JP2013204141A - High-strength steel sheet excellent in surface quality and manufacturing method thereof - Google Patents

High-strength steel sheet excellent in surface quality and manufacturing method thereof Download PDF

Info

Publication number
JP2013204141A
JP2013204141A JP2012077763A JP2012077763A JP2013204141A JP 2013204141 A JP2013204141 A JP 2013204141A JP 2012077763 A JP2012077763 A JP 2012077763A JP 2012077763 A JP2012077763 A JP 2012077763A JP 2013204141 A JP2013204141 A JP 2013204141A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
hot
less
surface quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012077763A
Other languages
Japanese (ja)
Other versions
JP6179067B2 (en
Inventor
Michitaka Sakurai
理孝 櫻井
Satoyuki Hirose
智行 広瀬
Isao Shimoda
勲 下田
Masaomi Senoo
政臣 妹尾
Yoshimasa Mimura
佳正 三村
Shuichi Sugimoto
修一 杉本
Akira Furuto
晃 古戸
Kohei Hasegawa
浩平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012077763A priority Critical patent/JP6179067B2/en
Publication of JP2013204141A publication Critical patent/JP2013204141A/en
Application granted granted Critical
Publication of JP6179067B2 publication Critical patent/JP6179067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength steel sheet that is hard to generate edge scabs and is excellent in surface quality, and to provide a manufacturing method thereof.SOLUTION: A high-strength steel sheet contains, by mass%, C of 0.07-0.14%, Si of 0.01-0.9%, Mn of 1.0-2.5%, P of 0.05% or less, S of 0.01% or less, sol. Al of 0.01-0.06%, and Cr of 0.7% or less, and it also contains either or both of Nb of 0.01-0.1% and V of 0.02-0.2%, satisfying formula 2×[Nb]+[V]≥0.05 (where [Nb] and [V] represent mass% of Nb and V respectively). Furthermore, the high-strength steel sheet contains Ti of 0.010-0.020% and N of 0.003% or less, and the remainder is formed of Fe and inevitable impurities.

Description

本発明は、表面品質に優れた高強度鋼板およびその製造方法に関する。なお、本発明の高強度鋼板は、熱延鋼板、冷延鋼板、または表面処理鋼板用素材となる熱延鋼板、さらにこの熱延鋼板を素材とする冷延鋼板、亜鉛系めっき鋼板を対象とするものである。   The present invention relates to a high-strength steel plate excellent in surface quality and a method for producing the same. The high-strength steel sheet of the present invention is a hot-rolled steel sheet, a cold-rolled steel sheet, or a hot-rolled steel sheet that is a material for a surface-treated steel sheet, and a cold-rolled steel sheet and a zinc-based plated steel sheet that are made from this hot-rolled steel sheet. To do.

自動車用の鋼板には、軽量化による燃費向上及び乗員の保護という相反する特性を満足させるために、高強度化が要求されている。高強度鋼板は、Nb、Vなどの合金元素が必要であり、溶鋼の溶製工程においてこれらの合金元素が添加されている。これら合金元素の添加は、連続鋳造工程において、スラブ鋳片の表面あるいはコーナー部に「横割れ」と呼ばれる表面割れの発生を助長させる。また、Nb、Vの単独添加あるいは複合添加により、熱間延性が低下する。これは、NbやVの炭窒化物がγ粒界へ析出し「粒界脆化」をもたらすためである。このことから、連続鋳造時には、連続鋳造スラブの短辺に、バルジングによる内部割れが発生することがある。   Steel sheets for automobiles are required to have high strength in order to satisfy the conflicting characteristics of improving fuel efficiency and protecting passengers by reducing weight. High-strength steel plates require alloy elements such as Nb and V, and these alloy elements are added in the molten steel production process. The addition of these alloy elements promotes the occurrence of surface cracks called “lateral cracks” on the surface or corner of the slab slab in the continuous casting process. Moreover, hot ductility falls by single addition or combined addition of Nb and V. This is because Nb and V carbonitrides precipitate at the γ grain boundaries and cause “grain boundary embrittlement”. For this reason, during continuous casting, internal cracks due to bulging may occur on the short sides of the continuous casting slab.

一方、熱延鋼板の製造方法において、受注幅よりも大きめの特定幅でスラブを製造しておき、このスラブを、熱間圧延の粗圧延に先立って幅プレスあるいは幅圧下圧延を行い、所望のスラブ幅とした後、粗圧延および仕上圧延からなる熱間圧延をし、受注幅の熱延鋼板を製造することが行われるようになってきた。上記幅プレスあるいは幅圧下圧延によってスラブ幅を調整する方法は、鋳造時の幅(スラブ幅)を大きくできるので、連続鋳造の生産性向上の面からも好ましいことである。さらに、粗圧延に先立って幅プレスあるいは幅圧下圧延を行うことは、寸法の精度向上や圧延形状の向上にもつながり、熱間圧延の生産性向上の面からも好ましいこととなる。そこで、最近では、連続鋳造能力を高めるため、受注量の多いサイズにおいても、積極的にこの方法が適用されている。   On the other hand, in the method of manufacturing a hot-rolled steel sheet, a slab is manufactured with a specific width larger than the order width, and this slab is subjected to width press or width reduction rolling before the hot rolling rough rolling to obtain a desired width. After making the slab width, hot rolling including rough rolling and finish rolling has been performed to produce a hot-rolled steel sheet having an order width. The method of adjusting the slab width by the width press or width rolling is preferable from the viewpoint of improving the productivity of continuous casting because the width during casting (slab width) can be increased. Furthermore, performing the width press or the width reduction rolling prior to the rough rolling leads to the improvement of the dimensional accuracy and the rolling shape, which is preferable from the viewpoint of improving the hot rolling productivity. Therefore, recently, in order to increase the continuous casting capacity, this method is actively applied even to a size having a large order quantity.

しかしながら、Nb、Vなどの合金元素が添加された鋼では、スラブ鋳片の表面あるいはコーナー部に「横割れ」と呼ばれる表面割れが存在したり、連続鋳造スラブの短辺にバルジングによる内部割れが発生していたり、あるいは、熱間延性が低下していたりすることから、熱間圧延を行うことにより、さらには熱間圧延の粗圧延に先立って幅プレスを行ことにより、熱延鋼板のエッジ部分にエッジヘゲを発生させるおそれがある。   However, in steel to which alloy elements such as Nb and V are added, surface cracks called “lateral cracks” exist on the surface or corner of the slab slab, or internal cracks due to bulging occur on the short sides of the continuous cast slab. The edge of the hot-rolled steel sheet may be generated by performing hot rolling, or by performing a width press prior to the hot rolling rough rolling, because it has occurred or the hot ductility has decreased. There is a risk of generating edge shaving in the part.

このような、エッジヘゲが発生した場合には、当初予定した幅以上の耳切りを行わざるを得ず、せっかく製造した鋼板が製品とならない場合が多く発生していた。これを防ぐためには、エッジヘゲ発生部位を想定して、広い幅で熱延鋼板を製造し、最終製品にするまでに耳きりを行う必要があった。   When such edge shading occurs, it is necessary to cut the ears beyond the originally planned width, and there are many cases where the manufactured steel sheet does not become a product. In order to prevent this, it has been necessary to produce a hot rolled steel sheet with a wide width, assuming an edge shaving occurrence site, and to carry out ear-knitting before making the final product.

このような問題に鑑み、特許文献1には、連続鋳造スラブの両側端部から幅中央に向かってスラブ厚の1/2長さ以上内側で連続鋳造スラブを幅切断する方法が示されている。この場合には耳きりをする必要はなく、当初予定通りの製品幅を製造できるが、スラブ段階での幅切断によるロスが大きい。   In view of such a problem, Patent Document 1 discloses a method of width-cutting a continuous cast slab from the both side ends of the continuous cast slab toward the center of the width at least ½ of the slab thickness. . In this case, it is not necessary to listen, and the product width as originally planned can be manufactured, but the loss due to the width cutting in the slab stage is large.

一方、特許文献2〜4には、連続鋳造方法や連続鋳造設備の改良方法が提案されている。具体的には、特許文献2には、矯正部区間内を無注水として、スラブ表面温度を上昇させる方法、特許文献3には、二次冷却において、スラブ表面を一旦Ar変態点以下まで冷却した後、復熱させて相変態させることによりスラブ表層の組織を微細化し、割れ感受性を低減する方法、特許文献4には、湾曲型または垂直曲げ型の鋼のスラブ連続鋳造設備において、二次冷却帯の曲げ部または矯正部の入り側、若しくは曲げ部及び矯正部の双方の入り側に、スラブのコーナー部を加熱するための加熱装置を設置する方法が開示されている。 On the other hand, Patent Documents 2 to 4 propose a continuous casting method and a method for improving continuous casting equipment. Specifically, Patent Document 2 discloses a method of increasing the slab surface temperature with no injection water in the correction section, and Patent Document 3 discloses that the slab surface is once cooled to an Ar 3 transformation point or less in secondary cooling. Then, a method of refining the phase of the slab by reheating and refining the structure of the slab to reduce the susceptibility to cracking, Patent Document 4 discloses that a secondary slab in a curved or vertical bending slab has a secondary structure. A method is disclosed in which a heating device for heating the corner portion of the slab is installed on the bent side of the cooling zone or the entrance side of the correction portion, or on the entrance side of both the bent portion and the correction portion.

特開2006−255731号公報JP 2006-255731 A 特開2003−62648号公報Japanese Patent Laid-Open No. 2003-62648 特開平9−225607号公報JP 9-225607 A 特開2007−160341号公報JP 2007-160341 A

上記のように、今後自動車向け用途などで需要の拡大が予想されている高強度鋼板は、Nb、Vなどの合金元素が添加されており、横割れや内部割れが発生していたり、熱間圧延性が低下していたりすることから、熱間圧延や幅プレス時に熱延鋼板のエッジ部分にエッジヘゲを発生させるおそれがあり、その部分を除去するために歩留が悪化することを余儀なくされていた。また、そのようなことを防止するために、連続鋳造方法や連続鋳造設備の改良方法が提案されているが未だ十分とはいい難い。   As described above, high-strength steel sheets that are expected to increase in demand for automotive applications in the future have alloy elements such as Nb and V added to them, causing transverse cracks and internal cracks, Since the rolling property is reduced, there is a risk of generating edge lashes at the edge part of the hot-rolled steel sheet during hot rolling or width pressing, and the yield is inevitably deteriorated in order to remove that part. It was. Moreover, in order to prevent such a thing, although the continuous casting method and the improvement method of a continuous casting installation are proposed, it cannot be said that it is still enough.

本発明はかかる事情に鑑みてなされたものであって、熱間圧延の過程においてエッジヘゲが発生し難い表面品質に優れた高強度鋼板およびその製造方法を提供することを課題とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the high strength steel plate excellent in the surface quality which is hard to generate | occur | produce edge shaving in the process of hot rolling, and its manufacturing method.

本発明者等は、上記課題を解決すべく鋭意研究・検討した結果、Nb、Vなどの合金元素が添加された鋼にTiを少量添加すること、およびNの含有量を制限することにより、スラブのコーナー部、端部の熱間延性が向上し、幅プレスあるいは幅圧下圧延を行ってもエッジヘゲが発生せず、スラブのコーナー部、端部を除去する必要がない高強度鋼板が得られることを見出した。   As a result of intensive studies and examinations to solve the above problems, the present inventors have added a small amount of Ti to steel to which alloy elements such as Nb and V are added, and restricting the N content, The hot ductility of the corners and ends of the slab is improved, edge sag does not occur even if width pressing or width rolling is performed, and a high-strength steel sheet that does not require removal of the corners and ends of the slab is obtained. I found out.

本発明は、上記知見に基づいてなされたもので、以下の(1)〜(6)を提供する。   This invention was made | formed based on the said knowledge, and provides the following (1)-(6).

(1)質量%で、C:0.07〜0.14%、Si:0.01〜0.9%、Mn:1.0〜2.5%、P:0.05%以下、S:0.01%以下、sol.Al:0.01〜0.06%、Cr:0.7%以下を含有し、Nb:0.01〜0.1%、V:0.02〜0.2%のうちいずれかまたは両方を、2×[Nb]+[V]≧0.05(ただし、[Nb]、[V]は、それぞれNb、Vの質量%を示す)を満足するように含有するとともに、さらに、Ti:0.010〜0.020%、N:0.003%以下を含有し、残部がFeおよび不可避的不純物からなることを特徴とする表面品質に優れた高強度鋼板。   (1) By mass%, C: 0.07 to 0.14%, Si: 0.01 to 0.9%, Mn: 1.0 to 2.5%, P: 0.05% or less, S: 0.01% or less, sol.Al: 0.01-0.06%, Cr: 0.7% or less, Nb: 0.01-0.1%, V: 0.02-0.2 % Or both of them so as to satisfy 2 × [Nb] + [V] ≧ 0.05 (where [Nb] and [V] represent mass% of Nb and V, respectively) Furthermore, Ti: 0.010-0.020%, N: 0.003% or less is further contained, and the remainder consists of Fe and an unavoidable impurity, The high strength steel plate excellent in the surface quality characterized by the above-mentioned.

(2)熱延鋼板である上記(1)に記載の表面品質に優れた高強度鋼板。   (2) A high-strength steel sheet having excellent surface quality as described in (1) above, which is a hot-rolled steel sheet.

(3)冷延鋼板用または亜鉛系めっき鋼板用の熱延鋼板である上記(2)に記載の表面品質に優れた高強度鋼板。   (3) The high-strength steel sheet having excellent surface quality as described in (2) above, which is a hot-rolled steel sheet for cold-rolled steel sheets or zinc-based plated steel sheets.

(4)上記(1)に記載の成分組成を有するスラブを湾曲型または垂直曲げ型のスラブ連続鋳造設備で鋳造し、スラブのコーナー部あるいは端部を除去することなく、1150〜1300℃で加熱保持してから熱間圧延を開始し、熱間圧延の粗圧延に先立って、幅圧下量(両幅の合計圧下量)100mm以上400mm以下の幅プレスあるいは幅圧下圧延を行い、仕上げ圧延温度を850〜950℃、巻取り温度を450〜650℃として、熱間圧延することを特徴とする表面品質に優れた高強度鋼板の製造方法。   (4) A slab having the composition described in (1) above is cast by a curved or vertical bending slab continuous casting equipment and heated at 1150 to 1300 ° C. without removing the corner or end of the slab. The hot rolling is started after the holding, and prior to the rough rolling of the hot rolling, the width reduction amount (total reduction amount of both widths) of 100 mm or more and 400 mm or less is performed, and the finish rolling temperature is set. A method for producing a high-strength steel sheet having excellent surface quality, characterized by hot rolling at 850 to 950 ° C and a coiling temperature of 450 to 650 ° C.

(5)熱間圧延した後、さらに、酸洗および冷間圧延を行い、次いで、Ac点以上900℃以下に加熱し、該加熱後冷却し、調質圧延することを特徴とする上記(4)に記載の表面品質に優れた高強度鋼板の製造方法。 (5) After hot rolling, pickling and cold rolling are further performed, then Ac is heated to one point or more and 900 ° C. or less, cooled after the heating, and temper-rolled. The manufacturing method of the high strength steel plate excellent in the surface quality as described in 4).

(6)熱間圧延した後、さらに、酸洗および冷間圧延を行い、次いで、Ac点以上900℃以下に加熱し、該加熱後の冷却過程において溶融亜鉛めっき処理を行い、調質圧延することを特徴とする上記(4)に記載の表面品質に優れた高強度鋼板の製造方法。 (6) After hot rolling, further pickling and cold rolling are performed, then Ac is heated to 1 point or higher and 900 ° C. or lower, hot dip galvanizing treatment is performed in the cooling process after the heating, and temper rolling The manufacturing method of the high strength steel plate excellent in the surface quality as described in said (4) characterized by performing.

本発明によれば、Nb、Vなどの合金元素が添加された鋼にTiを少量添加すること、およびNの含有量を制限することにより、スラブのコーナー部、端部の熱間延性が向上し、エッジヘゲが発生することを防ぐことができる。特に、割れ感受性の高いNb、Vが所定量以上含有された高強度鋼板用のスラブであっても、エッジヘゲを発生させることなく高い生産性で製造することが可能となる。近年、自動車の燃費向上による地球環境改善の観点などから高強度鋼板に対するニーズは大きく、本発明は産業上極めて有効である。   According to the present invention, the hot ductility of the corner and end of the slab is improved by adding a small amount of Ti to the steel to which alloying elements such as Nb and V are added, and limiting the N content. Thus, it is possible to prevent the occurrence of edge shaving. In particular, even a slab for high-strength steel sheets containing a predetermined amount or more of Nb and V, which are highly susceptible to cracking, can be manufactured with high productivity without generating edge lashes. In recent years, there has been a great demand for high-strength steel sheets from the viewpoint of improving the global environment by improving the fuel efficiency of automobiles, and the present invention is extremely effective industrially.

高い強度を有する熱延鋼板、冷延鋼板あるいは表面処理鋼板用素材となる熱延鋼板を製造する際には、連続鋳造スラブの内部割れ、コーナー部の表面割れに起因するエッジ欠陥が多発し、製品においてエッジヘゲが発生し、大きな課題となっていた。本発明者らは、高強度鋼板に使用されているNb,V,Tiの熱間圧延に及ぼす影響を調査した結果、Nb,Vが、エッジヘゲの生成を促進し、少量のTiが熱間延性を向上させる傾向にあり、C、N含有量、Nb、Ti、Vの含有量を適正に制御することがスラブの内部割れ、コーナー部の表面割れ抑制に有効であることを知見し、本発明を完成するに至った。   When manufacturing hot-rolled steel sheets with high strength, cold-rolled steel sheets or surface-treated steel sheets, edge defects due to internal cracks in the continuous cast slab and surface cracks in the corners frequently occur. Edge shavings occurred in the product, which was a big problem. As a result of investigating the influence of Nb, V, and Ti used on high-strength steel sheets on hot rolling, the inventors of the present invention promoted the generation of edge baldness, and a small amount of Ti caused hot ductility. The present invention has found that it is effective to appropriately control the contents of C, N, Nb, Ti, and V to suppress internal cracks in the slab and surface cracks in the corners. It came to complete.

以下、本発明を鋼の成分組成および製造方法に分けて詳細に説明する。   Hereinafter, the present invention will be described in detail by dividing it into steel component compositions and production methods.

(1)鋼の成分組成
本発明に係る高強度鋼板の成分組成は、質量%で、C:0.07〜0.14%、Si:0.01〜0.9%、Mn:1.0〜2.5%、P:0.05%以下、S:0.01%以下、sol.Al:0.01〜0.06%、Cr:0.7%以下を含有し、Nb:0.01〜0.1%、V:0.02〜0.2%、のうちいずれかまたは両方を、2×[Nb]+[V]≧0.05(ただし、[Nb]、[V]は、それぞれNb、Vの質量%を示す)を満足するように含有するとともに、さらに、Ti:0.010〜0.020%、N:0.003%以下を含有し、残部がFeおよび不可避的不純物である。
(1) Component composition of steel The component composition of the high-strength steel sheet according to the present invention is mass%, C: 0.07 to 0.14%, Si: 0.01 to 0.9%, Mn: 1.0. -2.5%, P: 0.05% or less, S: 0.01% or less, sol.Al: 0.01-0.06%, Cr: 0.7% or less, Nb: 0. One or both of 01 to 0.1%, V: 0.02 to 0.2%, 2 × [Nb] + [V] ≧ 0.05 (where [Nb] and [V] are And Nb and V, respectively, are included so as to satisfy the above requirements. Further, Ti: 0.010 to 0.020%, N: 0.003% or less is contained, the balance being Fe and inevitable It is an impurity.

C:0.07〜0.14%
Cは鋼の強度上昇のために重要な元素である。しかし、0.07%未満では鋼板は十分な強度が得られない。一方、0.14%を超えるとスポット溶接性が劣化する。したがって、Cの含有量を0.07〜0.14%とする。
ところで、エッジヘゲの発生は、連続鋳造機で鋳造する際の凝固挙動に大きく影響される。鋼は炭素成分に応じて、融鉄がδ鉄やγ鉄に相変態する。δ鉄は温度が下がるとγ鉄に変化し始め、やがてα鉄に変態する。δ鉄からγ鉄に変わる際には格子間距離が小さくなり収縮し、γ鉄がα鉄に変わる際には膨張する。また、相変態しない状態でも鋼の温度が低下すれば、収縮する。したがって、高温での鋼の収縮は、C濃度の依存性が大きく、C濃度が0.09%〜0.17%の範囲では、δ鉄のγ鉄への相変態が高温で起こる。C濃度が0.09%では、凝固組織はδ鉄であるが、凝固直後からγ鉄への変態が始まる。C濃度が0.17%の包晶点では、凝固組織はγ鉄から始まる。連続鋳造時の収縮はC=0.09%で一番大きく、エッジヘゲが発生する可能性が高くなり、Cが0.07%未満および0.14%を超えた場合には収縮は比較的小さくエッジヘゲ発生の可能性は低くなる。したがって、上記0.07〜0.14%の範囲ではエッジヘゲが発生する可能性が高くなるため、エッジヘゲを抑制する組成制御が必要となる。
C: 0.07 to 0.14%
C is an important element for increasing the strength of steel. However, if it is less than 0.07%, the steel sheet cannot obtain sufficient strength. On the other hand, if it exceeds 0.14%, spot weldability deteriorates. Therefore, the C content is 0.07 to 0.14%.
By the way, the occurrence of edge shaving is greatly influenced by the solidification behavior when casting with a continuous casting machine. In steel, molten iron undergoes phase transformation to δ iron or γ iron depending on the carbon component. δ iron begins to change to γ iron as the temperature falls, and eventually transforms to α iron. When changing from δ iron to γ iron, the interstitial distance decreases and contracts, and when γ iron changes to α iron, it expands. Further, even when the phase is not transformed, the steel shrinks if the temperature of the steel is lowered. Therefore, the shrinkage of steel at a high temperature is highly dependent on the C concentration. When the C concentration is in the range of 0.09% to 0.17%, the phase transformation of δ iron to γ iron occurs at a high temperature. When the C concentration is 0.09%, the solidified structure is δ iron, but the transformation to γ iron starts immediately after solidification. At the peritectic point with a C concentration of 0.17%, the solidified structure starts with γ iron. The shrinkage during continuous casting is the largest at C = 0.09%, and there is a high possibility of edge scabs. When C is less than 0.07% and exceeds 0.14%, the shrinkage is relatively small. The possibility of occurrence of edge shading is reduced. Therefore, in the range of 0.07 to 0.14%, there is a high possibility that edge shading will occur, so composition control that suppresses edge shaving is necessary.

Si:0.01〜0.9%
Siは強度上昇及び伸び特性向上などを目的として含有させる。しかし、0.01%未満では十分な特性が得られない。一方、0.9%を超えると、製品の赤スケールによる表面外観の劣化や、化成処理性の低下が顕著となる。したがって、Siの含有量を0.01〜0.9%とする。
Si: 0.01-0.9%
Si is contained for the purpose of increasing strength and improving elongation characteristics. However, if it is less than 0.01%, sufficient characteristics cannot be obtained. On the other hand, if it exceeds 0.9%, the deterioration of the surface appearance due to the red scale of the product and the deterioration of the chemical conversion treatment property become remarkable. Therefore, the Si content is set to 0.01 to 0.9%.

Mn:1.0〜2.5%
Mnは鋼の強度上昇のために重要な元素である。しかし、1.0%未満では、高温で強化に寄与する炭化物が高温で生成するため、強度が低下する。一方、2.5%を超えると、低温変態相主体の組織となるため、伸びが低下する。したがって、Mnの含有量を1.0〜2.5%とする。
Mn: 1.0 to 2.5%
Mn is an important element for increasing the strength of steel. However, if it is less than 1.0%, carbides that contribute to strengthening at high temperatures are generated at high temperatures, so the strength decreases. On the other hand, if it exceeds 2.5%, the structure is mainly composed of a low-temperature transformation phase, so that the elongation is lowered. Therefore, the Mn content is set to 1.0 to 2.5%.

P:0.05%以下
Pは強度上昇などを目的として添加してもよい。しかしながら、0.05%を超えて含有させると溶接性が著しく低下する。したがって、Pの含有量を0.05%以下とする。
P: 0.05% or less P may be added for the purpose of increasing the strength. However, if the content exceeds 0.05%, the weldability is significantly lowered. Therefore, the P content is 0.05% or less.

S:0.01%以下
Sは不純物として鋼中に含有され、その含有量が0.01%を超えると製品の加工性や溶接性が著しく劣化する。したがって、Sの含有量は0.01%以下に制限する。
S: 0.01% or less S is contained as an impurity in steel, and if the content exceeds 0.01%, the workability and weldability of the product are significantly deteriorated. Therefore, the S content is limited to 0.01% or less.

sol.Al:0.01〜0.06%
Alは脱酸のために添加される。しかし、その含有量がsol.Alとして0.01%未満ではこの効果が十分でなく、一方、0.06%を超えると、効果が飽和し、不経済であるばかりか、延性低下および脆化温度域を拡大し、連続鋳造時の割れ感受性を助長し、エッジヘゲが発生しやすくなる。よって、sol.Alの含有量を0.01〜0.06%とする。
sol. Al: 0.01 to 0.06%
Al is added for deoxidation. However, its content is sol. If the content is less than 0.01% as Al, this effect is not sufficient. On the other hand, if it exceeds 0.06%, the effect is saturated and uneconomical. It promotes cracking susceptibility at the time, and edge scab is likely to occur. Therefore, sol. The Al content is set to 0.01 to 0.06%.

Cr:0.7%以下
Crは鋼の焼入れ強化に有効な元素であり、低降伏比型鋼板を製造する際に必要な元素である。この効果を得るには、0.1%以上含有させることが必要であるが、その含有量が0.7%を超えるとこの効果は飽和し、表面品質を著しく低下させ、耐食性低下の懸念がある。一方、Crは高降伏比型鋼板を製造する際には不要な元素であり、0.1%以上含有させると高い降伏強度を得にくくなるため、高降伏比型鋼板を製造する場合には、Crの含有量を0.1%未満とすることが必要である。したがって、低降伏比型鋼板および高降伏比型鋼板の両方を考慮して、Cr含有量を0.7%以下とする。
Cr: 0.7% or less Cr is an element effective for quenching strengthening of steel, and is an element necessary for producing a low yield ratio steel sheet. In order to obtain this effect, it is necessary to contain 0.1% or more, but if the content exceeds 0.7%, this effect is saturated, the surface quality is remarkably deteriorated, and there is a concern that the corrosion resistance is reduced. is there. On the other hand, Cr is an unnecessary element when producing a high yield ratio steel sheet, and when it is contained in an amount of 0.1% or more, it becomes difficult to obtain a high yield strength. It is necessary to make the Cr content less than 0.1%. Therefore, considering both the low yield ratio steel sheet and the high yield ratio steel sheet, the Cr content is set to 0.7% or less.

Nb:0.01〜0.1%、V:0.02〜0.2%のいずれかまたは両方、および2×[Nb]+[V]≧0.05
Nb、Vは主に熱間圧延工程で炭窒化物を形成させ、強度を上昇させるために、これらのいずれか、または両方を添加する。一方、Nb、Vは単独添加あるいは複合添加すると、その量の増大に伴い熱間延性が低下する。特に、Nbの影響が大きい。さらに、Nb、Vを過度に添加すると、熱延板が硬化し、熱間圧延、冷間圧延での荷重が増大する。また、フェライトの延性が劣化し、加工性が低下する。このため、Nbの含有量は0.1%以下、Vの含有量は0.2%以下とする。このように、Nb、Vの単独添加あるいは複合添加により熱間延性が低下するが、Nbが0.01%未満およびVが0.02%未満では熱間延性の低下は小さく、本発明を適用する必要はない。また、2×[Nb]+[V]≧0.05(ただし、[Nb]、[V]は、それぞれNb、Vの質量%を示す)の場合にエッジヘゲ発生の可能性が高くなり、本発明を適用する意義がある。したがって、本発明では、Nb:0.01〜0.1%、V:0.02〜0.2%のうちいずれかまたは両方を2×[Nb]+[V]≧0.05を満足するように含有する。なお、熱間延性の低下に対する影響は、NbのほうがVより大きく、Nb含有量の2倍とV含有量が等価である。
Nb: 0.01 to 0.1%, V: 0.02 to 0.2%, or both, and 2 × [Nb] + [V] ≧ 0.05
Nb and V are mainly added in order to form carbonitrides in the hot rolling process and increase the strength. On the other hand, when Nb and V are added singly or in combination, hot ductility decreases as the amount increases. In particular, the influence of Nb is large. Furthermore, when Nb and V are added excessively, the hot-rolled sheet is cured, and the load in hot rolling and cold rolling increases. In addition, the ductility of the ferrite deteriorates and the workability decreases. For this reason, the Nb content is 0.1% or less and the V content is 0.2% or less. As described above, hot ductility is decreased by adding Nb and V alone or in combination. However, when Nb is less than 0.01% and V is less than 0.02%, the decrease in hot ductility is small, and the present invention is applied. do not have to. In addition, in the case of 2 × [Nb] + [V] ≧ 0.05 (where [Nb] and [V] indicate mass% of Nb and V, respectively), the possibility of occurrence of edge shaving increases. It is meaningful to apply the invention. Therefore, in the present invention, either or both of Nb: 0.01 to 0.1% and V: 0.02 to 0.2% satisfy 2 × [Nb] + [V] ≧ 0.05. Contained. Note that the influence on the decrease in hot ductility is that Nb is greater than V, and twice the Nb content and the V content are equivalent.

Ti:0.010〜0.020%
上述したNb、Vは単独添加あるいは複合添加による熱間延性低下に対し、Tiを少量添加することにより熱間延性が向上し、エッジヘゲの発生を防止する。しかし、Tiが0.010%未満では、熱間延性向上の効果が十分でなく、0.020%を超えると、Ti添加量の増大による強度上昇が大きくなるとともに、TiCの析出により熱間延性が低下する。したがって、Tiの含有量を0.010〜0.020%とする。
Ti: 0.010 to 0.020%
In contrast to the above-described decrease in hot ductility due to the addition of Nb and V alone or in combination, the addition of a small amount of Ti improves the hot ductility and prevents the occurrence of edge lashes. However, if Ti is less than 0.010%, the effect of improving hot ductility is not sufficient, and if it exceeds 0.020%, the increase in strength due to an increase in the amount of Ti added becomes large, and hot ductility occurs due to precipitation of TiC. Decreases. Therefore, the content of Ti is set to 0.010 to 0.020%.

N:0.003%以下
Nは製鋼工程での溶鋼の攪拌のための窒素バブリングなどにより不純物として鋼中に含有される。2×[Nb]+[V]≧0.05(ただし、[Nb]、[V]は、それぞれNb、Vの質量%を示す)の場合に、その含有量が0.003%を超えると、延性低下および脆化温度域を拡大し、連続鋳造時の割れ感受性を助長し、エッジヘゲが発生しやすくなる。これは、窒素含有量が多い場合にはNbやVの炭窒化物がオーステナイト粒界に析出し延性を低下させることが原因である。したがって、Nの含有量を0.003%以下に制限する。Nの含有量を低下させるには、製鋼工程での溶鋼の攪拌には窒素を使用せずArによりバブリングするなどの方法を取ればよい。なお、上述したTiの少量添加は、TiNとしてNを固定する為、実質的に低N化した効果が生じると考えられる。
なお、上述したように連続鋳造時の収縮はC=0.09%で一番大きく、エッジヘゲが発生する可能性が高くなる。したがって、Cが0.08〜0.11%の範囲の場合には、Nの含有量は0.0025%以下に制限することが望ましい。
N: 0.003% or less N is contained in steel as an impurity by nitrogen bubbling or the like for stirring the molten steel in the steelmaking process. In the case of 2 × [Nb] + [V] ≧ 0.05 (where [Nb] and [V] represent mass% of Nb and V, respectively), the content exceeds 0.003% Further, the ductility lowering and embrittlement temperature range is expanded, the cracking susceptibility during continuous casting is promoted, and edge sag is likely to occur. This is because when the nitrogen content is high, Nb and V carbonitrides precipitate at the austenite grain boundaries and lower the ductility. Therefore, the N content is limited to 0.003% or less. In order to reduce the N content, a method such as bubbling with Ar without using nitrogen may be used for stirring the molten steel in the steel making process. In addition, it is thought that the addition of a small amount of Ti described above has the effect of substantially reducing N because Ti is fixed as TiN.
As described above, the shrinkage during continuous casting is the largest at C = 0.09%, and the possibility of occurrence of edge baldness is increased. Therefore, when C is in the range of 0.08 to 0.11%, the N content is desirably limited to 0.0025% or less.

残部:Feおよび不可避的不純物
上記成分の残部はFeおよび不可避的不純物である。すなわち、上記以外の元素は、不可避的不純物元素であれば、本発明の目的である製品の加工性などを劣化させない範囲で含有してもよい。例えば、Cu:0.1%以下、Ni:0.1%以下、Sn:0.01%以下、Sb:0.01%以下、O:0.003%以下、Zr:0.01%以下などである。
Balance: Fe and inevitable impurities The balance of the above components is Fe and inevitable impurities. That is, elements other than those described above may be contained within a range that does not deteriorate the workability of the product, which is the object of the present invention, as long as they are inevitable impurity elements. For example, Cu: 0.1% or less, Ni: 0.1% or less, Sn: 0.01% or less, Sb: 0.01% or less, O: 0.003% or less, Zr: 0.01% or less, etc. It is.

(2)製造条件
次に、本発明の鋼板を製造するための製造条件の一実施形態について説明する。
上記成分組成の高強度鋼板を製造するにあたっては、上述の成分組成を有するスラブを湾曲型または垂直曲げ型のスラブ連続鋳造設備で鋳造し、スラブのコーナー部あるいは端部を除去することなく、1150〜1300℃で加熱保持してから熱間圧延を開始し、熱間圧延の粗圧延に先立って、幅圧下量(両幅の合計圧下量)100mm以上400mm以下の幅プレスあるいは幅圧下圧延を行い、仕上げ圧延温度を850〜950℃、巻取り温度を450〜650℃として、熱間圧延することが好ましい。
(2) Manufacturing condition Next, one Embodiment of the manufacturing condition for manufacturing the steel plate of this invention is described.
In producing a high-strength steel sheet having the above component composition, a slab having the above component composition is cast by a slab continuous casting equipment of a curved type or a vertical bending type, and without removing a corner portion or an end portion of the slab. Hot rolling is started after heating and holding at ˜1300 ° C., and prior to rough rolling of hot rolling, width reduction (total reduction of both widths) of 100 mm or more and 400 mm or less is performed. The hot rolling is preferably performed at a finish rolling temperature of 850 to 950 ° C. and a winding temperature of 450 to 650 ° C.

連続鋳造設備:湾曲型または垂直曲げ型
鋼の連続鋳造設備には、垂直型連続鋳造設備、垂直曲げ型連続鋳造設備、湾曲型連続鋳造設備、水平型連続鋳造設備の4種類の型式が存在するが、本発明では、これらのうち湾曲型または垂直曲げ型のスラブ連続鋳造設備を対象とする。垂直型連続鋳造設備および水平型連続鋳造設備は、曲げ部および矯正部が存在せず、曲げおよび矯正による引張応力がスラブに作用しないため、本発明の鋼を適用しなくてもエッジヘゲは発生しにくく表面特性の向上には有利であるが、設備コストおよび生産性の観点から湾曲型または垂直曲げ型連続鋳造設備に劣り、工業的に高強度鋼板を製造するには適さない。なお、湾曲型と垂直曲げ型を比較すると、垂直部を有する垂直曲げ型の方が、曲げ部の曲率が小さく、スラブに作用する引張応力が大きいため、割れが発生しやすい。
Continuous casting equipment: Curved type or vertical bending type There are four types of continuous casting equipment for steel: vertical type continuous casting equipment, vertical bending type continuous casting equipment, curved type continuous casting equipment, and horizontal type continuous casting equipment. However, in the present invention, a curved or vertical bending type slab continuous casting facility is the object. In vertical continuous casting equipment and horizontal continuous casting equipment, there is no bending part and straightening part, and tensile stress due to bending and straightening does not act on the slab. Although it is difficult to improve the surface characteristics, it is inferior to the curved or vertical bending type continuous casting equipment from the viewpoint of equipment cost and productivity, and is not suitable for industrially producing high-strength steel sheets. In addition, when the curved type and the vertical bending type are compared, the vertical bending type having the vertical part is more likely to be cracked because the curvature of the bending part is smaller and the tensile stress acting on the slab is larger.

スラブ加熱温度:1150〜1300℃
鋳造時に析出したTi、Nb、V析出物を再溶解させる必要があり、加熱段階に存在している析出物は最終的に得られる鋼板内では粗大な析出物として存在するため、強度に寄与しない。1150℃以上の加熱により強度への寄与が認められるが、1300℃を超えて加熱すると、表層からの脱炭、オーステナイト粒の粗大化を引き起こし、特性にばらつきを生じたりプレス後の表面不良を発生させる。また、スラブ表層の気泡、偏析など欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する観点からも1150℃以上に加熱するのが好ましい。以上より、スラブ加熱温度は1150℃以上1300℃以下の範囲とすることが好ましい。
Slab heating temperature: 1150-1300 ° C
It is necessary to redissolve the Ti, Nb, and V precipitates precipitated during casting, and the precipitates present in the heating stage are present as coarse precipitates in the finally obtained steel sheet, and thus do not contribute to strength. . Contribution to strength is recognized by heating above 1150 ° C, but heating above 1300 ° C causes decarburization from the surface layer and coarsening of austenite grains, resulting in variations in properties and surface defects after pressing Let Moreover, it is preferable to heat to 1150 degreeC or more also from a viewpoint which scales off defects, such as a bubble of a slab surface layer, and segregation, reduces the crack and unevenness | corrugation of a steel plate surface, and achieves the smooth steel plate surface. As mentioned above, it is preferable that slab heating temperature shall be the range of 1150 degreeC or more and 1300 degrees C or less.

幅プレスあるいは幅圧下圧延:幅圧下量(両幅の合計圧下量)100mm以上400mm以下
幅プレスあるいは幅圧下圧延は、寸法の精度向上や圧延形状の向上のために100mm以上行う。100mm未満では、粗圧延機、仕上圧延機に入る際の形状に問題が生じて、通板ができなくなる場合があり、このような事象が発生した場合には莫大な損害が生じる。幅プレスあるいは幅圧下圧延によりスラブ幅を調整する方法は、設備能力の点から限界があり、現状での幅調整代は高々400mm程度である。したがって、熱間圧延の粗圧延に先立って行う幅プレスあるいは幅圧下圧延は、幅圧下量(両幅の合計圧下量)100mm以上400mm以下とする。
Width press or width reduction rolling: width reduction amount (total reduction amount of both widths) 100 mm or more and 400 mm or less The width pressing or width reduction rolling is performed 100 mm or more for improving the dimensional accuracy and rolling shape. If it is less than 100 mm, there is a problem in the shape when entering the roughing mill and the finishing mill, and there is a case where the sheet cannot be passed. If such an event occurs, enormous damage occurs. The method of adjusting the slab width by width pressing or width rolling is limited in terms of equipment capacity, and the current width adjustment allowance is about 400 mm at most. Accordingly, the width pressing or width rolling performed prior to the rough rolling of the hot rolling has a width reduction amount (total reduction amount of both widths) of 100 mm to 400 mm.

仕上げ圧延温度:850〜950℃
仕上げ圧延温度を850℃以上とすることによりプレス成形性が向上する。仕上げ圧延温度が850℃未満の場合、熱間圧延後に、特に幅方向エッジ部などに顕著であるが、一部熱間圧延により展伸された結晶粒径を有する未再結晶のオーステナイトと再結晶したオーステナイトが混在する場合がある。整粒な再結晶オーステナイトからは整粒な組織が形成され、元々展伸粒が存在している領域には旧オーステナイト粒界近傍に層状にフェライト相と低温変態相が存在し、バンド状組織が形成されることになる。このように、不均一な組織となると成形時の材料の均一な変形を阻害し、要求される優れた成形性を有することが困難となる。また、仕上げ圧延温度が950℃を超えると酸化物生成量が急激に増大し、地鉄−酸化物界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する。このように、冷間圧延後の表面品質が低下すると、最終製品である溶融亜鉛めっき鋼板において、めっき−鋼板界面の鋼板側内部へ進展している亀裂と凹部の存在が顕著となり、プレス成形時に割れ易くなる。また、結晶粒径が過度に粗大となり、成形時にプレス品表面荒れを生じる場合がある。よって、仕上げ圧延温度は850〜950℃とすることが好ましい。
Finish rolling temperature: 850-950 ° C
The press formability is improved by setting the finish rolling temperature to 850 ° C. or higher. When the finish rolling temperature is less than 850 ° C., it is remarkable after the hot rolling, especially in the edge portion in the width direction, etc., but the unrecrystallized austenite and recrystallization having the crystal grain size stretched by the partial hot rolling Austenite may be mixed. A grain-sized recrystallized austenite forms a grain-sized structure, and in the region where originally expanded grains exist, a ferrite phase and a low-temperature transformation phase exist in the vicinity of the prior austenite grain boundary, and a band-like structure is formed. Will be formed. Thus, when it becomes a non-uniform | heterogenous structure | tissue, the uniform deformation | transformation of the material at the time of shaping | molding will be inhibited, and it will become difficult to have the outstanding moldability requested | required. On the other hand, when the finish rolling temperature exceeds 950 ° C., the amount of oxide generated increases rapidly, the base metal-oxide interface becomes rough, and the surface quality after pickling and cold rolling deteriorates. Thus, when the surface quality after cold rolling deteriorates, in the hot dip galvanized steel sheet, which is the final product, the presence of cracks and recesses that progress to the inside of the steel sheet side at the plating-steel sheet interface becomes noticeable. It becomes easy to break. Further, the crystal grain size becomes excessively large, and the surface of the pressed product may be roughened during molding. Therefore, the finish rolling temperature is preferably 850 to 950 ° C.

巻取り温度:450〜650℃
巻取り温度は、650℃を超えると、表層からの脱炭、スケールの成長が著しく表面品質が劣化する。また鋼板内部においても、結晶粒界および粒内にSi、Mn系酸化物が生成し、酸洗後に微小亀裂、冷間圧延後に鉄粉が剥離し凹部となることにより冷間圧延材の表面が荒れ、成形性が低下する。また、巻取り温度が450℃未満では、熱延板強度の上昇により冷間圧延負荷が増大する、このため、巻取り温度は450〜650℃とすることが好ましい。
Winding temperature: 450-650 ° C
When the coiling temperature exceeds 650 ° C., decarburization from the surface layer and scale growth are remarkably deteriorated in surface quality. Also inside the steel sheet, Si, Mn-based oxides are formed in the grain boundaries and in the grains, microcracks after pickling, iron powder peels off after cold rolling, and becomes a concave part, so that the surface of the cold rolled material becomes Roughness and formability deteriorate. Further, when the coiling temperature is less than 450 ° C, the cold rolling load increases due to the increase in hot-rolled sheet strength. For this reason, the coiling temperature is preferably set to 450 to 650 ° C.

このように熱間圧延した後、酸洗および冷間圧延する場合には、常法に従って酸洗および冷間圧延すればよい。冷間圧延率はフェライトの再結晶の促進のため、30%以上が好ましい。
このように熱間圧延した後、連続焼鈍および連続溶融亜鉛めっき均熱温度は、フェライトの再結晶化の促進と鋼板表層の組織の粗大化を抑制するため、Ac点以上900℃以下とする。
When pickling and cold rolling after hot rolling as described above, pickling and cold rolling may be performed according to a conventional method. The cold rolling rate is preferably 30% or more in order to promote recrystallization of ferrite.
After hot rolling in this way, the continuous annealing and the continuous hot dip galvanizing soaking temperature are set to Ac 1 point or higher and 900 ° C. or lower in order to suppress the recrystallization of ferrite and the coarsening of the structure of the steel sheet surface layer. .

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

表1に示す成分を有するスラブを用い、表2に示す各条件にて熱間圧延、酸洗、冷間圧延、連続焼鈍、あるいは連続溶融亜鉛めっき処理を行った。鋼A,B,C,D,E,F,G,H,Q,R,S,Tでは、熱延鋼板、冷延鋼板、合金化溶融亜鉛めっき鋼板(GA)の3品種を、鋼I,J,K,Lでは、冷延鋼板、合金化溶融亜鉛めっき鋼板(GA)の2品種を、鋼M,N,O,Pでは、合金化溶融亜鉛めっき鋼板(GA)の1品種を製造した。なお、用いたスラブは、曲げ部の曲率が小さく、スラブに作用する引張応力が大きい為に、比較的、割れが発生しやすい、垂直曲げ型の連続鋳造機を用いて鋳造した。熱延鋼板は板厚2.8mm、冷延鋼板は板厚1.4mm、合金化溶融亜鉛めっき鋼板は板厚1.4mmで亜鉛皮膜付着量(片面あたり)45g/mの鋼板(両面めっき)を製造した。なお、亜鉛めっき浴温度は460℃で行い、めっきの合金化は550℃で実施した。このようにして得られた各鋼板について、下記に示す材料試験を行い、材料特性を調査した。得られた結果を表3(熱延鋼板),表4(冷延鋼板),表5(合金化溶融亜鉛めっき鋼板)に示す。 Using a slab having the components shown in Table 1, hot rolling, pickling, cold rolling, continuous annealing, or continuous hot dip galvanizing treatment was performed under the conditions shown in Table 2. In Steel A, B, C, D, E, F, G, H, Q, R, S, and T, three types of steel, hot rolled steel sheet, cold rolled steel sheet, and galvannealed steel sheet (GA) are used. , J, K, and L produce two types of cold-rolled steel sheets and galvannealed steel sheets (GA), and steels M, N, O, and P produce one kind of galvannealed steel sheets (GA). did. The slab used was cast using a vertical bending type continuous casting machine that has a relatively small bending portion curvature and a large tensile stress acting on the slab, and is relatively easy to crack. Hot-rolled steel sheet is 2.8 mm thick, cold-rolled steel sheet is 1.4 mm thick, galvannealed steel sheet is 1.4 mm thick, and zinc coating weight (per one side) is 45 g / m 2 (double-sided plating) ) Was manufactured. The galvanizing bath temperature was 460 ° C., and the alloying of the plating was performed at 550 ° C. Each steel plate thus obtained was subjected to the material test shown below to investigate the material characteristics. The obtained results are shown in Table 3 (hot rolled steel plate), Table 4 (cold rolled steel plate), and Table 5 (alloyed hot dip galvanized steel plate).

機械特性は、引張方向が圧延方向に直角な方向となるように採取したJISZ2201(1998年)の5号引張試験片を用いて、JISZ2241(1998年)に準拠した引張試験を行い、YP(降伏強度:MPa)、TS(引張強度:MPa)、EL(全伸び:%)を測定した。表面品質は、得られた熱延鋼板、冷延鋼板、合金化溶融亜鉛めっき鋼板を精整ラインに通板して、鋼板表面の状況を観察することにより、エッジヘゲの有無により判断した。鋼板の幅端部から50mmまでの位置にヘゲが発生していれば、エッジヘゲ有り、ヘゲが発生していなければ、エッジヘゲ無しと判断した。   For mechanical properties, a tensile test based on JISZ2241 (1998) was conducted using a JISZ2201 (1998) No. 5 tensile test specimen taken so that the tensile direction was perpendicular to the rolling direction. Strength: MPa), TS (tensile strength: MPa), EL (total elongation:%) were measured. The surface quality was judged by the presence or absence of edge shaving by passing the obtained hot-rolled steel sheet, cold-rolled steel sheet, and galvannealed steel sheet through a finishing line and observing the state of the steel sheet surface. It was judged that there was edge shave if there was a shave at a position from the width end of the steel plate to 50 mm, and if there was no shave, if there was no shave.

その結果、
・Tiが本発明範囲外である、A,C,E,G,I,K,M,O,Q,Sは、エッジヘゲが発生した。
・Tiが本発明範囲内である、B,F,J,L,N,P,R,Tは、エッジヘゲ発生なく、良好であった。
・Tiが適正量添加されているものの、N量が高いD,Hは、エッジヘゲが発生した。
as a result,
-Edge shading occurred in A, C, E, G, I, K, M, O, Q, and S, where Ti is outside the scope of the present invention.
-B, F, J, L, N, P, R, and T in which Ti is within the scope of the present invention were good without edge sag.
・ Although Ti was added in an appropriate amount, D and H with a high N amount were edge-heavy.

Figure 2013204141
Figure 2013204141

Figure 2013204141
Figure 2013204141

Figure 2013204141
Figure 2013204141

Figure 2013204141
Figure 2013204141

Figure 2013204141
Figure 2013204141

本発明の高強度鋼板は、自動車部品として好適であるが、建築分野や家電分野等、厳しい寸法精度、加工性が要求される他の分野においても好適に用いることができる。   The high-strength steel sheet of the present invention is suitable as an automotive part, but can also be suitably used in other fields where strict dimensional accuracy and workability are required, such as the construction field and the home appliance field.

Claims (6)

質量%で、C:0.07〜0.14%、Si:0.01〜0.9%、Mn:1.0〜2.5%、P:0.05%以下、S:0.01%以下、sol.Al:0.01〜0.06%、Cr:0.7%以下を含有し、Nb:0.01〜0.1%、V:0.02〜0.2%のうちいずれかまたは両方を、2×[Nb]+[V]≧0.05(ただし、[Nb]、[V]は、それぞれNb、Vの質量%を示す)を満足するように含有するとともに、さらに、Ti:0.010〜0.020%、N:0.003%以下を含有し、残部がFeおよび不可避的不純物からなることを特徴とする表面品質に優れた高強度鋼板。   In mass%, C: 0.07 to 0.14%, Si: 0.01 to 0.9%, Mn: 1.0 to 2.5%, P: 0.05% or less, S: 0.01 %, Sol.Al: 0.01-0.06%, Cr: 0.7% or less, Nb: 0.01-0.1%, V: 0.02-0.2% Either or both of them are contained so as to satisfy 2 × [Nb] + [V] ≧ 0.05 (where [Nb] and [V] represent mass% of Nb and V, respectively), Furthermore, Ti: 0.010-0.020%, N: 0.003% or less, The remainder consists of Fe and an unavoidable impurity, The high strength steel plate excellent in the surface quality characterized by the above-mentioned. 熱延鋼板である請求項1に記載の表面品質に優れた高強度鋼板。   The high-strength steel sheet having excellent surface quality according to claim 1, which is a hot-rolled steel sheet. 冷延鋼板用または亜鉛系めっき鋼板用の熱延鋼板である請求項2に記載の表面品質に優れた高強度鋼板。   The high-strength steel sheet with excellent surface quality according to claim 2, which is a hot-rolled steel sheet for cold-rolled steel sheets or galvanized steel sheets. 請求項1に記載の成分組成を有するスラブを湾曲型または垂直曲げ型のスラブ連続鋳造設備で鋳造し、スラブのコーナー部あるいは端部を除去することなく、1150〜1300℃で加熱保持してから熱間圧延を開始し、熱間圧延の粗圧延に先立って、幅圧下量(両幅の合計圧下量)100mm以上400mm以下の幅プレスあるいは幅圧下圧延を行い、仕上げ圧延温度を850〜950℃、巻取り温度を450〜650℃として、熱間圧延することを特徴とする表面品質に優れた高強度鋼板の製造方法。   A slab having the component composition according to claim 1 is cast by a slab continuous casting equipment of a curved type or a vertical bending type, and is heated and held at 1150 to 1300 ° C. without removing a corner portion or an end portion of the slab. The hot rolling is started, and prior to the rough rolling of the hot rolling, the width reduction (total reduction amount of both widths) of 100 mm or more and 400 mm or less is performed, and the finish rolling temperature is 850 to 950 ° C. A method for producing a high-strength steel sheet having excellent surface quality, characterized by hot rolling at a coiling temperature of 450 to 650 ° C. 熱間圧延した後、さらに、酸洗および冷間圧延を行い、次いで、Ac点以上900℃以下に加熱し、該加熱後冷却し、調質圧延することを特徴とする請求項4に記載の表面品質に優れた高強度鋼板の製造方法。 5. The steel sheet according to claim 4, wherein after hot rolling, pickling and cold rolling are further performed, followed by heating to an Ac point of 1 to 900 ° C., cooling after the heating, and temper rolling. Of high strength steel sheet with excellent surface quality. 熱間圧延した後、さらに、酸洗および冷間圧延を行い、次いで、Ac点以上900℃以下に加熱し、該加熱後の冷却過程において溶融亜鉛めっき処理を行い、調質圧延することを特徴とする請求項4に記載の表面品質に優れた高強度鋼板の製造方法。 After hot rolling, further pickling and cold rolling are performed, and then heating is performed to Ac 1 point or higher and 900 ° C. or lower, hot dip galvanizing treatment is performed in the cooling process after the heating, and temper rolling is performed. The manufacturing method of the high strength steel plate excellent in the surface quality of Claim 4 characterized by the above-mentioned.
JP2012077763A 2012-03-29 2012-03-29 Manufacturing method of high strength steel sheet with excellent surface quality Active JP6179067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012077763A JP6179067B2 (en) 2012-03-29 2012-03-29 Manufacturing method of high strength steel sheet with excellent surface quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077763A JP6179067B2 (en) 2012-03-29 2012-03-29 Manufacturing method of high strength steel sheet with excellent surface quality

Publications (2)

Publication Number Publication Date
JP2013204141A true JP2013204141A (en) 2013-10-07
JP6179067B2 JP6179067B2 (en) 2017-08-16

Family

ID=49523558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077763A Active JP6179067B2 (en) 2012-03-29 2012-03-29 Manufacturing method of high strength steel sheet with excellent surface quality

Country Status (1)

Country Link
JP (1) JP6179067B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133076A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength steel sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284801A (en) * 1985-10-08 1987-04-18 Ishikawajima Harima Heavy Ind Co Ltd Cross rolling method for slab by press
JPH03238101A (en) * 1990-02-16 1991-10-23 Ishikawajima Harima Heavy Ind Co Ltd Edging method and edging equipment
JP2006255731A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Method for producing hot rolled steel sheet
JP2006316301A (en) * 2005-05-11 2006-11-24 Sumitomo Metal Ind Ltd High tensile strength hot rolled steel sheet, and method for producing the same
JP2007092131A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High strength thin steel sheet having excellent rigidity, and its production method
JP2009057620A (en) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd Seam welded pipe for hydroform and its raw material steel sheet, and manufacturing methods therefor
JP2009185355A (en) * 2008-02-07 2009-08-20 Nippon Steel Corp High strength cold-rolled steel sheet having excellent workability and collision resistance and its production method
WO2011025042A1 (en) * 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284801A (en) * 1985-10-08 1987-04-18 Ishikawajima Harima Heavy Ind Co Ltd Cross rolling method for slab by press
JPH03238101A (en) * 1990-02-16 1991-10-23 Ishikawajima Harima Heavy Ind Co Ltd Edging method and edging equipment
JP2006255731A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Method for producing hot rolled steel sheet
JP2006316301A (en) * 2005-05-11 2006-11-24 Sumitomo Metal Ind Ltd High tensile strength hot rolled steel sheet, and method for producing the same
JP2007092131A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High strength thin steel sheet having excellent rigidity, and its production method
JP2009057620A (en) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd Seam welded pipe for hydroform and its raw material steel sheet, and manufacturing methods therefor
JP2009185355A (en) * 2008-02-07 2009-08-20 Nippon Steel Corp High strength cold-rolled steel sheet having excellent workability and collision resistance and its production method
WO2011025042A1 (en) * 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133076A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength steel sheet

Also Published As

Publication number Publication date
JP6179067B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
KR101613806B1 (en) Method for manufacturing high strength steel sheet having excellent formability
KR101402365B1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP2013177673A (en) Hot-dip galvanized steel sheet and prodcing method therefor
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
KR101439613B1 (en) The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same
JP2009506208A (en) Steel plate for galvanization excellent in workability and manufacturing method thereof
KR101813914B1 (en) High-strength steel sheet having small planar anisotropy of elongation and method for producing the same
JP2013185240A (en) High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them
JP2009221519A (en) Steel sheet and method for manufacturing the same
KR20140014500A (en) 1500mpa-ultra high strength high manganese steel sheet having excellent bendability
KR101406471B1 (en) Ultra-high strength steel sheet with excellent crashworthiness, and method for manufacturing the same
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
KR101403262B1 (en) Ultra high strength hot-dip plated steel sheet and method for manufacturing the same
JP5903884B2 (en) Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back
TWI429757B (en) Cold rolled steel sheet and method for manufacturing the same
JP5660291B2 (en) High strength cold-rolled thin steel sheet with excellent formability and method for producing the same
JP6179067B2 (en) Manufacturing method of high strength steel sheet with excellent surface quality
JP2023530588A (en) High-strength austenitic stainless steel with excellent productivity and cost-saving effect, and method for producing the same
JP2014015651A (en) High strength cold rolled steel sheet having excellent deep drawability and method for producing the same
JP2013209727A (en) Cold rolled steel sheet excellent in workability and manufacturing method thereof
JP2004137554A (en) Steel sheet having excellent workability, and production method therefor
JP5454488B2 (en) High-strength cold-rolled steel sheet with excellent uniform and local deformability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250