JP2013201209A - Infrared sensor - Google Patents

Infrared sensor Download PDF

Info

Publication number
JP2013201209A
JP2013201209A JP2012067647A JP2012067647A JP2013201209A JP 2013201209 A JP2013201209 A JP 2013201209A JP 2012067647 A JP2012067647 A JP 2012067647A JP 2012067647 A JP2012067647 A JP 2012067647A JP 2013201209 A JP2013201209 A JP 2013201209A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor layer
infrared sensor
area
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012067647A
Other languages
Japanese (ja)
Inventor
Koichiro Ueno
康一郎 上之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2012067647A priority Critical patent/JP2013201209A/en
Publication of JP2013201209A publication Critical patent/JP2013201209A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an infrared sensor having an element shape capable of increasing a photocurrent without decreasing the element resistance.SOLUTION: The infrared sensor includes a substrate, and a PIN diode structure where an n-doped first compound semiconductor layer, a non-doped or p-doped second compound semiconductor layer, and a p-doped third compound semiconductor layer with a higher concentration than the second compound semiconductor layer are laminated in this order. The area S1 at a part where the first and second compound semiconductor layers come into contact, the area S2 of a surface of the second compound semiconductor layer on the third compound semiconductor layer side, and the area S3 at a part where the second and third compound semiconductor layers come into contact, satisfy a relation S1>S2>S3.

Description

本発明は、赤外線センサに関し、その形状によりその素子抵抗を下げることなく、光電流を大きくできるようにした赤外線センサに関する。   The present invention relates to an infrared sensor, and more particularly to an infrared sensor that can increase the photocurrent without reducing the element resistance due to its shape.

一般に、波長が5μm以上の長波長帯の赤外線は、その熱的効果やガスによる赤外線吸収の効果から、人体を検知する人感センサや非接触温度センサ、ガスセンサ等に使用されている。これらの使用例の内、人体検知や非接触温度センサとして用いられる赤外線センサとしては、焦電センサやサーモパイルの様な熱型の赤外線センサと、半導体受光素子を使用した量子型の赤外線センサがあるが、熱型の赤外線センサに比べて、量子型の赤外線センサの方が、高感度、高速応答、静態検知が可能といった大きな特徴がある。   In general, long-wavelength infrared rays having a wavelength of 5 μm or more are used in human sensors, non-contact temperature sensors, gas sensors, and the like for detecting the human body because of their thermal effects and the effects of infrared absorption by gas. Among these usage examples, infrared sensors used as human body detection and non-contact temperature sensors include thermal infrared sensors such as pyroelectric sensors and thermopiles, and quantum infrared sensors using semiconductor light receiving elements. However, compared with the thermal infrared sensor, the quantum infrared sensor has high features such as high sensitivity, high speed response, and static detection.

量子型の赤外線センサを実現するためには、波長が5μm以上の長波長帯の赤外線を受光する赤外線センサが必要となるが、この波長領域では赤外線センサに対する周辺温度の影響が非常に大きく、室温で使用するには問題がある。この量子型の赤外線センサは、一般に波長が5μm以上の赤外線を吸収可能である半導体中にいわゆるPN接合を形成し、光吸収層において、吸収した赤外線によって発生した電子及び正孔が、PN接合部分の空乏層における内部電界によって電荷分離されることで、電気信号に変換される。   In order to realize a quantum type infrared sensor, an infrared sensor that receives infrared rays in a long wavelength band having a wavelength of 5 μm or more is required. In this wavelength region, the influence of the ambient temperature on the infrared sensor is very large, and the room temperature There is a problem to use with. This quantum type infrared sensor generally forms a so-called PN junction in a semiconductor that can absorb infrared rays having a wavelength of 5 μm or more, and in the light absorption layer, electrons and holes generated by the absorbed infrared rays are PN junction portions. The charge is separated by the internal electric field in the depletion layer, and converted into an electric signal.

しかしながら、波長が5μm以上の赤外線を吸収できる半導体のバンドギャップは、0.25eV以下と小さい。この様なバンドギャップの小さな半導体では、熱励起キャリアのために室温での真性キャリア密度が大きくなり、素子の抵抗が小さくなるので十分なPNダイオードの特性が得られない。これは真性キャリア密度が大きい場合、拡散電流や暗電流の様な素子の漏れ電流が大きくなるためである。このため、量子型の赤外線センサは熱励起キャリアを抑制するために、冷却機構を備えた赤外線センサが従来使用されている。   However, the band gap of a semiconductor that can absorb infrared rays having a wavelength of 5 μm or more is as small as 0.25 eV or less. In such a semiconductor having a small band gap, the intrinsic carrier density at room temperature increases due to thermally excited carriers, and the resistance of the element decreases, so that sufficient PN diode characteristics cannot be obtained. This is because when the intrinsic carrier density is large, the leakage current of the element such as diffusion current and dark current increases. For this reason, an infrared sensor having a cooling mechanism is conventionally used in order to suppress thermally excited carriers in the quantum infrared sensor.

この様な周辺温度の影響による問題を解決した赤外線センサとしては、例えば、特許文献1に記載の量子型の赤外線センサがある。この特許文献1に記載の量子型赤外線センサは、センサ部分の化合物半導体の積層構造および素子構造により拡散電流を抑制し、更に信号増幅用ICとセンサのパッケージを改良することにより、室温動作が可能であり、かつ従来にない超小型の赤外線センサを実現したものである。   As an infrared sensor that solves such a problem caused by the influence of ambient temperature, for example, there is a quantum infrared sensor described in Patent Document 1. The quantum infrared sensor described in Patent Document 1 can operate at room temperature by suppressing the diffusion current by the compound semiconductor stack structure and element structure of the sensor part, and further improving the signal amplification IC and sensor package In addition, an ultra-compact infrared sensor that has never been achieved is realized.

また、上記のような積層層構造を持つ赤外線センサの素子抵抗を上げるためには特にP型半導体層側の素子の面積を小さくすることが有効な手段となるが、この場合赤外線の受光面積も小さくなってしまう、この問題を解決するために、特許文献2には、素子の形状を受光部分のメサ角度を基板側に寝かせることで受光面積が大きいまま、P型半導体側の素子面積を小さくし、赤外線の受光量を落とさず、素子抵抗を上げることができる素子形状が記載されている。   In order to increase the element resistance of the infrared sensor having the laminated layer structure as described above, it is particularly effective to reduce the area of the element on the P-type semiconductor layer side. In order to solve this problem, which is reduced, Patent Document 2 discloses that the element area on the P-type semiconductor side is reduced while the light receiving area remains large by laying the mesa angle of the light receiving part on the substrate side. However, an element shape that can increase the element resistance without reducing the amount of received infrared light is described.

国際公開第WO2005/027228号パンフレットInternational Publication No. WO2005 / 027228 Pamphlet 特願2006−244388Japanese Patent Application No. 2006-244388

このように改良のための研究開発がなされているが、高性能の量子型赤外線センサを実現するためには、さらなる特性の向上が望まれている。上述した量子型赤外線センサの特性のうち最も重要であるのが信号(Signal)とノイズ(Noise)の比、所謂S/N比であり、この値が大きいほど赤外線センサの特性が良い。S/N比は、赤外線が入射したときに発生する光電流Ipとセンサの素子抵抗R0の平方根の積に比例する。すなわち、数1の様に表される。 In this way, research and development for improvement has been carried out, but in order to realize a high-performance quantum infrared sensor, further improvement in characteristics is desired. Of the characteristics of the quantum infrared sensor described above, the most important is the ratio of signal (Signal) to noise (Noise), the so-called S / N ratio. The larger this value, the better the characteristics of the infrared sensor. The S / N ratio is proportional to the product of the square root of the photocurrent Ip generated when infrared rays are incident and the element resistance R 0 of the sensor. That is, it is expressed as in Equation 1.

Figure 2013201209
Figure 2013201209

従って、S/N比を上げるためには、光電流Ipを大きくしつつ、素子抵抗R0を大きくする必要がある。Ipを大きくするためには、後述するように赤外線の受光面積および赤外線の吸収層の体積を大きくする必要がある。一方で素子抵抗を上げるためには、抵抗が素子の面積に反比例することから、素子の面積を小さくする必要がある。したがって、光電流Ipを大きくする素子形状と、素子抵抗を上げる素子形状は互いにトレードオフの関係になっている。この矛盾を解決するために、特許文献2には図1a及び図1bに示すように受光面となるn型半導体層(2)側から連続的に素子形状を小さくする、すなわち素子のメサ角度を基板(1)側に寝かせることで、P型半導体層側の素子面積を小さくし、光電流を落とさずに、素子抵抗を上げる素子形状を実現している。しかしながらこの形状では光吸収層となる層(3)の体積も徐々に小さくなってしまう為、赤外線を一部吸収できなくなってしまうという課題もある。 Therefore, in order to increase the S / N ratio, it is necessary to increase the element resistance R 0 while increasing the photocurrent I p . In order to increase I p , it is necessary to increase the infrared light receiving area and the volume of the infrared absorbing layer as described later. On the other hand, in order to increase the element resistance, it is necessary to reduce the area of the element because the resistance is inversely proportional to the area of the element. Therefore, the element shape for increasing the photocurrent Ip and the element shape for increasing the element resistance are in a trade-off relationship. In order to solve this contradiction, in Patent Document 2, as shown in FIGS. 1a and 1b, the element shape is continuously reduced from the n-type semiconductor layer (2) side serving as the light receiving surface, that is, the mesa angle of the element is set. By laying down on the substrate (1) side, the element area on the P-type semiconductor layer side is reduced, and an element shape that increases the element resistance without reducing the photocurrent is realized. However, in this shape, the volume of the layer (3) serving as the light absorption layer is gradually reduced, so that there is a problem that it becomes impossible to partially absorb infrared rays.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、素子抵抗を落とさずに、光電流をより大きくできるようにした素子形状の赤外線センサを提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an element-shaped infrared sensor capable of increasing the photocurrent without reducing the element resistance. .

本発明は、このような目的を達成するためになされたものであり、具体的には、本発明の赤外線センサの1実施形態は、基板と、N型ドーピングされた第一化合物半導体層、ノンドープ或いはP型ドーピングされた第二化合物半導体層、第二化合物半導体層よりも更に高濃度にp型ドーピングされた第三化合物半導体層がこの順で積層された、PINダイオード構造を備え、前記第一および第二化合部半導体層が接する部分の面積S1と、前記第二化合物半導体層の第三半導体層側の面の面積S2、と、前記第二化合物半導体層と第三化合物半導体層の接する部分の面積S3の関係が、S1>S2>S3であることを特徴とする。   The present invention has been made to achieve such an object. Specifically, an embodiment of the infrared sensor of the present invention includes a substrate, an N-type doped first compound semiconductor layer, a non-doped layer, and the like. Alternatively, a P-type doped second compound semiconductor layer and a p-type doped third compound semiconductor layer having a higher concentration than the second compound semiconductor layer are stacked in this order, and the first diode structure is provided. And the area S1 of the portion where the second compound semiconductor layer is in contact, the area S2 of the surface of the second compound semiconductor layer on the third semiconductor layer side, and the portion where the second compound semiconductor layer and the third compound semiconductor layer are in contact The relationship of the area S3 is S1> S2> S3.

また、本発明の赤外線センサの他の実施形態は、基板と、N型ドーピングされた第一化合物半導体層、ノンドープ或いはp型ドーピングされた第二化合物半導体層、第四化合物半導体層、第二化合物半導体層よりも更に高濃度にp型ドーピングされた第三化合物半導体層がこの順で積層された、PINダイオード構造を備え、第一、第二、及び第三化合物半導体層のバンドギャップが0.1〜0.25eVであり、前記第四化合物半導体層のバンドギャップが、第一、第二、及び第三化合物半導体層よりも大きく、前記第一および第二化合部半導体層が接する部分の面積S1と、前記第二化合物半導体層の第四化合物半導体層側の面の面積S2、と、前記第二化合物半導体層と第四化合物半導体層の接する部分の面積S4、と前記第四化合物半導体層と第三化合物半導体層の接する部分の面積S5の各面積の関係が、S1>S2>S4≧S5であることを特徴とする。   In addition, another embodiment of the infrared sensor of the present invention includes a substrate, an N-type doped first compound semiconductor layer, a non-doped or p-type doped second compound semiconductor layer, a fourth compound semiconductor layer, and a second compound. The semiconductor device has a PIN diode structure in which a p-type doped third compound semiconductor layer having a higher concentration than the semiconductor layer is stacked in this order, and the first, second, and third compound semiconductor layers have a band gap of 0. 0. 1 to 0.25 eV, the band gap of the fourth compound semiconductor layer is larger than that of the first, second, and third compound semiconductor layers, and the area of the portion where the first and second compound semiconductor layers are in contact with each other S1, an area S2 of the surface of the second compound semiconductor layer on the fourth compound semiconductor layer side, an area S4 of a portion where the second compound semiconductor layer and the fourth compound semiconductor layer are in contact, and the fourth compound Relationship between the area of the conductor layer and the portion of the area S5, contact the third compound semiconductor layer, characterized in that S1> S2> is S4 ≧ S5.

本発明によれば、赤外線センサの形状を前記に記載した構造とすることで、素子抵抗R0を下げることなく、光電流Ipが向上した赤外線センサを提供することができる。 According to the present invention, an infrared sensor with improved photocurrent Ip can be provided without reducing the element resistance R 0 by making the shape of the infrared sensor as described above.

図1aは、特許文献2に記載の赤外線センサの素子構造の断面図である。図1bは、特許文献2に記載の赤外線センサの素子構造の基板と反対側の面の図である。FIG. 1 a is a cross-sectional view of an element structure of an infrared sensor described in Patent Document 2. FIG. 1 b is a view of the surface opposite to the substrate of the element structure of the infrared sensor described in Patent Document 2. 図2aは、本発明の第一の実施形態の赤外線センサの素子構造の断面図である。図2b本発明の第一の実施形態の赤外線センサの素子構造の基板と反対側の面の図である。FIG. 2a is a sectional view of the element structure of the infrared sensor according to the first embodiment of the present invention. 2b is a view of the surface opposite to the substrate of the element structure of the infrared sensor according to the first embodiment of the present invention. FIG. 図3aは、本発明の第二の実施形態の赤外線センサの素子構造の断面図である。図3bは、本発明の第二の実施形態の赤外線センサの素子構造の基板と反対側の面の図である。FIG. 3a is a cross-sectional view of the element structure of the infrared sensor according to the second embodiment of the present invention. FIG. 3b is a view of the surface opposite to the substrate of the element structure of the infrared sensor according to the second embodiment of the present invention. 図4aは、本発明の赤外線センサの素子構造の断面図であって、素子の配線構造まで示した実施例を示す図である。図4bは、本発明の赤外線センサの素子構造の基板と反対側の面の図であって、素子の配線構造まで示した実施例を示す図である。FIG. 4A is a cross-sectional view of the element structure of the infrared sensor of the present invention, showing an embodiment showing the element wiring structure. FIG. 4B is a view of the surface opposite to the substrate of the element structure of the infrared sensor according to the present invention, showing the embodiment showing the wiring structure of the element. 図5aは、比較例の赤外線センサの素子構造の断面図であって、素子の配線構造まで示した実施例を示す図である。図5bは、比較例の赤外線センサの素子構造の基板と反対側の面の図であって、素子の配線構造まで示した実施例を示す図である。FIG. 5A is a cross-sectional view of the element structure of the infrared sensor of the comparative example, and is a diagram showing an embodiment showing up to the element wiring structure. FIG. 5B is a view of the surface opposite to the substrate of the element structure of the infrared sensor of the comparative example, and is a view showing an example showing the wiring structure of the element.

以下、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2に本発明の第一の実施形態の赤外線センサの素子構造図を示す。ここで、図2aは赤外線センサの構造断面図を示し、図2bは赤外線センサの基板とは反対側の面の構造図を示す。本構造は基板1と、基板上に形成されたn型ドーピングされた第一化合物半導体層2、前記第一化合物半導体層上に形成されたノンドープ或いはp型ドーピングされた第二化合物半導体層3、前記第二化合物半導体層上形成されたに第二化合物半導体層3よりも更に高濃度にp型ドーピングされた第三化合物半導体層4がこの順で積層され、PINダイオード構造となっている。   FIG. 2 shows an element structure diagram of the infrared sensor according to the first embodiment of the present invention. Here, FIG. 2a shows a structural sectional view of the infrared sensor, and FIG. 2b shows a structural diagram of the surface of the infrared sensor opposite to the substrate. The structure includes a substrate 1, an n-type doped first compound semiconductor layer 2 formed on the substrate, a non-doped or p-type doped second compound semiconductor layer 3 formed on the first compound semiconductor layer, A third compound semiconductor layer 4 formed on the second compound semiconductor layer and p-doped at a higher concentration than the second compound semiconductor layer 3 is laminated in this order to form a PIN diode structure.

ここで、検知する赤外線は基板1側から入射される。基板1は入射される赤外線に対して吸収の無い材料が使用され、例えばシリコンやGaAsが一般的な材料である。   Here, the infrared rays to be detected are incident from the substrate 1 side. The substrate 1 is made of a material that does not absorb incident infrared rays. For example, silicon or GaAs is a common material.

第一化合物半導体層2はn型ドーピングされた層である。これは高濃度のn型ドーピングを行うことで、バーシュタインモスシフトと呼ばれる効果により、第一化合物半導体層の赤外線吸収波長がより短波長側にシフトする為、長波長の赤外線が吸収されなくなり、赤外線を効率よく透過させることができるようになる為、第一の化合物半導体層2はn型ドーピングされている。   The first compound semiconductor layer 2 is an n-type doped layer. This is because high-concentration n-type doping is performed, so that the infrared absorption wavelength of the first compound semiconductor layer shifts to a shorter wavelength side due to an effect called Barstein Moss shift, so that long-wavelength infrared light is not absorbed, In order to efficiently transmit infrared rays, the first compound semiconductor layer 2 is n-type doped.

また、前記第二化合物半導体層3は赤外線を吸収し、光電流Ipを発生させるための光吸収層である。したがってこの第二化合物半導体層3と第一化合物半導体層2が接する面積S1が赤外線の入射される受光面積となる。   The second compound semiconductor layer 3 is a light absorption layer for absorbing infrared rays and generating a photocurrent Ip. Therefore, the area S1 where the second compound semiconductor layer 3 and the first compound semiconductor layer 2 are in contact with each other is a light receiving area on which infrared rays are incident.

一般的に受光素子の光電流Ipは受光面積に比例して大きくなる。このため面積S1は大きい方が好ましい。また、光吸収層の体積が大きいほど吸収できる赤外線量は大きくなるので、光吸収層である第二化合物半導体層3の体積は大きい方が好ましい。ただし、その膜厚は赤外線の吸収により発生した電子、及び正孔のキャリアが拡散できる程度の膜厚に設定される。   Generally, the photocurrent Ip of the light receiving element increases in proportion to the light receiving area. Therefore, it is preferable that the area S1 is large. Moreover, since the amount of infrared rays that can be absorbed increases as the volume of the light absorption layer increases, the volume of the second compound semiconductor layer 3 that is the light absorption layer is preferably larger. However, the film thickness is set to such a thickness that electrons and hole carriers generated by absorption of infrared rays can diffuse.

一方赤外線が吸収される半導体は一般にバンドギャップの小さい半導体である。この様な半導体は一般に電子の移動度が正孔の移動度よりも非常に大きい。例えばInSbの場合、電子の移動度が約100,000cm2/Vsであるのに対して、正孔の移動度は1,700cm2/Vsである。従って、素子抵抗は電子の流れ易さによる影響が大きい。 On the other hand, a semiconductor that absorbs infrared light is generally a semiconductor having a small band gap. Such semiconductors generally have a much higher electron mobility than hole mobility. For example, in the case of InSb, while the electron mobility is about 100,000 2 / Vs, the hole mobility is 1,700cm 2 / Vs. Therefore, the element resistance is greatly influenced by the ease of electron flow.

光吸収層で赤外線の吸収によって発生した電子は拡散と、PN接合によって形成された電位差によって光吸収層である第二化合物半導体層3から、n型ドーピングされた第一化合物半導体層2側へと拡散し光電流として取り出される。上述の様にバンドギャップの小さい半導体では正孔の移動度は非常に小さいことから、通常n型ドーピング層よりも、p型ドーピング層の電気抵抗が高くなる。また、電気抵抗は電流が流れる部分の面積に反比例する。従って第二化合物半導体層3とp型ドーピング層である第三化合物半導体層4の接する面積S3の大きさによって素子抵抗は決まり、素子抵抗が大きくなるためには面積S3が小さい方が好ましい。   Electrons generated by the absorption of infrared rays in the light absorption layer are diffused and from the second compound semiconductor layer 3 as the light absorption layer to the n-type doped first compound semiconductor layer 2 side due to the potential difference formed by the PN junction. It diffuses and is taken out as a photocurrent. As described above, since the mobility of holes is very small in a semiconductor having a small band gap, the electric resistance of the p-type doping layer is usually higher than that of the n-type doping layer. Also, the electrical resistance is inversely proportional to the area of the portion where current flows. Accordingly, the element resistance is determined by the size of the area S3 in contact with the second compound semiconductor layer 3 and the third compound semiconductor layer 4 which is a p-type doping layer, and in order to increase the element resistance, the area S3 is preferably small.

本発明では図1に示す従来の素子構造と比較して、素子抵抗を上げるために面積S3を小さくする一方、光吸収層である第二化合物半導体層3の第三半導体層4側の面積S2はS3と同一とすることなくS3よりもS2の方を大きくすることで、光吸収層である第二化合物半導体層3の体積を従来構造よりも大きくすることが可能となる。これにより光吸収層の体積を減らすことなく素子抵抗も上げることが出来るため、光電流Ipを減らすことなく素子抵抗R0を上げることが可能となる。   In the present invention, the area S3 is reduced to increase the element resistance as compared with the conventional element structure shown in FIG. 1, while the area S2 on the third semiconductor layer 4 side of the second compound semiconductor layer 3 which is a light absorption layer. By making S2 larger than S3 without making it the same as S3, it becomes possible to make the volume of the second compound semiconductor layer 3 as the light absorption layer larger than that of the conventional structure. As a result, the device resistance can be increased without reducing the volume of the light absorption layer, so that the device resistance R0 can be increased without reducing the photocurrent Ip.

ここで、S2の大きさはS3よりも大きくなるのでS2>S3である。またS2はS1以上に大きくすると、所謂逆テーパー構造を作ることになる。この場合素子上部に形成される電極配線が切れやすくなる原因となることから、S2<S1となる。すなわちS1、S2、S3の関係はS1>S2>S3となる。   Here, since the magnitude of S2 is larger than S3, S2> S3. If S2 is larger than S1, a so-called reverse taper structure is formed. In this case, since the electrode wiring formed on the element is easily cut, S2 <S1. That is, the relationship among S1, S2, and S3 is S1> S2> S3.

上記の大きさの関係は、好ましくはS1とS2の大きさの比が0.4<S2/S1≦0.99であり、S2とS3の大きさの比が0.1≦S3/S2≦0.99である。より好ましくは0.6≦S2/S1≦0.9であり、0.1≦S3/S2≦0.7である。更に好ましくは0.8≦S2/S1≦0.9であり、0.1≦S3/S2≦0.5である。   The relationship between the sizes is preferably such that the ratio of the sizes of S1 and S2 is 0.4 <S2 / S1 ≦ 0.99, and the ratio of the sizes of S2 and S3 is 0.1 ≦ S3 / S2 ≦ 0.99. More preferably, 0.6 ≦ S2 / S1 ≦ 0.9, and 0.1 ≦ S3 / S2 ≦ 0.7. More preferably, 0.8 ≦ S2 / S1 ≦ 0.9 and 0.1 ≦ S3 / S2 ≦ 0.5.

また、前述の様に波長が5μm以上の赤外線を吸収できる半導体のバンドギャップは0.25eV以下と小さい。この様なバンドギャップの小さな半導体(光吸収層の材料バンドギャップが0.1〜0.25eVの半導体)では、特許文献1に記載の半導体積層構造の様にp型ドーピング層側に、電子による拡散電流を抑制する為、バンドギャップが光吸収層よりも大きなバリア層を形成すると、暗電流の様な素子の漏れ電流が小さくなり、素子抵抗を大きくすること出来る為、有効な手段である。この様にp型ドーピング層側にバリア層を形成した積層膜に本発明の素子構造を適用した例が図3に示す素子構造図である。   In addition, as described above, the band gap of a semiconductor that can absorb infrared rays having a wavelength of 5 μm or more is as small as 0.25 eV or less. In such a semiconductor with a small band gap (semiconductor whose light absorption layer has a material band gap of 0.1 to 0.25 eV), the p-type doping layer side is made of electrons as in the semiconductor stacked structure described in Patent Document 1. If a barrier layer having a band gap larger than that of the light absorption layer is formed in order to suppress the diffusion current, the leakage current of the element such as dark current is reduced and the element resistance can be increased, which is an effective means. An example in which the element structure of the present invention is applied to a laminated film in which a barrier layer is formed on the p-type doping layer side is the element structure diagram shown in FIG.

図3は本発明の第二の実施形態の赤外線センサの断面図である。ここで、図3aは赤外線センサの構造断面図を示し、図3bは赤外線センサの基板とは反対側の面の構造図を示す。図3に示すように光吸収層である第二化合物半導体層3とp型ドーピング層である第三化合物半導体層の間に第一、第二、及び第三の各化合物半導体層よりもバンドギャップの大きい第四化合物半導体層5が挿入されている場合、素子抵抗は第二化合物半導体層3と第四化合物半導体層5の接する面積S4によって決まる。よってS2よりもS4の方を小さくすることで光吸収層である第二化合物半導体層3の体積を従来構造よりも大きくし、光吸収層の体積を減らすことなく素子抵抗も上げることが出来るため、光電流Ipを減らすことなく素子抵抗R0を更に上げることが可能となる。   FIG. 3 is a cross-sectional view of the infrared sensor according to the second embodiment of the present invention. Here, FIG. 3a shows a structural cross-sectional view of the infrared sensor, and FIG. 3b shows a structural view of the surface opposite to the substrate of the infrared sensor. As shown in FIG. 3, the band gap between the second compound semiconductor layer 3 which is a light absorption layer and the third compound semiconductor layer which is a p-type doping layer is larger than each of the first, second and third compound semiconductor layers. When the large fourth compound semiconductor layer 5 is inserted, the element resistance is determined by the area S4 where the second compound semiconductor layer 3 and the fourth compound semiconductor layer 5 are in contact. Therefore, by making S4 smaller than S2, the volume of the second compound semiconductor layer 3 as the light absorption layer is made larger than that of the conventional structure, and the element resistance can be increased without reducing the volume of the light absorption layer. The element resistance R0 can be further increased without reducing the photocurrent Ip.

また、第四化合物半導体層5と第三化合物半導体層4の接する面積S5はS4よりも大きくなると、やはり逆テーパー構造を作ることになり、素子上部に形成される電極配線が切れやすくなる原因となる。ただし、第四化合物半導体層5の膜厚は10〜100nmと薄く設定されることから、S4=S5であっても断線のリスクは小さい。よってS4≧S5となる。   In addition, if the area S5 where the fourth compound semiconductor layer 5 and the third compound semiconductor layer 4 are in contact with each other is larger than S4, an inversely tapered structure is formed, and the electrode wiring formed on the element is easily cut. Become. However, since the film thickness of the fourth compound semiconductor layer 5 is set as thin as 10 to 100 nm, the risk of disconnection is small even if S4 = S5. Therefore, S4 ≧ S5.

上記の大きさの関係は、好ましくはS1とS2の大きさの比が0.4<S2/S1≦0.99であり、S2とS4の大きさの比が0.1≦S4/S2≦0.99である。より好ましくは0.6≦S2/S1≦0.9であり、0.1≦S4/S2≦0.7である。更に好ましくは0.8≦S2/S1≦0.9であり、0.1≦S4/S2≦0.5である。   The relationship between the sizes is preferably such that the ratio of the sizes of S1 and S2 is 0.4 <S2 / S1 ≦ 0.99, and the ratio of the sizes of S2 and S4 is 0.1 ≦ S4 / S2 ≦ 0.99. More preferably, 0.6 ≦ S2 / S1 ≦ 0.9, and 0.1 ≦ S4 / S2 ≦ 0.7. More preferably, 0.8 ≦ S2 / S1 ≦ 0.9, and 0.1 ≦ S4 / S2 ≦ 0.5.

(実施例)
上述した第四化合物半導体層のある膜構造を用いて、次の手順で図4に示すPINダイオード構造の赤外線センサを作製した。ここで、図4aは赤外線センサの構造断面図を示し、図4bは赤外線センサの基板とは反対側の面の構造図を示す。まず、MBE法により、半絶縁性の、GaAs単結晶基板上にSnを1.0×1019原子/cm3ドーピングしたInSb層を1.0μm成長し(第一化合物半導体層2)、この上にZnを1×1016原子/cm3ドーピングしたInSb層を2.0μm成長し(第二化合物半導体層3)、この上にZnを5×1018原子/cm3ドーピングしたAl0.2In0.8Sb層を0.02μm成長し(第四化合物半導体層5)、この上にZnを5×1018原子/cm3ドーピングしたInSbを0.5μm成長した(第三化合物半導体層4)。上記構造の半導体薄膜を使用し、フォトリソ工程と酸によるウェットエッチング工程により第三および第四化合物半導体層5のエッチングを第二化合物半導体層3と第四化合物半導体層5の界面から0.01μm第二化合物半導体層3側に入った部分まで行った。このエッチングはドライエッチング等を用いても良い。これは以下全てのエッチング工程においても同様である。また、第二化合物半導体層3と第四化合物半導体層5の界面からどこまでエッチングを進めるかについては、界面と同一の時が最も好ましいが、界面から0.2μm以内であっても良い。
(Example)
Using the film structure having the fourth compound semiconductor layer described above, an infrared sensor having the PIN diode structure shown in FIG. Here, FIG. 4a shows a structural cross-sectional view of the infrared sensor, and FIG. 4b shows a structural view of the surface opposite to the substrate of the infrared sensor. First, by the MBE method, a semi-insulating, an InSb layer that was 1.0 × 10 19 atoms / cm 3 doped with Sn was 1.0μm grown GaAs single crystal substrate (first compound semiconductor layer 2), on this An InSb layer doped with 1 × 10 16 atoms / cm 3 of Zn was grown to 2.0 μm (second compound semiconductor layer 3), and Al 0.2 In 0.8 Sb doped with 5 × 10 18 atoms / cm 3 of Zn thereon. The layer was grown by 0.02 μm (fourth compound semiconductor layer 5), and then InSb doped with 5 × 10 18 atoms / cm 3 of Zn was grown by 0.5 μm (third compound semiconductor layer 4). Using the semiconductor thin film having the above structure, the third and fourth compound semiconductor layers 5 are etched by 0.01 μm from the interface between the second compound semiconductor layer 3 and the fourth compound semiconductor layer 5 by the photolithography process and the wet etching process using acid. It went to the part which entered the two-compound semiconductor layer 3 side. This etching may be dry etching or the like. The same applies to all the etching processes below. Further, as far as the etching progresses from the interface between the second compound semiconductor layer 3 and the fourth compound semiconductor layer 5, it is most preferably the same as the interface, but may be within 0.2 μm from the interface.

次にn型ドーピング層である第一化合物半導体層2とコンタクトを取るための段差形成エッチングを以下の様にして行った。再度フォトリソ工程を行い、先に露出した第二化合物半導体層3をウェットエッチングによりエッチングし、第一化合物半導体層2を露出させた。この際エッチングは第一化合物半導体層2と第二化合物半導体層3の界面から0.1μm第一化合物半導体層2側に入った部分まで行った。また、第一化合物半導体層2と第二化合物半導体層3の界面からどこまでエッチングを進めるかについては、界面と同一の時が最も好ましいが、界面から0.5μm以内であっても良い。   Next, step formation etching for making contact with the first compound semiconductor layer 2 which is an n-type doping layer was performed as follows. The photolithography process was performed again, and the previously exposed second compound semiconductor layer 3 was etched by wet etching to expose the first compound semiconductor layer 2. At this time, the etching was performed from the interface between the first compound semiconductor layer 2 and the second compound semiconductor layer 3 to the portion entering the 0.1 μm first compound semiconductor layer 2 side. Further, as far as the etching proceeds from the interface between the first compound semiconductor layer 2 and the second compound semiconductor layer 3, it is most preferably the same as the interface, but may be within 0.5 μm from the interface.

更に上記の様にして段差形成がされた化合物半導体薄膜6に対して、素子分離のための第一化合物半導体層2のメサエッチング、すなわち残された第一化合物半導体層2を基板まで完全にエッチングする工程を前記と同様の手順行った。その後プラズマCVDを用いて、全面(GaAs基板およびこの基板に形成された化合物半導体構造)をSiNの半導体保護膜6で覆った。なおこの半導体保護膜6はSiO2またはSiO2の上にSiNを積層した構造の膜であっても良い。 Further, mesa etching of the first compound semiconductor layer 2 for element isolation is performed on the compound semiconductor thin film 6 having the step formed as described above, that is, the remaining first compound semiconductor layer 2 is completely etched to the substrate. The same procedure as described above was performed. Thereafter, the entire surface (GaAs substrate and compound semiconductor structure formed on the substrate) was covered with a SiN semiconductor protective film 6 using plasma CVD. The semiconductor protective film 6 may be a film having a structure in which SiN is laminated on SiO 2 or SiO 2 .

次いで、形成されたSiNの半導体保護膜上に電極部分のみ窓開けを行い、Au/Ti(Tiが膜側)をEB蒸着し、リフトオフ法により電極7を形成した。上記のようにして形成されたダイオードの受光部分の面積S1は420μm2、またS2は370μm2、またS4は180μm2、となるように設計した。この素子の断面図を図4に示す。比較例として、S4=S2である従来のメサ構造のPINダイオードも同様にフォトリソとウェットエッチングにより作成した。この従来メサ構造の素子も面積S1は420μm2、S4=S2=180μm2となるようにした。この素子断面図は図5に示した。 Next, only the electrode portion was opened on the formed SiN semiconductor protective film, Au / Ti (Ti is the film side) was EB-deposited, and the electrode 7 was formed by a lift-off method. Area S1 of the light-receiving portion of the diode formed as described above is 420 [mu] m 2, also S2 370 .mu.m 2, also S4 are designed as 180 [mu] m 2, and becomes. A cross-sectional view of this element is shown in FIG. As a comparative example, a PIN diode having a conventional mesa structure in which S4 = S2 was similarly formed by photolithography and wet etching. Elements of the prior art mesa structure may area S1 was set at 420μm 2, S4 = S2 = 180μm 2. A cross-sectional view of this element is shown in FIG.

この様にして作成した各赤外線センサの素子抵抗を、ダイオードに対して0.1V正のバイアスをかけた場合と、0.1V負のバイアスをかけた場合とで測定し、両測定結果の平均値をゼロバイアスの素子抵抗R0として測定した。なお測定中の各試料の温度は25℃で一定になるようにしている。この結果、本発明の構造の試料と比較例試料は何れも430Ωと同等の素子抵抗が得られた。 The element resistance of each infrared sensor thus created was measured when a 0.1 V positive bias was applied to the diode and when a 0.1 V negative bias was applied to the diode, and the average of both measurement results. The value was measured as a zero bias element resistance R 0 . The temperature of each sample during measurement is kept constant at 25 ° C. As a result, the device resistance equivalent to 430Ω was obtained for both the sample of the structure of the present invention and the comparative example sample.

次に、500Kの黒体炉を用いて赤外線を発生し、またセンサから10cmの距離に黒体炉を設置した。このような配置で、センサの基板側から赤外線を入射した。入射した赤外線のエネルギーは1.2mW/cm2である。光チョッピングの周波数は10Hzであり、この時発生した光電流量を赤外線が入射したときと遮光された時の差から測定した。この結果、本発明の構造の試料は、図5に示した比較例試料に比べて光電流量が20%増加した。これは本発明の赤外線センサの光吸収層の体積が、比較例の赤外線センサに比べて増加している為である。この結果数式1で決まる素子のS/Nも20%増加しており、本発明の有効性が確かめられた。 Next, infrared rays were generated using a 500K black body furnace, and the black body furnace was installed at a distance of 10 cm from the sensor. In such an arrangement, infrared light was incident from the substrate side of the sensor. The incident infrared energy is 1.2 mW / cm 2 . The frequency of optical chopping was 10 Hz, and the photoelectric flow rate generated at this time was measured from the difference between when the infrared ray was incident and when it was shielded from light. As a result, the photoelectric flow rate of the sample having the structure of the present invention was increased by 20% compared to the comparative sample shown in FIG. This is because the volume of the light absorption layer of the infrared sensor of the present invention is increased compared to the infrared sensor of the comparative example. As a result, the S / N of the element determined by Equation 1 also increased by 20%, confirming the effectiveness of the present invention.

1 基板
2 第一化合物半導体層
3 第二化合物半導体層
4 第三化合物半導体層
5 第四化合物半導体層
6 半導体保護膜
7 電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 First compound semiconductor layer 3 Second compound semiconductor layer 4 Third compound semiconductor layer 5 Fourth compound semiconductor layer 6 Semiconductor protective film 7 Electrode

Claims (2)

基板と、N型ドーピングされた第一化合物半導体層、ノンドープ或いはp型ドーピングされた第二化合物半導体層、第二化合物半導体層よりも更に高濃度にp型ドーピングされた第三化合物半導体層がこの順で積層された、PINダイオード構造を備える赤外線センサであって、
前記第一および第二化合部半導体層が接する部分の面積S1と、前記第二化合物半導体層の第三半導体層側の面の面積S2、と、前記第二化合物半導体層と第三化合物半導体層の接する部分の面積S3の関係が、S1>S2>S3であることを特徴とする赤外線センサ
The substrate, the N-type doped first compound semiconductor layer, the non-doped or p-type doped second compound semiconductor layer, and the p-type doped third compound semiconductor layer higher in concentration than the second compound semiconductor layer. An infrared sensor having a PIN diode structure, stacked in order,
The area S1 of the portion where the first and second compound semiconductor layers contact, the area S2 of the surface of the second compound semiconductor layer on the third semiconductor layer side, the second compound semiconductor layer and the third compound semiconductor layer Infrared sensor characterized in that the relationship of the area S3 of the part in contact with each other is S1>S2> S3
基板と、N型ドーピングされた第一化合物半導体層、ノンドープ或いはp型ドーピングされた第二化合物半導体層、第四化合物半導体層、第二化合物半導体層よりも更に高濃度にp型ドーピングされた第三化合物半導体層がこの順で積層された、PINダイオード構造を備える赤外線センサであって、
第一、第二、及び第三化合物半導体層のバンドギャップが0.1〜0.25eVであり、前記第四化合物半導体層のバンドギャップが、第一、第二、及び第三化合物半導体層よりも大きく、
前記第一および第二化合部半導体層が接する部分の面積S1と、前記第二化合物半導体層の第四化合物半導体層側の面の面積S2、と、前記第二化合物半導体層と第四化合物半導体層の接する部分の面積S4、と前記第四化合物半導体層と第三化合物半導体層の接する部分の面積S5の各面積の関係が、S1>S2>S4≧S5であることを特徴とする赤外線センサ
A substrate, a first compound semiconductor layer doped with N-type, a second compound semiconductor layer doped with non-doped or p-type, a fourth compound semiconductor layer, and a p-type doped second layer with a higher concentration than the second compound semiconductor layer. An infrared sensor having a PIN diode structure in which three compound semiconductor layers are stacked in this order,
The first, second, and third compound semiconductor layers have a band gap of 0.1 to 0.25 eV, and the fourth compound semiconductor layer has a band gap that is greater than that of the first, second, and third compound semiconductor layers. Big
The area S1 of the portion where the first and second compound semiconductor layers are in contact, the area S2 of the surface of the second compound semiconductor layer on the fourth compound semiconductor layer side, the second compound semiconductor layer and the fourth compound semiconductor The relationship between the area S4 of the part in contact with the layer and the area S5 of the part of contact with the fourth compound semiconductor layer and the third compound semiconductor layer is S1>S2> S4 ≧ S5.
JP2012067647A 2012-03-23 2012-03-23 Infrared sensor Pending JP2013201209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067647A JP2013201209A (en) 2012-03-23 2012-03-23 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067647A JP2013201209A (en) 2012-03-23 2012-03-23 Infrared sensor

Publications (1)

Publication Number Publication Date
JP2013201209A true JP2013201209A (en) 2013-10-03

Family

ID=49521235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067647A Pending JP2013201209A (en) 2012-03-23 2012-03-23 Infrared sensor

Country Status (1)

Country Link
JP (1) JP2013201209A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332178A (en) * 1991-05-02 1992-11-19 Sumitomo Electric Ind Ltd Light-receiving element
JPH05199463A (en) * 1992-01-20 1993-08-06 Olympus Optical Co Ltd Solid-state image pickup device
JPH05226687A (en) * 1992-02-18 1993-09-03 Sumitomo Electric Ind Ltd Photodetector and manufacture thereof
JPH06314813A (en) * 1993-03-04 1994-11-08 Sumitomo Electric Ind Ltd P-i-n photosensitive element, its manufacture and photoelectronic integrated circuit
JP2007299944A (en) * 2006-04-28 2007-11-15 Asahi Kasei Electronics Co Ltd Infrared sensor
JP2008066584A (en) * 2006-09-08 2008-03-21 Asahi Kasei Electronics Co Ltd Photosensor
JP2010177354A (en) * 2009-01-28 2010-08-12 Sumitomo Electric Ind Ltd Semiconductor light-emitting element and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332178A (en) * 1991-05-02 1992-11-19 Sumitomo Electric Ind Ltd Light-receiving element
JPH05199463A (en) * 1992-01-20 1993-08-06 Olympus Optical Co Ltd Solid-state image pickup device
JPH05226687A (en) * 1992-02-18 1993-09-03 Sumitomo Electric Ind Ltd Photodetector and manufacture thereof
JPH06314813A (en) * 1993-03-04 1994-11-08 Sumitomo Electric Ind Ltd P-i-n photosensitive element, its manufacture and photoelectronic integrated circuit
JP2007299944A (en) * 2006-04-28 2007-11-15 Asahi Kasei Electronics Co Ltd Infrared sensor
JP2008066584A (en) * 2006-09-08 2008-03-21 Asahi Kasei Electronics Co Ltd Photosensor
JP2010177354A (en) * 2009-01-28 2010-08-12 Sumitomo Electric Ind Ltd Semiconductor light-emitting element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR102221682B1 (en) A dual band photodetector and a method thereof
US8441032B2 (en) Low-level signal detection by semiconductor avalanche amplification
US11682741B2 (en) Electromagnetic wave detector
JP5386764B2 (en) Photodetector
JP5063929B2 (en) Infrared sensor
JP5528882B2 (en) Infrared sensor
JP6487284B2 (en) Infrared sensor element and manufacturing method thereof
JP5266521B2 (en) Infrared sensor and infrared sensor IC
US10128386B2 (en) Semiconductor structure comprising an absorbing area placed in a focusing cavity
US7696593B2 (en) PIN-type photo detecting element with three semiconductor layers, and window semiconductor layer having controlled thickness
JP2010147158A (en) Semiconductor light-receiving element and method of manufacturing the same
JP2019114817A (en) PiN diode structure with surface charge suppression
Guo et al. High-responsivity Si photodiodes at 1060 nm in standard CMOS technology
US20140312446A1 (en) Semiconductor structure able to receive electromagnetic radiation, semiconductor component and process for fabricating such a semiconductor structure
CN113921646A (en) Single-photon detector, manufacturing method thereof and single-photon detector array
He et al. CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates
US9190550B2 (en) Photodiode
US20230343882A1 (en) Electromagnetic wave detector and electromagnetic wave detector array
JP4138853B2 (en) Infrared sensor IC
JP2013201209A (en) Infrared sensor
CN214254428U (en) Pixel structure, infrared image sensor and electronic equipment
US20220392934A1 (en) Electromagnetic wave detector and electromagnetic wave detector assembly
JP4608609B2 (en) Photodiode
Guo et al. Design and fabrication of 4H-SiC Sam-APD ultraviolet photodetector
JP5840408B2 (en) Infrared sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510