JP2013205113A - Multiwavelength measuring device - Google Patents

Multiwavelength measuring device Download PDF

Info

Publication number
JP2013205113A
JP2013205113A JP2012072316A JP2012072316A JP2013205113A JP 2013205113 A JP2013205113 A JP 2013205113A JP 2012072316 A JP2012072316 A JP 2012072316A JP 2012072316 A JP2012072316 A JP 2012072316A JP 2013205113 A JP2013205113 A JP 2013205113A
Authority
JP
Japan
Prior art keywords
light
wavelengths
wavelength
optical
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012072316A
Other languages
Japanese (ja)
Other versions
JP6192086B2 (en
Inventor
Naokatsu Yamamoto
直克 山本
Koichi Akaha
浩一 赤羽
Tetsuya Kawanishi
哲也 川西
Iwao Hosako
巌 寶迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2012072316A priority Critical patent/JP6192086B2/en
Publication of JP2013205113A publication Critical patent/JP2013205113A/en
Application granted granted Critical
Publication of JP6192086B2 publication Critical patent/JP6192086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a multiwavelength measuring device capable of effectively performing optical measurement at multiwavelengths.SOLUTION: A multiwavelength measuring device includes: an optical resonator; a light emitting member which is arranged in the optical resonator, which has each of a quantum dot and a quantum well, which emits light with a plurality of wavelengths differing from each other, and which is formed by laminating a plurality of structures; optical members choosing the light with any one of the plurality of wavelengths; and a light receiving element receiving the light with the chosen wavelength, which has passed through a measuring object containing a plurality of components.

Description

本発明は,多波長での光学測定を行う多波長測定装置に関する。   The present invention relates to a multi-wavelength measuring apparatus that performs optical measurement at multiple wavelengths.

多波長での光学測定が種々の用途に利用されている。例えば,材料に対する光の透過量を複数波長で測定して,その材料中に含まれる成分の量を算出することがある。このため,例えば,ブロードな波長帯域を有する光源から発せられた光を分光器等で分光して,分光測定がなされる(例えば,特許文献1参照)。   Optical measurements at multiple wavelengths are used for various applications. For example, the amount of light transmitted to a material may be measured at a plurality of wavelengths, and the amount of components contained in the material may be calculated. For this reason, for example, light emitted from a light source having a broad wavelength band is spectrally separated by a spectroscope or the like (for example, see Patent Document 1).

特開2010−072007号公報JP 2010-072007 A

ここで,測定に用いる波長は,測定材料中の成分(物質)に応じた複数の波長で足りることが多い。即ち,物質はある特定の波長で,光吸収を示す場合が多い(物質が,波長λ1,λ2・・・のように波長軸上で特徴ある光吸収スペクトルを有する)。光吸収スペクトルがブロードな場合でも,これは同様であり,測定材料中の成分(物質)に応じた複数の波長で足りることが多い。
この場合,光源から発せられる光に,測定に用いられない波長の光が含まれ,エネルギー損失の原因となる。
Here, it is often sufficient to use a plurality of wavelengths corresponding to the components (substances) in the measurement material for the measurement. That is, a substance often exhibits light absorption at a specific wavelength (the substance has a characteristic light absorption spectrum on the wavelength axis such as wavelengths λ1, λ2,...). This is the same even when the light absorption spectrum is broad, and a plurality of wavelengths depending on the components (substances) in the measurement material are often sufficient.
In this case, the light emitted from the light source includes light of a wavelength that is not used for measurement, which causes energy loss.

上記に鑑み,本発明は,多波長での効率的な光学測定を可能とする多波長光学測定装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide a multi-wavelength optical measurement apparatus that enables efficient optical measurement at multiple wavelengths.

本発明の一態様に係る多波長測定装置は,光共振器と,前記光共振器内に配置され,量子ドットまたは量子井戸をそれぞれ備え,互いに異なる複数の波長の光を発する,複数の構造体を積層してなる発光部材と,前記複数の波長の光のいずれかを選択する光学部材と,複数の成分を含む測定対象を透過した,前記選択された波長の光を受光する受光素子と,を具備することを特徴とする。   A multi-wavelength measurement apparatus according to an aspect of the present invention includes an optical resonator and a plurality of structures that are disposed in the optical resonator and each include a quantum dot or a quantum well and emit light having a plurality of different wavelengths. A light-emitting member formed by laminating, an optical member that selects one of the light beams of a plurality of wavelengths, a light-receiving element that receives light of the selected wavelength that has passed through a measurement target including a plurality of components, It is characterized by comprising.

「量子ドットまたは量子井戸をそれぞれ備え,互いに異なる複数の波長の光を発する,複数の構造体を積層してなる発光部材」からの複数の波長の光のいずれかを選択して,測定対象を光学的に測定する。この結果,多波長での効率的な光学測定が可能となる。   Select one of the light of multiple wavelengths from “Light emitting member with multiple quantum dots or quantum wells and emitting multiple wavelengths of light, each of which has a laminated structure” Measure optically. As a result, efficient optical measurement at multiple wavelengths becomes possible.

前記発光部材が,第1の層と,この第1の層上に配置される第1の量子ドットまたは第1の量子井戸と,この第1の量子ドットまたは第1の量子井戸を覆う第2の層と,を有し,第1の波長の光を発する第1の構造体と,第3の層と,この第3の層上に配置される第2の量子ドットまたは第2の量子井戸と,この第2の量子ドットまたは第2の量子井戸を覆う第4の層と,を有し,前記第1の構造体に積層して配置され,かつ前記第1の波長と異なる第2の波長の光を発する第2の構造体と,第5の層と,この第5の層上に配置される第3の量子ドットまたは第3の量子井戸と,この第3の量子ドットまたは第3の量子井戸を覆う第6の層と,を有し,前記第2の構造体に積層して配置され,かつ前記第1,第2の波長と異なる第3の波長の光を発する第3の構造体と,を有しても良い。
第1〜第3の構造体それぞれでの第1〜第3の量子ドットまたは量子井戸からの第1〜第3の波長の光を用いて,効率的な光学測定が可能となる。
The light emitting member includes a first layer, a first quantum dot or first quantum well disposed on the first layer, and a second layer covering the first quantum dot or the first quantum well. A first structure that emits light of a first wavelength, a third layer, and a second quantum dot or a second quantum well disposed on the third layer And a fourth layer covering the second quantum dot or the second quantum well, the second layer being stacked on the first structure, and different from the first wavelength A second structure that emits light of a wavelength; a fifth layer; a third quantum dot or third quantum well disposed on the fifth layer; and the third quantum dot or third A sixth layer covering the second quantum well, and disposed in a stacked manner on the second structure, and having a third wavelength different from the first and second wavelengths A third structure that emits may have.
Efficient optical measurement can be performed using the first to third wavelengths of light from the first to third quantum dots or quantum wells in the first to third structures, respectively.

前記測定対象が第1〜第3の成分を含み,前記光学部材を制御して,前記第1〜第3の波長の光を選択させ,前記選択された第1〜第3の波長の光それぞれでの受光素子の受光量を記憶する制御部と,前記記憶された前記受光素子の受光量および前記第1〜第3の成分の前記第1〜第3の波長での吸光率に基づいて,前記測定対象の複数の成分の組成比を算出する算出部と,を具備しても良い。
第1〜第3の波長の光での測定結果に基づいて,第1〜第3の成分の組成比を算出できる。
The measurement object includes first to third components, controls the optical member, selects light of the first to third wavelengths, and each of the selected light of the first to third wavelengths. Based on the stored amount of received light of the light receiving element and the absorbance of the first to third components at the first to third wavelengths, A calculation unit that calculates a composition ratio of a plurality of components to be measured.
Based on the measurement results with the light of the first to third wavelengths, the composition ratio of the first to third components can be calculated.

ここで,構造体それぞれから放出される光の波長を異ならせるには種々の手法があり得る。例えば,次の(1)〜(4)およびこれらの組み合わせによって,構造体それぞれから放出される光の波長を異ならせることができる。   Here, various methods can be used to vary the wavelength of light emitted from each structure. For example, the wavelength of light emitted from each structure can be varied by the following (1) to (4) and combinations thereof.

(1)前記第1〜第3の量子ドットの組成またはサイズ(厚さ等)の少なくとも一方が異なる。
(2)前記第1,第3,第5の層の厚さが異なる。
(3)前記第1,第3,第5の層の構成材料の格子定数が異なる。
(4)前記第2,第4,第6の層の組成が異なる。
(1) At least one of the composition or size (thickness, etc.) of the first to third quantum dots is different.
(2) The thicknesses of the first, third and fifth layers are different.
(3) The lattice constants of the constituent materials of the first, third and fifth layers are different.
(4) The compositions of the second, fourth and sixth layers are different.

本発明によれば,多波長での効率的な光学測定を可能とする多波長光学測定装置を提供できる。   According to the present invention, it is possible to provide a multi-wavelength optical measurement apparatus that enables efficient optical measurement at multiple wavelengths.

本発明の一実施形態に係る多波長測定装置10を表す模式図である。It is a schematic diagram showing the multiwavelength measuring apparatus 10 which concerns on one Embodiment of this invention. 試料S(測定対象)の吸光度スペクトルと光源20からの発光スペクトルの関係を表す図である。It is a figure showing the relationship between the light absorbency spectrum of sample S (measurement object), and the light emission spectrum from the light source. 積層された構造体を表す図である。It is a figure showing the laminated | stacked structure.

以下,図面を参照して,本発明の実施の形態を詳細に説明する。
図1は本発明の一実施形態に係る多波長測定装置10を表す模式図である。多波長測定装置10は,試料Sの分光特性を測定するものであり,光源20,光ファイバ31〜31e,光カプラ32,レンズ33a,33b,セル34,光学素子35a,35b,光検出器36a,36b,制御・計算部37を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a multiwavelength measuring apparatus 10 according to an embodiment of the present invention. The multi-wavelength measuring apparatus 10 measures the spectral characteristics of the sample S. The light source 20, the optical fibers 31 to 31e, the optical coupler 32, the lenses 33a and 33b, the cell 34, the optical elements 35a and 35b, and the photodetector 36a. , 36b, and a control / calculation unit 37.

光源20は,試料Sの分光測定に適した複数の波長の光を選択して発する。
図2は,試料S(測定対象)の吸光度スペクトルと光源20からの発光スペクトルの関係を表す図である。
The light source 20 selects and emits light having a plurality of wavelengths suitable for the spectroscopic measurement of the sample S.
FIG. 2 is a diagram illustrating the relationship between the absorbance spectrum of the sample S (measurement target) and the emission spectrum from the light source 20.

ここでは,試料Sが,3つの物質f,g,hを混合した混合物であるとする(複数の成分を含む測定対象)。図2(b)に,これら3つの物質f,g,hの光吸収(吸光度)スペクトルf(λ),g(λ),h(λ)の概略を示す。   Here, it is assumed that the sample S is a mixture in which three substances f, g, and h are mixed (measurement target including a plurality of components). FIG. 2B shows an outline of light absorption (absorbance) spectra f (λ), g (λ), and h (λ) of these three substances f, g, and h.

ここで,物質f,g,hは,例えば,高分子物質である。例えば,図2(b)に示すように,高分子物質による光吸収(吸光度)スペクトルはブロードであり,吸光度スペクトルf(λ),g(λ),h(λ)間で重なりがある。離れた波長間隔(例えば,図2のλ1〜λ3)の光を用いる吸光度測定により,吸光度スペクトルf(λ),g(λ),h(λ)に重なりのあるような複数成分f,g,hの混合サンプルの成分量の分析が可能である。例えば,生体の多成分分析(アルブミンやグルコース等)が可能となる。一例として,1.26ミクロン近傍に光吸収が存在するグルコースを測定対象物質と決めた場合,1.26ミクロン近傍を含む複数の波長の光を準備すれば良い。   Here, the substances f, g, and h are, for example, polymer substances. For example, as shown in FIG. 2B, the light absorption (absorbance) spectrum by the polymer substance is broad, and there is an overlap between the absorbance spectra f (λ), g (λ), and h (λ). A plurality of components f, g, and so on that overlap in the absorbance spectra f (λ), g (λ), and h (λ) are measured by absorbance measurement using light having a wavelength interval apart (for example, λ1 to λ3 in FIG. 2). It is possible to analyze the component amount of the mixed sample of h. For example, a multi-component analysis (albumin, glucose, etc.) of a living body becomes possible. As an example, when glucose having light absorption in the vicinity of 1.26 microns is determined as the measurement target substance, light having a plurality of wavelengths including the vicinity of 1.26 microns may be prepared.

このとき,例えば,図2に示す波長λ1,λ2,λ3の光を選択的に用いることで,物質f,g,hの定量化(混合比の算出)が可能となる。波長λ1,λ2,λ3は,例えば,980nm〜2000nmの範囲であり,吸光度スペクトルf(λ),g(λ),h(λ)の値が互いに異なる領域に設定できる。特に,波長λ1,λ2,λ3は,吸光度スペクトルf(λ),g(λ),h(λ)の値の相違が大きい領域に設定するのが好ましい。図2に示すように,光吸収(吸光度)スペクトルf(λ),g(λ),h(λ)がブロードな場合,波長λ1,λ2,λ3にはある程度の任意性が認められる。   At this time, for example, by selectively using light of wavelengths λ1, λ2, and λ3 shown in FIG. 2, the substances f, g, and h can be quantified (calculation of the mixing ratio). The wavelengths λ1, λ2, and λ3 are, for example, in the range of 980 nm to 2000 nm, and the absorbance spectra f (λ), g (λ), and h (λ) can be set in different regions. In particular, the wavelengths λ1, λ2, and λ3 are preferably set in a region where the difference in values of the absorbance spectra f (λ), g (λ), and h (λ) is large. As shown in FIG. 2, when the light absorption (absorbance) spectra f (λ), g (λ), and h (λ) are broad, the wavelengths λ1, λ2, and λ3 have some degree of arbitraryness.

ここで,波長λ1,λ2,λ3以外の光はこの物質f,g,hの混合比の測定には必要が無い。即ち,光源20が波長λ1,λ2,λ3以外の光を発生すると(ブロードな光発生),エネルギーの損失となる。   Here, light other than the wavelengths λ1, λ2, and λ3 is not necessary for measurement of the mixing ratio of the substances f, g, and h. That is, when the light source 20 generates light other than the wavelengths λ1, λ2, and λ3 (broad light generation), energy is lost.

そこで,図2(a)に示すように,光源20が,測定対象物質f,g,hの光吸収スペクトルに合わせた波長λ1,λ2,λ3のピークP1〜P3の光を選択して発光するようにする。この結果,光源20での高効率な測定が可能となる。ここでは,波長λ1のピークP1の光が発せられ,波長λ2のピークP2の光および波長λ3のピークP3の光は,発せられない。なお,光源20の詳細は後述する。   Therefore, as shown in FIG. 2A, the light source 20 selects and emits light having peaks P1 to P3 having wavelengths λ1, λ2, and λ3 that match the light absorption spectra of the substances to be measured f, g, and h. Like that. As a result, highly efficient measurement with the light source 20 becomes possible. Here, light of peak P1 of wavelength λ1 is emitted, and light of peak P2 of wavelength λ2 and light of peak P3 of wavelength λ3 are not emitted. Details of the light source 20 will be described later.

光ファイバ31,31a〜31eは,光源20からの光を導く導光路である。
光カプラ32は,光源20および光ファイバ31からの光を光ファイバ31a,31bの2つに分岐する分岐器である。光カプラ32は,光ファイバ31からの光を1:1に分岐することが好ましい。
The optical fibers 31, 31 a to 31 e are light guides that guide light from the light source 20.
The optical coupler 32 is a branching device that branches light from the light source 20 and the optical fiber 31 into two optical fibers 31a and 31b. The optical coupler 32 preferably branches the light from the optical fiber 31 into 1: 1.

レンズ33aは,光ファイバ31cからの光を平行光に変換して,セル34内を通過させる。レンズ33bは,セル34内を通過した光を収束光に変換して,光ファイバ31cに導入させる。   The lens 33a converts the light from the optical fiber 31c into parallel light and passes it through the cell 34. The lens 33b converts the light that has passed through the cell 34 into convergent light and introduces it into the optical fiber 31c.

セル34は,光透過性(例えば,980nm〜2000nmの波長範囲の一部または全部の光を通過させる)の容器であり,試料Sを保持する。試料Sは,例えば,物質f,g,hを混合した混合物であり,気体,液体,固体のいずれでも差し支えない。   The cell 34 is a light transmissive container (for example, a part or all of light in a wavelength range of 980 nm to 2000 nm is passed), and holds the sample S. The sample S is, for example, a mixture in which substances f, g, and h are mixed, and may be any of gas, liquid, and solid.

光学素子35a,35bは,略同一の光学特性を有し,選択された波長λ1,λ2,λ3以外の光を除外する光フィルタ(光バンドパスフィルタ,エタロンフィルタ,ホログラフィックフィルタ,干渉フィルタ等)である。即ち,光学素子35a,35bは,「複数の波長の光のいずれかを選択する光学部材」に対応する。波長λ1,λ2,λ3の選択は,光学素子35a,35bの交換によって行える。即ち,光学素子35a,35b(例えば,波長λ1の光を透過し,波長λ2,λ3の光を遮断する)を異なる透過特性の光学素子35a,35b(例えば,波長λ2の光を透過し,波長λ1,λ3の光を遮断する)と交換する。また,波長選択特性が可変な光学素子35a,35bを用いても良い。例えば,光路に対してエタロンフィルタを傾けることで,透過域の波長を変化できる。   The optical elements 35a and 35b have substantially the same optical characteristics and exclude optical lights other than the selected wavelengths λ1, λ2, and λ3 (optical bandpass filters, etalon filters, holographic filters, interference filters, etc.) It is. In other words, the optical elements 35a and 35b correspond to “an optical member that selects one of a plurality of wavelengths of light”. The wavelengths λ1, λ2, and λ3 can be selected by exchanging the optical elements 35a and 35b. That is, the optical elements 35a and 35b (for example, transmit light of wavelength λ1 and block light of wavelengths λ2 and λ3) pass through optical elements 35a and 35b (for example, transmit light of wavelength λ2 and transmit light of wavelength λ2). to block light of λ1 and λ3). Further, optical elements 35a and 35b having variable wavelength selection characteristics may be used. For example, the wavelength of the transmission region can be changed by tilting the etalon filter with respect to the optical path.

但し,光学素子35a,35bを省略することも可能である。これは,後述の光学素子23でも波長λ1,λ2,λ3の選択が可能だからである。即ち,光学素子35(35a,35b)と光学素子23のいずれか1方のみおよび双方を用いて,波長λ1,λ2,λ3を選択できる。光学素子35(35a,35b)と光学素子23の双方を用いる場合,光学素子35は光検出器36a,36bへのバックグランド光の混入の防止に寄与する。   However, the optical elements 35a and 35b can be omitted. This is because the wavelengths λ1, λ2, and λ3 can be selected by the optical element 23 described later. That is, the wavelengths λ1, λ2, and λ3 can be selected using only one or both of the optical element 35 (35a, 35b) and the optical element 23. When both the optical element 35 (35a, 35b) and the optical element 23 are used, the optical element 35 contributes to preventing background light from being mixed into the photodetectors 36a, 36b.

光検出器36a,36bは,セル34を通過した光および通過しない光を受光し,受光した光の強度に対応する信号Sa,Sbを出力する。光検出器36aは,測定対象を透過した光を受光する受光素子に対応する。   The photodetectors 36a and 36b receive light that has passed through the cell 34 and light that has not passed through the cell 34, and output signals Sa and Sb corresponding to the intensity of the received light. The photodetector 36a corresponds to a light receiving element that receives light transmitted through the measurement target.

制御・計算部37は,光検出器36a,36bからの信号に基づき,演算等を行う。
制御・計算部37は,「光学部材を制御して,前記第1〜第3の波長の光を選択させ,前記選択された第1〜第3の波長の光それぞれでの受光素子の受光量を記憶する制御部」に対応する。即ち,制御・計算部37は,光学素子23,35(35a,35b)を制御して(光学素子23,35の光学特性の制御または光学特性の異なる光学素子23,35への交換),試料Sを通過する光の波長を選択する。また,制御・計算部37は,そのときの光検出器36a,36bからの信号Sa,Sbを記憶するメモリを有する。
The control / calculation unit 37 performs calculations based on the signals from the photodetectors 36a and 36b.
The control / calculation unit 37 controls “the optical member to select the light of the first to third wavelengths, and the amount of light received by the light receiving element for each of the selected light of the first to third wavelengths. Corresponds to the “control unit for storing”. That is, the control / calculation unit 37 controls the optical elements 23 and 35 (35a and 35b) (control of the optical characteristics of the optical elements 23 and 35 or replacement with optical elements 23 and 35 having different optical characteristics), and the sample. The wavelength of light passing through S is selected. The control / calculation unit 37 has a memory for storing the signals Sa and Sb from the photodetectors 36a and 36b at that time.

制御・計算部37は,「記憶された前記受光素子の受光量および前記第1〜第3の成分の前記第1〜第3の波長での吸光率に基づいて,前記測定対象の複数の成分の組成比を算出する算出部」として機能する。このために,制御・計算部37は,複数の成分の吸光率f(λ1)〜f(λ3),g(λ1)〜g(λ3),h(λ1)〜h(λ3)(あるいは,後述の行列M,または逆行列M−1),および算出に必要なパラメータ(例えば,後述の光路長d)を記憶する。 The control / calculation unit 37 is configured to read “a plurality of components to be measured based on the stored amount of light received by the light receiving element and the absorbance of the first to third components at the first to third wavelengths. It functions as a “calculation unit that calculates the composition ratio of the composition”. For this purpose, the control / calculation unit 37 uses the light absorbances f (λ1) to f (λ3), g (λ1) to g (λ3), h (λ1) to h (λ3) (or later described) of a plurality of components. Matrix M or inverse matrix M −1 ), and parameters necessary for calculation (for example, optical path length d described later) are stored.

(光源20の詳細)
以下,光源20の詳細を説明する。
光源20は,ミラー(反射器)21,発光部材22,光学素子23,電源24を有する。
ミラー(反射器)21は,発光部材22の反対側の端面22aと共に,光共振器を構成する。
(Details of the light source 20)
Hereinafter, details of the light source 20 will be described.
The light source 20 includes a mirror (reflector) 21, a light emitting member 22, an optical element 23, and a power source 24.
The mirror (reflector) 21 forms an optical resonator together with the end face 22 a on the opposite side of the light emitting member 22.

本実施形態の光共振器は,ミラー21,端面22aにより挟まれたミラー対向型(リニア型)の光共振器である。ミラー21,端面22a間の経路を光が往復する。但し,リニア型の光共振器に換えて,リング型の光共振器を用いても良い。   The optical resonator of the present embodiment is a mirror-facing (linear type) optical resonator sandwiched between a mirror 21 and an end face 22a. Light reciprocates along the path between the mirror 21 and the end face 22a. However, a ring type optical resonator may be used instead of the linear type optical resonator.

本実施形態の光共振器では,ミラー21,端面22a間の空間内を光(空間光)が伝搬する(空間光学部品を用いた光共振器)。これに対して,導波路(半導体,誘電体で構成された光導波路や光ファイバ等)を用いて,光(導波光)を伝搬させても良い(光導波光学部品を用いた光共振器)。   In the optical resonator of this embodiment, light (spatial light) propagates in the space between the mirror 21 and the end face 22a (optical resonator using a spatial optical component). On the other hand, light (guided light) may be propagated using a waveguide (semiconductor, dielectric optical waveguide, optical fiber, etc.) (optical resonator using optical waveguide optical components). .

ミラー21として,分布Bragg反射鏡,分布帰還型反射鏡,フォトニック結晶反射鏡を利用できる。分布Bragg反射鏡は,屈折率の異なる層を4分の1波長の長さで交互に積層した反射鏡である。分布帰還型反射鏡は,回折格子等を用いて,反射箇所を分布させた反射鏡である。フォトニック結晶反射鏡は,フォトニック結晶を用いた反射鏡である。フォトニック結晶は,屈折率の異なる材料が周期的に並んだ構造体であり,この構造の周期が波長の1/2の光を反射する。これらは,空間光,導波光のどちらでも利用可能である。   As the mirror 21, a distributed Bragg reflector, a distributed feedback reflector, or a photonic crystal reflector can be used. The distributed Bragg reflector is a reflector in which layers having different refractive indexes are alternately stacked with a quarter wavelength length. A distributed feedback reflector is a reflector in which reflection points are distributed using a diffraction grating or the like. The photonic crystal reflector is a reflector using a photonic crystal. A photonic crystal is a structure in which materials having different refractive indexes are periodically arranged, and the period of this structure reflects light having a wavelength of 1/2. These can be used for both spatial light and guided light.

発光部材22は,端面22aおよび発光部25を有する。
端面22aは,ミラー21と対応し,光共振器を構成するミラーとして機能する。端面22aは,反射性と共に,透過性(半透過性)を有し,光共振器で共振された光の一部を出力光として出射する。
The light emitting member 22 has an end face 22 a and a light emitting unit 25.
The end face 22a corresponds to the mirror 21 and functions as a mirror constituting an optical resonator. The end face 22a has reflectivity and transparency (semi-transparency), and emits part of the light resonated by the optical resonator as output light.

発光部25は,複数の波長の光を発光する。即ち,発光部25は,「光共振器内に配置され,互いに異なる複数の波長の光を発する発光部材」に対応する。   The light emitting unit 25 emits light having a plurality of wavelengths. That is, the light emitting section 25 corresponds to “a light emitting member that is disposed in an optical resonator and emits light having a plurality of different wavelengths”.

発光部25として,量子ドット構造を用いることができる。図3は,発光部材22の一例としての量子ドット構造40の一例を表す。量子ドット構造40は,量子ドット部分構造41a〜41c,中間層42a,42bを有する。   As the light emitting unit 25, a quantum dot structure can be used. FIG. 3 shows an example of the quantum dot structure 40 as an example of the light emitting member 22. The quantum dot structure 40 includes quantum dot partial structures 41a to 41c and intermediate layers 42a and 42b.

量子ドット部分構造41a〜41cは,「量子ドットまたは量子井戸をそれぞれ備え,互いに異なる複数の波長の光を発する,複数の構造体(第1〜第3の構造体)」に対応する。なお,後述のように,量子ドットに替えて,量子井戸を利用しても良い。   The quantum dot partial structures 41a to 41c correspond to “a plurality of structures (first to third structures) each including a quantum dot or a quantum well and emitting light having a plurality of different wavelengths”. As will be described later, quantum wells may be used instead of quantum dots.

量子ドット部分構造41aは,量子ドット43a,キャップ層44a,サブナノ層間分離層45a,バックグラウンド層(下地層)46aを有する。量子ドット部分構造41bは,量子ドット43b,キャップ層44b,サブナノ層間分離層45b,バックグラウンド層(下地層)46bを有する。量子ドット部分構造41cは,量子ドット43c,キャップ層44c,サブナノ層間分離層45c,バックグラウンド層(下地層)46cを有する。   The quantum dot partial structure 41a includes a quantum dot 43a, a cap layer 44a, a sub-nano interlayer separation layer 45a, and a background layer (underlayer) 46a. The quantum dot partial structure 41b includes a quantum dot 43b, a cap layer 44b, a sub-nano interlayer separation layer 45b, and a background layer (underlayer) 46b. The quantum dot partial structure 41c includes a quantum dot 43c, a cap layer 44c, a sub-nano interlayer separation layer 45c, and a background layer (underlayer) 46c.

量子ドット43a〜43c,キャップ層44a〜44c,サブナノ層間分離層45a〜45c,バックグラウンド層(下地層)46a〜46c,中間層42a,42bは,III族元素(例えば,In,Ga,Al)とV族元素(例えば,As,Sb,N,P)の混晶半導体で,構成できる。III族元素,V族元素の組み合わせは適宜に選択できる。   The quantum dots 43a to 43c, the cap layers 44a to 44c, the sub-nano interlayer separation layers 45a to 45c, the background layers (underlying layers) 46a to 46c, and the intermediate layers 42a and 42b are group III elements (for example, In, Ga, Al). And a mixed crystal semiconductor of group V elements (for example, As, Sb, N, P). Combinations of Group III elements and Group V elements can be selected as appropriate.

量子ドット部分構造41a〜41cが,中間層42a,42bにより結合,積層される。
量子ドット43a〜43cに起因して,量子ドット部分構造41a〜41cそれぞれから,光が発生する。量子ドット部分構造41a〜41cそれぞれでの発光波長を異ならせ,複数波長の光出力を確保できる。
The quantum dot partial structures 41a to 41c are bonded and stacked by the intermediate layers 42a and 42b.
Light is generated from each of the quantum dot partial structures 41a to 41c due to the quantum dots 43a to 43c. The light emission wavelengths of the quantum dot partial structures 41a to 41c can be made different to ensure the light output of a plurality of wavelengths.

例えば,量子ドット部分構造41a〜41cそれぞれでの発光をピークP1〜P3(波長λ1,λ2,λ3)とし(図2(a)参照),発光部材22での波長λ1,λ2,λ3での発光を可能とする。後述のように,ピークP1〜P3の波長を適宜に異ならせることができる。   For example, the light emission from each of the quantum dot partial structures 41a to 41c is set to peaks P1 to P3 (wavelengths λ1, λ2, and λ3) (see FIG. 2A), and the light emission member 22 emits light at the wavelengths λ1, λ2, and λ3. Is possible. As will be described later, the wavelengths of the peaks P1 to P3 can be appropriately varied.

量子ドット43a〜43cは,その中に電子を閉じ込め,電子の状態密度が離散化される。量子ドット43a〜43cは,所定の層に配置され,3次元いずれの方向からも大きさを制限された形状を有する。図3には,判りやすさのために,一の層に一の量子ドット43a〜43cを配置した状態を表している。実際には,一の層に複数(多数)の量子ドットが配置される。   The quantum dots 43a to 43c confine electrons therein, and the electron density of states is discretized. The quantum dots 43a to 43c are arranged in a predetermined layer and have a shape whose size is limited from any three-dimensional direction. FIG. 3 shows a state in which one quantum dot 43a to 43c is arranged in one layer for easy understanding. Actually, a plurality of (multiple) quantum dots are arranged in one layer.

キャップ層44a〜44cはそれぞれ,量子ドット43a〜43cを覆う。
サブナノ層間分離層45a〜45c上に,量子ドット43a〜43cが配置される。
The cap layers 44a to 44c cover the quantum dots 43a to 43c, respectively.
Quantum dots 43a to 43c are arranged on the sub-nano interlayer separation layers 45a to 45c.

量子ドット部分構造41a〜41c(量子ドット43a〜43c,キャップ層44a〜44c,サブナノ層間分離層45a〜45c,バックグラウンド層(下地層)46a〜46c)の構造,組成は,発光特性と密接な関係を有する。特に,量子ドット43a〜43cおよびこれらを囲むキャップ層44a〜44c,サブナノ層間分離層45a〜45cの構成材料やサイズは,発光特性(発光波長)への影響が大きい。   The structure and composition of the quantum dot partial structures 41a to 41c (quantum dots 43a to 43c, cap layers 44a to 44c, sub-nano interlayer separation layers 45a to 45c, background layers (underlayers) 46a to 46c) are closely related to the emission characteristics. Have a relationship. In particular, the constituent materials and sizes of the quantum dots 43a to 43c, the cap layers 44a to 44c surrounding them, and the sub-nano interlayer separation layers 45a to 45c have a great influence on the light emission characteristics (light emission wavelength).

量子ドット部分構造41a〜41cでの発光波長を異ならせるために,次のように,それぞれの構造,組成が調節される。   In order to make the light emission wavelengths different in the quantum dot partial structures 41a to 41c, the respective structures and compositions are adjusted as follows.

(1)量子ドット43a〜43cの組成を異ならせる。量子ドット43a〜43cのエネルギーバンドギャップを低エネルギー化する組成を選択することで,量子ドット部分構造41a〜41cでの発光波長を長波長化できる。 (1) The compositions of the quantum dots 43a to 43c are made different. By selecting a composition that lowers the energy band gap of the quantum dots 43a to 43c, the emission wavelength of the quantum dot partial structures 41a to 41c can be increased.

(2)量子ドット43a〜43cの膜厚を異ならせる。量子ドット43a〜43cの膜厚を厚くすることで,量子ドット部分構造41a〜41cでの発光波長を長波長化できる。 (2) The quantum dots 43a to 43c are made different in film thickness. Increasing the film thickness of the quantum dots 43a to 43c can increase the emission wavelength of the quantum dot partial structures 41a to 41c.

(3)キャップ層44a〜44cの格子定数を異ならせる。キャップ層44a〜44cの格子定数を量子ドット43a〜43cに近づけることで,量子ドット部分構造41a〜41cでの発光波長を長波長化できる。 (3) The cap layers 44a to 44c have different lattice constants. By making the lattice constants of the cap layers 44a to 44c closer to the quantum dots 43a to 43c, the emission wavelength of the quantum dot partial structures 41a to 41c can be increased.

(4)キャップ層44a〜44cの膜厚を異ならせる。キャップ層44a〜44cの膜厚を大きくすることで,量子ドット部分構造41a〜41cでの発光波長を長波長化できる。 (4) The cap layers 44a to 44c are made different in film thickness. Increasing the film thickness of the cap layers 44a to 44c can increase the emission wavelength of the quantum dot partial structures 41a to 41c.

(5)サブナノ層間分離層45a〜45cの組成を異ならせる。サブナノ層間分離層45a〜45cの組成元素数を減らすことで例えば,3元素InGaAsでは無く,二元素GaAsとする),量子ドット部分構造41a〜41cでの発光波長を長波長化できる。 (5) Different compositions of the sub-nano interlayer separation layers 45a to 45c are made. By reducing the number of composition elements of the sub-nano interlayer separation layers 45a to 45c, for example, the light emission wavelength in the quantum dot partial structures 41a to 41c can be increased.

このように,量子ドット等の発光材料・光ゲイン材料を選択的に作製し,波長λ1〜λ3のみで発光するような光源20を作成できる。本実施形態では,このような測定対象となる物質f,g,h固有のブロードな光スペクトルに合わせて,波長λ1〜λ3の複数の狭い発光ピークP1〜P3を発光させる。測定する被対象物質の光スペクトル形状に合わせて,低消費電力でかつ高強度の光を発生できる。   In this manner, a light source 20 that emits light only at wavelengths λ1 to λ3 by selectively producing a light emitting material or an optical gain material such as quantum dots can be produced. In the present embodiment, a plurality of narrow emission peaks P1 to P3 having wavelengths λ1 to λ3 are caused to emit light in accordance with such a broad light spectrum unique to the substances f, g, and h to be measured. Low power consumption and high intensity light can be generated according to the shape of the optical spectrum of the target substance to be measured.

量子ドット構造は,例えば,次のようにして,作成できる。
(1)バックグラウンド層(下地層)46cの形成
GaAs基板上にMBE(Molecular Beam Epitaxy(分子線エピタキシ))法により,バックグラウンド層46c(例えば,InGaAsの層)をエピタキシャル成長させる。
The quantum dot structure can be created as follows, for example.
(1) Formation of Background Layer (Underlayer) 46c A background layer 46c (for example, an InGaAs layer) is epitaxially grown on a GaAs substrate by MBE (Molecular Beam Epitaxy) method.

(2)サブナノ層間分離層45cの形成
バックグラウンド層46c上にMBE法により,サブナノ層間分離層45c(例えば,GaAsの層)をエピタキシャル成長させる。
(2) Formation of sub-nano interlayer isolation layer 45c A sub-nano interlayer isolation layer 45c (for example, a GaAs layer) is epitaxially grown on the background layer 46c by MBE.

(3)量子ドット43cの形成
サブナノ層間分離層45c上にMBE法により,量子ドット43c(例えば,InAsの層)をエピタキシャル成長させる。サブナノ層間分離層45cの構成材料と量子ドット43cの構成材料との格子の不整合(格子定数の不一致)により,島状(アイランド)構造の量子ドット43cが形成される(自己組織化による形成)。サブナノ層間分離層45cと量子ドット43cの格子が不整合となるように,量子ドット43cの形成時において,例えば,InとAsの比率が制御される。
(3) Formation of quantum dots 43c Quantum dots 43c (for example, InAs layers) are epitaxially grown on the sub-nano interlayer separation layer 45c by MBE. Due to lattice mismatch between the constituent material of the sub-nano interlayer separation layer 45c and the constituent material of the quantum dot 43c (inconsistency of lattice constant), island-shaped (island) structure quantum dots 43c are formed (formation by self-organization). . For example, the ratio of In to As is controlled when the quantum dots 43c are formed so that the lattices of the sub-nano interlayer separation layer 45c and the quantum dots 43c are mismatched.

(4)キャップ層44cの形成
量子ドット43c上にMBE法により,キャップ層44c(例えば,InGaAsの層)をエピタキシャル成長させる。この結果,量子ドット43cがキャップ層44cに覆われる(埋め込み)。
(4) Formation of Cap Layer 44c A cap layer 44c (for example, an InGaAs layer) is epitaxially grown on the quantum dots 43c by MBE. As a result, the quantum dots 43c are covered (embedded) with the cap layer 44c.

(5)中間層42b〜キャップ層44aの形成
その後,中間層42b,バックグラウンド層46b,サブナノ層間分離層45b,量子ドット43b,キャップ層44b,中間層42a,バックグラウンド層46a,サブナノ層間分離層45a,量子ドット43a,キャップ層44aをMBE法により順に形成した。このようにして,量子ドット構造が形成される。
キャップ層44aの上およびバックグラウンド層46cの下に,電流注入用の電極が形成される。
(5) Formation of intermediate layer 42b to cap layer 44a Thereafter, intermediate layer 42b, background layer 46b, sub-nano interlayer separation layer 45b, quantum dot 43b, cap layer 44b, intermediate layer 42a, background layer 46a, sub-nano interlayer separation layer 45a, quantum dots 43a, and cap layer 44a were sequentially formed by the MBE method. In this way, a quantum dot structure is formed.
An electrode for current injection is formed on the cap layer 44a and below the background layer 46c.

なお,以上の作成工程では,MBE法が用いられているが,MOCVD(Metal Organic Chemical Vapor Deposition法:有機金属気相成長法)を用いることも可能である。   In the above production process, the MBE method is used, but MOCVD (Metal Organic Chemical Vapor Deposition method) can also be used.

光学素子23は,「複数の波長の光のいずれかを選択する光学部材」に対応し,選択された波長λ1,λ2,λ3以外の光を除外する光フィルタ(光バンドパスフィルタ,エタロンフィルタ,ホログラフィックフィルタ,干渉フィルタ等)である。波長λ1,λ2,λ3の選択は,光学素子23の交換によって行える。即ち,光学素子23(例えば,波長λ1の光を透過し,波長λ2,λ3の光を遮断する)を異なる透過特性の光学素子23(例えば,波長λ2の光を透過し,波長λ1,λ3の光を遮断する)と交換する。また,波長選択特性が可変な光学素子23を用いても良い。例えば,光路に対してエタロンフィルタを傾けることで,透過域の波長を変化できる。   The optical element 23 corresponds to “an optical member that selects one of a plurality of wavelengths of light”, and is an optical filter that excludes light other than the selected wavelengths λ1, λ2, and λ3 (an optical bandpass filter, an etalon filter, Holographic filter, interference filter, etc.). The wavelengths λ1, λ2, and λ3 can be selected by exchanging the optical element 23. That is, the optical element 23 (for example, transmits light of wavelength λ1 and blocks light of wavelengths λ2 and λ3) passes through optical element 23 (for example, transmits light of wavelength λ2 and transmits light of wavelengths λ1 and λ3). Replace the light. An optical element 23 having variable wavelength selection characteristics may be used. For example, the wavelength of the transmission region can be changed by tilting the etalon filter with respect to the optical path.

但し,光学素子23を省略することも可能である。これは,光学素子35(35a,35b)でも波長λ1,λ2,λ3の選択が可能だからである。即ち,光学素子23と光学素子35(35a,35b)のいずれか1方のみおよび双方を用いて,波長λ1,λ2,λ3を選択できる。   However, the optical element 23 can be omitted. This is because the wavelengths λ1, λ2, and λ3 can be selected even in the optical element 35 (35a, 35b). That is, the wavelengths λ1, λ2, and λ3 can be selected using only one or both of the optical element 23 and the optical element 35 (35a, 35b).

電源24は,発光部25に発光のための電流(電力)を供給する。   The power source 24 supplies a current (electric power) for light emission to the light emitting unit 25.

(多波長測定装置10の動作)
以下,多波長測定装置10の動作手順の一例を示す。
(1)測定
光源20からの波長λ1, λ2, λ3の光を切り替える。例えば,光学素子23,35を切り替えて,光源20から波長λ1の光を発する。この光は,光カプラ32によって,光ファイバ31a,31bに分岐される。光ファイバ31aからの光は試料Sを通過し,光ファイバ31bからの光は試料Sを通過しない。前者は測定用の光で,後者は基準用の光である。これらの光はそれぞれ,光学素子35a,35bを通過し,光検出器36a,36bで受光される。
(Operation of multi-wavelength measuring apparatus 10)
Hereinafter, an example of the operation procedure of the multi-wavelength measuring apparatus 10 will be shown.
(1) Measurement The light of wavelength λ1, λ2, λ3 from the light source 20 is switched. For example, the optical elements 23 and 35 are switched to emit light having a wavelength λ 1 from the light source 20. This light is branched into optical fibers 31 a and 31 b by an optical coupler 32. The light from the optical fiber 31a passes through the sample S, and the light from the optical fiber 31b does not pass through the sample S. The former is measurement light, and the latter is reference light. These lights pass through the optical elements 35a and 35b, respectively, and are received by the photodetectors 36a and 36b.

既述のように光検出器36a,36bからの信号Sa,Sbは,光検出器36a,36bで受光された光の強度を表す。信号Sa,Sbは,次の式(1)で表される。
Sa=K*I1=K*I0*T(λ1)
=K*I0*(e−A (λ1)*d
Sb=K*I0 … 式(1)
As described above, the signals Sa and Sb from the photodetectors 36a and 36b represent the intensity of light received by the photodetectors 36a and 36b. The signals Sa and Sb are expressed by the following equation (1).
Sa = K * I1 = K * I0 * T (λ1)
= K * I0 * (e− A (λ1) * d )
Sb = K * I0 Formula (1)

I1: 光検出器36aに入射する(試料Sを通過する)光の光量
I0: 光検出器36bに入射する(試料Sを通過しない)光の光量
K: 光検出器36a,36bに入射する光の光量と,信号Sa,Sbの強度の関係を表す比例定数(光検出器36a,36bの感度に対応)
T(λ1): 波長λ1での試料Sの透過率
A(λ1): 波長λ1での試料Sの吸光度
d: 試料Sを通過する光の光路長(距離)
I1: Amount of light incident on the photodetector 36a (passing through the sample S) I0: Amount of light incident on the photodetector 36b (not passing through the sample S) K: Light incident on the photodetectors 36a, 36b Proportionality constant representing the relationship between the intensity of the light and the intensity of the signals Sa and Sb (corresponding to the sensitivity of the photodetectors 36a and 36b)
T (λ1): Transmittance of sample S at wavelength λ1 A (λ1): Absorbance of sample S at wavelength λ1 d: Optical path length (distance) of light passing through sample S

信号Sa,Sbの比Rは,次の式(2)に示すように,波長λ1での試料Sの透過率T(λ1)に対応する。
R=Sa/Sb=T(λ1)=e−A (λ1)*d … 式(2)
The ratio R of the signals Sa and Sb corresponds to the transmittance T (λ1) of the sample S at the wavelength λ1, as shown in the following equation (2).
R = Sa / Sb = T (λ1) = e −A (λ1) * d (2)

以上から,次の式(3)のように吸光度A(λ1)を表すことができる。
A(λ1)=−Log(T(λ1))/d
=Log(Sb/Sa)/d … 式(3)
From the above, the absorbance A (λ1) can be expressed as in the following formula (3).
A (λ1) = − Log (T (λ1)) / d
= Log (Sb / Sa) / d Formula (3)

以上のように,光検出器36a,36bからの信号Sa,Sb,および光路長dを用いて,吸光度A(λ1)を算出できる。   As described above, the absorbance A (λ1) can be calculated using the signals Sa and Sb from the photodetectors 36a and 36b and the optical path length d.

吸光度A(λ1)と同様に,波長λ2,λ3での試料Sの吸光度A(λ2),A(λ3)を算出できる。   Similar to the absorbance A (λ1), the absorbances A (λ2) and A (λ3) of the sample S at wavelengths λ2 and λ3 can be calculated.

以上では,光カプラ32での分岐比を1:1と仮定している。このため,信号Sa,Sbの比Rと透過率T(λ)が等しくなっている。分岐比が1:1で無い場合には,何らかの較正が必要となる。   In the above, it is assumed that the branching ratio in the optical coupler 32 is 1: 1. For this reason, the ratio R of the signals Sa and Sb and the transmittance T (λ) are equal. If the branching ratio is not 1: 1, some calibration is required.

また,光源20からの出射光の強度が時間的に安定していれば,必ずしも光検出器36bは必要では無い。吸光度A(λ)が事実上無視できる材料を試料Sとして用いたときの,光検出器36aからの信号Sa0を式(3)での信号Sbに替えて用いることで,吸光度A(λ)を算出できる。光検出器36bは光源20からの光の強度をモニタするためのものである。   If the intensity of light emitted from the light source 20 is stable over time, the photodetector 36b is not necessarily required. When a material with practically negligible absorbance A (λ) is used as the sample S, the signal Sa0 from the light detector 36a is used in place of the signal Sb in equation (3), so that the absorbance A (λ) is obtained. It can be calculated. The photodetector 36b is for monitoring the intensity of light from the light source 20.

(2)解析
吸光度A(λ)は,測定対象物質f,g,hの混合比m,n,p,単位量当たりの吸光度f(λ),g(λ),h(λ)と次のような関係を有する。
A(λ)=m*f(λ)+n*g(λ)+p*h(λ)
ここで,λ=λ1,λ2,λ3としたとき,次の関係が成立する。
A(λ1)=m*f(λ1)+n*g(λ1)+p*h(λ1)
A(λ2)=m*f(λ2)+n*g(λ2)+p*h(λ2)
A(λ3)=m*f(λ3)+n*g(λ3)+p*h(λ3)
(2) Analysis The absorbance A (λ) is the mixing ratio m, n, p of the substances to be measured f, g, h, the absorbances per unit quantity f (λ), g (λ), h (λ) and It has such a relationship.
A (λ) = m * f (λ) + n * g (λ) + p * h (λ)
Here, when λ = λ1, λ2, and λ3, the following relationship is established.
A (λ1) = m * f (λ1) + n * g (λ1) + p * h (λ1)
A (λ2) = m * f (λ2) + n * g (λ2) + p * h (λ2)
A (λ3) = m * f (λ3) + n * g (λ3) + p * h (λ3)

この関係を行列式で表すと,次の式(1)で表せる

Figure 2013205113
This relationship can be expressed by the following equation (1)
Figure 2013205113

次の式(2)に示すように,混合比m,n,pは,行列Mの逆行列M−1,試料Sの吸光度A(λ2),A(λ3)から算出できる。

Figure 2013205113
As shown in the following equation (2), the mixing ratios m, n, and p can be calculated from the inverse matrix M −1 of the matrix M and the absorbances A (λ 2) and A (λ 3) of the sample S.
Figure 2013205113

以上のように本実施形態の係る多波長測定装置10では,特定の波長λ1〜λ3のピークP1〜P3の光のみが発光,選択される。この結果,多波長測定装置10(特に,光源20)の消費エネルギーを低減できる。測定対象物質には必要無い波長の光を光源20が発光しないことから,光源20の消費エネルギーが削減される。例えば,多波長測定装置10をバッテリー駆動としたときに,長時間の動作が可能となる。   As described above, in the multi-wavelength measuring apparatus 10 according to the present embodiment, only the lights of the peaks P1 to P3 having specific wavelengths λ1 to λ3 are emitted and selected. As a result, the energy consumption of the multi-wavelength measuring apparatus 10 (particularly the light source 20) can be reduced. Since the light source 20 does not emit light having a wavelength that is not necessary for the measurement target substance, the energy consumption of the light source 20 is reduced. For example, when the multi-wavelength measuring apparatus 10 is battery-driven, it can operate for a long time.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

(1)以上の実施形態では,波長λ1,λ2,λ3での試料Sの吸光度A(λ1),A(λ2),A(λ3)を測定することで,物質f,g,hの混合比m,n,pを算出できる。言い換えれば,3種類の物質に対応して3つの波長での吸光度Aを測定することで,これら3種類の物質の混合比を算出している。 (1) In the above embodiment, the mixing ratio of the substances f, g, and h is measured by measuring the absorbances A (λ1), A (λ2), and A (λ3) of the sample S at the wavelengths λ1, λ2, and λ3. m, n, and p can be calculated. In other words, by measuring the absorbance A at three wavelengths corresponding to the three kinds of substances, the mixing ratio of these three kinds of substances is calculated.

これは,一般化可能である。即ち,N種類の物質に対応してN個の波長での吸光度Aを測定することで,これらN種類の物質の混合比を算出できる。この場合,光源20は,N個の波長の光を選択して発光可能である必要があり,量子ドット部分構造の個数もN個以上であることが好ましい。Nは,1以上の整数を用いることができる。物質が1種類(N=1)の場合,その物質の濃度を算出可能である。   This can be generalized. That is, by measuring the absorbance A at N wavelengths corresponding to N kinds of substances, the mixing ratio of these N kinds of substances can be calculated. In this case, the light source 20 needs to be able to select and emit light of N wavelengths, and the number of quantum dot partial structures is preferably N or more. N can be an integer of 1 or more. When there is one kind of substance (N = 1), the concentration of the substance can be calculated.

また,物質の種類の数と,光源20で発光可能な波長の数は必ずしも一致しなくても良い。例えば,物質の種類の数より波長の数が多いことが許容される。この場合,発光可能な波長の一部を使うことができる。また,物質の種類の数より多くの波長の数を用いて測定することで,混合比のより正確な算出が可能となる(一種の統計的処理)。   Further, the number of types of substances and the number of wavelengths that can be emitted by the light source 20 do not necessarily need to match. For example, it is allowed that the number of wavelengths is larger than the number of types of substances. In this case, a part of the wavelength that can be emitted can be used. In addition, it is possible to calculate the mixing ratio more accurately by measuring using a larger number of wavelengths than the number of types of substances (a kind of statistical processing).

(2)以上の実施形態では,光源20に量子ドットを用いている。これに対して,量子ドットに替えて,量子井戸を用いることも可能である。即ち,「量子ドットまたは量子井戸」を備えた構造体を積層して,発光部材(ひいては,光源20)を構成できる。 (2) In the above embodiment, quantum dots are used for the light source 20. On the other hand, it is also possible to use quantum wells instead of quantum dots. That is, a light emitting member (and thus the light source 20) can be configured by laminating structures having “quantum dots or quantum wells”.

(3)以上の実施形態では,光学素子23,35(35a,35b)の双方を用いて波長を選択している。これに対して,光学素子23,35の一方のみを用いることも可能である。即ち,共振器の内外いずれに配置した光学素子(光フィルタ)でも,波長の選択が可能である。 (3) In the above embodiment, the wavelength is selected using both of the optical elements 23 and 35 (35a and 35b). On the other hand, only one of the optical elements 23 and 35 can be used. That is, the wavelength can be selected with an optical element (an optical filter) arranged either inside or outside the resonator.

10…多波長測定装置,20…光源,21…ミラー,22…発光部材,22a…端面,23…光学素子,24…電源,25…発光部,31−31e…光ファイバ,33a,33b…レンズ,34…セル,35a,35b…光学素子,36a,36b…光検出器,37…制御・計算部,40…量子ドット構造,41a−41c…量子ドット部分構造,42a,42b…中間層,43a−43c…量子ドット,44a−44c…キャップ層,45a−45c…サブナノ層間分離層,46a−46c…バックグラウンド層 DESCRIPTION OF SYMBOLS 10 ... Multi-wavelength measuring apparatus, 20 ... Light source, 21 ... Mirror, 22 ... Light emitting member, 22a ... End surface, 23 ... Optical element, 24 ... Power supply, 25 ... Light emission part, 31-31e ... Optical fiber, 33a, 33b ... Lens , 34 ... cells, 35a and 35b ... optical elements, 36a and 36b ... photodetectors, 37 ... control and calculation section, 40 ... quantum dot structure, 41a-41c ... quantum dot partial structure, 42a, 42b ... intermediate layer, 43a -43c ... Quantum dot, 44a-44c ... Cap layer, 45a-45c ... Sub-nano interlayer separation layer, 46a-46c ... Background layer

Claims (6)

光共振器と,
前記光共振器内に配置され,量子ドットまたは量子井戸をそれぞれ備え,互いに異なる複数の波長の光を発する,複数の構造体を積層してなる発光部材と,
前記複数の波長の光のいずれかを選択する光学部材と,
複数の成分を含む測定対象を透過した,前記選択された波長の光を受光する受光素子と,
を具備することを特徴とする多波長測定装置。
An optical resonator,
A light emitting member formed by laminating a plurality of structures disposed in the optical resonator, each including a quantum dot or a quantum well, and emitting light having a plurality of different wavelengths;
An optical member for selecting any one of the plurality of wavelengths of light;
A light receiving element that receives light of the selected wavelength that has passed through a measurement target including a plurality of components;
A multi-wavelength measuring apparatus comprising:
前記発光部材が,
第1の層と,この第1の層上に配置される第1の量子ドットまたは第1の量子井戸と,この第1の量子ドットまたは第1の量子井戸を覆う第2の層と,を有し,第1の波長の光を発する第1の構造体と,
第3の層と,この第3の層上に配置される第2の量子ドットまたは第2の量子井戸と,この第2の量子ドットまたは第2の量子井戸を覆う第4の層と,を有し,前記第1の構造体に積層して配置され,かつ前記第1の波長と異なる第2の波長の光を発する第2の構造体と,
第5の層と,この第5の層上に配置される第3の量子ドットまたは第3の量子井戸と,この第3の量子ドットまたは第3の量子井戸を覆う第6の層と,を有し,前記第2の構造体に積層して配置され,かつ前記第1,第2の波長と異なる第3の波長の光を発する第3の構造体と,
を有する,
ことを特徴とする請求項1記載の多波長測定装置。
The light emitting member is
A first layer; a first quantum dot or first quantum well disposed on the first layer; and a second layer covering the first quantum dot or first quantum well. A first structure that emits light of a first wavelength;
A third layer; a second quantum dot or second quantum well disposed on the third layer; and a fourth layer covering the second quantum dot or second quantum well. A second structure that emits light of a second wavelength different from the first wavelength, and is disposed on the first structure;
A fifth layer, a third quantum dot or third quantum well disposed on the fifth layer, and a sixth layer covering the third quantum dot or third quantum well; A third structure that emits light of a third wavelength that is different from the first and second wavelengths and is stacked on the second structure;
Have
The multi-wavelength measuring apparatus according to claim 1.
前記測定対象が第1〜第3の成分を含み,
前記光学部材を制御して,前記第1〜第3の波長の光を選択させ,前記選択された第1〜第3の波長の光それぞれでの受光素子の受光量を記憶する制御部と,
前記記憶された前記受光素子の受光量および前記第1〜第3の成分の前記第1〜第3の波長での吸光率に基づいて,前記測定対象の複数の成分の組成比を算出する算出部と,
を具備することを特徴とする請求項2記載の多波長測定装置。
The measurement object includes first to third components;
A controller that controls the optical member to select the light of the first to third wavelengths, and stores the amount of light received by the light receiving element for each of the selected light of the first to third wavelengths;
Calculation for calculating a composition ratio of a plurality of components to be measured based on the stored amount of light received by the light receiving element and the absorbance of the first to third components at the first to third wavelengths Part,
The multi-wavelength measuring apparatus according to claim 2, comprising:
前記第1〜第3の量子ドットの組成またはサイズの少なくとも一方が互いに異なる,ことを特徴とする請求項3記載の多波長測定装置。   4. The multi-wavelength measuring apparatus according to claim 3, wherein at least one of the composition or size of the first to third quantum dots is different from each other. 前記第1,第3,および第5の層の厚さ,構成材料の格子定数の少なくともいずれかが異なる,ことを特徴とする請求項3記載の多波長測定装置。   4. The multiwavelength measuring apparatus according to claim 3, wherein at least one of the thicknesses of the first, third, and fifth layers and the lattice constant of the constituent material are different. 前記第2,第4,第6の層の組成が異なる,
ことを特徴とする請求項3記載の多波長測定装置。
The compositions of the second, fourth and sixth layers are different;
The multi-wavelength measuring apparatus according to claim 3.
JP2012072316A 2012-03-27 2012-03-27 Multi-wavelength measuring device Active JP6192086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072316A JP6192086B2 (en) 2012-03-27 2012-03-27 Multi-wavelength measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072316A JP6192086B2 (en) 2012-03-27 2012-03-27 Multi-wavelength measuring device

Publications (2)

Publication Number Publication Date
JP2013205113A true JP2013205113A (en) 2013-10-07
JP6192086B2 JP6192086B2 (en) 2017-09-06

Family

ID=49524355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072316A Active JP6192086B2 (en) 2012-03-27 2012-03-27 Multi-wavelength measuring device

Country Status (1)

Country Link
JP (1) JP6192086B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163030A (en) * 2015-03-05 2016-09-05 富士通株式会社 Semiconductor laser device
WO2020162158A1 (en) * 2019-02-08 2020-08-13 アズビル株式会社 Measurement device, measurement system, and measurement method
CN113218892A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measuring apparatus and measuring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029642A (en) * 1983-07-28 1985-02-15 Showa Denko Kk Method and apparatus for measuring gaseous methane concentration
JPH06283812A (en) * 1993-03-30 1994-10-07 Hitachi Ltd Semiconductor laser element
JP2003008148A (en) * 2001-06-18 2003-01-10 Lucent Technol Inc Hetero inter-sub-band(hisb) optical device
JP2004071885A (en) * 2002-08-07 2004-03-04 Sanyo Electric Co Ltd Semiconductor light emitting element
JP2008172188A (en) * 2007-01-10 2008-07-24 Ind Technol Res Inst Multi-wavelength quantum dot laser device
JP2008229239A (en) * 2007-03-23 2008-10-02 Hitachi Ltd Somatometric device, and semiconductor laser apparatus for somatometry
JP2008270585A (en) * 2007-04-23 2008-11-06 Fujifilm Corp Optical semiconductor element, wavelength variable light source using same optical semiconductor element, and optical tomographic image acquisition device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029642A (en) * 1983-07-28 1985-02-15 Showa Denko Kk Method and apparatus for measuring gaseous methane concentration
JPH06283812A (en) * 1993-03-30 1994-10-07 Hitachi Ltd Semiconductor laser element
JP2003008148A (en) * 2001-06-18 2003-01-10 Lucent Technol Inc Hetero inter-sub-band(hisb) optical device
JP2004071885A (en) * 2002-08-07 2004-03-04 Sanyo Electric Co Ltd Semiconductor light emitting element
JP2008172188A (en) * 2007-01-10 2008-07-24 Ind Technol Res Inst Multi-wavelength quantum dot laser device
JP2008229239A (en) * 2007-03-23 2008-10-02 Hitachi Ltd Somatometric device, and semiconductor laser apparatus for somatometry
JP2008270585A (en) * 2007-04-23 2008-11-06 Fujifilm Corp Optical semiconductor element, wavelength variable light source using same optical semiconductor element, and optical tomographic image acquisition device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163030A (en) * 2015-03-05 2016-09-05 富士通株式会社 Semiconductor laser device
WO2020162158A1 (en) * 2019-02-08 2020-08-13 アズビル株式会社 Measurement device, measurement system, and measurement method
JP2020128940A (en) * 2019-02-08 2020-08-27 アズビル株式会社 Measurement device, measurement system, and measurement method
CN113218892A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measuring apparatus and measuring method
JP2021124387A (en) * 2020-02-05 2021-08-30 アズビル株式会社 Measuring device, and measuring method

Also Published As

Publication number Publication date
JP6192086B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
Fujita et al. Recent progress in terahertz difference-frequency quantum cascade laser sources
Lee et al. DFB quantum cascade laser arrays
US9829435B2 (en) External cavity laser biosensor arrangements
TW201342753A (en) Waveguide structure for mid-ir multiwavelength concatenated distributed-feedback laser with an active core made of cascaded stages
US8120775B2 (en) Sensor device and for determining a physical value
US20150311665A1 (en) External cavity system generating broadly tunable terahertz radiation in mid-infrared quantum cascade lasers
Liu et al. Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy
Gaimard et al. Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications
JP6192086B2 (en) Multi-wavelength measuring device
CN105075037A (en) Monolithic wide wavelength tunable mid-ir laser sources
TW201334335A (en) Mid-IR multiwavelength concatenated distributed-feedback laser with an active core made of cascaded stages
CA2814389A1 (en) Light source device, analysis device, and light generation method
Trojak et al. Cavity-enhanced light–matter interaction in Vogel-spiral devices as a platform for quantum photonics
US7843571B2 (en) Sensing system
Dunkelberger et al. Ultrafast active tuning of the Berreman mode
Yang et al. Strong coupling of Tamm plasmons and Fabry-Perot modes in a one-dimensional photonic crystal heterostructure
JP6485624B2 (en) Measuring device
JP6252176B2 (en) Gas analyzer
Panda et al. Application of machine learning for accurate detection of hemoglobin concentrations employing defected 1D photonic crystal
Shahmohammadi et al. Multi-wavelength distributed feedback quantum cascade lasers for broadband trace gas spectroscopy
US10615561B2 (en) Multi-wavelength laser apparatus
JP5311852B2 (en) Sensing device
KR20180121375A (en) Multi-wavelength laser apparatus
JP5818198B2 (en) Multi-light frequency light source
Adelin et al. Electrically pumped all photonic crystal 2nd order DFB lasers arrays emitting at 2.3 μm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160721

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6192086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250