刻12:00と発電停止時刻20:00の間に入ると判断し(S101)、更に発電制限が出ていないと判断し(S102)、発電停止時刻20:00と最短発電時間2時間から最短発電時間の開始時刻を18:00と算出する(S103)。現在時刻18:03は最短発電時間の開始時刻18:00より後であると判断し(S104)、停止指示を出して(S106)、終了する(S107)。   In FIG. 4, the power generation restriction occurs at 11:58 and is released at 18:03. The minimum power generation time is 2 hours. When the current time is 11:59, when the process of the control unit is called (S100), it is determined that the current time 11:59 is before the power generation start time 12:00 (S101), a stop instruction is issued (S106), The process ends (S107). In FIG. 4, when the current time is 12:00, when the process of the control unit is called (S100), it is determined that the current time 12:00 falls between the power generation start time 12:00 and the power generation stop time 20:00 ( In step S101, it is determined that the power generation limit is set (S102), a stop instruction is issued (S106), and the process ends (S107). When the current time is 18:03, the process of the control unit is called after the power generation restriction is released (S100), the current time 18:03 is between the power generation start time 12:00 and the power generation stop time 20:00. It is determined that the power generation is entered (S101), it is further determined that there is no power generation restriction (S102), and the start time of the shortest power generation time is calculated as 18:00 from the power generation stop time 20:00 and the shortest power generation time 2 hours (S103). ). It is determined that the current time 18:03 is later than the start time 18:00 of the shortest power generation time (S104), a stop instruction is issued (S106), and the process ends (S107).

上記のように処理することにより停止時刻までの時間が最短発電時間よりも短い場合には発電しないことで、発電効率の悪い運転を避けることができる。   By performing the processing as described above, when the time until the stop time is shorter than the shortest power generation time, power generation is not performed, so that an operation with poor power generation efficiency can be avoided.

次に、燃料電池システム100における発電禁止状態を検知していることにより起動時
刻に燃料電池システムを起動できず、その後、発電禁止状態を検知しなくなった場合にも、最短発電時間判定手段が発電許可を出している間のみ起動する処理の一例について構成図である図1と、発電制限が運転計画の起動時刻前に起き、最短発電時間後に解除され、燃料電池の停止時刻が最短発電時刻を保つように延長して起動した一例を示す図6と、制御部の処理を示すフローチャートである図7と、を参照して説明する。
Next, even if the fuel cell system cannot be started at the start time due to the detection of the power generation prohibition state in the fuel cell system 100, and the power generation prohibition state is not detected thereafter, the shortest power generation time determination means generates power. FIG. 1 is a block diagram of an example of a process that starts only while permitting, and the power generation restriction occurs before the start time of the operation plan, is released after the shortest power generation time, and the stop time of the fuel cell becomes the shortest power generation time. A description will be given with reference to FIG. 6 showing an example of starting by extending so as to maintain, and FIG. 7 being a flowchart showing processing of the control unit.

運転計画手段106は一定時刻に、例えば1日1回0:00、記憶部108に記憶する利用者の電力負荷と熱負荷を下に運転計画として12:00から20:00まで発電する計画を出力した場合を示す。制御部の処理は一定時間間隔、例えば5秒、毎に実行する。   The operation plan means 106 plans to generate power from 12:00 to 20:00 at a certain time, for example, once a day at 0:00, with the user's power load and heat load stored in the storage unit 108 as the operation plan. Indicates the output case. The processing of the control unit is executed at regular time intervals, for example, every 5 seconds.

図6において発電制限が11:58に発生し18:03に解除されている。最短発電時間は2時間とする。現在時刻が11:59の場合、制御部の処理を呼び出す(S200)と、現在時刻11:59は発電開始時刻12:00より前と判断し(S201)、停止指示を出して(S207)、終了する(S208)。図6において現在時刻が12:00の場合、制御部の処理を呼び出す(S200)と、現在時刻12:00は発電開始時刻12:00と発電停止時刻20:00の間に入ると判断し(S201)、更に発電制限が出ていると判断し(S202)、停止指示を出して(S207)、終了する(S208)。現在時刻が18:03の場合、発電制限が解除された後、制御部の処理を呼び出す(S200)と、現在時刻18:03は発電開始時刻12:00と発電停止時刻20:00の間に入ると判断し(S201)、更に発電制限が出ていないと判断し(S202)、発電停止時刻20:00と最短発電時間2時間から最短発電時間の開始時刻を18:00と算出する(S203)。現在時刻18:03は最短発電時間の開始時刻18:00より後であると判断し(S204)、現在時刻18:03と最短発電時間の2時間を考慮して発電停止時刻を20:30に変更し(S205)、終了する(S208)。5秒後に制御部の処理を呼び出す(S200)と、現在時刻18:03は発電開始時刻18:00と発電停止時刻20:30の間に入ると判断し(S201)、更に発電制限が出ていないと判断し(S202)、発電停止時刻20:30と最短発電時間2時間から最短発電時間の開始時刻を18:30と算出する(S203)、現在時刻18:03は最短発電時間の開始時刻18:30より前であると判断し(S204)、発電指示を出して(S205)、終了する(S208)。   In FIG. 6, the power generation restriction occurs at 11:58 and is released at 18:03. The minimum power generation time is 2 hours. When the current time is 11:59, when the process of the control unit is called (S200), it is determined that the current time 11:59 is before the power generation start time 12:00 (S201), a stop instruction is issued (S207), The process ends (S208). In FIG. 6, when the current time is 12:00, when the process of the control unit is called (S200), it is determined that the current time 12:00 falls between the power generation start time 12:00 and the power generation stop time 20:00 ( In step S201, it is further determined that the power generation limit is set (S202), a stop instruction is issued (S207), and the process ends (S208). If the current time is 18:03, the process of the control unit is called after the power generation restriction is released (S200), the current time 18:03 is between the power generation start time 12:00 and the power generation stop time 20:00. It is determined that the power generation is entered (S201), and it is further determined that the power generation limit is not set (S202), and the start time of the shortest power generation time is calculated as 18:00 from the power generation stop time 20:00 and the shortest power generation time 2 hours (S203). ). It is determined that the current time 18:03 is after the start time 18:00 of the shortest power generation time (S204), and the power generation stop time is set to 20:30 in consideration of the current time 18:03 and the shortest power generation time of 2 hours. Change (S205) and end (S208). When the process of the control unit is called after 5 seconds (S200), it is determined that the current time 18:03 falls between the power generation start time 18:00 and the power generation stop time 20:30 (S201), and further power generation restrictions have been issued. (S202), the start time of the shortest power generation time is calculated as 18:30 from the power generation stop time 20:30 and the shortest power generation time of 2 hours (S203), and the current time 18:03 is the start time of the shortest power generation time. It is determined that it is before 18:30 (S204), a power generation instruction is issued (S205), and the process is terminated (S208).

上記のように処理することにより運転計画手段が出力した停止時刻までの時間が最短発電時間よりも短い場合には停止時刻を最短発電時間を考慮した時刻まで延長することで、発電効率の悪い運転を避けることができる。   When the time until the stop time output by the operation planning means is shorter than the shortest power generation time by processing as described above, the operation with poor power generation efficiency is extended by extending the stop time to a time considering the shortest power generation time. Can be avoided.

本実施の形態では満蓄情報として貯湯タンク内の水が十分に熱された状態、即ち、貯湯タンク内の温度が第1許容温度以上のこととしたが、発電停止時刻まで最低発電量で運転しても満蓄になると予測できる場合に、発電制限としても良い。   In the present embodiment, the water in the hot water storage tank is sufficiently heated as the full storage information, that is, the temperature in the hot water storage tank is higher than the first allowable temperature. Even if it can be predicted that full storage will occur, power generation may be limited.

以上のように、本発明にかかる燃料電池システムは、停止時刻までの時間が最短発電時間よりも短い場合には発電しないことで、発電効率の悪い運転を避けることができるため、様々な燃料電池システムに適用することができる。   As described above, since the fuel cell system according to the present invention does not generate power when the time until the stop time is shorter than the shortest power generation time, operation with poor power generation efficiency can be avoided. Can be applied to the system.

100 燃料電池システム
101 燃料電池
102 蓄熱器
103 熱量検知器
104 リモコン
105 制御部
106 運転計画手段
107 最短発電時間判定手段
108 記憶部
DESCRIPTION OF SYMBOLS 100 Fuel cell system 101 Fuel cell 102 Heat accumulator 103 Heat quantity detector 104 Remote control 105 Control part 106 Operation plan means 107 Shortest power generation time determination means 108 Storage part

Claims (5)

水素を含む燃料ガスと酸化剤ガスとを用いて発電を行う燃料電池を備えている燃料電池システムであって、
少なくとも前記燃料電池システムが起動する起動時刻及び停止する停止時刻が定められている運転計画と、前記燃料電池システムが発電を行う最も短い時間である最短発電時間と、を記憶する記憶部と、
前記燃料電池システムの発電が禁止される発電禁止状態を検知している場合には前記起動時刻になっても前記燃料電池システムを起動させず、前記発電禁止状態を検知しなくなった後に前記燃料電池システムを起動させるように制御する制御部と、
を備えており、
前記制御部は、前記発電禁止状態を検知していることにより前記起動時刻に前記燃料電池システムを起動できず、その後、前記発電禁止状態を検知しなくなっても、前記発電禁止状態を検知しなくなったときから前記停止時刻までの時間が前記最短発電時間よりも短くなるときには、前記燃料電池システムを起動させないように制御する、
燃料電池システム。
A fuel cell system including a fuel cell that generates power using a fuel gas containing hydrogen and an oxidant gas,
A storage unit that stores at least an operation plan in which a start time at which the fuel cell system is started and a stop time at which the fuel cell system is stopped and a shortest power generation time that is the shortest time in which the fuel cell system generates power; and
When the power generation prohibition state in which the power generation of the fuel cell system is prohibited is detected, the fuel cell system is not started at the start time, and the fuel cell is not detected after the power generation prohibition state is not detected. A control unit that controls to start the system;
With
The control unit cannot detect the power generation prohibition state even if it cannot detect the power generation prohibition state after the fuel cell system cannot be started at the start time by detecting the power generation prohibition state. When the time from the stop time to the stop time is shorter than the shortest power generation time, control is performed so as not to start the fuel cell system.
Fuel cell system.
水素を含む燃料ガスと酸化剤ガスとを用いて発電を行う燃料電池を備えている燃料電池システムであって、
少なくとも前記燃料電池システムが起動する起動時刻及び停止する停止時刻が定められている運転計画と、前記燃料電池システムが発電を行う最も短い時間である最短発電時間と、を記憶する記憶部と、
前記燃料電池システムの発電が禁止される発電禁止状態を検知している場合には前記起動時刻になっても前記燃料電池システムを起動させず、前記発電禁止状態を検知しなくなった後に前記燃料電池システムを起動させるように制御する制御部と、
を備えており、
前記制御部は、前記発電禁止状態を検知していることにより前記起動時刻に前記燃料電池システムを起動できず、その後、前記発電禁止状態を検知しなくなっても、前記発電禁止状態を検知しなくなったときから前記停止時刻までの時間が前記最短発電時間よりも短くなるときには、前記燃料電池システムを起動させ、起動させた時刻から前記最短発電時間以上発電するように制御する、
燃料電池システム。
A fuel cell system including a fuel cell that generates power using a fuel gas containing hydrogen and an oxidant gas,
A storage unit that stores at least an operation plan in which a start time at which the fuel cell system is started and a stop time at which the fuel cell system is stopped and a shortest power generation time that is the shortest time in which the fuel cell system generates power; and
When the power generation prohibition state in which the power generation of the fuel cell system is prohibited is detected, the fuel cell system is not started at the start time, and the fuel cell is not detected after the power generation prohibition state is not detected. A control unit that controls to start the system;
With
The control unit cannot detect the power generation prohibition state even if it cannot detect the power generation prohibition state after the fuel cell system cannot be started at the start time by detecting the power generation prohibition state. When the time from the time to the stop time is shorter than the shortest power generation time, the fuel cell system is started, and control is performed so that power is generated for the minimum power generation time or more from the time when the fuel cell system is started.
Fuel cell system.
前記燃料電池の発電で発生した熱を蓄える蓄熱器と、
前記蓄熱器に蓄えられている熱量を検知する熱量検知器と、
をさらに備えた燃料電池システムにおいて、
前記発電禁止状態は、前記熱量検知器で検知された熱量が予め定められた第1熱量以上となっている状態である、
請求項1または2に記載の燃料電池システム。
A heat accumulator for storing heat generated by power generation of the fuel cell;
A calorie detector for detecting the amount of heat stored in the heat accumulator;
In a fuel cell system further comprising:
The power generation prohibition state is a state in which the amount of heat detected by the heat amount detector is equal to or greater than a predetermined first heat amount.
The fuel cell system according to claim 1 or 2.
前記発電禁止状態は、利用者が前記蓄熱器を利用しない状態で前記燃料電池の運転計画の停止時刻まで発電を継続すると、前記熱量検知器で検知された熱量が予め定められた第1熱量以上となることが予測されるとき、前記燃料電池が前記発電禁止状態にあると判断する、
請求項1から3のいずれか1項に記載の燃料電池システム。
In the power generation prohibited state, when the user continues power generation until the stop time of the operation plan of the fuel cell without using the heat accumulator, the amount of heat detected by the heat amount detector is equal to or greater than a predetermined first amount of heat. When it is predicted that the fuel cell is in the power generation prohibited state,
The fuel cell system according to any one of claims 1 to 3.
前記燃料電池は一定の発電量で定格運転を行うものとし、
前記制御部は、起動時及び停止時に機器を運転するのに必要なエネルギーロスを発電に拠って回収できる最短時間である前記最短発電時間を設定する請求項1から4のいずれか1項に記載の燃料電池システム。
The fuel cell shall be rated at a constant power generation amount,
The said control part sets the said shortest electric power generation time which is the shortest time which can collect | recover the energy loss required to drive | operate an apparatus at the time of starting and a stop based on electric power generation. Fuel cell system.
JP2012075747A 2012-03-29 2012-03-29 Fuel cell system Active JP6010748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075747A JP6010748B2 (en) 2012-03-29 2012-03-29 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075747A JP6010748B2 (en) 2012-03-29 2012-03-29 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2013206773A true JP2013206773A (en) 2013-10-07
JP6010748B2 JP6010748B2 (en) 2016-10-19

Family

ID=49525642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075747A Active JP6010748B2 (en) 2012-03-29 2012-03-29 Fuel cell system

Country Status (1)

Country Link
JP (1) JP6010748B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117979A (en) * 2017-04-20 2018-10-30 현대자동차주식회사 Apparatus for controlling operation of fuel cell and method thereof
CN112687921A (en) * 2019-10-17 2021-04-20 株式会社东芝 Fuel cell system and control method of fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044713A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Cogeneration system and its operating method
JP2007247968A (en) * 2006-03-15 2007-09-27 Osaka Gas Co Ltd Cogeneration system
JP2008116109A (en) * 2006-11-02 2008-05-22 Osaka Gas Co Ltd Cogeneration system
JP2011163709A (en) * 2010-02-12 2011-08-25 Osaka Gas Co Ltd Cogeneration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044713A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Cogeneration system and its operating method
JP2007247968A (en) * 2006-03-15 2007-09-27 Osaka Gas Co Ltd Cogeneration system
JP2008116109A (en) * 2006-11-02 2008-05-22 Osaka Gas Co Ltd Cogeneration system
JP2011163709A (en) * 2010-02-12 2011-08-25 Osaka Gas Co Ltd Cogeneration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117979A (en) * 2017-04-20 2018-10-30 현대자동차주식회사 Apparatus for controlling operation of fuel cell and method thereof
KR102262580B1 (en) 2017-04-20 2021-06-09 현대자동차주식회사 Apparatus for controlling operation of fuel cell and method thereof
CN112687921A (en) * 2019-10-17 2021-04-20 株式会社东芝 Fuel cell system and control method of fuel cell system

Also Published As

Publication number Publication date
JP6010748B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
WO2012014474A1 (en) Power supply system, power supply system control device, power supply system operation method and power supply system control method
JP2008108484A (en) Fuel cell system
JP2011041380A (en) Power supply system
JPWO2012017649A1 (en) Power supply system, control device for power supply system, operation method for power supply system, and control method for power supply system
KR20130118797A (en) Heat supply device
JP6010748B2 (en) Fuel cell system
JP2019071169A (en) Fuel cell control system, fuel cell control method and fuel cell system
JP2020161306A (en) Fuel cell system
JP6065641B2 (en) Distributed power supply system and diagnostic method thereof
JP7461977B2 (en) Fuel cell system and facility management method
JP2014053234A (en) Power generating system
US7951497B2 (en) Fuel cell system
JP2006019169A (en) Cogeneration system and its operation control method
JP5769257B2 (en) Cogeneration system heat storage control method
JP2000088482A (en) Cogeneration system
JP2007330009A (en) Power load controller and cogeneration system equipped therewith
JP4984418B2 (en) Fuel cell power generation system and operation method thereof
JP5914799B2 (en) Power generation system
JP6847714B2 (en) Monitoring control device, biogas power generation control system and power generation control method
JP2009278761A (en) System linkage type power supply equipment
JP2009151978A (en) Fuel cell system and program thereof
JP4716446B2 (en) Cogeneration system and operation control method thereof
JP5982648B2 (en) Fuel cell system
JP2016152744A (en) Electric power supply system and electric power control method thereof
JP2008041601A (en) Fuel cell power generation system and its program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6010748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250