JP2013206705A - Power storage device, secondary battery and manufacturing method of power storage device - Google Patents

Power storage device, secondary battery and manufacturing method of power storage device Download PDF

Info

Publication number
JP2013206705A
JP2013206705A JP2012074345A JP2012074345A JP2013206705A JP 2013206705 A JP2013206705 A JP 2013206705A JP 2012074345 A JP2012074345 A JP 2012074345A JP 2012074345 A JP2012074345 A JP 2012074345A JP 2013206705 A JP2013206705 A JP 2013206705A
Authority
JP
Japan
Prior art keywords
storage device
power storage
electrode
active material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012074345A
Other languages
Japanese (ja)
Inventor
Satoshi Nakagawa
敏 中川
Masataka Nakanishi
正孝 仲西
Tomoya Sato
友哉 佐藤
Kazuhito Kawasumi
一仁 川澄
Junichi Niwa
淳一 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012074345A priority Critical patent/JP2013206705A/en
Publication of JP2013206705A publication Critical patent/JP2013206705A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device and a secondary battery in which the time required for doping a negative electrode or a positive electrode with lithium, as a carrier of electrical charges, can be shortened after assembly of the power storage device or the secondary battery, without increasing the aperture ratio of a collector.SOLUTION: The secondary battery (power storage device) includes an electrode 10 for a secondary battery having an active material layer 12 formed by coating a metal collector 11 with an active material. A plurality of holes 13 are formed in the collector 11. The active material layer 12 is formed to cover the surface of an ion conductive material 14 on the side coated with the active material, in a state where the hole 13 is filled with the ion conductive material 14 through which lithium ions pass at a speed higher than the speed at which the lithium ions pass through the active material.

Description

本発明は、蓄電装置及び二次電池並びに蓄電装置の製造方法に関する。   The present invention relates to a power storage device, a secondary battery, and a method for manufacturing the power storage device.

リチウムイオン二次電池の容量を上げる方策として、リチウムを含まない物質を活物質として採用することがある(例えば、特許文献1、特許文献2参照)。それはリチウムを含まない分、体積や重量を減じられるからである。しかしながら電池として使用する際には、正負極を含めて系内にリチウムがないので、電荷のキャリアとしてのリチウムを負極や正極にドープする必要が生じる。   As a measure for increasing the capacity of a lithium ion secondary battery, a material not containing lithium may be employed as an active material (see, for example, Patent Document 1 and Patent Document 2). This is because the volume and weight can be reduced by the amount not containing lithium. However, when used as a battery, since there is no lithium in the system including the positive and negative electrodes, it is necessary to dope the negative electrode and the positive electrode with lithium as a charge carrier.

ドープの方法として、予めスラリー中にリチウム粉を混ぜた状態で塗工する方法と、電池組付け後、リチウムイオンの電界移動によりドープする方法とが考えられる。しかし、前者の方法は、リチウムを取り扱う時間が多いため、専ら後者の方法で実施している。後者の方法は、図6に示すように、正極51と負極52とが図示しないセパレータを挟んで交互に積層された電極体の状態で、外側に位置する負極52にリチウム箔53を付着する。そして、電池ケース(電槽)54内で電極体を電解液に浸漬した状態で、負極52にプラスの電圧をリチウム箔53にマイナスの電圧を印加した状態でリチウムのドープを行う。   As a dope method, a method in which lithium powder is mixed in a slurry in advance and a method in which dope is performed by electric field movement of lithium ions after assembling the battery can be considered. However, since the former method requires a lot of time for handling lithium, it is carried out exclusively by the latter method. In the latter method, as shown in FIG. 6, a lithium foil 53 is attached to the negative electrode 52 located outside in the state of an electrode body in which positive electrodes 51 and negative electrodes 52 are alternately stacked with separators (not shown) interposed therebetween. Then, lithium is doped while a positive voltage is applied to the negative electrode 52 and a negative voltage is applied to the lithium foil 53 while the electrode body is immersed in the electrolyte in the battery case (battery) 54.

また、活物質としてリチウムを含む活物質が使用されている二次電池において、負極の材料によっては正極から移動してきたリチウムイオンの30%近くを正極に返さずに、抱え込んでしまうものがある。その場合、30%近くのリチウムが実質的に発電に寄与しない状態となり、二次電池の重量当たりの容量が小さくなる。このような活物質を用いた負極にリチウムをドープすることで、二次電池の重量当たりの容量を大きくすることが考えられる。   Further, in a secondary battery in which an active material containing lithium is used as an active material, depending on the material of the negative electrode, nearly 30% of lithium ions moved from the positive electrode are not returned to the positive electrode but are held in the battery. In that case, nearly 30% of lithium does not substantially contribute to power generation, and the capacity per weight of the secondary battery is reduced. It is conceivable to increase the capacity per weight of the secondary battery by doping lithium into the negative electrode using such an active material.

特開2005−203115号公報JP-A-2005-203115 特許再公表公報98/033227号Patent Republication No. 98/033227

ところが、二次電池が積層タイプの場合、上述した後者の方法を実施すると、図6に示すように、正極51と負極52との関係は、図中イで示す真ん中の負極52にリチウムイオンが到達するためには、図中アやウで示す端の負極52をリチウムイオンが通過しなければならない。そのために、通常負極の集電体は孔のあいたメッシュ構造を採用している。同様の理由で正極51もメッシュ構造となっている。   However, when the secondary battery is a stacked type, when the latter method described above is carried out, as shown in FIG. 6, the relationship between the positive electrode 51 and the negative electrode 52 is that lithium ions are present in the middle negative electrode 52 shown in FIG. In order to reach, lithium ions must pass through the negative electrode 52 at the end indicated by a and c in the figure. Therefore, the negative electrode current collector usually employs a mesh structure with holes. For the same reason, the positive electrode 51 also has a mesh structure.

ここで、ドープ時間を短くするためには、メッシュの開口率を上げる必要がある。しかしながら開口率を上げると、集電体の強度が保てなく種々の問題が生じる。(例えば、電池組み立て中に、電極が破れる等)。さらには、活物質の塗工が難しくなり、乾燥後に剥れや塗工面のヒビの原因となる。また、リチウムイオンキャパシタのようなキャパシタにおいても同様な問題がある。   Here, in order to shorten the dope time, it is necessary to increase the aperture ratio of the mesh. However, when the aperture ratio is increased, the strength of the current collector cannot be maintained and various problems occur. (For example, the electrode breaks during battery assembly). Furthermore, it becomes difficult to apply the active material, which causes peeling and cracks on the coated surface after drying. There is a similar problem in a capacitor such as a lithium ion capacitor.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、集電体の開口率を上げずに、蓄電装置又は二次電池の組み付け後に電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる蓄電装置及び二次電池並びに蓄電装置の製造方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to increase lithium as a charge carrier after assembly of a power storage device or a secondary battery without increasing the aperture ratio of the current collector or the secondary battery. An object of the present invention is to provide a power storage device, a secondary battery, and a method for manufacturing the power storage device that can reduce the doping time when doping the positive electrode.

前記の目的を達成するため、請求項1に記載の発明は、金属製の集電体に活物質が塗布された活物質層を有する蓄電装置用電極を備える蓄電装置であって、前記集電体には複数の孔が形成され、前記孔が前記活物質内をリチウムイオンが通過する速度よりも速い速度で内部をリチウムイオンが通過するイオン導電性物質で埋められた状態で、前記活物質層が前記イオン導電性物質の活物質塗布側の面を覆う状態に形成されている。   In order to achieve the above object, an invention according to claim 1 is a power storage device including an electrode for a power storage device having an active material layer in which an active material is applied to a metal current collector, wherein the current collector A plurality of holes are formed in the body, and the active material is filled with an ion conductive material through which lithium ions pass at a speed faster than the speed at which lithium ions pass through the active material. The layer is formed so as to cover the surface of the ion conductive material on the active material application side.

蓄電装置用電極を構成する活物質としてリチウムを含まない活物質が使用されている場合は、電荷のキャリアとしてのリチウムを負極や正極にドープする必要がある。また、リチウムを含む活物質が使用されている二次電池で、負極の材料が正極から移動してきたリチウムイオンの30%近くを正極に返さずに、抱え込んでしまい、結果として二次電池の重量当たりの容量が小さくなるものがある。その場合には、負極にリチウムをドープすることで、二次電池の重量当たりの容量を大きくすることが考えられる。そして、ドープ方法として、電池組付け後、Liイオンの電界移動によりドープする方法を採用した場合、正極及び負極を構成する集電体には孔のあいたメッシュ構造を採用する。ドープ時間を短くするためには、メッシュ即ち集電体の開口率を上げる必要がある。しかし、開口率を上げすぎると、集電体の強度が保てなくなったり、活物質の塗布に支障を来したりする等の問題が生じる。   When an active material that does not contain lithium is used as an active material constituting the electrode for the power storage device, it is necessary to dope lithium as a charge carrier into the negative electrode or the positive electrode. In addition, in a secondary battery in which an active material containing lithium is used, nearly 30% of the lithium ions that have moved from the positive electrode are not returned to the positive electrode but are held back, resulting in the weight of the secondary battery. There is a thing that the capacity per hit becomes small. In that case, it is conceivable to increase the capacity per weight of the secondary battery by doping lithium into the negative electrode. And as a dope method, when the method of dope by the electric field movement of Li ion is employ | adopted after a battery assembly | attachment, the mesh structure with a hole is employ | adopted for the electrical power collector which comprises a positive electrode and a negative electrode. In order to shorten the doping time, it is necessary to increase the aperture ratio of the mesh, that is, the current collector. However, if the aperture ratio is increased too much, problems such as failure to maintain the strength of the current collector and hindering application of the active material occur.

この発明では、集電体に形成された孔がイオン導電性物質で埋められた状態にある。そのため、蓄電装置用電極にリチウムをドープする際、イオン導電性物質が存在しない場合に比べて孔を通過するリチウムイオンの移動速度が速くなり、メッシュの開効率を集電体の強度が確保される値に低く押さえた状態でも、孔をリチウムイオンが通過する時間を短くすることができる。したがって、蓄電装置において、この蓄電装置用電極を使用することにより、蓄電装置の組み付け後に電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。   In the present invention, the holes formed in the current collector are filled with the ion conductive material. Therefore, when lithium is doped into the electrode for the power storage device, the movement speed of lithium ions passing through the holes is faster than when no ion conductive substance is present, and the mesh opening efficiency is ensured and the strength of the current collector is ensured. Even when the value is kept low, the time for lithium ions to pass through the hole can be shortened. Therefore, in the power storage device, by using the power storage device electrode, the doping time when doping the lithium as the charge carrier into the negative electrode or the positive electrode after the power storage device is assembled can be shortened.

請求項2に記載の発明は、請求項1に記載の発明において、前記活物質としてリチウムを含まない活物質が使用されている。この発明では、活物質としてリチウムを含んだ物質を使用した場合に比べて電極の重量が軽くなり、蓄電装置として単位重量当たりの容量を上げることができる。   According to a second aspect of the present invention, in the first aspect of the present invention, an active material not containing lithium is used as the active material. In this invention, the weight of the electrode is reduced as compared with the case where a material containing lithium is used as the active material, and the capacity per unit weight of the power storage device can be increased.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記孔を埋めた前記イオン導電性物質は、それぞれ他の孔を埋めている前記イオン導電性物質と離間した状態で前記集電体の前記活物質が塗布された面における前記孔の周縁を覆う状態となっている。この発明では、イオン導電性物質はその一部が孔からはみ出て鍔状となって孔の周縁に存在するため、イオン導電性物質が孔からはみ出さない状態で埋めたられた場合に比べて、集電体に対する活物質の塗布が完了するまでの取り扱い中に、イオン導電性物質が孔から離脱し難くなり、取り扱いが容易になる。また、イオン導電性物質が集電体の表面全体を覆う状態に比べて、抵抗が小さくなる。   According to a third aspect of the present invention, in the first or second aspect of the invention, the ion conductive material filling the hole is separated from the ion conductive material filling another hole. In this state, the current collector covers the peripheral edge of the hole on the surface on which the active material is applied. In this invention, a part of the ionic conductive material protrudes from the hole and is in the shape of a bowl and is present at the periphery of the hole. Therefore, compared to the case where the ionic conductive material is buried without protruding from the hole. During the handling until the application of the active material to the current collector is completed, the ionic conductive material becomes difficult to separate from the hole, and the handling becomes easy. In addition, the resistance is reduced as compared with a state where the ion conductive material covers the entire surface of the current collector.

請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記イオン導電性物質は、導電率が10−4S(ジーメンス)/cm〜1×10−2S/cmである。この発明では、孔を埋めているイオン導電性物質の存在により、蓄電装置の組み付け後に電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を確実に優位性を持って短縮することができる。 The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the ion conductive material has a conductivity of 10 −4 S (Siemens) / cm to 1 × 10. -2 S / cm. In this invention, due to the presence of the ion conductive material filling the holes, the doping time when doping lithium as a charge carrier into the negative electrode or the positive electrode after assembly of the power storage device is reliably shortened with superiority. Can do.

請求項5に記載の発明は、請求項1〜請求項4のいずれか1項に記載の蓄電装置用電極を正極及び負極として使用し、それらの蓄電装置用電極に塗布された前記活物質にリチウムがドープされている。この発明の蓄電装置は、製造工程において、正極及び負極を蓄電装置に組み付けた後、電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。   The invention according to claim 5 uses the power storage device electrode according to any one of claims 1 to 4 as a positive electrode and a negative electrode, and the active material applied to the power storage device electrode. Lithium is doped. According to the power storage device of the present invention, after the positive electrode and the negative electrode are assembled to the power storage device in the manufacturing process, the doping time for doping lithium as a charge carrier into the negative electrode or the positive electrode can be shortened.

請求項6に記載の発明は、前記活物質としてリチウムを含む正極用の活物質が塗布された請求項1に記載の蓄電装置用電極を正極として使用し、前記活物質としてリチウムを含む負極用の活物質が塗布された請求項1に記載の蓄電装置用電極を負極として使用し、それらの蓄電装置用電極にリチウムがドープされている。この発明では、負極の材料として正極から移動してきたリチウムイオンの30%近くを正極に返さずに、抱え込んでしまうものが使用された場合、予め負極で抱え込むリチウムの量がドープされた状態にすることにより、蓄電装置の重量当たりの容量を大きくすることができる。また、製造工程において、正極及び負極を蓄電装置に組み付けた後、電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。   The invention according to claim 6 uses the electrode for a power storage device according to claim 1 coated with an active material for positive electrode containing lithium as the active material, and for a negative electrode containing lithium as the active material. The electrode for a power storage device according to claim 1 coated with the active material is used as a negative electrode, and the electrode for the power storage device is doped with lithium. In the present invention, when a material that does not return nearly 30% of lithium ions that have migrated from the positive electrode to the positive electrode is used as a negative electrode material, the amount of lithium held in the negative electrode is previously doped. Thus, the capacity per weight of the power storage device can be increased. Further, in the manufacturing process, after assembling the positive electrode and the negative electrode into the power storage device, the doping time when doping the negative electrode or the positive electrode with lithium as a charge carrier can be shortened.

請求項7に記載の発明は、請求項1〜請求項4のいずれか1項に記載の蓄電装置用電極を正極及び負極として使用し、前記正極と前記負極とが間にセパレータを挟んだ状態で層状を成す電極体を有し、最外の負極用の蓄電装置用電極の外側にセパレータが設けられている。この発明では、蓄電装置の製造工程の一工程である、最外の負極用の蓄電装置用電極にセパレータをリチウム箔を付着させた状態で組み付けた後、負極となる蓄電装置用電極にプラスの電圧を印加し、リチウム箔にマイナスの電圧を印加して正極及び負極となる蓄電装置用電極にリチウムをドープする工程において、ドープを円滑に行うことができる。   The invention according to claim 7 is a state in which the power storage device electrode according to any one of claims 1 to 4 is used as a positive electrode and a negative electrode, and a separator is interposed between the positive electrode and the negative electrode. The separator is provided outside the outermost electrode for the power storage device for the negative electrode. In this invention, after assembling the separator with the lithium foil attached to the outermost negative electrode power storage device electrode, which is one step of the power storage device manufacturing process, the positive electrode is added to the negative power storage device electrode. Doping can be smoothly performed in the step of applying a voltage and applying a negative voltage to the lithium foil to dope lithium into the electrode for the power storage device serving as the positive electrode and the negative electrode.

請求項8に記載の発明は、請求項1〜請求項4のいずれか1項に記載の発明において、前記イオン導電性物質はホウ酸である。ホウ酸は入手し易く、取り扱いも容易で導電率が10−4S(ジーメンス)/cmであるため、イオン導電性物質として適している。 The invention according to claim 8 is the invention according to any one of claims 1 to 4, wherein the ion conductive substance is boric acid. Boric acid is easy to obtain, easy to handle, and has a conductivity of 10 −4 S (Siemens) / cm, so it is suitable as an ion conductive material.

請求項9に記載の発明は、請求項1〜請求項8のいずれか1項に記載の発明において、前記活物質は硫黄である。硫黄は入手し易く、硫黄の導電率は10−13S(ジーメンス)/cmであるため、活物質として適している。 The invention according to claim 9 is the invention according to any one of claims 1 to 8, wherein the active material is sulfur. Sulfur is easily available, and the conductivity of sulfur is 10 −13 S (Siemens) / cm, so it is suitable as an active material.

請求項10に記載の発明は、請求項1〜請求項9のいずれか一項に記載の蓄電装置の構造を備える二次電池である。この発明の二次電池は請求項1〜請求項9のいずれか一項に記載の発明と同様の効果を有する。   A tenth aspect of the present invention is a secondary battery including the structure of the power storage device according to any one of the first to ninth aspects. The secondary battery of the present invention has the same effect as that of any one of the first to ninth aspects.

請求項11に記載の発明は、請求項5又は請求項6に記載の蓄電装置の製造方法であって、正極及び負極を蓄電装置に組み付ける際、負極となる前記蓄電装置用電極にリチウム箔を付着させた状態で組み付けた後、前記負極となる蓄電装置用電極にプラスの電圧を印加し、前記リチウム箔にマイナスの電圧を印加して正極及び負極となる蓄電装置用電極にリチウムをドープする工程を備えている。この発明では、蓄電装置の製造方法において、正極及び負極を蓄電装置に組み付けた後、電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。   Invention of Claim 11 is a manufacturing method of the electrical storage apparatus of Claim 5 or Claim 6, Comprising: When assembling a positive electrode and a negative electrode to an electrical storage apparatus, lithium foil is used for the said electrode for electrical storage apparatuses used as a negative electrode After assembling in an attached state, a positive voltage is applied to the electrode for the power storage device serving as the negative electrode, and a negative voltage is applied to the lithium foil to dope lithium to the electrode for the power storage device serving as the positive electrode and the negative electrode It has a process. According to the present invention, in the method for manufacturing a power storage device, after the positive electrode and the negative electrode are assembled to the power storage device, the doping time when doping lithium as a charge carrier to the negative electrode or the positive electrode can be shortened.

本発明によれば、集電体の開口率を上げずに、蓄電装置又は二次電池の組み付け後に電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。   According to the present invention, without increasing the aperture ratio of the current collector, it is possible to shorten the doping time when doping the negative electrode or the positive electrode with lithium as a charge carrier after assembly of the power storage device or the secondary battery.

(a)は二次電池用電極の模式断面図、(b)は孔にイオン導電性物質が埋め込まれた集電体の模式斜視図。(A) is a schematic cross section of an electrode for a secondary battery, (b) is a schematic perspective view of a current collector in which an ion conductive material is embedded in a hole. リチウムのドープ方法を説明する模式図。The schematic diagram explaining the doping method of lithium. (a)は二次電池の断面図、(b)は(a)のA−A線断面図。(A) is sectional drawing of a secondary battery, (b) is the sectional view on the AA line of (a). リチウム二次電池の模式図。The schematic diagram of a lithium secondary battery. (a),(b)は別の実施形態の二次電池用電極の模式断面図。(A), (b) is a schematic cross section of the electrode for secondary batteries of another embodiment. 正極及び負極にリチウムをドープする場合の模式図。The schematic diagram in the case of doping lithium into the positive electrode and the negative electrode.

以下、本発明を具体化した一実施形態を図1〜図4にしたがって説明する。
この実施形態は積層型の二次電池に適した実施形態である。図1(a)に示すように、蓄電装置用電極としての二次電池用電極10は金属製の集電体11に活物質が塗布された活物質層12を有する。活物質としてリチウムを含まない活物質が使用されている。活物質としては、例えば硫黄が使用でき、硫黄の導電率は10−13S(ジーメンス)/cmである。図1(a),(b)に示すように、集電体11には複数の孔13が形成されている。孔13は一般にパンチングで開けられ、集電体11全体に均一に開けられている。孔13はイオン導電性物質14で埋められており、活物質層12はイオン導電性物質14の活物質塗布側の面を覆う状態で集電体11の両面に形成されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
This embodiment is an embodiment suitable for a stacked secondary battery. As shown in FIG. 1A, a secondary battery electrode 10 as a power storage device electrode includes an active material layer 12 in which an active material is applied to a metal current collector 11. An active material not containing lithium is used as the active material. For example, sulfur can be used as the active material, and the conductivity of sulfur is 10 −13 S (Siemens) / cm. As shown in FIGS. 1A and 1B, a plurality of holes 13 are formed in the current collector 11. The holes 13 are generally opened by punching, and are formed uniformly in the current collector 11. The hole 13 is filled with the ion conductive material 14, and the active material layer 12 is formed on both surfaces of the current collector 11 so as to cover the surface of the ion conductive material 14 on the active material application side.

集電体11は矩形状に形成されるとともに、孔13の直径が、例えば、0.3mm程度に形成されている。開孔率は、二次電池の製造工程において、電極が損傷したり、活物質の塗布が円滑に行われなくなったり、乾燥後に剥れや塗布面のヒビが発生したりし難い値に設定され、集電体11の材質、厚さ、大きさによって適宜設定される。活物質の塗工性の観点からは35〜45%が上限となるが、イオン導電性物質14で孔13を埋めた状態で活物質を塗布する場合は開口率をそれより大きくすることが可能となる。   The current collector 11 is formed in a rectangular shape, and the diameter of the hole 13 is, for example, about 0.3 mm. The hole area ratio is set to a value that does not easily damage the electrodes, prevent the active material from being applied smoothly, or cause peeling or cracks on the coated surface in the secondary battery manufacturing process. Depending on the material, thickness, and size of the current collector 11, the current collector 11 is appropriately set. From the viewpoint of coating properties of the active material, the upper limit is 35 to 45%. However, when the active material is applied in a state where the holes 13 are filled with the ion conductive material 14, the aperture ratio can be increased. It becomes.

活物質層12を構成する活物質は、正極用の集電体11に塗布されるものと負極用の集電体11に塗布されるものとでは異なる。例えば、正極用の集電体11にはアルミニウムが使用され、負極用の集電体11には銅が使用される。   The active material constituting the active material layer 12 is different from that applied to the current collector 11 for the positive electrode and that applied to the current collector 11 for the negative electrode. For example, aluminum is used for the current collector 11 for the positive electrode, and copper is used for the current collector 11 for the negative electrode.

イオン導電性物質14としては、導電率が10−4S(ジーメンス)/cm〜1×10−2S/cmである物質が使用される。この実施形態では、イオン導電性物質14としてホウ酸が使用されている。なお、ホウ酸の導電率は10−4S(ジーメンス)/cmである。即ち、孔13は、活物質内をリチウムイオンが通過する速度よりも速い速度で内部をリチウムイオンが通過するイオン導電性物質14で埋められた状態で、活物質層12がイオン導電性物質14の活物質塗布側の面を覆う状態に形成されている。 As the ion conductive substance 14, a substance having a conductivity of 10 −4 S (Siemens) / cm to 1 × 10 −2 S / cm is used. In this embodiment, boric acid is used as the ion conductive material 14. The conductivity of boric acid is 10 −4 S (Siemens) / cm. That is, the holes 13 are filled with the ion conductive material 14 through which lithium ions pass at a speed faster than the speed at which lithium ions pass through the active material, and the active material layer 12 is filled with the ion conductive material 14. It is formed so as to cover the surface on the active material application side.

次に前記のように構成された二次電池用電極10の製造方法を説明する。
二次電池用電極10の製造方法として、活物質の塗布工程の前に、集電体11に形成されている孔13にイオン導電性物質14を埋め込む工程が存在する点が従来と異なり、その他の工程は基本的に同じため、説明を省略する。
Next, the manufacturing method of the electrode 10 for secondary batteries comprised as mentioned above is demonstrated.
Unlike the conventional method, the manufacturing method of the secondary battery electrode 10 includes a step of embedding the ion conductive material 14 in the holes 13 formed in the current collector 11 before the application step of the active material. Since these steps are basically the same, description thereof is omitted.

イオン導電性物質14を集電体11の孔13に埋め込む工程では、ホウ酸の粉末をペースト状にして集電体11に塗布し、孔13からはみ出した部分をスクレーパで掻き取ることにより、各孔13を埋めたイオン導電性物質14の表面が集電体11の表面と同一平面となる。その後、活物質の塗布工程で活物質の塗布が行われる。活物質の塗布が行われる状態では、集電体11の表面は孔13の部分を含めて平坦になっているため、塗布が容易になる。   In the step of embedding the ion conductive material 14 in the holes 13 of the current collector 11, boric acid powder is applied as a paste to the current collector 11, and the portion protruding from the holes 13 is scraped off with a scraper. The surface of the ion conductive material 14 filling the holes 13 is flush with the surface of the current collector 11. Thereafter, the active material is applied in the active material application step. In a state where the active material is applied, the surface of the current collector 11 is flat including the portion of the hole 13, so that the application becomes easy.

次に前記のように構成された二次電池用電極10を使用した二次電池の製造方法を説明する。二次電池の製造方法は、正極用の活物質が塗布された正極用の二次電池用電極を正極として使用し、負極用の活物質が塗布された負極用の二次電池用電極を負極として使用し、正極及び負極の間にセパレータが介在する状態で複数の正極及び負極を積層して電極体を形成する。そして、電極体に端子を取り付けた状態で電極体を電池ケースに収容して取り付け、電池ケース内に電解液を注入して活物質の活性化を行った後、本封止が行われる。   Next, a method for manufacturing a secondary battery using the secondary battery electrode 10 configured as described above will be described. The secondary battery manufacturing method uses a positive electrode for a positive battery coated with a positive electrode active material as a positive electrode, and a negative electrode for a secondary battery for a negative electrode coated with a negative electrode active material. The electrode body is formed by laminating a plurality of positive electrodes and negative electrodes with a separator interposed between the positive electrode and the negative electrode. Then, the electrode body is housed and attached to the battery case with the terminal attached to the electrode body, the electrolyte is injected into the battery case to activate the active material, and then the main sealing is performed.

正極用の二次電池用電極及び負極用の二次電池用電極を電池ケースに組み付けた後、正極用の二次電池用電極及び負極用の二次電池用電極にリチウムをドープするリチウムドープ工程が存在する点が従来と異なるため、リチウムドープ工程について説明する。   Lithium doping step of doping lithium into the secondary battery electrode for the positive electrode and the secondary battery electrode for the negative electrode after assembling the secondary battery electrode for the positive electrode and the secondary battery electrode for the negative electrode to the battery case Since there is a difference from the conventional method, the lithium doping process will be described.

リチウムドープ工程では、図2に示すように、正極用の二次電池用電極10pと負極用の二次電池用電極10nとが図示しないセパレータを挟んで交互に積層された電極体の状態で、両外側に位置する負極用の二次電池用電極10nに、それぞれセパレータ24を介してリチウム箔15を付着する。そして、電池ケース(電槽)16内で電極体を電解液に浸漬した状態で、直流電源17から配線18aを介して負極用の二次電池用電極10nにプラスの電圧を印加し、配線18bを介してリチウム箔15にマイナスの電圧を印加した状態でリチウムのドープを行う。   In the lithium doping step, as shown in FIG. 2, in the state of the electrode body in which the secondary battery electrode 10p for the positive electrode and the secondary battery electrode 10n for the negative electrode are alternately stacked with a separator (not shown) interposed therebetween, Lithium foils 15 are attached to the secondary battery electrodes 10n for the negative electrodes located on both outer sides through the separators 24, respectively. Then, with the electrode body immersed in the electrolyte in the battery case (battery) 16, a positive voltage is applied from the DC power source 17 to the negative battery electrode 10n via the wiring 18a, and the wiring 18b. Then, lithium is doped while a negative voltage is applied to the lithium foil 15 via.

ドープは、リチウムイオンの電界移動により行われ、リチウムイオンは、電解液中及び孔13を埋めたイオン導電性物質14中を移動する。リチウムイオンは、電解液中を移動する方がイオン導電性物質14中を移動するより移動速度が大きい。しかし、孔13がイオン導電性物質14で埋められた状態の場合は、イオン導電性物質14以外の物質で孔13が埋められた場合に比べて孔13を通過するリチウムイオンの移動速度が速くなる。したがって、集電体11の開効率を集電体11の強度が確保される値に低く押さえた状態でも、孔13をリチウムイオンが通過する時間をイオン導電性物質14が存在しない場合に比べて短くすることができる。   Doping is performed by electric field movement of lithium ions, and the lithium ions move in the electrolytic solution and in the ion conductive material 14 filling the holes 13. Lithium ions move faster in the electrolytic solution than in the ion conductive material 14. However, when the hole 13 is filled with the ion conductive material 14, the movement speed of lithium ions passing through the hole 13 is faster than when the hole 13 is filled with a material other than the ion conductive material 14. Become. Therefore, even when the opening efficiency of the current collector 11 is kept low to a value that ensures the strength of the current collector 11, the time for the lithium ions to pass through the holes 13 is longer than when the ion conductive material 14 is not present. Can be shortened.

リチウムの移動は電解液を電池ケース16に入れ、負極用の二次電池用電極10nとリチウム箔15との間に電圧を印加した時点で始まる。ドープを行う際の電池ケース16の封止は、本封止でも仮封止でもいずれの状態であってもよいが、ドープ完了まで1ヶ月単位の時間が掛かることを配慮すると、本封止後にドープを行うことが好ましい。   The movement of lithium starts when the electrolytic solution is put into the battery case 16 and a voltage is applied between the negative battery electrode 10 n for the negative electrode and the lithium foil 15. The battery case 16 may be sealed during the dope in either the main sealing or the temporary sealing. However, in consideration of the time required for completing the dope in units of one month, Doping is preferably performed.

なお、リチウムのドープが完了した後、配線18a,18bが取り除かれると、図3(a),(b)及び図4に示すように二次電池20が完成する。このとき、図4に示すように、正極用の二次電池用電極10p及び負極用の二次電池用電極10nにリチウム(黒丸で図示)がドープされた二次電池20が完成する。そして、正極用の二次電池用電極10p及び負極用の二次電池用電極10nがそれぞれ負荷30に接続されて、負荷30に電力が供給される。   When the wirings 18a and 18b are removed after the lithium doping is completed, the secondary battery 20 is completed as shown in FIGS. 3 (a), 3 (b) and FIG. At this time, as shown in FIG. 4, the secondary battery 20 in which lithium (illustrated by black circles) is doped to the positive battery electrode 10p for the positive electrode and the negative battery electrode 10n for the negative electrode is completed. Then, the secondary battery electrode 10p for positive electrode and the electrode 10n for secondary battery for negative electrode are connected to the load 30, respectively, and power is supplied to the load 30.

図3(a),(b)に示すように、蓄電装置としての二次電池20は、ケース21内に、積層型の電極体22及び電解液23が収容されている。図3(b)に示すように、電極体22、複数の正極用の二次電池用電極10p及び複数の負極用の二次電池用電極10nが、二次電池用電極10pと二次電池用電極10nとの間にシート状のセパレータ24が存在する状態で交互に積層されて構成されている。セパレータ24は、最外電極となる負極用の二次電池用電極10nの外側、即ちケース21の側壁21aの内面との間にも存在する。   As shown in FIGS. 3A and 3B, the secondary battery 20 as a power storage device includes a case 21 in which a stacked electrode body 22 and an electrolytic solution 23 are accommodated. As shown in FIG. 3 (b), the electrode body 22, the plurality of positive electrode electrodes 10p for the positive electrode, and the plurality of secondary battery electrodes 10n for the negative electrode include the secondary battery electrode 10p and the secondary battery electrode. The sheet-like separators 24 are alternately stacked with the electrode 10n. The separator 24 is also present on the outer side of the negative electrode for a secondary battery 10 n serving as the outermost electrode, that is, between the inner surface of the side wall 21 a of the case 21.

ケース21の蓋体21bには正極端子25及び負極端子26が固定されている。二次電池用電極10p及び二次電池用電極10nはそれぞれ、正極端子25及び負極端子26側に突出する正極タブ10pa及び負極タブ10naを有する。二次電池用電極10pは正極タブ10pa及び正極用集電端子27を介して正極端子25に電気的に接続されており、二次電池用電極10nは負極タブ10na及び負極用集電端子28を介して負極端子26に電気的に接続されている。   A positive electrode terminal 25 and a negative electrode terminal 26 are fixed to the lid 21 b of the case 21. The secondary battery electrode 10p and the secondary battery electrode 10n have a positive electrode tab 10pa and a negative electrode tab 10na that protrude toward the positive electrode terminal 25 and the negative electrode terminal 26, respectively. The secondary battery electrode 10p is electrically connected to the positive electrode terminal 25 via the positive electrode tab 10pa and the positive electrode current collector terminal 27, and the secondary battery electrode 10n includes the negative electrode tab 10na and the negative electrode current collector terminal 28. To the negative electrode terminal 26.

この実施形態によれば、以下に示す効果を得ることができる。
(1)二次電池用電極10は、金属製の集電体11に活物質が塗布された活物質層12を有し、集電体11には複数の孔13が形成され、孔13がイオン導電性物質14で埋められた状態で、活物質層12がイオン導電性物質14の活物質塗布側の面を覆う状態に形成されている。イオン導電性物質14は、活物質内をリチウムイオンが通過する速度よりも速い速度で内部をリチウムイオンが通過する。したがって、リチウムを含まない物質を活物質として使用する二次電池において、この二次電池用電極10を使用することにより、電池組み付け後に電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。
According to this embodiment, the following effects can be obtained.
(1) The secondary battery electrode 10 has an active material layer 12 in which an active material is applied to a metal current collector 11, and the current collector 11 has a plurality of holes 13 formed therein. The active material layer 12 is formed so as to cover the surface of the ion conductive material 14 on the active material application side while being filled with the ion conductive material 14. In the ion conductive material 14, lithium ions pass through the active material at a speed higher than the speed at which lithium ions pass through the active material. Therefore, in a secondary battery using a material not containing lithium as an active material, by using this secondary battery electrode 10, doping when doping lithium as a charge carrier to the negative electrode or the positive electrode after the battery is assembled is performed. Time can be shortened.

(2)活物質としてリチウムを含まない活物質が使用されている。したがって、活物質としてリチウムを含んだ物質を使用した場合に比べて電極の重量が軽くなり、二次電池として単位重量当たりの容量を上げることができる。   (2) An active material not containing lithium is used as the active material. Therefore, the weight of the electrode is reduced as compared with the case where a material containing lithium is used as the active material, and the capacity per unit weight can be increased as a secondary battery.

(3)イオン導電性物質14は、導電率が10−4S(ジーメンス)/cm〜1×10−2S/cmである物質が使用される。したがって、孔を埋めているイオン導電性物質14の存在により、確実に優位性を持って電池組み付け後に電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。 (3) The ion conductive substance 14 is a substance having a conductivity of 10 −4 S (Siemens) / cm to 1 × 10 −2 S / cm. Therefore, due to the presence of the ion conductive material 14 filling the holes, the doping time when doping the lithium as the charge carrier to the negative electrode or the positive electrode after assembling the battery surely has superiority can be shortened.

(4)イオン導電性物質14としてホウ酸が使用されている。ホウ酸は入手し易く、取り扱いも容易で導電率が10−4S(ジーメンス)/cmであるため、イオン導電性物質14として適している。 (4) Boric acid is used as the ion conductive material 14. Boric acid is easy to obtain, easy to handle and has a conductivity of 10 −4 S (Siemens) / cm, and is therefore suitable as the ion conductive material 14.

(5)活物質として硫黄が使用されている。硫黄は入手し易く、硫黄の導電率は10−13S(ジーメンス)/cmであるため、活物質として適している。
(6)二次電池20は、正極用の活物質が塗布された正極用の二次電池用電極10pを正極として使用し、負極用の活物質が塗布された負極用の二次電池用電極10nを負極として使用し、それらの二次電池用電極10p,10nにリチウムがドープされた電極を正極及び負極として備えている。したがって、二次電池20は、製造工程において、正極及び負極を電池に組み付けた後、電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。
(5) Sulfur is used as an active material. Sulfur is easily available, and the conductivity of sulfur is 10 −13 S (Siemens) / cm, so it is suitable as an active material.
(6) The secondary battery 20 uses the positive battery secondary battery electrode 10p coated with the positive electrode active material as the positive electrode, and the negative battery secondary battery electrode coated with the negative electrode active material. 10n is used as a negative electrode, and electrodes 10p and 10n for the secondary batteries are provided with lithium-doped electrodes as a positive electrode and a negative electrode. Therefore, in the manufacturing process, the secondary battery 20 can reduce the doping time when the negative electrode or the positive electrode is doped with lithium as a charge carrier after the positive electrode and the negative electrode are assembled to the battery.

(7)二次電池20は、二次電池用電極10を正極及び負極として使用し、正極と負極とが間にセパレータ24を挟んだ状態で層状を成す電極体22を有し、最外の負極用の二次電池用電極10nの外側にセパレータ24が設けられている。したがって、製造時に最外の負極用の二次電池用電極10nにセパレータ24を介してリチウム箔15を付着させた状態で組み付けた後、負極用の二次電池用電極10nにプラスの電圧を印加し、リチウム箔15にマイナスの電圧を印加して正極及び負極となる二次電池用電極10にリチウムをドープする工程において、ドープを円滑に行うことができる。   (7) The secondary battery 20 uses the secondary battery electrode 10 as a positive electrode and a negative electrode, and has a layered electrode body 22 with the separator 24 interposed between the positive electrode and the negative electrode. A separator 24 is provided outside the secondary battery electrode 10n for the negative electrode. Therefore, after assembling with the lithium foil 15 attached to the outermost secondary battery electrode 10n via the separator 24 at the time of manufacture, a positive voltage is applied to the negative secondary battery electrode 10n. Then, in the step of applying a negative voltage to the lithium foil 15 to dope lithium into the secondary battery electrode 10 serving as the positive electrode and the negative electrode, doping can be performed smoothly.

(8)二次電池20の製造方法は、正極(正極用の二次電池用電極10p)及び負極(負極用の二次電池用電極10n)を電池に組み付ける際、一部の負極にセパレータ24を介してリチウム箔15を付着させた状態で組み付けた後、負極にプラスの電圧を印加し、リチウム箔15にマイナスの電圧を印加して正極及び負極となる二次電池用電極にリチウムをドープする工程を備えている。したがって、二次電池20の製造方法において、正極及び負極を電池に組み付けた後、電荷のキャリアとしてのリチウムを負極や正極にドープする際のドープ時間を短縮することができる。   (8) The method of manufacturing the secondary battery 20 is such that when the positive electrode (secondary battery electrode 10p for positive electrode) and the negative electrode (secondary battery electrode 10n for negative electrode) are assembled to the battery, the separator 24 is attached to some of the negative electrodes. After assembling with the lithium foil 15 attached thereto, a positive voltage is applied to the negative electrode, and a negative voltage is applied to the lithium foil 15 to dope lithium into the positive and negative electrode for the secondary battery. The process to do is provided. Therefore, in the method for manufacturing the secondary battery 20, after assembling the positive electrode and the negative electrode into the battery, the doping time when doping the negative electrode or the positive electrode with lithium as a charge carrier can be shortened.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ イオン導電性物質14は、活物質内をリチウムイオンが通過する速度よりも速い速度で内部をリチウムイオンが通過する物質であればよく、ホウ酸に限らず、例えば、LiS−P系、NASICON型、LIPON型、LiN等の固体電解質として使用される材料を使用してもよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The ion conductive material 14 may be any material that allows lithium ions to pass through the active material at a speed faster than the speed at which lithium ions pass through the active material, and is not limited to boric acid. For example, Li 2 S—P 2 S 5 based, NASICON type, LIPON type, may be used material that is used as a solid electrolyte of Li 3 N and the like.

○ イオン導電性物質14は、孔13からはみ出さずに孔13を埋める状態に限らない。例えば、図5(a)に示すように、孔13を埋めたイオン導電性物質14は、それぞれ他の孔13を埋めているイオン導電性物質14と離間した状態で集電体11の活物質が塗布された面における孔13の周縁を覆う状態、例えば、イオン導電性物質14の一部が孔13からはみ出て鍔状となって孔13の周縁に存在してもよい。また、図5(b)に示すように、イオン導電性物質14が集電体11の表面全体を覆う状態で存在してもよい。これらの場合、イオン導電性物質14が孔13からはみ出さない状態で埋めたられた場合に比べて、集電体11に対する活物質の塗布が完了するまでの取り扱い中に、イオン導電性物質14が孔13から離脱し難くなり、取り扱いが容易になる。また、他の孔13を埋めているイオン導電性物質14と離間した状態で孔13の周縁を覆う状態の場合は、イオン導電性物質14が集電体11の表面全体を覆う状態に比べて、抵抗が小さくなる。   The ion conductive substance 14 is not limited to the state of filling the hole 13 without protruding from the hole 13. For example, as shown in FIG. 5A, the ion conductive material 14 filling the holes 13 is separated from the ion conductive material 14 filling the other holes 13, and the active material of the current collector 11. A state in which the periphery of the hole 13 is covered on the surface coated with, for example, a part of the ion conductive material 14 may protrude from the hole 13 to form a bowl shape and exist at the periphery of the hole 13. Further, as shown in FIG. 5B, the ion conductive material 14 may exist in a state of covering the entire surface of the current collector 11. In these cases, as compared with the case where the ion conductive material 14 is buried in a state where it does not protrude from the hole 13, the ion conductive material 14 is handled during handling until the application of the active material to the current collector 11 is completed. However, it becomes difficult to detach from the hole 13, and handling becomes easy. Further, in the state of covering the periphery of the hole 13 in a state of being separated from the ion conductive material 14 filling the other holes 13, compared to a state in which the ion conductive material 14 covers the entire surface of the current collector 11. , Resistance becomes smaller.

○ イオン導電性物質14が孔13からはみ出さずに孔13を埋める状態は、必ずしも集電体11の表面全体が平坦な状態となるように埋めなくても、孔13の部分で窪みや膨らみが存在する状態であってもよい。   The state in which the ion conductive material 14 does not protrude from the hole 13 and fills the hole 13 is not necessarily filled so that the entire surface of the current collector 11 is flat, but the hole 13 is depressed or swollen. May be present.

○ 活物質としてリチウムを含まない活物質が使用されている二次電池に限らず、活物質としてリチウムを含む活物質が使用されている二次電池に適用してもよい。リチウムを含む活物質を使用する場合、負極の材料によっては正極から移動してきたリチウムイオンの30%近くを正極に返さずに、抱え込んでしまうものがある。その場合、30%の量の活物質が有効に機能せず、二次電池の重量当たりの容量が小さくなる。しかし、負極の材料として正極から移動してきたリチウムイオンの30%近くを正極に返さずに、抱え込んでしまうものが使用された場合、予め負極で抱え込むリチウムの量をドープした状態とすることにより、ドープを行わない場合には機能しなかった活物質が有効に機能するようになる。その結果、二次電池の重量当たりの容量を大きくすることができる。   The present invention may be applied not only to secondary batteries that use an active material that does not contain lithium as an active material, but also to secondary batteries that use an active material that contains lithium as an active material. When using an active material containing lithium, depending on the material of the negative electrode, nearly 30% of the lithium ions that have moved from the positive electrode may be carried without being returned to the positive electrode. In that case, the amount of active material of 30% does not function effectively, and the capacity per weight of the secondary battery becomes small. However, in the case where what is held without returning nearly 30% of the lithium ions that have moved from the positive electrode as the negative electrode material to the positive electrode is used, by pre-doping the amount of lithium held in the negative electrode, In the case where the doping is not performed, the active material that does not function effectively functions. As a result, the capacity per weight of the secondary battery can be increased.

○ 二次電池20を構成するセパレータ24として高分子電解質を使用してもよい。
○ 電解質として電解液を使用せずに固体電解質や高分子電解質を使用する構成の二次電池に適用してもよい。
A polymer electrolyte may be used as the separator 24 constituting the secondary battery 20.
-You may apply to the secondary battery of the structure which uses a solid electrolyte or a polymer electrolyte, without using electrolyte solution as electrolyte.

○ 孔13は集電体11全体に均一に開けられている構成に限らず、不規則に分布する状態で開けられていてもよい。
○ 正極用の二次電池用電極10p及び負極用の二次電池用電極10nに形成された孔13の位置は、正極用の二次電池用電極10p、負極用の二次電池用電極10n及びセパレータを積層した状態でそれぞれ対向しても対向しなくても、どちらであってもよい。
The holes 13 are not limited to the structure in which the current collector 11 is uniformly opened, and may be opened in an irregularly distributed state.
The positions of the holes 13 formed in the positive battery electrode 10p for the positive electrode and the electrode 10n for the secondary battery for the negative electrode are the secondary battery electrode 10p for the positive electrode, the secondary battery electrode 10n for the negative electrode, and It does not matter whether the separators are stacked or not.

○ 孔13は円形に限らず、楕円形や長円形に形成したり、多角形に形成したりしてもよい。しかし、多角形のように角がある形状に比べて円形等の角のない形状が好ましい。
○ 孔13は、同じ大きさのものだけが形成されるのではなく、異なる大きさの孔13が混在してもよい。
The hole 13 is not limited to a circular shape, and may be formed in an elliptical shape, an oval shape, or a polygonal shape. However, a shape with no corners such as a circle is preferable to a shape with corners such as a polygon.
○ The holes 13 are not only formed with the same size, but holes 13 with different sizes may be mixed.

○ 孔13はパンチングにて開けたものに限らず、エッチングにて開けてもよい。または、エキスパンドメタルを平坦化プレスすることで集電体を構成して孔を形成してもよい。またドリル加工やレーザー加工により孔を形成してもよい。   The hole 13 is not limited to being punched but may be etched. Alternatively, the current collector may be configured by flattening the expanded metal to form the holes. The hole may be formed by drilling or laser processing.

○ 積層された状態で積層方向の中央部に位置する負極用の二次電池用電極10n、例えば図2の場合、中央に位置する二次電池用電極10nは、孔13を形成せずに活物質層12を形成してもよく、負極用の二次電池用電極10nが偶数個設けられる場合、中央の2個の二次電池用電極10nも同様である。   ○ The secondary battery electrode 10n for the negative electrode positioned in the center in the stacking direction in the stacked state, for example, in the case of FIG. 2, the secondary battery electrode 10n positioned in the center is activated without forming the hole 13. The material layer 12 may be formed. When an even number of secondary battery electrodes 10n for the negative electrode are provided, the same applies to the two secondary battery electrodes 10n at the center.

○ 活物質層12は集電体11の両面ではなく、少なくとも一方の面に形成されていればよい。
○ 二次電池20は複数の正極及び負極が正極と負極との間にセパレータが介在する状態で交互に積層された積層型に限らず、帯状の正極及び負極が間にセパレータが介在する状態で巻回された巻回型であってもよい。
The active material layer 12 should just be formed in the at least one surface instead of the both surfaces of the electrical power collector 11. FIG.
The secondary battery 20 is not limited to a stacked type in which a plurality of positive electrodes and negative electrodes are alternately stacked with a separator interposed between the positive electrode and the negative electrode, but in a state in which a separator is interposed between the strip-shaped positive electrode and the negative electrode. A wound type may be used.

○ 蓄電装置は、二次電池20に限らず、例えば、リチウムイオンキャパシタ等のようなキャパシタであってもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
The power storage device is not limited to the secondary battery 20 and may be a capacitor such as a lithium ion capacitor, for example.
The following technical idea (invention) can be understood from the embodiment.

(1)請求項5又は請求項6に記載の発明において、前記蓄電装置は、複数の正極及び複数の負極がセパレータを挟んで積層された積層型の蓄電装置であり、正極及び負極を蓄電装置に組み付ける際、負極となる一部の前記蓄電装置用電極にセパレータを介してリチウム箔を付着させた状態で組み付けた後、負極となる蓄電装置用電極にプラスの電圧を印加し、前記リチウム箔にマイナスの電圧を印加して蓄電装置用電極にリチウムをドープする工程を備えている蓄電装置の製造方法。   (1) In the invention according to claim 5 or 6, the power storage device is a stacked power storage device in which a plurality of positive electrodes and a plurality of negative electrodes are stacked with a separator interposed therebetween, and the positive electrode and the negative electrode are connected to the power storage device. When assembling in a state in which a lithium foil is attached to a part of the electrode for a power storage device serving as a negative electrode via a separator, a positive voltage is applied to the electrode for the power storage device serving as a negative electrode, A method for manufacturing a power storage device, comprising: applying a negative voltage to the electrode for power storage device to dope lithium into the power storage device electrode.

10,10n,10p…二次電池用電極、11…集電体、12…活物質層、13…孔、14…イオン導電性物質、15…リチウム箔、20…蓄電装置としての二次電池、22…電極体、24…セパレータ。   DESCRIPTION OF SYMBOLS 10,10n, 10p ... Secondary battery electrode, 11 ... Current collector, 12 ... Active material layer, 13 ... Hole, 14 ... Ion conductive material, 15 ... Lithium foil, 20 ... Secondary battery as power storage device, 22 ... Electrode body, 24 ... Separator.

Claims (11)

金属製の集電体に活物質が塗布された活物質層を有する蓄電装置用電極を備える蓄電装置であって、前記集電体には複数の孔が形成され、前記孔が前記活物質内をリチウムイオンが通過する速度よりも速い速度で内部をリチウムイオンが通過するイオン導電性物質で埋められた状態で、前記活物質層が前記イオン導電性物質の活物質塗布側の面を覆う状態に形成されていることを特徴とする蓄電装置。   A power storage device including an electrode for a power storage device having an active material layer obtained by applying an active material to a metal current collector, wherein the current collector has a plurality of holes, and the holes are formed in the active material. A state in which the active material layer covers the surface of the ion conductive material on the active material application side in a state of being filled with an ion conductive material through which lithium ions pass at a speed faster than the speed at which lithium ions pass A power storage device is formed. 前記活物質としてリチウムを含まない活物質が使用されている請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein an active material not containing lithium is used as the active material. 前記孔を埋めた前記イオン導電性物質は、それぞれ他の孔を埋めている前記イオン導電性物質と離間した状態で前記集電体の前記活物質が塗布された面における前記孔の周縁を覆う状態となっている請求項1又は請求項2に記載の蓄電装置。   The ion conductive material filling the hole covers the periphery of the hole on the surface of the current collector on which the active material is applied in a state of being separated from the ion conductive material filling another hole. The power storage device according to claim 1 or claim 2 in a state. 前記イオン導電性物質は、導電率が10−4S(ジーメンス)/cm〜1×10−2S/cmである請求項1〜請求項3のいずれか一項に記載の蓄電装置。 4. The power storage device according to claim 1, wherein the ion conductive material has a conductivity of 10 −4 S (Siemens) / cm to 1 × 10 −2 S / cm. 請求項1〜請求項4のいずれか1項に記載の蓄電装置用電極を正極及び負極として使用し、それらの蓄電装置用電極に塗布された前記活物質にリチウムがドープされている蓄電装置。   A power storage device using the power storage device electrode according to any one of claims 1 to 4 as a positive electrode and a negative electrode, wherein the active material applied to the power storage device electrode is doped with lithium. 前記活物質としてリチウムを含む正極用の活物質が塗布された請求項1に記載の蓄電装置用電極を正極として使用し、前記活物質としてリチウムを含む負極用の活物質が塗布された請求項1に記載の蓄電装置用電極を負極として使用し、それらの蓄電装置用電極にリチウムがドープされている蓄電装置。   The power storage device electrode according to claim 1, wherein a positive electrode active material containing lithium is applied as the active material, and a negative electrode active material containing lithium is applied as the active material. A power storage device, wherein the power storage device electrode according to 1 is used as a negative electrode, and the power storage device electrode is doped with lithium. 請求項1〜請求項4のいずれか1項に記載の蓄電装置用電極を正極及び負極として使用し、前記正極と前記負極とが間にセパレータを挟んだ状態で層状を成す電極体を有し、最外の負極用の蓄電装置用電極の外側にセパレータが設けられている蓄電装置。   5. The power storage device electrode according to claim 1 is used as a positive electrode and a negative electrode, and the positive electrode and the negative electrode have a layered electrode body with a separator interposed therebetween. A power storage device in which a separator is provided on the outside of the outermost negative electrode power storage device electrode. 前記イオン導電性物質はホウ酸である請求項1〜請求項7のいずれか一項に記載の蓄電装置。   The power storage device according to claim 1, wherein the ion conductive substance is boric acid. 前記活物質は硫黄である請求項1〜請求項8のいずれか一項に記載の蓄電装置。   The power storage device according to any one of claims 1 to 8, wherein the active material is sulfur. 請求項1〜請求項9のいずれか一項に記載の蓄電装置の構造を備える二次電池。   A secondary battery comprising the structure of the power storage device according to any one of claims 1 to 9. 請求項5又は請求項6に記載の蓄電装置の製造方法であって、正極及び負極を蓄電装置に組み付ける際、負極となる前記蓄電装置用電極にリチウム箔を付着させた状態で組み付けた後、前記負極となる蓄電装置用電極にプラスの電圧を印加し、前記リチウム箔にマイナスの電圧を印加して正極及び負極となる蓄電装置用電極にリチウムをドープする工程を備えている蓄電装置の製造方法。   The power storage device manufacturing method according to claim 5 or 6, wherein when assembling the positive electrode and the negative electrode to the power storage device, after assembling with the lithium foil attached to the electrode for the power storage device to be the negative electrode, Production of a power storage device comprising a step of applying a positive voltage to the power storage device electrode serving as the negative electrode and applying a negative voltage to the lithium foil to dope lithium into the power storage device electrode serving as the positive electrode and the negative electrode Method.
JP2012074345A 2012-03-28 2012-03-28 Power storage device, secondary battery and manufacturing method of power storage device Pending JP2013206705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074345A JP2013206705A (en) 2012-03-28 2012-03-28 Power storage device, secondary battery and manufacturing method of power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074345A JP2013206705A (en) 2012-03-28 2012-03-28 Power storage device, secondary battery and manufacturing method of power storage device

Publications (1)

Publication Number Publication Date
JP2013206705A true JP2013206705A (en) 2013-10-07

Family

ID=49525589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074345A Pending JP2013206705A (en) 2012-03-28 2012-03-28 Power storage device, secondary battery and manufacturing method of power storage device

Country Status (1)

Country Link
JP (1) JP2013206705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004655A1 (en) * 2017-06-27 2019-01-03 주식회사 엘지화학 Electrode assembly and lithium secondary battery comprising same
CN109155381A (en) * 2016-06-23 2019-01-04 英特尔公司 Utilize the battery of equipment cavity
JP2022523812A (en) * 2019-10-15 2022-04-26 エルジー エナジー ソリューション リミテッド A current collector for a battery including a metal plate in which a through hole is formed and a porous reinforcing material that fills the through hole, and a secondary battery containing the same.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155381A (en) * 2016-06-23 2019-01-04 英特尔公司 Utilize the battery of equipment cavity
CN109155381B (en) * 2016-06-23 2022-08-30 英特尔公司 Battery utilizing device cavity
WO2019004655A1 (en) * 2017-06-27 2019-01-03 주식회사 엘지화학 Electrode assembly and lithium secondary battery comprising same
US11081762B2 (en) 2017-06-27 2021-08-03 Lg Chem, Ltd. Electrode assembly and lithium secondary battery including the same
JP2022523812A (en) * 2019-10-15 2022-04-26 エルジー エナジー ソリューション リミテッド A current collector for a battery including a metal plate in which a through hole is formed and a porous reinforcing material that fills the through hole, and a secondary battery containing the same.
JP7351918B2 (en) 2019-10-15 2023-09-27 エルジー エナジー ソリューション リミテッド A battery current collector including a metal plate with a through hole formed therein and a porous reinforcing material filling the through hole, and a secondary battery including the same

Similar Documents

Publication Publication Date Title
JP6608862B2 (en) Lithium battery using nanoporous separator layer
US8085525B2 (en) Electric double layer capacitor including current collector having a plurality of apertures therein
CN106558674B (en) The rolled-up electrode unit of recess with accommodate electrod connector
KR101792572B1 (en) Battery Cell Having Electrode Coated with Insulating Material
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
US20160013455A1 (en) Stacked-cell battery with notches to accommodate electrode connections
WO2008096834A1 (en) Lithium ion battery before pre-doping and lithium ion battery manufacturing method
CN103348426A (en) Electric double-layer capacitor
JP2015088605A (en) Method of manufacturing power storage device and power storage device
KR102136599B1 (en) Electrochemical device
JP2013206705A (en) Power storage device, secondary battery and manufacturing method of power storage device
US10497962B2 (en) Electrode including an increased active material content
KR102028167B1 (en) Secondary battery and manufacturing method using the same
TW201143190A (en) Lithium ion battery assembly
JP2009123583A (en) Lithium ion secondary battery and battery pack using it
JP6188463B2 (en) Electrochemical device and method for producing electrochemical device
JP2017022060A (en) Power storage device
KR101101546B1 (en) Electrochemical capacitor and method for manufacturing the same
JP2007115799A (en) Electric double layer capacitor
JP6056514B2 (en) battery
US20180174765A1 (en) Electrochemical device
JP2012109198A (en) Molten salt battery
JP2011222909A (en) Lithium ion capacitor, power storage device, and manufacturing method thereof
WO2012114649A1 (en) Battery
CA2967543A1 (en) Fast charge apparatus for a battery