JP2013206119A - Machine tool environment and tool state diagnostic method - Google Patents

Machine tool environment and tool state diagnostic method Download PDF

Info

Publication number
JP2013206119A
JP2013206119A JP2012074303A JP2012074303A JP2013206119A JP 2013206119 A JP2013206119 A JP 2013206119A JP 2012074303 A JP2012074303 A JP 2012074303A JP 2012074303 A JP2012074303 A JP 2012074303A JP 2013206119 A JP2013206119 A JP 2013206119A
Authority
JP
Japan
Prior art keywords
temperature
environment
change
estimated
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012074303A
Other languages
Japanese (ja)
Other versions
JP5912756B2 (en
Inventor
Hironori Funaguchi
裕典 舩口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2012074303A priority Critical patent/JP5912756B2/en
Publication of JP2013206119A publication Critical patent/JP2013206119A/en
Application granted granted Critical
Publication of JP5912756B2 publication Critical patent/JP5912756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the diagnosis of a machine tool environment and a tool state at low cost and without requiring special equipment.SOLUTION: A machining center 1 diagnoses environment and a tool state by respectively estimating the present ambient temperatures on the basis of detection temperatures obtained from respective temperature sensors ch1 to ch7 and comparing a difference between the present ambient temperatures estimated in at least two temperature sensors with a preset threshold.

Description

本発明は、工作機械の環境及び機械状態を診断する方法に関する。   The present invention relates to a method for diagnosing the environment and machine state of a machine tool.

工作機械での加工の際には、室温変化や切削液の影響により構造体温度が変化し加工寸法誤差が生じる。この寸法誤差を抑制するために、室温や、機械各部に設置した温度センサによって検出した構造体温度から、変換係数等を用いるなどして熱変位を推定し補正を行う方法がよく知られている。また、工作機械を恒温室等の温度制御された部屋へ設置したり、特許文献1に開示のように温度センサの近傍に温度調整手段(冷却配管)を設けて温度変化を抑制したりする方法も知られている。   When machining with a machine tool, the structure temperature changes due to changes in room temperature or the influence of cutting fluid, resulting in machining dimension errors. In order to suppress this dimensional error, a method of estimating and correcting thermal displacement by using a conversion coefficient or the like from room temperature or a structure temperature detected by a temperature sensor installed in each part of the machine is well known. . In addition, a method of installing a machine tool in a temperature-controlled room such as a temperature-controlled room, or providing a temperature adjusting means (cooling pipe) in the vicinity of the temperature sensor as disclosed in Patent Document 1 to suppress temperature changes. Is also known.

特開2001−54839号公報JP 2001-54839 A

しかし、熱変位を推定して補正を行う方法において、各構造体周りの室温はカバーや軸移動などに影響され一様ではないことに加え、測定値も瞬時値のためばらつきやすく、熱変位推定誤差の要因となっている。また、冷房や暖房及び日差しなどの不安定要因の影響により室温が一様に変化しない場合や、周囲の温度変化は同じでも風の流れなどによって構造体の一部の熱伝導率が変化する場合には、構造体に温度分布が生じる。この温度分布は、温度変化による単純な熱膨張や熱収縮とは別に反りやねじれといった熱変形の原因となり、加工寸法の不安定化に繋がっていた。さらに、工作機械の使用開始前に室温が変化している場合には、周囲温度は変化しなくても構造体温度が変化して熱変位が発生するため、現在の室温からの熱変位及び環境の診断では同様に推定誤差が生じる場合がある。
一方、恒温室等への設置や特許文献1のような構造体への冷却配管の付加については、前述のような外乱の影響は少なくなるがコストアップとなることは明らかである。
よって、熱変位を推定して補正を行う方法を実施する前提として、多くのコストをかけずに機械の周辺環境や状態を診断する方法の提供が望まれていた。
However, in the method of correcting by estimating the thermal displacement, the room temperature around each structure is not uniform due to the influence of the cover and axial movement, etc. In addition, the measured value is also an instantaneous value, so it tends to vary, and thermal displacement estimation It is a factor of error. Also, when the room temperature does not change uniformly due to the influence of instability factors such as cooling, heating, and sunlight, or when the thermal conductivity of a part of the structure changes due to the flow of wind even if the ambient temperature changes are the same In this case, a temperature distribution is generated in the structure. This temperature distribution causes thermal deformation such as warpage and torsion, apart from simple thermal expansion and contraction due to temperature change, leading to instability of processing dimensions. Furthermore, if the room temperature has changed before the start of use of the machine tool, the structure temperature will change and thermal displacement will occur even if the ambient temperature does not change. Similarly, an estimation error may occur in the diagnosis.
On the other hand, regarding the installation in a temperature-controlled room or the like and the addition of the cooling pipe to the structure as in Patent Document 1, it is obvious that the influence of the disturbance as described above is reduced but the cost is increased.
Therefore, as a premise for carrying out a method for estimating and correcting thermal displacement, it has been desired to provide a method for diagnosing the surrounding environment and state of a machine without much cost.

そこで、本発明は、特別な装備を必要とせずに安価に周辺環境及び機械状態を診断することができる工作機械の環境及び機械状態の診断方法を提供することを目的としたものである。   Therefore, an object of the present invention is to provide a machine tool environment and machine state diagnosis method capable of diagnosing the surrounding environment and machine state at low cost without requiring special equipment.

上記目的を達成するために、請求項1に記載の発明は、構造体各部に複数の温度センサを設置し、前記温度センサで検出した前記構造体各部の温度から工作機械の環境及び機械状態を診断する方法であって、各前記温度センサから得られる検出温度に基づいて現在の室温をそれぞれ推定し、少なくとも2つの前記温度センサにおいて推定された前記現在の室温間の差を、予め設定された閾値と比較することを特徴とするものである。
上記目的を達成するために、請求項2に記載の発明は、構造体各部に複数の温度センサを設置し、前記温度センサで検出した前記構造体各部の温度から工作機械の環境及び機械状態を診断する方法であって、予め設定した構造体各部の時定数と室温変化とから当該構造体の推定温度変化を演算すると共に、演算された前記推定温度変化に許容範囲を設定し、前記温度センサで検出される前記構造体各部の温度変化が、前記推定温度変化の前記許容範囲内にあるか否かを判断することを特徴とするものである。
請求項3に記載の発明は、請求項2の構成において、前記許容範囲は、前記構造体に設けられて対となる2つの温度センサの推定温度変化の平均から設定され、前記2つの温度センサで検出される温度変化が前記許容範囲にあるか否かが判断されることを特徴とするものである。
上記目的を達成するために、請求項4に記載の発明は、構造体各部に複数の温度センサを設置し、前記温度センサで検出した前記構造体各部の温度から工作機械の環境及び機械状態を診断する方法であって、前記構造体に設けられて対となる2つの温度センサの温度差の変化が、予め設定された閾値以内であるか否かを判断することを特徴とするものである。
上記目的を達成するために、請求項5に記載の発明は、請求項3に記載の診断方法と請求項4に記載の診断方法とをそれぞれ実行し、前記請求項3の診断方法において前記2つの温度センサで検出される温度変化が前記許容範囲にないと判断され,且つ前記請求項4の診断方法において前記2つの温度センサの温度差の変化が前記閾値以内にないと判断された場合に、前記環境及び機械状態を不安定と診断することを特徴とするものである。
上記目的を達成するために、請求項6に記載の発明は、構造体各部に複数の温度センサを設置し、前記温度センサで検出した前記構造体各部の温度から工作機械の環境及び機械状態を診断する方法であって、予め設定した構造体各部の時定数と室温変化とから当該構造体の推定温度変化を演算すると共に、前記構造体に設けられて対となる2つの前記温度センサの前記推定温度変化の平均から許容範囲を設定し、前記2つの温度センサの温度差が、前記許容範囲内にあるか否かを判断する診断方法と、請求項4に記載の診断方法とをそれぞれ実行し、前者の診断方法において前記2つの温度センサの温度差が前記許容範囲にないと判断され、且つ前記請求項4の診断方法において前記2つの温度センサの温度差の変化が前記閾値以内にないと判断された場合に、前記環境及び機械状態を不安定と診断することを特徴とするものである。
請求項7に記載の発明は、請求項2乃至6の何れかの構成において、判断の結果、環境及び機械状態を不安定と診断した場合、当該判断に係る前記温度センサを表示することを特徴とするものである。
In order to achieve the above object, according to the first aspect of the present invention, a plurality of temperature sensors are installed in each part of the structure, and the environment and machine state of the machine tool are determined from the temperature of each part of the structure detected by the temperature sensor. A method for diagnosing, wherein a current room temperature is estimated based on a detected temperature obtained from each temperature sensor, and a difference between the current room temperatures estimated in at least two temperature sensors is preset. It is characterized by comparing with a threshold value.
In order to achieve the above object, according to the second aspect of the present invention, a plurality of temperature sensors are installed in each part of the structure, and the environment and machine state of the machine tool are determined from the temperature of each part of the structure detected by the temperature sensor. A method for diagnosing, wherein an estimated temperature change of the structure is calculated from a preset time constant of each part of the structure and a change in room temperature, an allowable range is set for the calculated estimated temperature change, and the temperature sensor It is determined whether or not the temperature change of each part of the structure detected in (1) is within the allowable range of the estimated temperature change.
According to a third aspect of the present invention, in the configuration of the second aspect, the permissible range is set from an average of estimated temperature changes of two temperature sensors that are provided in the structure and are paired, and the two temperature sensors It is determined whether or not the temperature change detected in (1) is within the allowable range.
In order to achieve the above object, according to a fourth aspect of the present invention, a plurality of temperature sensors are installed in each part of the structure, and the environment and machine state of the machine tool are determined from the temperature of each part of the structure detected by the temperature sensor. A diagnostic method is characterized in that it is determined whether or not a change in temperature difference between two paired temperature sensors provided in the structure is within a preset threshold value. .
In order to achieve the above object, the invention according to claim 5 executes the diagnostic method according to claim 3 and the diagnostic method according to claim 4, respectively. When it is determined that a temperature change detected by two temperature sensors is not within the allowable range, and a change in temperature difference between the two temperature sensors is determined not to be within the threshold in the diagnosis method according to claim 4. The environment and the machine state are diagnosed as unstable.
In order to achieve the above object, according to the present invention, a plurality of temperature sensors are installed in each part of the structure, and the environment and machine state of the machine tool are determined from the temperature of each part of the structure detected by the temperature sensor. A method for diagnosing, which calculates an estimated temperature change of the structure from a preset time constant of each part of the structure and a change in room temperature, and also provides the pair of temperature sensors provided in the structure to form a pair. 5. A diagnostic method for setting an allowable range from an average of estimated temperature changes and determining whether a temperature difference between the two temperature sensors is within the allowable range and a diagnostic method according to claim 4 are executed. In the former diagnosis method, it is determined that the temperature difference between the two temperature sensors is not within the allowable range, and in the diagnosis method according to claim 4, the change in the temperature difference between the two temperature sensors is not within the threshold value. When If it is the cross-sectional, and is characterized in that the diagnosing unstable the environmental and mechanical conditions.
The invention according to claim 7 is characterized in that, in the configuration according to any one of claims 2 to 6, when the environment and the machine state are diagnosed as unstable as a result of the determination, the temperature sensor according to the determination is displayed. It is what.

本発明によれば、特別な装備を必要とすることなく、機械が安定した熱変位をしているかの機械状態の診断が安価に可能となる。また、各構造体の温度変化より使用開始前の機械の周辺環境を診断することもできる。
特に、請求項5及び6に記載の発明によれば、上記効果に加えて、2つの診断方法を実行して段階的に診断するため、不必要な加工の中断を避けることができる。
また、請求項7に記載の発明によれば、上記効果に加えて、温度変化が大きい箇所を知ることができ、周辺環境(空調の向きや日差し等)を改善させるための手掛かりになる。
According to the present invention, it is possible to inexpensively diagnose a machine state as to whether a machine has a stable thermal displacement without requiring special equipment. In addition, the surrounding environment of the machine before the start of use can be diagnosed from the temperature change of each structure.
In particular, according to the fifth and sixth aspects of the invention, in addition to the above effects, two diagnostic methods are executed and diagnosed step by step, so unnecessary interruption of processing can be avoided.
Further, according to the seventh aspect of the invention, in addition to the above effect, it is possible to know the location where the temperature change is large, which is a clue for improving the surrounding environment (air conditioning direction, sunlight, etc.).

形態1のマシニングセンタの説明図である。It is explanatory drawing of the machining center of form 1. 形態1の診断方法のフローチャートである。6 is a flowchart of the diagnosis method of the first embodiment. 形態1の室温と構造体の温度変化とを示すグラフである。It is a graph which shows the room temperature of form 1, and the temperature change of a structure. 形態1の室温と構造体の温度変化とを示すグラフである。It is a graph which shows the room temperature of form 1, and the temperature change of a structure. 形態1の推定室温を示す表である。It is a table | surface which shows the estimated room temperature of form 1. 形態2の診断方法のフローチャートである。It is a flowchart of the diagnostic method of form 2. 形態2の室温変化、推定温度変化及びその許容範囲を示すグラフである。It is a graph which shows the room temperature change of form 2, an estimated temperature change, and its allowable range. 形態3の室温変化、推定温度変化及びその許容範囲を示すグラフである。It is a graph which shows the room temperature change of form 3, an estimated temperature change, and its allowable range. 形態4の室温変化、閾値、温度差の変化を示すグラフである。It is a graph which shows the room temperature change of form 4, a threshold value, and the change of a temperature difference.

以下、本発明の実施の形態を図面に基づいて説明する。
[形態1]
図1は、工作機械の一例であるマシニングセンタの説明図である。マシニングセンタ1は、ベッド2上に、ワークを載置するテーブル3と、コラム4とが設置され、コラム4には、主軸6を備えた主軸頭5が設けられている。これらの各構造体には、温度センサch1〜ch7が設けられている。このうち温度センサch1は主軸6に、温度センサch2は主軸頭5に、温度センサch3はテーブル3にそれぞれ設けられる一方、温度センサch4,ch5はテーブル3の上下に分けて、温度センサch6,ch7はコラム4の前後に分けてそれぞれ設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Form 1]
FIG. 1 is an explanatory diagram of a machining center which is an example of a machine tool. In the machining center 1, a table 3 on which a workpiece is placed and a column 4 are installed on a bed 2, and a spindle head 5 having a spindle 6 is provided in the column 4. Each of these structures is provided with temperature sensors ch1 to ch7. Among them, the temperature sensor ch1 is provided on the spindle 6, the temperature sensor ch2 is provided on the spindle head 5, and the temperature sensor ch3 is provided on the table 3, while the temperature sensors ch4 and ch5 are divided on the upper and lower sides of the table 3, respectively. Are provided separately before and after the column 4, respectively.

また、マシニングセンタ1には、温度センサch1〜ch7が出力したアナログ信号をデジタル信号に変換して数値化する温度測定装置10と、数値化された測定値から予め設定された構造体の温度時定数を用いて室温を推定する温度推定装置11と、推定室温の変化と温度測定装置10に測定された温度変化とを比較して、周辺環境を診断する診断装置12と、診断結果に基づいて周辺環境をオペレータに報知したり、診断結果に基づいてマシニングセンタ1を停止させたりするNC装置13とが備えられている。   Further, the machining center 1 includes a temperature measuring device 10 that converts analog signals output from the temperature sensors ch1 to ch7 into digital signals and digitizes them, and a temperature time constant of a structure set in advance from the digitized measured values. The temperature estimation device 11 that estimates the room temperature using the temperature, the change of the estimated room temperature and the temperature measurement measured by the temperature measurement device 10 are compared, the diagnosis device 12 that diagnoses the surrounding environment, and the periphery based on the diagnosis result An NC device 13 for notifying the operator of the environment and stopping the machining center 1 based on the diagnosis result is provided.

このように構成されたマシニングセンタ1は、図2に示すように、温度測定装置10によって各構造体の温度を測定した後(S1)、温度推定装置11が温度センサ周りの室温を推定し(S2)、診断装置12が環境及び機械状態を診断する(S3)という処理を、所定間隔で繰り返し(S4でNOとなるまで)行うようになっている。
以下、温度推定装置11における室温の推定処理を説明する。
In the machining center 1 configured as described above, as shown in FIG. 2, after the temperature of each structure is measured by the temperature measurement device 10 (S1), the temperature estimation device 11 estimates the room temperature around the temperature sensor (S2). ) The diagnosis device 12 repeats the process of diagnosing the environment and the machine state (S3) at predetermined intervals (until NO in S4).
Hereinafter, room temperature estimation processing in the temperature estimation device 11 will be described.

図3において、直線Aは、時刻tにおいてステップ的に温度Tに変化した室温を想定したモデル、曲線aは、室温変化にある時定数で遅れて温度変化する構造体の温度である。ここで室温変化から時間t後に機械の電源を投入して環境診断が開始されたとしてそのときの温度がT、1回目の環境診断サイクルtでの温度がTであったとすると、現在の構造体の温度Tは、室温との温度差をΔT、室温との温度差に対する各構造体の温度時定数を加味した係数をkとすると、以下の式(1)で求めることができる。
=ΔT×k+T ・・・(1)
これにより温度差ΔTを算出することで、推定室温Teを求めることができる。
In FIG. 3, a straight line A is a model assuming a room temperature at which the temperature T changes stepwise at time t 2 O , and a curve a is a temperature of the structure whose temperature changes with a time constant that changes with room temperature. Here, assuming that the environmental diagnosis is started by turning on the power of the machine after time t 1 from the room temperature change, the temperature at that time is T 1 , and the temperature at the first environmental diagnosis cycle t 2 is T 2 . The current temperature T 2 of the structure can be obtained by the following equation (1), where ΔT is a temperature difference from room temperature and k is a coefficient that takes into account the temperature time constant of each structure relative to the temperature difference from room temperature. it can.
T 2 = ΔT × k + T 1 (1)
Thus, the estimated room temperature Te can be obtained by calculating the temperature difference ΔT.

同様に各温度センサから室温を推定し、周辺環境が近い温度センサの少なくとも2つ(好ましくは3つ以上)の推定室温を比較することにより、例えば暖房などの風が直接当たっていた場合は1つの温度センサが他と異なる推定室温となることで、環境の異常としてオペレータに知らせることができる。   Similarly, by estimating the room temperature from each temperature sensor and comparing the estimated room temperature of at least two (preferably three or more) temperature sensors in the vicinity of the surrounding environment, it is 1 when a wind such as heating is directly applied. When one temperature sensor has an estimated room temperature different from the others, the operator can be notified of an environmental abnormality.

次に、具体的な診断例を図4,5に基づいて説明する。
図4において、A’は、ある構造体周りの室温変化、a’〜c’は、環境が同じ程度の位置で測定した構造体温度で、図5は、電源投入を想定した室温変化3時間後の各構造体温度Tと30分後の温度T及びそのときの推定室温である。すなわち、室温変化開始後3時間で機械の電源が投入され、3.5時間後に環境診断を行ったとすると、T及びTより式(1)を用いて現在の室温との温度差ΔTを算出することで各構造体からの推定室温を求めることができる。
Next, a specific diagnosis example will be described with reference to FIGS.
In FIG. 4, A ′ is a change in room temperature around a certain structure, a ′ to c ′ are structure temperatures measured at the same position in the environment, and FIG. 5 is a change in room temperature assuming power-on for 3 hours. Each structure temperature T 1 after, temperature T 2 after 30 minutes, and estimated room temperature at that time. That is, if the machine is turned on 3 hours after the start of the room temperature change and the environmental diagnosis is performed 3.5 hours later, the temperature difference ΔT with respect to the current room temperature is calculated by using Equation (1) from T 1 and T 2. By calculating, an estimated room temperature from each structure can be obtained.

そして、得られた各推定室温の差を算出し、算出された各推定室温の差を予め設定された閾値と比較する。例えば推定室温の差の閾値を0.5℃とすると、図5での各推定室温の差は何れも閾値以下となるため、比較した構造体の周辺環境は安定であると判断することになる。逆に、推定室温の差が閾値を超えていれば、例えば推定室温が高い側の構造体に暖房の風が直接当たっているといった局所的な環境変化を特定することができる。この場合、NC装置13が比較結果を表示してオペレータに報知すると共に、加工を中断する。   And the difference of each estimated room temperature obtained is calculated, and the difference of each estimated room temperature calculated is compared with the preset threshold value. For example, if the threshold value of the estimated room temperature difference is 0.5 ° C., the estimated room temperature differences in FIG. 5 are all equal to or less than the threshold value, and therefore the surrounding environment of the compared structures is determined to be stable. . On the other hand, if the difference in estimated room temperature exceeds the threshold, it is possible to specify a local environmental change, for example, a heating wind directly hitting a structure having a higher estimated room temperature. In this case, the NC device 13 displays the comparison result and notifies the operator, and the processing is interrupted.

このように、上記形態1のマシニングセンタ1の環境及び機械状態の診断方法によれば、各温度センサから得られる検出温度に基づいて現在の室温をそれぞれ推定し、少なくとも2つの温度センサにおいて推定された現在の室温間の差を、予め設定された閾値と比較することで、特別な装備を必要とすることなく、機械が安定した熱変位をしているかの機械状態の診断が安価に可能となる。また、各構造体の温度変化より使用開始前の機械の周辺環境を診断することもできる。   As described above, according to the diagnosis method of the environment and the machine state of the machining center 1 according to the first aspect, the current room temperature is estimated based on the detected temperature obtained from each temperature sensor, and is estimated by at least two temperature sensors. By comparing the difference between the current room temperature and a preset threshold value, it is possible to inexpensively diagnose the machine state of whether the machine has a stable thermal displacement without requiring special equipment. . In addition, the surrounding environment of the machine before the start of use can be diagnosed from the temperature change of each structure.

次に、本発明の他の形態を説明する。但し、マシニングセンタ1の構成は形態1と同じであるので、異なる部分のみ説明して重複する説明は省略する。
[形態2]
この形態2において、マシニングセンタ1の温度推定装置11は、温度測定装置10で数値化された測定値から予め設定された構造体の温度時定数を用いて温度変化を推定するようになっている。以下、本形態2における環境及び機械状態の具体的な診断方法を、コラム4の前後に配置された温度センサch6及びch7から得られる温度を例にして説明する。
Next, another embodiment of the present invention will be described. However, since the configuration of the machining center 1 is the same as that of the first embodiment, only different portions will be described and redundant description will be omitted.
[Form 2]
In the second embodiment, the temperature estimation device 11 of the machining center 1 estimates a temperature change using a temperature time constant of a structure set in advance from a measurement value digitized by the temperature measurement device 10. Hereinafter, a specific diagnosis method of the environment and the machine state in the second embodiment will be described by taking the temperature obtained from the temperature sensors ch6 and ch7 arranged before and after the column 4 as an example.

まず、温度試験室などの外乱の影響がないところでの予備試験や解析等により予め各構造体の温度時定数を設定しておく。
そして、図6に示すようにS11で機械各部の温度を測定した後、S12において、室温から各部の温度変化を推定すると共に、推定温度変化の許容範囲を演算する。次に、診断装置12が環境及び機械状態を診断する(S13)という処理を、所定間隔で繰り返し(S14でNOとなるまで)行うようになっている。
以下、温度推定装置11における温度変化の推定と許容範囲の設定とについて説明する。
First, the temperature time constant of each structure is set in advance by preliminary tests or analysis where there is no influence of disturbance such as in a temperature test chamber.
Then, as shown in FIG. 6, after measuring the temperature of each part of the machine in S11, in S12, the temperature change of each part is estimated from the room temperature, and the allowable range of the estimated temperature change is calculated. Next, the diagnosis device 12 repeats the process of diagnosing the environment and machine state (S13) at predetermined intervals (until NO in S14).
Hereinafter, estimation of temperature change and setting of an allowable range in the temperature estimation device 11 will be described.

図7において、直線で示すaは室温変化を想定したモデル、bは、室温変化と構造体の温度時定数により演算した推定温度変化、b1,b2は、熱変位への影響を考慮して設定した推定温度変化bの上側の許容範囲と下側の許容範囲、曲線で示すcは、温度センサch6により測定した構造体の測定温度変化である。   In FIG. 7, a is a model that assumes a change in room temperature, b is an estimated temperature change calculated from the change in room temperature and the temperature time constant of the structure, and b1 and b2 are set in consideration of the effect on thermal displacement. The upper permissible range and the lower permissible range of the estimated temperature change b, and c shown by the curve are measured temperature changes of the structure measured by the temperature sensor ch6.

ここで求められる推定温度変化bは、温度センサch6の温度時定数をτ1、測定間隔をt、測定室温をT、前回の測定温度をTn−1とすると、次の式(2)で求めることができる。
推定温度変化b=Tn−1+(T−Tn−1)×t1/(t1+τ1) ・・・(2)
そして、許容範囲b1,b2は、推定温度変化bに予め設定した係数を乗じることで設定する。例えば、上側の許容範囲を1.2倍、下側の許容範囲を0.8倍とすると、それぞれ次の式(3)(4)で許容範囲が決定される。
許容範囲b1=b×1.2 ・・・(3)
許容範囲b2=b×0.8 ・・・(4)
The estimated temperature change b obtained here is obtained by the following equation (2), where the temperature time constant of the temperature sensor ch6 is τ1, the measurement interval is t, the measurement room temperature is T, and the previous measurement temperature is T n−1. be able to.
Estimated temperature change b = T n−1 + (T−T n−1 ) × t 1 / (t 1 + τ 1) (2)
The allowable ranges b1 and b2 are set by multiplying the estimated temperature change b by a preset coefficient. For example, if the upper allowable range is 1.2 times and the lower allowable range is 0.8 times, the allowable ranges are determined by the following equations (3) and (4), respectively.
Allowable range b1 = b × 1.2 (3)
Allowable range b2 = b × 0.8 (4)

次に、診断装置12における機械周囲の環境及び機械状態の診断について説明する。
この診断は、例えば以下の式(5)(6)を両方満たすかによって推定温度変化bの上下の許容範囲に測定温度変化cが入っているか否かを判定する。すなわち、図7のように両方満たす場合は許容範囲内に入っているため安定していると判断し、一方でも満たさない場合は不安定であると判断してオペレータに報知すると共に加工を中断する。
b1−c≧0 ・・・(5)
c−b2≧0 ・・・(6)
Next, diagnosis of the environment around the machine and the machine state in the diagnosis device 12 will be described.
In this diagnosis, for example, it is determined whether or not the measured temperature change c is in the allowable range above and below the estimated temperature change b depending on whether both of the following expressions (5) and (6) are satisfied. That is, when both are satisfied as shown in FIG. 7, it is determined to be stable because it is within the allowable range, and when neither is satisfied, it is determined to be unstable and the operator is notified and the machining is interrupted. .
b1-c ≧ 0 (5)
c−b2 ≧ 0 (6)

このように、上記形態2のマシニングセンタ1の環境及び機械状態の診断方法においても、予め設定した構造体各部の時定数と室温変化とから当該構造体の推定温度変化を演算すると共に、演算された推定温度変化に許容範囲を設定し、温度センサで検出される構造体各部の温度変化が、推定温度変化の許容範囲内にあるか否かを判断することで、特別な装備を必要とすることなく、機械が安定した熱変位をしているかの機械状態の診断が安価に可能となる。また、各構造体の温度変化より使用開始前の機械の周辺環境を診断することもできる。   As described above, also in the diagnosis method of the environment and the machine state of the machining center 1 according to the second aspect, the estimated temperature change of the structure is calculated from the preset time constant of each part of the structure and the room temperature change. Special equipment is required by setting an allowable range for the estimated temperature change and judging whether the temperature change of each part of the structure detected by the temperature sensor is within the allowable range for the estimated temperature change. Therefore, it is possible to inexpensively diagnose the machine state as to whether the machine has a stable thermal displacement. In addition, the surrounding environment of the machine before the start of use can be diagnosed from the temperature change of each structure.

[形態3]
上記形態2では、1つの温度センサについて推定温度変化を求めて診断する方法となっているが、ここでは対となる2つの温度センサについて推定温度変化を求めて診断する方法を説明する。
図8において、直線で示すaは室温変化を想定したモデル、d1,d2は、式(2)において演算した温度センサch6及びch7の推定温度変化の平均値dから求めた上側の許容範囲及び下側の許容範囲、曲線で示すcは、コラム前側の温度変化、eは、コラム後側の温度変化である。
[Form 3]
In the second aspect, a method is used for obtaining and diagnosing an estimated temperature change for one temperature sensor, but here, a method for obtaining and diagnosing an estimated temperature change for two paired temperature sensors will be described.
In FIG. 8, a shown by a straight line is a model assuming a change in room temperature, d1 and d2 are an upper allowable range obtained from an average value d of estimated temperature changes of the temperature sensors ch6 and ch7 calculated in Equation (2), and a lower limit. The allowable range on the side, c indicated by a curve, is the temperature change on the front side of the column, and e is the temperature change on the rear side of the column.

ここでは、測定温度変化c及びeが許容範囲内に入っているか否かで機械状態を判定する。図8のように測定温度変化c及びeの両方が推定温度変化の許容範囲内で変化しているため、コラムの前後の温度変化は安定していると判断することができる。   Here, the machine state is determined based on whether or not the measured temperature changes c and e are within the allowable range. As shown in FIG. 8, since both the measured temperature changes c and e change within the allowable range of the estimated temperature change, it can be determined that the temperature change before and after the column is stable.

このように、上記形態3のマシニングセンタ1の環境及び機械状態の診断方法においても、特別な装備を必要とすることなく、機械が安定した熱変位をしているかの機械状態の診断が安価に可能となる。また、各構造体の温度変化より使用開始前の機械の周辺環境を診断することもできる。
特にここでは、対となる位置での測定温度が許容範囲内で変化しているかを判定することで、構造体の傾きや反りに影響する位置の周囲環境が想定以内であるか否かを診断することができる。
As described above, in the method for diagnosing the environment and the machine state of the machining center 1 according to the third aspect as well, the machine state can be diagnosed at a low cost as to whether the machine has a stable thermal displacement without requiring special equipment. It becomes. In addition, the surrounding environment of the machine before the start of use can be diagnosed from the temperature change of each structure.
In particular, here, it is diagnosed whether the surrounding environment of the position that affects the tilt or warpage of the structure is within the expected range by determining whether the measured temperature at the paired position is within the allowable range. can do.

[形態4]
図9は、室温変化を想定したモデルaに対し、予め設定した熱変位への影響を考慮したコラム前後温度差の変化に対する閾値と、温度センサch6及びch7によって測定したコラム前後温度差fの変化とを表している。ここで、温度差の変化は、開始時のコラム前後温度をそれぞれTf1及びTr1、測定時のコラム前後温度をそれぞれTf2及びTr2とすると、以下の式(7)によって演算することができる。
温度差の変化=(Tr2−Tf2)−(Tr1−Tf1) ・・・(7)
[Form 4]
FIG. 9 shows a threshold value for the change in temperature difference before and after the column in consideration of the influence on the thermal displacement, and the change in the temperature difference f before and after the column measured by the temperature sensors ch6 and ch7 with respect to the model a assuming a change in room temperature. Represents. Here, the change in temperature difference can be calculated by the following equation (7), where Tf1 and Tr1 are the temperatures before and after the column at the start, and Tf2 and Tr2 are the temperatures before and after the column at the time of measurement, respectively.
Change in temperature difference = (Tr2−Tf2) − (Tr1−Tf1) (7)

得られた温度差の変化が閾値以内であるか否かの判定を行う。図9では温度差の変化は閾値以内での変化であるため、安定と判断できる。
このように、上記形態4のマシニングセンタ1の環境及び機械状態の診断方法においても、特別な装備を必要とすることなく、機械が安定した熱変位をしているかの機械状態の診断が安価に可能となる。また、各構造体の温度変化より使用開始前の機械の周辺環境を診断することもできる。
It is determined whether or not the obtained change in temperature difference is within a threshold value. In FIG. 9, since the change of the temperature difference is within the threshold value, it can be determined as stable.
As described above, in the method for diagnosing the environment and the machine state of the machining center 1 according to the fourth embodiment, it is possible to inexpensively diagnose the machine state as to whether the machine has a stable thermal displacement without requiring special equipment. It becomes. In addition, the surrounding environment of the machine before the start of use can be diagnosed from the temperature change of each structure.

なお、上記各形態では、それぞれ単独で環境及び機械状態の診断を行うようにしているが、各形態を並行して実施することで環境及び機械状態の最終診断を行うようにしてもよい。例えば形態3,4の診断方法をそれぞれ実行し、下記の表1に示すように何れも安定と判断されれば最終診断を安定とし(判定A)、何れか一方で温度変化が不安定であれば最終診断を要注意とし(判定B)、何れも温度変化が不安定であれば最終診断を不安定とする(判定C)ことが考えられる。この場合、診断結果をオペレータに報知して、判定Cの場合は加工を中断する。
要注意と判定された場合には加工を継続しても問題ない場合がある。例えば、形態3が許容範囲外で形態4が許容範囲内であると、構造体の前後の温度差は小さいが温度変化は推定値よりも大きいので、想定している環境と異なるため時間経過により前後のバランスが崩れたり、時間経過による熱変位が大きくなったりする可能性があるが、加工時間の短いワークや要求精度が低いワークであれば加工を続行することが可能である。
また、形態3が許容範囲内で形態4が許容範囲外であると、構造体が傾いているが熱変位は推定の範囲にあるので、フライスでの上面加工であれば加工しても問題ないが、ドリルでの穴あけ加工では、穴が楕円になったり工具折損の原因となったりする可能性があるため加工を中断する必要がある。
このように、要求される加工条件により加工を続けても良い場合と悪い場合があるので、表示された診断結果からオペレータが判断する材料としたり、所定の判定の場合は加工を中断するようにしたりすることで、不必要な加工の中断を避けることができる。
In each of the above embodiments, the diagnosis of the environment and the machine state is performed independently. However, the final diagnosis of the environment and the machine state may be performed by executing each embodiment in parallel. For example, the diagnosis methods of modes 3 and 4 are executed, respectively, and if all are determined to be stable as shown in Table 1 below, the final diagnosis is stable (determination A), and if any one of the temperature changes is unstable For example, it is considered that the final diagnosis needs attention (determination B), and if the temperature change is unstable in any case, the final diagnosis is unstable (determination C). In this case, the diagnosis result is notified to the operator, and in the case of determination C, the processing is interrupted.
If it is determined that attention is required, there may be no problem even if the processing is continued. For example, if form 3 is outside the allowable range and form 4 is within the allowable range, the temperature difference before and after the structure is small, but the temperature change is larger than the estimated value. Although there is a possibility that the balance between the front and rear is lost or the thermal displacement with time is increased, it is possible to continue the machining if the workpiece has a short machining time or a workpiece with low required accuracy.
If form 3 is within the allowable range and form 4 is outside the allowable range, the structure is tilted, but the thermal displacement is within the estimated range. However, in drilling with a drill, it is necessary to interrupt the processing because the hole may become elliptical or cause tool breakage.
In this way, depending on the required processing conditions, there are cases where the processing may be continued or bad, so that the material determined by the operator from the displayed diagnosis result, or the processing is interrupted in the case of a predetermined determination. By doing so, unnecessary processing interruptions can be avoided.

Figure 2013206119
Figure 2013206119

また、形態3では、測定温度変化が許容範囲内に入っているか否かで機械状態を判定するようにしているが、2つの温度センサの温度差が許容範囲内に入っているか否かで機械状態を判定するようにしても良い。この場合も、形態4の診断方法と合わせてそれぞれ実行し、何れも安定と判断されれば最終診断を安定とし、何れか一方で温度変化が不安定であれば最終診断を要注意とし、何れも温度変化が不安定であれば最終診断を不安定とする段階的な診断方法が採用できる。   In the third aspect, the machine state is determined based on whether the measured temperature change is within the allowable range. However, the machine state is determined based on whether the temperature difference between the two temperature sensors is within the allowable range. The state may be determined. Also in this case, the diagnosis is executed together with the diagnosis method of Form 4, and if any of them is determined to be stable, the final diagnosis is stable. If any one of the temperature changes is unstable, the final diagnosis is required. However, if the temperature change is unstable, a stepwise diagnostic method that makes the final diagnosis unstable can be adopted.

さらに、各形態においては、不安定と判断された場合には、当該判断に係る温度センサを表示してオペレータに知らせるようにしてもよい。このように診断した温度センサを表示すれば、温度変化が大きい箇所を知ることができ、周辺環境(空調の向きや日差し等)を改善させるための手掛かりになる。
そして、上記形態ではコラム前後温度ch6及びch7を例にしているが、ベッド上下温度ch4及びch5など他の位置での温度センサにおいても同様の診断が可能である。
Further, in each embodiment, when it is determined that the state is unstable, a temperature sensor according to the determination may be displayed to notify the operator. If the temperature sensor diagnosed in this way is displayed, the location where the temperature change is large can be known, which is a clue for improving the surrounding environment (air conditioning direction, sunlight, etc.).
In the above embodiment, the column front-rear temperatures ch6 and ch7 are taken as an example, but the same diagnosis can be made with temperature sensors at other positions such as the bed vertical temperature ch4 and ch5.

1・・マシニングセンタ、2・・ベッド、3・・テーブル、4・・コラム、5・・主軸頭、6・・主軸、ch1〜ch7・・温度センサ。   1 .. Machining center 2. Bed 3. Table 4 Column 5 Head spindle 6 Spindle ch1 to ch7 Temperature sensor

Claims (7)

構造体各部に複数の温度センサを設置し、前記温度センサで検出した前記構造体各部の温度から工作機械の環境及び機械状態を診断する方法であって、
各前記温度センサから得られる検出温度に基づいて現在の室温をそれぞれ推定し、少なくとも2つの前記温度センサにおいて推定された前記現在の室温間の差を、予め設定された閾値と比較することを特徴とする工作機械の環境及び機械状態の診断方法。
A method of diagnosing the environment and machine state of a machine tool from the temperature of each part of the structure detected by the temperature sensor by installing a plurality of temperature sensors in each part of the structure,
A current room temperature is estimated based on a detected temperature obtained from each of the temperature sensors, and a difference between the current room temperatures estimated in at least two of the temperature sensors is compared with a preset threshold value. The machine tool environment and machine state diagnosis method.
構造体各部に複数の温度センサを設置し、前記温度センサで検出した前記構造体各部の温度から工作機械の環境及び機械状態を診断する方法であって、
予め設定した構造体各部の時定数と室温変化とから当該構造体の推定温度変化を演算すると共に、演算された前記推定温度変化に許容範囲を設定し、前記温度センサで検出される前記構造体各部の温度変化が、前記推定温度変化の前記許容範囲内にあるか否かを判断することを特徴とする工作機械の環境及び機械状態の診断方法。
A method of diagnosing the environment and machine state of a machine tool from the temperature of each part of the structure detected by the temperature sensor by installing a plurality of temperature sensors in each part of the structure,
The estimated temperature change of the structure is calculated from the time constant and room temperature change of each part of the structure set in advance, and an allowable range is set for the calculated estimated temperature change, and the structure detected by the temperature sensor A method for diagnosing the environment and machine state of a machine tool, wherein it is determined whether or not a temperature change of each part is within the allowable range of the estimated temperature change.
前記許容範囲は、前記構造体に設けられて対となる2つの温度センサの推定温度変化の平均から設定され、前記2つの温度センサで検出される温度変化が前記許容範囲にあるか否かが判断されることを特徴とする請求項2に記載の工作機械の環境及び機械状態の診断方法。   The allowable range is set from an average of estimated temperature changes of two temperature sensors that are provided in the structure and are paired, and whether or not the temperature change detected by the two temperature sensors is within the allowable range. 3. The machine tool environment and machine state diagnosis method according to claim 2, wherein the determination is made. 構造体各部に複数の温度センサを設置し、前記温度センサで検出した前記構造体各部の温度から工作機械の環境及び機械状態を診断する方法であって、
前記構造体に設けられて対となる2つの温度センサの温度差の変化が、予め設定された閾値以内であるか否かを判断することを特徴とする工作機械の環境及び機械状態の診断方法。
A method of diagnosing the environment and machine state of a machine tool from the temperature of each part of the structure detected by the temperature sensor by installing a plurality of temperature sensors in each part of the structure,
A method for diagnosing the environment and machine state of a machine tool, characterized in that it is determined whether or not a change in temperature difference between two paired temperature sensors provided in the structure is within a preset threshold value. .
請求項3に記載の診断方法と請求項4に記載の診断方法とをそれぞれ実行し、前記請求項3の診断方法において前記2つの温度センサで検出される温度変化が前記許容範囲にないと判断され,且つ前記請求項4の診断方法において前記2つの温度センサの温度差の変化が前記閾値以内にないと判断された場合に、前記環境及び機械状態を不安定と診断することを特徴とする工作機械の環境及び機械状態の診断方法。   The diagnostic method according to claim 3 and the diagnostic method according to claim 4 are respectively executed, and it is determined in the diagnostic method according to claim 3 that the temperature change detected by the two temperature sensors is not within the allowable range. When the change in temperature difference between the two temperature sensors is determined not to be within the threshold in the diagnosis method according to claim 4, the environment and the machine state are diagnosed as unstable. Diagnosis method for machine tool environment and machine condition. 構造体各部に複数の温度センサを設置し、前記温度センサで検出した前記構造体各部の温度から工作機械の環境及び機械状態を診断する方法であって、予め設定した構造体各部の時定数と室温変化とから当該構造体の推定温度変化を演算すると共に、前記構造体に設けられて対となる2つの前記温度センサの前記推定温度変化の平均から許容範囲を設定し、前記2つの温度センサの温度差が、前記許容範囲内にあるか否かを判断する診断方法と、
請求項4に記載の診断方法とをそれぞれ実行し、前者の診断方法において前記2つの温度センサの温度差が前記許容範囲にないと判断され、且つ前記請求項4の診断方法において前記2つの温度センサの温度差の変化が前記閾値以内にないと判断された場合に、前記環境及び機械状態を不安定と診断することを特徴とする工作機械の環境及び機械状態の診断方法。
A method of diagnosing the environment and machine state of a machine tool from the temperature of each part of the structure detected by the temperature sensor by installing a plurality of temperature sensors in each part of the structure, and a time constant of each part of the structure set in advance An estimated temperature change of the structure is calculated from the room temperature change, and an allowable range is set based on an average of the estimated temperature changes of the two temperature sensors provided in the structure as a pair, and the two temperature sensors A diagnostic method for determining whether the temperature difference is within the allowable range;
5. The diagnostic method according to claim 4 is respectively executed, and in the former diagnostic method, it is determined that a temperature difference between the two temperature sensors is not within the allowable range, and in the diagnostic method according to claim 4, the two temperatures are determined. A diagnosis method for an environment and a machine state of a machine tool, wherein the environment and the machine state are diagnosed as unstable when it is determined that a change in temperature difference between sensors is not within the threshold value.
判断の結果、環境及び機械状態を不安定と診断した場合、当該判断に係る前記温度センサを表示することを特徴とする請求項2乃至6の何れかに記載の工作機械の環境及び機械状態の診断方法。   If the environment and the machine state are diagnosed as unstable as a result of the determination, the temperature sensor related to the determination is displayed. The environment and machine state of the machine tool according to any one of claims 2 to 6, Diagnosis method.
JP2012074303A 2012-03-28 2012-03-28 Machine tool environment and machine condition diagnosis method Active JP5912756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074303A JP5912756B2 (en) 2012-03-28 2012-03-28 Machine tool environment and machine condition diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074303A JP5912756B2 (en) 2012-03-28 2012-03-28 Machine tool environment and machine condition diagnosis method

Publications (2)

Publication Number Publication Date
JP2013206119A true JP2013206119A (en) 2013-10-07
JP5912756B2 JP5912756B2 (en) 2016-04-27

Family

ID=49525138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074303A Active JP5912756B2 (en) 2012-03-28 2012-03-28 Machine tool environment and machine condition diagnosis method

Country Status (1)

Country Link
JP (1) JP5912756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7486362B2 (en) 2020-07-07 2024-05-17 オークマ株式会社 Accuracy diagnosis device and accuracy diagnosis method for machine tools

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238399A (en) * 2004-02-27 2005-09-08 Murata Mach Ltd Multi-spindle machine tool
JP2006301761A (en) * 2005-04-18 2006-11-02 Fanuc Ltd Machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238399A (en) * 2004-02-27 2005-09-08 Murata Mach Ltd Multi-spindle machine tool
JP2006301761A (en) * 2005-04-18 2006-11-02 Fanuc Ltd Machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7486362B2 (en) 2020-07-07 2024-05-17 オークマ株式会社 Accuracy diagnosis device and accuracy diagnosis method for machine tools

Also Published As

Publication number Publication date
JP5912756B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP6985174B2 (en) Machine tool accuracy diagnostic equipment
TWI667096B (en) Wire electric discharge machine
US7503691B2 (en) Machine tool
JP2019130632A (en) Abnormality determination apparatus, program, abnormality determination system, and abnormality determination method
TW201817524A (en) Wire electric discharge machine
KR101691211B1 (en) Fault diagnosis apparatus of thermal sensor for hybrid and electronic vehicle and method of the same
JP2011253887A (en) Abnormality inspection system of cooling unit in electronic circuit
JP2018103274A (en) Machine tool temperature estimation method and thermal displacement correction method
JP5884415B2 (en) Torque measuring device
JPH09225781A (en) Method for estimating thermal displacement of machine tool
JP5912756B2 (en) Machine tool environment and machine condition diagnosis method
JP6067238B2 (en) Fast detection of error conditions in vehicle vacuum sensors for hydraulic boost compensation system
JP4840108B2 (en) Compressor protection control method for air conditioner
US11249454B2 (en) Thermal displacement correction device considering sensor failure
JP2022139266A (en) Environment temperature change prediction device and environment temperature change prediction method of machine tool
JP2007015094A (en) Thermal displacement estimating method of machine tool
JPWO2018193508A1 (en) Failure diagnosis device and failure diagnosis method
JP2006221308A (en) Abnormality detection method, control apparatus, and control system using the same
JP4406544B2 (en) Electronic cooler diagnostic system
JP5289546B2 (en) Abnormality inspection system for cooling part of electronic circuit
JP6726645B2 (en) Diagnosis method of feed screw in feed screw device
US20240077115A1 (en) Temperature rise value estimating method, thermal displacement amount estimating method, and bearing cooling apparatus control method for machine tool, and machine tool
JP7486362B2 (en) Accuracy diagnosis device and accuracy diagnosis method for machine tools
JP7486358B2 (en) Accuracy diagnosis device and accuracy diagnosis method for machine tools
JP2006055918A (en) Method of correcting thermal deformation error of machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150