JP2013203707A - Anti-obesity agent consisting of 1,5-d-anhydro fructose - Google Patents

Anti-obesity agent consisting of 1,5-d-anhydro fructose Download PDF

Info

Publication number
JP2013203707A
JP2013203707A JP2012075383A JP2012075383A JP2013203707A JP 2013203707 A JP2013203707 A JP 2013203707A JP 2012075383 A JP2012075383 A JP 2012075383A JP 2012075383 A JP2012075383 A JP 2012075383A JP 2013203707 A JP2013203707 A JP 2013203707A
Authority
JP
Japan
Prior art keywords
glycerol
ebpβ
pparγ
cells
phosphate dehydrogenase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075383A
Other languages
Japanese (ja)
Inventor
Akiko Yuasa
明子 湯浅
Yotaro Konishi
洋太郎 小西
Isao Yuasa
勲 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka City University PUC
Sunus Co Ltd
Original Assignee
Osaka University NUC
Nihon Starch Co Ltd
Osaka City University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Nihon Starch Co Ltd, Osaka City University PUC filed Critical Osaka University NUC
Priority to JP2012075383A priority Critical patent/JP2013203707A/en
Publication of JP2013203707A publication Critical patent/JP2013203707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an activity inhibitor of glycerol-3-phosphate dehydrogenase which has high safety, is easily obtained, and is able to be used for a human being, and to provide a production inhibiting agent of a transcription factor PPARγ and C/EBPβ.SOLUTION: An activity inhibitor of glycerol-3-phosphate dehydrogenase composed of 1,5-D-anhydro fructose, and a production inhibiting agent of a lipogenesis transcription factor PPARγ and/or C/EBPβ are disclosed.

Description

本発明は1,5−D−アンヒドロフルクトースからなる抗肥満作用剤に関する。さらに詳しくは、1,5−D−アンヒドロフルクトースによる、脂肪細胞の肥大化を抑制するための活性阻害剤または産生抑制剤に関する。   The present invention relates to an anti-obesity agent comprising 1,5-D-anhydrofructose. More specifically, the present invention relates to an activity inhibitor or production inhibitor for suppressing adipocyte hypertrophy by 1,5-D-anhydrofructose.

近年、過食や運動不足が原因で摂取エネルギーが消費エネルギーを上回ることで発症する肥満者数は、年々増加していることが世界的な社会問題となっている。肥満は、脂肪細胞から分泌される様々なアディポサイトカインの分泌異常から、高血圧、糖代謝異常(糖尿病)、脂質代謝異常(脂質異常症)を発症する。肥満を基礎疾患として、高血圧、糖尿病、脂質異常症のうち、2つ以上が併発するとメタボリックシンドロームを招く。メタボリックシンドロームは易動脈硬化発症状態であり、さらに、狭心症、心筋梗塞、脳梗塞などの重大な疾病へとつながっていくことが知られている。
グリセロール−3−リン酸デヒドロゲナーゼはグルコースからのトリアシルグルセロールの合成に係る酵素であり、その中間経路であるジヒドロキシアセトンリン酸をグリセロール−3−リン酸に変換する酵素である。この酵素を阻害することでトリアシルグルセロールの二つの前駆体であるアシルCoAとグリセロール−3−リン酸のうち、グリセロール−3−リン酸の合成が阻害されるため、結果としてトリアシルグリセロールの合成が阻害される。従って、本酵素を阻害すれば抗肥満につながると考えられており、このグリセロール−3−リン酸デヒドロゲナーゼの阻害剤が医薬、食品の分野で注目されている。
この阻害剤としてはα−リポ酸、フラボノイド、フェノール酸類、ギムネマ酸などが報告されている。
また、PPARγとC/EBPβは脂肪合成や脂肪酸の取り込みなど脂肪細胞の特徴をもたらす多くの遺伝子の転写制御を担っている。これらの転写因子の発現が抑制されると前駆脂肪細胞から脂肪細胞への分化の抑制や脂肪細胞の肥大化が抑制される。
脂肪細胞分化の転写因子であるPPARγとC/EBPβはこれらの発現が抑制されると脂肪合成酵素活性が下がり脂肪細胞分化が抑制される。
肥満の対策としては食事量を減らすことによる摂取エネルギーの削減、運動量を増やすことによる消費エネルギーの増加などが効果的ではある。しかしながら飽食であり、交通機関や移動手段の発達した現在においては、これらを継続的に行うことには難しい。そこで、より簡単に抗肥満効果を得る手段として抗肥満作用を持つ食品や特定保健用食品あるいは医薬品、医薬部外品などを摂取することによる体重コントロールへの期待が高まっている。
抗肥満作用を示す物質としては中性脂肪の合成に係る酵素、グリセロール−3−リン酸デヒドロゲナーゼの活性を阻害する物質あるいは脂肪細胞の分化に係る転写因子PPARγやC/EBPβを抑制することなどが考えられる。
1,5−D−アンヒドロフルクトース(以下、1,5−AFという)は澱粉やグリコーゲンなどを酵素α−1,4−グルカンリアーゼで分解することで生成する単糖で抗酸化性や抗菌性を示すこと、生理作用としては抗炎症性や抗アレルギー性などを有することも報告されている(特許文献1〜4)。また、アディポネクチンの産生増強剤としても特許出願されている(特許文献5)。1,5−AFは食品素材として利用されており、経口摂取する物質としては安全面において全く問題の無い素材である。
In recent years, it has become a global social problem that the number of obese people who develop as a result of overeating or lack of exercise exceeds the consumed energy is increasing year by year. Obesity develops hypertension, abnormal glucose metabolism (diabetes) and abnormal lipid metabolism (dyslipidemia) due to abnormal secretion of various adipocytokines secreted from fat cells. When obesity is a basic disease, two or more of hypertension, diabetes, and dyslipidemia are accompanied by metabolic syndrome. It is known that metabolic syndrome is an onset of atherosclerosis and further leads to serious diseases such as angina pectoris, myocardial infarction, and cerebral infarction.
Glycerol-3-phosphate dehydrogenase is an enzyme related to synthesis of triacylglycerol from glucose, and is an enzyme that converts dihydroxyacetone phosphate, which is an intermediate pathway thereof, to glycerol-3-phosphate. Inhibition of this enzyme inhibits the synthesis of glycerol-3-phosphate among acyl CoA and glycerol-3-phosphate, which are two precursors of triacyl glycerol, resulting in triacylglycerol Synthesis is inhibited. Therefore, inhibition of this enzyme is thought to lead to anti-obesity, and this glycerol-3-phosphate dehydrogenase inhibitor has attracted attention in the fields of medicine and food.
As this inhibitor, α-lipoic acid, flavonoids, phenolic acids, gymnemic acid and the like have been reported.
In addition, PPARγ and C / EBPβ are responsible for the transcriptional control of many genes that bring about the characteristics of adipocytes such as fat synthesis and fatty acid uptake. When the expression of these transcription factors is suppressed, differentiation from preadipocytes to adipocytes and hypertrophy of adipocytes are suppressed.
When the expression of PPARγ and C / EBPβ, which are transcription factors for adipocyte differentiation, is inhibited, adipogenic enzyme activity is lowered and adipocyte differentiation is inhibited.
As countermeasures for obesity, it is effective to reduce intake energy by reducing the amount of meals and increase energy consumption by increasing exercise amount. However, it is tired and it is difficult to carry out these activities continuously at the present time when transportation and transportation methods are developed. Therefore, there is an increasing expectation for weight control by ingesting a food having anti-obesity action, a food for specified health use, a pharmaceutical product, a quasi-drug, etc. as a means for obtaining an anti-obesity effect more easily.
Substances exhibiting anti-obesity action include inhibiting the activity of neutral fat synthesis, glycerol-3-phosphate dehydrogenase activity or transcription factors PPARγ and C / EBPβ involved in adipocyte differentiation. Conceivable.
1,5-D-anhydrofructose (hereinafter referred to as 1,5-AF) is a monosaccharide produced by degrading starch, glycogen, etc. with the enzyme α-1,4-glucan lyase, and has antioxidant and antibacterial properties. It has also been reported that it has anti-inflammatory properties, anti-allergic properties and the like as physiological effects (Patent Documents 1 to 4). A patent application has also been filed as an adiponectin production enhancer (Patent Document 5). 1,5-AF is used as a food material, and is a material that has no problem in terms of safety as a substance to be taken orally.

特表平9−505988号公報Japanese National Patent Publication No. 9-505988 特開2001−89377号公報JP 2001-89377 A 特開2006−306814号公報JP 2006-306814 A 特開2007−091644号公報JP 2007-091644 A 特開2008−195630号公報JP 2008-195630 A

本発明の目的は、安全性が高く、入手が容易でヒトへの利用が可能なグリセロール−3−リン酸デヒドロゲナーゼの活性阻害剤、転写因子PPARγやC/EBPβの産生抑制剤を提供することにある。
本発明の他の目的および利点は以下の説明から明らかになろう。
An object of the present invention is to provide an activity inhibitor of glycerol-3-phosphate dehydrogenase, a transcription factor PPARγ and a production inhibitor of C / EBPβ, which are highly safe, easily available, and usable for humans. is there.
Other objects and advantages of the present invention will become apparent from the following description.

本発明者らは前記課題を解決するために鋭意検討した結果、1,5−AFが脂肪細胞に対してグリセロール−3−リン酸デヒドロゲナーゼの活性を阻害すること、さらには脂肪細胞の分化に係る転写因子PPARγやC/EBPβの産生を抑制することを見出して本発明を完成するに至った。
すなわち、本発明によれば、本発明の上記目的および利点は、第1に、
1,5−D−アンヒドロフルクトースからなるグリセロール−3−リン酸デヒドロゲナーゼの活性阻害剤により達成される。
また、本発明によれば、本発明の上記目的および利点は、第2に
1,5−D−アンヒドロフルクトースからなる脂肪合成転写因子PPARγおよび/またはC/EBPβの産生抑制剤により達成される。
As a result of intensive studies to solve the above problems, the present inventors have found that 1,5-AF inhibits the activity of glycerol-3-phosphate dehydrogenase on adipocytes, and further relates to differentiation of adipocytes. The inventors have found that the production of transcription factors PPARγ and C / EBPβ is suppressed, and have completed the present invention.
That is, according to the present invention, the above objects and advantages of the present invention are as follows.
It is achieved by an activity inhibitor of glycerol-3-phosphate dehydrogenase consisting of 1,5-D-anhydrofructose.
According to the present invention, the above objects and advantages of the present invention are secondly achieved by a production inhibitor of adipose synthesis transcription factor PPARγ and / or C / EBPβ comprising 1,5-D-anhydrofructose. .

本発明の有効成分である1,5−AFはヒトや環境に対して安全であり、1,5−AFをヒトに投与することで脂質代謝や糖代謝を活性化できるので、肥満、糖尿病、インスリン抵抗性、高血糖、脂質代謝異常(脂質異常症)、動脈硬化、高コレステロール血症などの生活習慣病の予防・改善に極めて有用である。   1,5-AF, which is an active ingredient of the present invention, is safe for humans and the environment. By administering 1,5-AF to humans, lipid metabolism and sugar metabolism can be activated, so obesity, diabetes, It is extremely useful for the prevention and improvement of lifestyle-related diseases such as insulin resistance, hyperglycemia, dyslipidemia (dyslipidemia), arteriosclerosis, and hypercholesterolemia.

前駆脂肪細胞の生存率と1,5−AFの濃度との関係。Relationship between preadipocyte viability and 1,5-AF concentration. 前駆脂肪細胞のTG蓄積量と1,5−AFの濃度との関係を示す光学顕微鏡写真。The optical microscope photograph which shows the relationship between the amount of TG accumulation | storage of a preadipocyte, and the density | concentration of 1, 5- AF. 前駆脂肪細胞のGPDH活性と1,5−AFの濃度との関係。Relationship between GPDH activity of preadipocytes and the concentration of 1,5-AF. 前駆脂肪細胞のPPARγ発現量と1,5−AFの濃度との関係。The relationship between the expression level of PPARγ in preadipocytes and the concentration of 1,5-AF. 前駆脂肪細胞のC/EBPβ発現量と1,5−AFの濃度との関係。Relationship between the expression level of C / EBPβ in preadipocytes and the concentration of 1,5-AF. 成熟脂肪細胞の生存率と1,5−AFの濃度との関係。Relationship between viability of mature adipocytes and concentration of 1,5-AF. 成熟脂肪細胞のTG蓄積量と1,5−AFの濃度との関係。Relationship between the amount of TG accumulated in mature adipocytes and the concentration of 1,5-AF. 成熟脂肪細胞の脂肪滴の大きさと1,5−AFの濃度との関係を示す光学顕微鏡写真。The optical micrograph which shows the relationship between the size of the fat droplet of a mature fat cell, and the density | concentration of 1, 5- AF. 成熟脂肪細胞のPPARγ発現量と1,5−AFの濃度との関係。Relationship between the amount of PPARγ expression in mature adipocytes and the concentration of 1,5-AF.

本発明において使用される1,5−AFは、既に公知の方法、例えば、特許文献1に記載の方法によって調製可能である。
すなわち、紅藻オゴノリより抽出した酵素α−1,4−グルカンリアーゼを澱粉に作用させることで1,5−AFを得ることができる。
本発明において、1,5−AFは、脂肪細胞に対し細胞毒として作用せず、脂肪細胞が前駆脂肪細胞および成熟脂肪細胞のいずれであっても上記活性阻害剤および上記産生抑制剤としての作用を発現する。
本発明において1,5−AF(1,5−アンヒドロ−D−フルクトース)は、いかなる形態にあっても良く、特に限定されない。希薄な水溶液や高濃度の水溶液、凍結乾燥粉末、結晶状態などの形態をとることもできる。1,5−AFに加えて他の成分が存在しても良い。ぶどう糖やマルトデキストリンなど糖質、エチルアルコール、蛋白質、アミノ酸、脂質、食物繊維、ビタミン、ミネラルなどの他の成分と混合された形態もとりうる。
さらに本発明の効果を奏する限り、本発明の剤は、1,5−AFに加えて、他のグリセロール−3−リン酸デヒドロゲナーゼ活性阻害化合物や転写因子PPARγやC/EBPβの産生抑制化合物を含むことも可能である。
1,5-AF used in the present invention can be prepared by a known method, for example, the method described in Patent Document 1.
That is, 1,5-AF can be obtained by allowing the enzyme α-1,4-glucan lyase extracted from red alga ogonori to act on starch.
In the present invention, 1,5-AF does not act as a cytotoxin on adipocytes, and acts as the activity inhibitor and the production inhibitor even if the adipocytes are either preadipocytes or mature adipocytes. Is expressed.
In the present invention, 1,5-AF (1,5-anhydro-D-fructose) may be in any form and is not particularly limited. It can also take the form of a dilute aqueous solution, a highly concentrated aqueous solution, a lyophilized powder, a crystalline state or the like. Other components may be present in addition to 1,5-AF. It may be in a form mixed with other components such as sugars such as glucose and maltodextrin, ethyl alcohol, proteins, amino acids, lipids, dietary fiber, vitamins, minerals and the like.
In addition to 1,5-AF, the agent of the present invention includes other glycerol-3-phosphate dehydrogenase activity inhibitory compounds, transcription factor PPARγ and C / EBPβ production inhibitory compounds as long as the effects of the present invention are exhibited. It is also possible.

本発明のグリセロール−3−リン酸デヒドロゲナーゼ活性阻害剤や転写因子PPARγやC/EBPβの産生抑制剤は、それ自体公知の種々の方法でその剤型に応じて投与することが可能であり、投与量、投与部位、投与する間隔、期間等は、患者の年齢や体重、病状あるいは他の薬剤や治療法と併用した場合などを考慮して決定することができる。投与方法としては、例えば、経口投与、あるいは注射や点滴などの方法によって静脈内や皮下、腹腔内など直接体内に投与する方法や外用とすることができ、特別に制限されない。
本発明における剤の投与量は、その剤型、投与方法、あるいは予防もしくは治療しようとする症状により異なるが、例えば、体重1kg当りの投与量として1,5−AFで0.1μg〜1,000mg、好ましくは、1mg〜1,000mgとすることができ、1日1回あるいは数回、あるいは数日毎に1回というような、適当な投与頻度によって投与することが可能である。
The glycerol-3-phosphate dehydrogenase activity inhibitor, the transcription factor PPARγ and the production inhibitor of C / EBPβ of the present invention can be administered according to their dosage forms by various methods known per se. The amount, administration site, administration interval, period, etc. can be determined in consideration of the age and weight of the patient, the medical condition, or other drugs and treatment methods. The administration method can be, for example, oral administration, direct injection into the body such as intravenous, subcutaneous, intraperitoneal, or external use by injection or infusion, and is not particularly limited.
The dose of the agent in the present invention varies depending on the dosage form, administration method, or symptoms to be prevented or treated. For example, the dose per kg of body weight is 0.1 μg to 1,000 mg as 1,5-AF. However, it can be preferably 1 mg to 1,000 mg, and can be administered at an appropriate dosing frequency such as once or several times a day or once every several days.

本発明のグリセロール−3−リン酸デヒドロゲナーゼ活性阻害剤や転写因子PPARγやC/EBPβの産生抑制剤の形態としては、例えば、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、注射剤、坐剤、吸入薬等が挙げられるが、特に制限されない。また、製剤を調製するうえで必要な成分、例えば、製剤担体や賦形剤、結合剤、増量剤、崩壊剤、界面活性剤、滑沢剤、分散剤、緩衝剤、保存剤、嬌味剤、香料、被膜剤、担体、安定剤等を含有することもできる。   Examples of the form of the glycerol-3-phosphate dehydrogenase activity inhibitor and the production inhibitor of transcription factors PPARγ and C / EBPβ of the present invention include tablets, capsules, granules, powders, syrups, injections, and suppositories. Inhalants and the like can be mentioned, but are not particularly limited. In addition, ingredients necessary for preparing a preparation, such as preparation carriers and excipients, binders, extenders, disintegrants, surfactants, lubricants, dispersants, buffers, preservatives, flavoring agents , Fragrances, coating agents, carriers, stabilizers and the like.

さらに、本発明の効果を奏する限り、他の抗動脈硬化薬、抗糖尿病薬あるいはその他の薬理成分あるいは栄養成分を含むことも可能である。
また、本発明のグリセロール−3−リン酸デヒドロゲナーゼ活性阻害剤や転写因子PPARγやC/EBPβの産生抑制剤の利用は医薬品用途に限られるものではなく、医薬部外品、食品、飲料等に配合することも可能である。例えば、1,5−AFを食品に添加して、動脈硬化症の治療を目的とした機能性食品のような形態をとることもできる。
本発明を食品として用いる場合の形態としては飲料、乳製品、パン類、ケーキ類、麺類、菓子類、冷凍食品などの各種食品が挙げられる。
Furthermore, as long as the effect of the present invention is exhibited, it is possible to include other anti-atherosclerotic drugs, anti-diabetic drugs, or other pharmacological or nutritional components.
In addition, the use of the glycerol-3-phosphate dehydrogenase activity inhibitor of the present invention and the production inhibitor of transcription factors PPARγ and C / EBPβ is not limited to pharmaceutical use, but is incorporated into quasi drugs, foods, beverages, etc. It is also possible to do. For example, 1,5-AF can be added to food to take the form of a functional food intended for the treatment of arteriosclerosis.
As a form in the case of using this invention as a foodstuff, various foods, such as a drink, dairy products, breads, cakes, noodles, confectionery, frozen food, are mentioned.

本発明のグリセロール−3−リン酸デヒドロゲナーゼ活性阻害剤や転写因子PPARγやC/EBPβの産生抑制剤は、人間以外の哺乳動物にも投与することができる。すなわち、その場合、哺乳動物に対し、グリセロール−3−リン酸デヒドロゲナーゼ活性阻害剤や転写因子PPARγやC/EBPβの産生抑制剤を適量投与することによって、肥満、高血圧、脂質代謝異常(脂質異常症)、糖尿病、動脈硬化、肝線維症、癌の予防や治療を行うことができる。   The glycerol-3-phosphate dehydrogenase activity inhibitor and transcription factor PPARγ or C / EBPβ production inhibitor of the present invention can also be administered to mammals other than humans. That is, in that case, obesity, hypertension, dyslipidemia (dyslipidemia) by administering appropriate amounts of glycerol-3-phosphate dehydrogenase activity inhibitor and transcription factor PPARγ or C / EBPβ production to mammals. ), Prevention and treatment of diabetes, arteriosclerosis, liver fibrosis, and cancer.

以下に、本発明の実施例を示すが本発明はこれらの実施例になんら限定されるものではない。
1.実験方法
(1)前駆脂肪細胞の培養
マウス線維芽細胞である3T3−L1細胞は10%牛胎児血清(FBS)、ペニシリン(50units/ml、明治製菓)およびストレプトマイシン(50mg/ml、明治製菓(株))を含むDulbecco’s modified Eagle’s medium (DMEM) 培地 (日水製薬(株))で37℃、5% COに調整したインキュベーター内において、6〜7日間前培養を行った。トリプシン/EDTA溶液処理で細胞を剥がした後、細胞数を1.0×10cells/ml になるように調整した。
(2)前駆脂肪細胞の継代
培地を取り除き、細胞をリン酸緩衝液(PBS)で洗浄後、トリプシン/EDTA溶液で細胞が一部剥がれるまで作用させた後、中和液(FBS:PBS=1:2)を添加した。細胞を回収した後、懸濁して遠心分離 (3,000rpm、5分間、4℃) し、上清を取り除いてDMEM培地を加え、細胞数を1.0×10〜1.0×10cells/mlになるように調整した。
(3)前駆脂肪細胞から成熟脂肪細胞への分化誘導
前駆脂肪細胞をプレコンフルエント状態にまで培養した後に、牛由来インスリン(0.2μM、和光純薬工業(株))、デキサメタゾン0.25μM、和光純薬工業(株))、3−イソブチル−1−メチルキサンチン (0.5mM、和光純薬工業)を添加したDMEM培地に交換した。2日後にインスリン(0.2μM) のみを添加した培地に交換し、以後2日ごとに新しいDMEM培地に交換して、誘導開始8日目に分化誘導を完了した。なお、サンプルの添加は培地を交換する2日ごとに行った。
Examples of the present invention are shown below, but the present invention is not limited to these examples.
1. Experimental method (1) Culture of preadipocytes Mouse fibroblast 3T3-L1 cells are 10% fetal bovine serum (FBS), penicillin (50 units / ml, Meiji Seika) and streptomycin (50 mg / ml, Meiji Seika Co., Ltd.) )) In a Dulbecco's modified Eagle's medium (DMEM) medium (Nissui Pharmaceutical Co., Ltd.) and pre-cultured for 6 to 7 days in an incubator adjusted to 37 ° C. and 5% CO 2 . After the cells were detached by treatment with trypsin / EDTA solution, the number of cells was adjusted to 1.0 × 10 5 cells / ml.
(2) Passage of preadipocytes After removing the medium and washing the cells with phosphate buffer (PBS), the cells were allowed to act with trypsin / EDTA solution until some cells were detached, and then neutralized solution (FBS: PBS = 1: 2) was added. After collecting the cells, they are suspended and centrifuged (3,000 rpm, 5 minutes, 4 ° C.), the supernatant is removed, DMEM medium is added, and the number of cells is 1.0 × 10 5 to 1.0 × 10 6. It adjusted so that it might become cells / ml.
(3) Differentiation induction from preadipocytes to mature adipocytes After culturing the preadipocytes to a preconfluent state, bovine-derived insulin (0.2 μM, Wako Pure Chemical Industries, Ltd.), dexamethasone 0.25 μM, sum Koganei Pharmaceutical Co., Ltd.) and DMEM medium supplemented with 3-isobutyl-1-methylxanthine (0.5 mM, Wako Pure Chemical Industries) were replaced. Two days later, the medium was replaced with a medium supplemented with only insulin (0.2 μM), and thereafter, the medium was replaced with a new DMEM medium every two days. The sample was added every 2 days when the medium was changed.

(4)3T3−L1成熟脂肪細胞の培養
分化誘導を完了し脂肪滴が蓄積した状態となった3T3−L1成熟脂肪細胞に、1,5−AFを添加して培養3日後に各種測定を行った。
(5)前駆脂肪細胞の生存率の測定 (Neutral red 法)
Neutral redは損傷を受けていない細胞膜を通過し、生存細胞のリソソームに取り込まれる。この性質を利用して細胞内に取り込まれた Neutral red量を測定し、生存細胞の割合を測定することによって細胞生存率を算出した。
1,5−AFを添加して24時間後に培地を除去し、Neutral red試薬 (0.25mg/ml、和光純薬工業(株))を最終濃度が50 μg/mlになるように細胞に加えた。37℃で2時間インキュベーションした後、細胞を1%ホルムアルデヒド、1%塩化カルシウム、98%超純水の混合液で2回洗い、連続して1%酢酸、50%エタノール、49%超純水を含む 脱色抽出液1mlを細胞に加え、30分間静置した。
リソソームの Neutral red吸収量は吸光光度計(Beckman Coulter,DU530)を用いて540nmで測定した。細胞生存率はコントロールの吸光度を100%とした時の相対値で表した。
(4) 3T3-L1 matured adipocyte culture 1,5-AF was added to 3T3-L1 matured adipocytes where differentiation induction was completed and lipid droplets were accumulated, and various measurements were performed after 3 days of culture. It was.
(5) Measurement of preadipocyte survival rate (Neutral red method)
Neutral red passes through intact cell membranes and is taken up by lysosomes in viable cells. Utilizing this property, the amount of Neutral red incorporated into the cells was measured, and the cell viability was calculated by measuring the proportion of viable cells.
24 hours after adding 1,5-AF, the medium was removed, and Neutral red reagent (0.25 mg / ml, Wako Pure Chemical Industries, Ltd.) was added to the cells to a final concentration of 50 μg / ml. It was. After incubation at 37 ° C for 2 hours, the cells were washed twice with a mixture of 1% formaldehyde, 1% calcium chloride, and 98% ultrapure water, and then continuously with 1% acetic acid, 50% ethanol, and 49% ultrapure water. Containing 1 ml of decolorized extract was added to the cells and allowed to stand for 30 minutes.
The amount of Neutral red absorption of lysosomes was measured at 540 nm using an absorptiometer (Beckman Coulter, DU530). The cell viability was expressed as a relative value when the absorbance of the control was 100%.

(6)トリアシルグリセロール(TG)蓄積量(Oil red O染色法)
Oil red O/イソプロパノール飽和溶液をよく振ってから、飽和溶液:超純水=6:4の割合で混合した後、10分後に0.45μmフィルターを用いて濾過した。細胞の分化誘導終了後、アスピレーターで培地を吸引除去し、PBSで2回洗浄した。
70%エタノールで30秒間固定した後、Oil red O染色液を2ml添加し、室温で2時間放置した。50%エタノールで10秒洗浄した後、脱イオン水で水の赤みが消えるまで洗浄した。倒立顕微鏡(OLYMPUS IX−70)を用いて明視野で倍率を200倍にして観察し、写真撮影した後、イソプロパノール3mlを添加し、Oil red O染色液を抽出した。さらに、その抽出液を520nmの波長で吸光度を測定した。
(6) Amount of triacylglycerol (TG) accumulated (Oil red O staining method)
The oil red O / isopropanol saturated solution was shaken well, mixed at a ratio of saturated solution: ultra pure water = 6: 4, and then filtered using a 0.45 μm filter after 10 minutes. After completion of induction of cell differentiation, the medium was removed by suction with an aspirator and washed twice with PBS.
After fixing with 70% ethanol for 30 seconds, 2 ml of Oil red O staining solution was added and left at room temperature for 2 hours. After washing with 50% ethanol for 10 seconds, it was washed with deionized water until the redness of the water disappeared. Observation was performed with an inverted microscope (OLYMPUS IX-70) at a magnification of 200 in a bright field, and after photography, 3 ml of isopropanol was added to extract Oil red O staining solution. Further, the absorbance of the extract was measured at a wavelength of 520 nm.

(7)グリセロール−3−リン酸デヒドロゲナーゼ (GPDH) 活性の測定
100mM トリエタノールアミン/2.5mM EDTA溶液をウォーターバス上の試験管内で28℃に保っておいた。本培養終了後、dishをPBSで2回洗浄し、100mM トリエタノールアミン/2.5mM EDTA溶液を300μl添加してセルスクレイパーで細胞を回収した。その後、超音波処理によって細胞を破壊し、すばやく遠心分離 (13,000rpm、5分間、4℃)し、上清を細胞液として使用した。ウォーターバス上の試験管に6mM 2−メルカプトエタノール(最終濃度0.1mM)、7.2mM NADH(最終濃度0.12mM)、12mM ジヒドロキシアセトンリン酸(最終濃度0.2mM)、細胞液を加え、340nmの吸光度にて3分間測定した。GPDHの活性はNADHの吸光係数6.22 mM−1cm−1を用いて計算し、1分間当たりのNADHの変化量をもとに算出した。酵素活性は コントロール(100%)に対する値で表した。
(7) Measurement of glycerol-3-phosphate dehydrogenase (GPDH) activity A 100 mM triethanolamine / 2.5 mM EDTA solution was kept at 28 ° C. in a test tube on a water bath. After completion of the main culture, the dish was washed twice with PBS, 300 μl of a 100 mM triethanolamine / 2.5 mM EDTA solution was added, and the cells were recovered with a cell scraper. Thereafter, the cells were disrupted by sonication, rapidly centrifuged (13,000 rpm, 5 minutes, 4 ° C.), and the supernatant was used as a cell solution. To a test tube on the water bath, add 6 mM 2-mercaptoethanol (final concentration 0.1 mM), 7.2 mM NADH (final concentration 0.12 mM), 12 mM dihydroxyacetone phosphate (final concentration 0.2 mM), cell solution, Measurement was performed at an absorbance of 340 nm for 3 minutes. The activity of GPDH was calculated using the NADH extinction coefficient of 6.22 mM −1 cm −1 and calculated based on the change in NADH per minute. Enzyme activity was expressed as a value relative to the control (100%).

(8)転写調節因子発現の検出(ウェスタンブロッティング法)
1,5−AFを添加して48時間後、dishをPBSで1回洗浄し、Buffer X(表1)で細胞を回収し、遠心分離(10,000rpm、10分間、4℃)を行った後、上清を取り除いてBuffer Y(表2)を加えた。その後、凍結−解凍を2回行い、超音波処理で細胞膜を破壊した。すばやく遠心分離 (3,500rpm、10分間、4℃)し、核画分を含む沈殿物を得た。
沈殿物にBuffer Yを添加し、よくピペッティングをして沈殿を分散させた後、冷置(30分間、4℃)した。さらに、超音波処理で核を破壊した。その後、すばやく遠心分離(15,000rpm、10分間、4℃)し、上清を核タンパク質として使用した。20μgのタンパク質をLaemmliらの方法を用いて、SDS−ポリアクリルアミドゲル電気泳動(PAGE)で分離した。SDS−PAGEによってタンパク質の分離を行ったゲルは、BIO−RAD Trans blot SDを用いてブロッティングを行った。ブロッティング終了後、PVDFメンブレンはSNAPid(Milipore社)を用いて、酵素抗体法による転写調節因子の検出を行った。用いた抗体は、抗PPARγマウスモノクローナル抗体(Santa Cruz Biotechunology社)、抗C/EBPαウサギポリクローナル抗体(Santa Cruz Biotechnology社)、抗C/EBPβ マウスモノクローナル抗体(Santa Cruz Biotechunology社)である。また、恒常的に発現することが知られているβ−アクチンおよびチューブリンβをコントロールとして用いた。
(8) Detection of transcription regulatory factor expression (Western blotting method)
48 hours after the addition of 1,5-AF, the dish was washed once with PBS, the cells were collected with Buffer X (Table 1), and centrifuged (10,000 rpm, 10 minutes, 4 ° C.). Thereafter, the supernatant was removed and Buffer Y (Table 2) was added. Then, freeze-thaw was performed twice and the cell membrane was destroyed by ultrasonic treatment. Centrifugation was quickly performed (3,500 rpm, 10 minutes, 4 ° C.) to obtain a precipitate containing a nuclear fraction.
Buffer Y was added to the precipitate, and pipetting was performed well to disperse the precipitate, followed by cooling (30 minutes, 4 ° C.). In addition, the nuclei were destroyed by sonication. Then, it centrifuged quickly (15,000 rpm, 10 minutes, 4 degreeC), and used the supernatant as a nucleoprotein. 20 μg of protein was separated by SDS-polyacrylamide gel electrophoresis (PAGE) using the method of Laemmli et al. The gel from which the protein was separated by SDS-PAGE was blotted using BIO-RAD Trans blot SD. After completion of the blotting, the PVDF membrane was subjected to detection of transcription regulatory factors by the enzyme antibody method using SNAPid (Milipore). The antibodies used were anti-PPARγ mouse monoclonal antibody (Santa Cruz Biotechnology), anti-C / EBPα rabbit polyclonal antibody (Santa Cruz Biotechnology), and anti-C / EBPβ mouse monoclonal antibody (Santa Cruz Biotechnology). In addition, β-actin and tubulin β, which are known to be constantly expressed, were used as controls.

2.実験結果
前駆脂肪細胞の生存率に及ぼす1,5−AFの影響を調べた結果を図1に示す。細胞生存率は、培地中の1,5−AF濃度が200〜800μg/mlの範囲ではコントロール群と差がないことから1,5−AFは前駆脂肪細胞に対して細胞毒性を示さなかった。
前駆脂肪細胞は成熟脂肪細胞へと分化すると、細胞内に脂肪滴を蓄積するようになる。前駆脂肪細胞から成熟脂肪細胞への分化の度合いを評価するため、Oil red O法によって脂肪滴を染色した。その結果、図2に示すように、Oil red O法によって染色された前駆脂肪細胞の細胞内脂肪滴は、コントロールでは、大小様々な大きさの脂肪滴が数多く観察されるが、1,5−AFを添加すると、細胞内の脂肪滴は、大きさが小さくなり、その数も減少した。さらに、800μg/mlの1,5−AFを添加すると、脂肪滴はほとんど観察されなかった。
このことから、1,5−AF添加によって脂肪前駆細胞からの脂肪細胞への分化が抑制されることが解った。
2. Experimental Results The results of examining the effect of 1,5-AF on the preadipocyte survival rate are shown in FIG. The cell viability was not different from that of the control group when the 1,5-AF concentration in the medium was in the range of 200 to 800 μg / ml, and thus 1,5-AF did not show cytotoxicity against preadipocytes.
When preadipocytes differentiate into mature adipocytes, lipid droplets accumulate in the cells. In order to evaluate the degree of differentiation from preadipocytes to mature adipocytes, lipid droplets were stained by the Oil red O method. As a result, as shown in FIG. 2, in the lipid fat droplets of the preadipocytes stained by the Oil red O method, many fat droplets of various sizes are observed in the control. When AF was added, intracellular lipid droplets were reduced in size and number. Furthermore, when 800 μg / ml 1,5-AF was added, almost no lipid droplets were observed.
From this, it was found that the addition of 1,5-AF suppresses differentiation of preadipocytes into adipocytes.

TGは脂肪酸とグルコースから生合成されるが、その合成段階にはGPDHも関与していることから、GPDHは、TG合成の律速酵素となっている。そこで、GPDH活性を測定した。その結果、200〜800μg/mlの範囲で1,5−AFの添加濃度に依存してGPDH活性が阻害された(図3)。
PPARγおよびC/EBPα は核内転写調節因子であり、脂肪細胞の分化において重要な役割を果たしている。また、C/EBPβはPPARγやC/EBPαの上流に位置する。そこで、細胞内PPARγやC/EBPβ量に及ぼす1,5−AFによる影響を調べた。その結果、図4および図5に示すように、1,5−AFは濃度依存的にこれら二つの転写因子の発現を抑制した。このことから、1,5−AFによる細胞内PPARγやC/EBPαの発現抑制が脂肪合成酵素を阻害することによって、脂肪蓄積量の減少につながったものと考えられた。
TG is biosynthesized from fatty acid and glucose, but GPDH is also a rate-limiting enzyme for TG synthesis because GPDH is also involved in the synthesis stage. Therefore, GPDH activity was measured. As a result, GPDH activity was inhibited depending on the addition concentration of 1,5-AF in the range of 200 to 800 μg / ml (FIG. 3).
PPARγ and C / EBPα are nuclear transcriptional regulators and play an important role in adipocyte differentiation. C / EBPβ is located upstream of PPARγ and C / EBPα. Therefore, the effect of 1,5-AF on intracellular PPARγ and C / EBPβ levels was examined. As a result, as shown in FIGS. 4 and 5, 1,5-AF suppressed the expression of these two transcription factors in a concentration-dependent manner. From this, it was considered that the suppression of the expression of intracellular PPARγ and C / EBPα by 1,5-AF led to a decrease in the amount of accumulated fat by inhibiting the adipogenic enzyme.

次に、成熟脂肪細胞の肥大化の抑制に及ぼす1,5−AFの影響を調べた。1,5−AFを添加しても、成熟脂肪細胞の生存率はコントロール群と同じであったことから、1,5−AFは成熟脂肪細胞に対しても細胞毒性を示さなかった(図6)。細胞内のTG蓄積量は、1,5−AFを400〜800μg/mlの範囲で添加することによって、濃度依存的に減少した(図7)。また、Oil red O法によって染色された成熟脂肪細胞の細胞内脂肪滴は、コントロールでは、大きな脂肪滴が数多く観察されるが、1,5−AFを添加すると、細胞内の脂肪滴は、大きさが小さくなり、その数も減少した。この効果は、1,5−AFの添加濃度に依存していた(図8)。さらに、脂肪合成の転写因子であるPPARγ発現量も1,5−AFの添加濃度に依存して顕著に減少した(図9)。
以上の結果から、1,5−AFは前駆脂肪細胞の分化を抑制すること、成熟脂肪細胞の脂肪蓄積量を低下させることが明らかになった。さらに、これらのことは、PPARγやC/EBPαなどの転写因子が1,5−AFによって抑制されることが関与することを示唆している。
Next, the influence of 1,5-AF on suppression of hypertrophy of mature adipocytes was examined. Even when 1,5-AF was added, the survival rate of mature adipocytes was the same as that of the control group, and thus 1,5-AF did not show cytotoxicity against mature adipocytes (FIG. 6). ). The amount of intracellular TG accumulation was reduced in a concentration-dependent manner by adding 1,5-AF in the range of 400 to 800 μg / ml (FIG. 7). In addition, many large lipid droplets of mature adipocytes stained by the Oil red O method are observed in the control, but when 1,5-AF is added, the intracellular lipid droplets are large. Became smaller and the number decreased. This effect was dependent on the added concentration of 1,5-AF (FIG. 8). Furthermore, the expression level of PPARγ, which is a transcription factor for fat synthesis, also significantly decreased depending on the concentration of 1,5-AF added (FIG. 9).
From the above results, it has been clarified that 1,5-AF suppresses the differentiation of preadipocytes and reduces the fat accumulation amount of mature adipocytes. Furthermore, these facts suggest that transcription factors such as PPARγ and C / EBPα are involved in being suppressed by 1,5-AF.

Claims (5)

1,5−D−アンヒドロフルクトースからなるグリセロール−3−リン酸デヒドロゲナーゼの活性阻害剤。 An activity inhibitor of glycerol-3-phosphate dehydrogenase comprising 1,5-D-anhydrofructose. 1,5−D−アンヒドロフルクトースからなる脂肪合成転写因子PPARγおよび/またはC/EBPβの産生抑制剤。 A production inhibitor of adipose synthesis transcription factor PPARγ and / or C / EBPβ comprising 1,5-D-anhydrofructose. グリセロール−3−リン酸デヒドロゲナーゼが前駆脂肪細胞または成熟脂肪細胞に由来する請求項1の活性阻害剤。 The activity inhibitor of claim 1, wherein the glycerol-3-phosphate dehydrogenase is derived from a preadipocyte or a mature adipocyte. 脂肪合成転写因子PPARγおよび/またはC/EBPβが前駆脂肪細胞または成熟脂肪細胞に由来する請求項2の産生抑制剤。 The production inhibitor according to claim 2, wherein the fat synthesis transcription factor PPARγ and / or C / EBPβ is derived from a preadipocyte or a mature adipocyte. 成熟脂肪細胞内の脂肪滴の大きさの縮小を伴う請求項2の産生抑制剤。 The production inhibitor according to claim 2, which is accompanied by a reduction in the size of lipid droplets in mature fat cells.
JP2012075383A 2012-03-29 2012-03-29 Anti-obesity agent consisting of 1,5-d-anhydro fructose Pending JP2013203707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075383A JP2013203707A (en) 2012-03-29 2012-03-29 Anti-obesity agent consisting of 1,5-d-anhydro fructose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075383A JP2013203707A (en) 2012-03-29 2012-03-29 Anti-obesity agent consisting of 1,5-d-anhydro fructose

Publications (1)

Publication Number Publication Date
JP2013203707A true JP2013203707A (en) 2013-10-07

Family

ID=49523198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075383A Pending JP2013203707A (en) 2012-03-29 2012-03-29 Anti-obesity agent consisting of 1,5-d-anhydro fructose

Country Status (1)

Country Link
JP (1) JP2013203707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026417A (en) * 2018-08-17 2020-02-20 株式会社サナス Human in-blood urine acid value normalizing agent
JP2020196679A (en) * 2019-06-03 2020-12-10 国立大学法人 鹿児島大学 Oxytocin production promoter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195630A (en) * 2007-02-09 2008-08-28 Nihon Starch Co Ltd Adiponectin production promoting agent
WO2010082661A1 (en) * 2009-01-19 2010-07-22 国立大学法人富山大学 1,5-ag-containing composition
JP2012001515A (en) * 2010-06-21 2012-01-05 Toyama Univ Glycogen degrading enzyme inhibitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195630A (en) * 2007-02-09 2008-08-28 Nihon Starch Co Ltd Adiponectin production promoting agent
WO2010082661A1 (en) * 2009-01-19 2010-07-22 国立大学法人富山大学 1,5-ag-containing composition
JP2012001515A (en) * 2010-06-21 2012-01-05 Toyama Univ Glycogen degrading enzyme inhibitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015052034; Eur. J. Pharmacol., 2000, Vol.397, No.1, p.219-225 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026417A (en) * 2018-08-17 2020-02-20 株式会社サナス Human in-blood urine acid value normalizing agent
JP2020196679A (en) * 2019-06-03 2020-12-10 国立大学法人 鹿児島大学 Oxytocin production promoter
JP7359377B2 (en) 2019-06-03 2023-10-11 国立大学法人 鹿児島大学 Oxytocin production promoter

Similar Documents

Publication Publication Date Title
Xu et al. Large yellow tea attenuates macrophage-related chronic inflammation and metabolic syndrome in high-fat diet treated mice
JP5778420B2 (en) Fractionation of Melissa leaf extract having angiogenic activity and MMP inhibitory activity and composition containing the same
AU2006218875B2 (en) Compositions comprising Actinidia and methods of use thereof
US20100111927A1 (en) Compositions Comprising Actinidia and Methods of Use Thereof
EP2992933B1 (en) Ginsenoside f2 for prophylaxis and treatment of liver disease
He et al. New understanding of Angelica sinensis polysaccharide improving fatty liver: The dual inhibition of lipid synthesis and CD36-mediated lipid uptake and the regulation of alcohol metabolism
WO2016175136A1 (en) Composition for suppressing muscular fatty change
KR102327601B1 (en) COMPOSITION FOR ANTI-ATOPIC, ANTI-OXIDANT OR ANTI-INFLAMMATORY ACTIVITY COMPRISING Centella asiatica AS AN EFFECTIVE INGREDIENT
WO2020177153A1 (en) Composition containing nicotinamide mononucleotide and mogroside, and application thereof
KR20180107439A (en) Compositions for anti-obesity comprising extract of Cyperus microiria Steud.
WO2012111643A1 (en) Adiponectin production promoter, and medicinal composition, food, drink and feed containing adiponectin production promoter
KR20140114801A (en) Composition for improving obesity and fatty liver using an extract of leaves of Sasa quelpaertensis or p-coumaric acid
JP2013203707A (en) Anti-obesity agent consisting of 1,5-d-anhydro fructose
JP2011184351A (en) Anti-obesity agent
JP5800635B2 (en) Anti-obesity agent
KR102513138B1 (en) Composition for Anti-obesity Using an Extract of Spiraea prunifolia
JP2008069126A (en) Modulator for adipocyte differentiation/lipid accumulation
KR20160094313A (en) Composition for anti-obesity comprising Chaenomelis Fructus extract or its fraction as effective component
JP6306634B2 (en) Composition for food
JP5122924B2 (en) Anti-obesity agent
JP2020535222A (en) Composition for weight control by regulating peptide levels involved in satiety and / or appetite
TWI794575B (en) Use of compound for preventing and/or treating of hyperlipidemia
JP2010235524A (en) Antihistamine agent containing pollen dumpling
JP2006213648A (en) Adiposity inhibitor of fat cell
JP5926469B2 (en) Muscle sugar uptake promoter, hyperglycemia improving agent, and preventive or therapeutic agent for diabetes and / or diabetic complications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160511