JP2013200213A - Light emitting position specification system - Google Patents

Light emitting position specification system Download PDF

Info

Publication number
JP2013200213A
JP2013200213A JP2012068770A JP2012068770A JP2013200213A JP 2013200213 A JP2013200213 A JP 2013200213A JP 2012068770 A JP2012068770 A JP 2012068770A JP 2012068770 A JP2012068770 A JP 2012068770A JP 2013200213 A JP2013200213 A JP 2013200213A
Authority
JP
Japan
Prior art keywords
optical fiber
amplitude
frequency signal
signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012068770A
Other languages
Japanese (ja)
Other versions
JP5824393B2 (en
Inventor
Hiroyuki Tsubata
裕之 津端
Shinya Otsuka
信也 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Subaru Corp
Original Assignee
Kyushu Institute of Technology NUC
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Fuji Heavy Industries Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2012068770A priority Critical patent/JP5824393B2/en
Publication of JP2013200213A publication Critical patent/JP2013200213A/en
Application granted granted Critical
Publication of JP5824393B2 publication Critical patent/JP5824393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To high-accurately specify, whether before an airframe is assembled or after completely assembled, sparks generated at various portions in the airframe.SOLUTION: A light emitting position specification system 100 includes: a plurality of optical fibers 110; photoelectric conversion units for subjecting light guided through the plurality of optical fibers to photoelectric conversion and generating amplitude signals showing light intensity by an amplitude; multipliers for multiplying different frequency signals by the amplitude signals respectively; combiners for combining the plurality of multiplied frequency signals; and frequency signal determining devices 130 for determining whether or not a specified frequency signal is present in a combined composite signal.

Description

本発明は、航空機の雷撃試験においてスパークによる発光位置を特定する発光位置特定システムに関する。   The present invention relates to a light emission position specifying system for specifying a light emission position by a spark in an aircraft lightning strike test.

航空機では、その飛行状態を維持すべく自機の状態を常に監視しており、機体に何らかの不具合が生じた場合には、不具合の原因となる異常箇所を迅速に特定し、その飛行状態が維持できなくなる前に対処しなければならない。   Aircraft constantly monitors the aircraft's condition to maintain its flight status, and if any malfunction occurs in the aircraft, it can quickly identify the abnormal location causing the malfunction and maintain its flight status. You have to deal with it before you can't.

そこで、例えば、機体を構成する複合材の構造部材中に光ファイバを埋め込み、光源から導光された光信号が光検出器に到達しないダメージ部位を検出し、かかるダメージ部位を機体の異常箇所として特定する技術が公開されている(例えば、特許文献1、2)。また、機体の表層面に光ファイバを設け、その透過光強度の変化に応じて機体の損傷位置や損傷度合いを検出する技術が知られている(例えば、特許文献3)。   Therefore, for example, an optical fiber is embedded in the structural member of the composite material constituting the airframe, a damaged portion where the optical signal guided from the light source does not reach the photodetector is detected, and the damaged portion is regarded as an abnormal portion of the airframe. The technique to identify is open | released (for example, patent document 1, 2). In addition, a technique is known in which an optical fiber is provided on the surface of the airframe, and the damage position and degree of damage of the airframe are detected in accordance with the change in transmitted light intensity (for example, Patent Document 3).

また、航空機に雷撃を与えた場合の機体の影響を把握したり、耐性を高める改変の効果を確かめるために、航空機に対して雷撃試験が実行される。かかる雷撃試験において雷撃流が機体の構造部を流れると不適切な接合部においてスパーク(光)が発生する。特に燃料タンク等の周囲においてはスパークが生じないよう厳密な試験が必要となる。一方、航空機材料には、近年複合材料が多用されてきており、この複合材の複雑な構造は、雷撃を受けた際の安全性を確認する雷撃試験の負荷を高くする傾向がある。   In addition, a lightning strike test is performed on the aircraft in order to grasp the effect of the aircraft when it strikes the aircraft and to confirm the effect of the modification that increases the resistance. In such a lightning strike test, when a lightning strike flows through the structure of the airframe, sparks (light) are generated at inappropriate joints. In particular, a rigorous test is required to prevent sparks around the fuel tank and the like. On the other hand, composite materials have been frequently used for aircraft materials in recent years, and the complex structure of the composite materials tends to increase the load of a lightning strike test for confirming safety when subjected to a lightning strike.

雷撃を受けた際の防爆を確認する手法としては、雷撃を模擬した電流によって生じるスパークの映像を撮影する方法と、少量の可燃性ガスによる小規模な爆発によって確認する方法がある。しかし、撮影装置は、雷撃に伴う電磁波の影響を避けるために離隔した位置に置く必要がある。   There are two methods for confirming the explosion-proof at the time of a lightning strike: a method of photographing a spark image generated by a current simulating a lightning strike, and a method of confirming a small-scale explosion caused by a small amount of combustible gas. However, it is necessary to place the imaging device in a separated position in order to avoid the influence of electromagnetic waves accompanying lightning strikes.

特開昭63−208748号公報JP-A-63-208748 特開昭63−285448号公報JP-A 63-285448 特開平9−273906号公報JP-A-9-273906

このように、撮像装置を用いてスパークを特定する技術では、占有領域の大きい撮像装置を設置する位置の自由度が低く、その外形寸法の大きさ故に、機体に設けられた孔や隙間に挿入することもできない。したがって、雷撃試験を、機体の完成品で行うことができず、機体を組み立てる前の部分単位でしか行うことができなかった。ここで、複雑な構造での雷撃を確認するには、可燃性ガスによる確認を行うことになるが、この場合はスパーク位置を特定することはできなかった。   As described above, the technology for identifying a spark using an imaging device has a low degree of freedom in the position of installing an imaging device with a large occupation area, and is inserted into a hole or a gap provided in the airframe due to the size of the outer dimensions. I can't do that either. Therefore, the lightning strike test could not be performed on the finished product of the aircraft, and could only be performed on a partial unit before assembling the aircraft. Here, in order to confirm the lightning strike in a complicated structure, confirmation by flammable gas is performed, but in this case, the spark position could not be specified.

また、撮像装置は、任意の方向から一様にしか撮像できないので、撮像装置に対して側面や背面となる面に生じるスパークを特定することができなかった。さらに、その分解能も撮像装置の解像度と機体までの距離に依存し、特定精度の向上を図るのが困難であった。   In addition, since the imaging device can only capture images uniformly from an arbitrary direction, it has not been possible to identify a spark that occurs on the side or back surface of the imaging device. Furthermore, the resolution also depends on the resolution of the imaging device and the distance to the aircraft, and it has been difficult to improve the specific accuracy.

そこで本発明は、このような課題に鑑み、機体が組み立てられる前または完成後のいずれの状態であっても、機体の様々な部位に生じるスパークを高精度で特定することが可能な発光位置特定システムを提供することを目的としている。   Therefore, in view of such problems, the present invention is capable of specifying a light emitting position that can accurately specify sparks generated in various parts of the aircraft, even before the aircraft is assembled or after completion. The purpose is to provide a system.

上記課題を解決するために、本発明の発光位置特定システムは、複数の光ファイバと、複数の光ファイバに導かれた光を光電変換し、光強度を振幅で示す振幅信号を生成する光電変換部と、振幅信号を、相異なる周波数信号にそれぞれ乗算する乗算器と、乗算された複数の周波数信号を合成する合成器と、合成された合成信号における特定の周波数信号の有無を判定する周波数信号判定装置と、を備えることを特徴とする。   In order to solve the above-described problem, the light emission position specifying system according to the present invention photoelectrically converts a plurality of optical fibers and light guided to the plurality of optical fibers and generates an amplitude signal indicating the light intensity in amplitude. Unit, a multiplier for multiplying different frequency signals by amplitude signals, a synthesizer for synthesizing a plurality of multiplied frequency signals, and a frequency signal for determining the presence or absence of a specific frequency signal in the synthesized signal And a determination device.

光ファイバの端部は、予め定められた受光可能角度となるように加工されていてもよい。   The end of the optical fiber may be processed to have a predetermined light receiving angle.

本発明によれば、機体が組み立てられる前または完成後のいずれの状態であっても、機体の様々な部位に生じるスパークを高精度で特定することが可能となる。   According to the present invention, it is possible to specify with high accuracy sparks generated in various parts of the aircraft, regardless of whether the aircraft is in an assembled state or after completion.

雷撃試験を説明するための説明図である。It is explanatory drawing for demonstrating a lightning strike test. 光ファイバの設置例を示した翼の断面斜視図である。It is the cross-sectional perspective view of the wing | blade which showed the example of installation of an optical fiber. 光ファイバの端部形状を説明するための外観図である。It is an external view for demonstrating the edge part shape of an optical fiber. 中継装置の具体的な回路を示した回路図である。It is the circuit diagram which showed the specific circuit of the relay apparatus. 光ファイバと周波数との対応付けを示した説明図である。It is explanatory drawing which showed matching with an optical fiber and a frequency.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(発光位置特定システム100)
図1は、雷撃試験を説明するための説明図である。図1に示すように、雷撃試験においては、航空機の機体1の表面および内部に発光位置特定システム100の検出端部(光ファイバー)を設置し、電撃を加える。このとき、機体1に不適切な接合部があった場合、スパークが生じる。ただし、スパークは、接合部のあらゆる位置で生じる可能性があるので、様々な部位において様々な角度でスパークに伴う光を検出しなければならない。
(Light emission position specifying system 100)
FIG. 1 is an explanatory diagram for explaining a lightning strike test. As shown in FIG. 1, in the lightning strike test, the detection end (optical fiber) of the light emission position specifying system 100 is installed on the surface and inside of the aircraft body 1 and electric shock is applied. At this time, if the airframe 1 has an inappropriate joint, sparking occurs. However, since sparks can occur at any location of the joint, light associated with the sparks must be detected at various angles at various locations.

このようなスパークの検出を実現すべく、発光位置特定システム100は、光ファイバ110と、中継装置120と、周波数信号判定装置130とを含んで構成される。   In order to realize such spark detection, the light emission position specifying system 100 includes an optical fiber 110, a relay device 120, and a frequency signal determination device 130.

光ファイバ110は、1または複数で束(光ファイバ束)を成し、さらに光ファイバ束も1または複数準備される。各光ファイバ束は機体1を構成する試験対象部位に分岐して配され、そこから各光ファイバが試験対象部位のさらに詳細な部位に分岐して配される。中継装置120は、光ファイバ束と同数設けられる。かかる中継装置120は、光ファイバ束に含まれる1または複数の光ファイバ110に導かれた光を受光し、受光した光を、相異なる周波数信号が合成された合成信号(電気信号)に変換する。周波数信号判定装置130は、合成された合成信号における特定の周波数信号の有無を判定する。以下、それぞれの構成を詳細に説明する。   One or more optical fibers 110 form a bundle (optical fiber bundle), and one or more optical fiber bundles are also prepared. Each optical fiber bundle is branched and arranged at a test target part constituting the body 1, and each optical fiber is branched and arranged at a more detailed part of the test target part. The number of relay devices 120 is the same as the number of optical fiber bundles. The relay device 120 receives light guided to one or a plurality of optical fibers 110 included in the optical fiber bundle, and converts the received light into a combined signal (electric signal) in which different frequency signals are combined. . The frequency signal determination device 130 determines the presence or absence of a specific frequency signal in the combined signal. Hereinafter, each configuration will be described in detail.

(光ファイバ110)
光ファイバ110は、ガラスやプラスチックの細い繊維で形成され可撓性を有し、伝送速度の高い光信号をそのまま伝達できる。
(Optical fiber 110)
The optical fiber 110 is formed of thin fibers of glass or plastic, has flexibility, and can transmit an optical signal with a high transmission speed as it is.

仮に、撮像装置を用いてスパークを特定する場合、撮像装置の外形寸法が問題になり、機体を組み立てる前の部分単位でしか電撃試験を行うことができなかった。本実施形態では、その外形寸法を様々に形成することができ、可撓性を有する光ファイバ110を用いているので、機体のあらゆる位置、例えば、撮像装置では撮像することができない、機体1に設けられた孔や隙間に挿入することができる。したがって、機体が組み立てられる前または完成後のいずれの状態であっても雷撃試験を行うことが可能である。   If a spark is specified using an image pickup device, the external dimensions of the image pickup device become a problem, and an electric shock test can be performed only in a partial unit before assembling the airframe. In the present embodiment, the outer dimensions can be variously formed, and the optical fiber 110 having flexibility is used. It can be inserted into the provided hole or gap. Therefore, it is possible to perform a lightning strike test in any state before or after the airframe is assembled.

また、撮像装置を用いる場合、任意の方向から一様にしか撮像できなかったが、本実施形態の光ファイバ110は指向性を有するので、スパークによる光が生じる方向に光ファイバ110を向けて設置するだけで、所望する方向の発光を限定的に検出することが可能となる。   In addition, when using the imaging device, it was possible to capture images only from an arbitrary direction. However, since the optical fiber 110 of this embodiment has directivity, the optical fiber 110 is installed in a direction in which light due to sparks is generated. By simply doing so, it becomes possible to detect light emission in a desired direction in a limited manner.

図2は、光ファイバ110の設置例を示した翼の断面斜視図である。ここでは、機体1の翼2に設けられた貫通孔2aから翼2の内部空間に光ファイバ束が挿入され、光ファイバ束から分岐した8本の光ファイバ110が周方向に等間隔(例えば45度)となるように固定具112に固定されている。こうして、翼2に平行な面上の複数の方向に生じるスパークをいずれかの光ファイバ110で排他的に受光できる。また、ここでは、後述する周波数と光ファイバ110との対応関係を把握し易いように、周波数と光ファイバ110との方向との並び順を合わせている。   FIG. 2 is a cross-sectional perspective view of a wing illustrating an installation example of the optical fiber 110. Here, the optical fiber bundle is inserted into the inner space of the wing 2 from the through hole 2a provided in the wing 2 of the fuselage 1, and the eight optical fibers 110 branched from the optical fiber bundle are equally spaced in the circumferential direction (for example, 45 It is being fixed to the fixing tool 112 so that it may become. In this way, sparks generated in a plurality of directions on a plane parallel to the blade 2 can be exclusively received by any one of the optical fibers 110. Here, the order of arrangement of the frequency and the direction of the optical fiber 110 is adjusted so that the correspondence between the frequency and the optical fiber 110 described later can be easily understood.

さらに、撮像装置では、その分解能も撮像装置の解像度と機体1までの距離に依存していたが、本実施形態の光ファイバ110は、その外形寸法を小さくし、数を増やすだけで分解能を上げることができ、上記の可撓性や指向性と合わせて自由度および特定精度の高いスパーク検出が可能となる。   Further, in the imaging apparatus, the resolution also depends on the resolution of the imaging apparatus and the distance to the airframe 1. However, the optical fiber 110 of the present embodiment increases the resolution only by reducing the outer dimensions and increasing the number. In addition to the flexibility and directivity described above, spark detection with a high degree of freedom and specific accuracy is possible.

また、光ファイバ110の端部は、予め定められた受光可能角度となるように加工される。   Further, the end portion of the optical fiber 110 is processed so as to have a predetermined light receiving angle.

図3は、光ファイバ110の端部形状を説明するための外観図である。例えば、機体1の一部のみに生じるスパークを検出する場合、図3(a)のように、光ファイバ110の端部110aを遮蔽物170で覆うことで他で生じる光を遮光しつつ、遮蔽物170内で生じた発光のみを検出することができる。   FIG. 3 is an external view for explaining the end shape of the optical fiber 110. For example, when detecting a spark generated only in a part of the airframe 1, as shown in FIG. 3A, the end 110 a of the optical fiber 110 is covered with the shielding object 170 while blocking the light generated elsewhere. Only luminescence generated in the object 170 can be detected.

また、図3(b)のように、光ファイバ110の端部110aに凸レンズ172を形成することで、光ファイバ110の断面より大きな面のいずれかの部位で生じる発光を検出することができる。さらに図3(c)のように、光ファイバ110の端部110aに凹レンズ174を形成することで、光ファイバ110の断面より小さな面のみに生じる発光を検出することができる。また、光ファイバ110の端部形状は、上記した加工に限らず、プリズムを用いる等、既存の様々な技術を適用することもできる。   Further, as shown in FIG. 3B, by forming the convex lens 172 at the end 110 a of the optical fiber 110, it is possible to detect light emission generated at any part of the surface larger than the cross section of the optical fiber 110. Further, as shown in FIG. 3C, by forming the concave lens 174 at the end portion 110 a of the optical fiber 110, it is possible to detect light emission generated only on a surface smaller than the cross section of the optical fiber 110. Further, the end shape of the optical fiber 110 is not limited to the above-described processing, and various existing techniques such as using a prism can be applied.

(中継装置120)
図4は、中継装置120の具体的な回路を示した回路図であり、図5は、光ファイバ110と周波数との対応付けを示した説明図である。中継装置120は、光電変換部122と、発振部124と、乗算器126と、合成器128とを含んで構成される。
(Relay device 120)
FIG. 4 is a circuit diagram showing a specific circuit of the relay device 120, and FIG. 5 is an explanatory diagram showing the association between the optical fiber 110 and the frequency. The relay device 120 includes a photoelectric conversion unit 122, an oscillation unit 124, a multiplier 126, and a combiner 128.

光電変換部122は、例えば、フォトトランジスタ等の受光素子で構成され、光ファイバ束における1または複数の光ファイバ110に導かれた光を光電変換し、光強度を振幅で示す振幅信号を生成する。したがって、スパークの光強度が小さい場合は振幅信号の振幅が小さくなり、光強度が大きい場合は振幅信号が大きくなる。   The photoelectric conversion unit 122 includes, for example, a light receiving element such as a phototransistor, photoelectrically converts light guided to one or a plurality of optical fibers 110 in the optical fiber bundle, and generates an amplitude signal indicating the light intensity in amplitude. . Accordingly, when the light intensity of the spark is small, the amplitude of the amplitude signal is small, and when the light intensity is large, the amplitude signal is large.

発振部124は、振幅は等しいが周波数が相異なる複数の周波数信号を生成する。かかる周波数信号は、発生周波数が異なる発振器を用いて生成してもよいし、複数の分周器により1の発振器を分周して生成してもよい。また、利用する周波数帯域は、例えば、10〜100MHzとし、対数的に100分割した周波数を用いる。   The oscillator 124 generates a plurality of frequency signals having the same amplitude but different frequencies. Such a frequency signal may be generated using oscillators with different generation frequencies, or may be generated by dividing one oscillator by a plurality of frequency dividers. Moreover, the frequency band to be used is, for example, 10 to 100 MHz, and a frequency that is logarithmically divided into 100 is used.

乗算器126は、光電変換部122で光電変換された複数の振幅信号と、発振部124で生成された複数の周波数信号とをそれぞれ1対1に対応させて乗算する(AM変調)。このように周波数信号は振幅信号の数以上準備され、異なる光ファイバ110に基づく振幅信号には、異なる周波数信号が乗じられる。したがって、光ファイバ110に付されたそれぞれの識別子180と周波数182とは、図5に示すように対応付けることができる。   The multiplier 126 multiplies the plurality of amplitude signals photoelectrically converted by the photoelectric conversion unit 122 and the plurality of frequency signals generated by the oscillation unit 124 in a one-to-one correspondence (AM modulation). In this way, more than the number of amplitude signals are prepared, and the amplitude signals based on different optical fibers 110 are multiplied by different frequency signals. Therefore, each identifier 180 attached to the optical fiber 110 and the frequency 182 can be associated as shown in FIG.

合成器128は、乗算器126で乗算された複数の周波数信号を全て合成し、合成信号を生成する。   The synthesizer 128 synthesizes all of the plurality of frequency signals multiplied by the multiplier 126 to generate a synthesized signal.

本実施形態では、光電変換部122の数を増加させるか、もしくは、中継装置120を増加させることで容易に光ファイバ110の数を増やすことができ、高い分解能で雷撃試験を行うことができる。また、中継装置120では、光ファイバ110に導かれた光を電気信号として多重化しているので、中継装置120の出力は、光電変換部122に接続された光ファイバ110の数に拘わらず1の合成信号であり、低コストかつ効率的に雷撃試験を行うことが可能となる。   In this embodiment, the number of optical fibers 110 can be easily increased by increasing the number of photoelectric conversion units 122 or increasing the number of relay devices 120, and a lightning strike test can be performed with high resolution. In addition, since the relay device 120 multiplexes the light guided to the optical fiber 110 as an electrical signal, the output of the relay device 120 is 1 regardless of the number of optical fibers 110 connected to the photoelectric conversion unit 122. It is a composite signal, and it is possible to perform a lightning strike test efficiently at low cost.

(周波数信号判定装置130)
周波数信号判定装置130は、FFT(Fast Fourier Transform)装置やオシロスコープ等で構成され、合成器128で合成された合成信号から、例えば特定の周波数を中心とする所定帯域のBPF(Band Pass Filter)を用いて特定の周波数信号のみ抽出する。そして、その周波数信号の振幅が所定の閾値以上であることをもって、その特定の周波数信号が有る、即ち、図5において、その周波数信号の周波数に対応した光ファイバ110の位置でスパークが発生したことを把握する。
(Frequency signal determination device 130)
The frequency signal determination device 130 is configured by an FFT (Fast Fourier Transform) device, an oscilloscope, and the like, and, for example, a BPF (Band Pass Filter) of a predetermined band centered on a specific frequency is synthesized from the synthesized signal synthesized by the synthesizer 128. Only a specific frequency signal is extracted. Then, when the amplitude of the frequency signal is equal to or greater than a predetermined threshold value, the specific frequency signal is present, that is, in FIG. 5, a spark has occurred at the position of the optical fiber 110 corresponding to the frequency of the frequency signal. To figure out.

ここで、所定帯域は、発振部124で生成される異なる複数の周波数信号のうち、特定の周波数信号に隣接する周波数信号と、当該特定の周波数信号とが識別可能となる周波数幅である。また、所定の閾値は、航空機の認証試験で定められているエネルギー(例えば、200マイクロジュール:ガスの発火エネルギー)の光強度に相当する周波数信号の振幅である。   Here, the predetermined band is a frequency width in which a frequency signal adjacent to a specific frequency signal among a plurality of different frequency signals generated by the oscillating unit 124 can be distinguished from the specific frequency signal. The predetermined threshold is the amplitude of a frequency signal corresponding to the light intensity of energy (for example, 200 microjoules: gas ignition energy) determined in an aircraft certification test.

こうして、例えば、オシロスコープを用いた場合、現実的なチャンネル数内で一度に多数のスパークを特定することができ、また、FFT装置を用いた場合、任意の時点に複数の部位で生じたスパークを、その光強度を比較できる状態で把握することができる。ここでは、FFT装置やオシロスコープを挙げているが、合成信号における特定の周波数信号の有無さえ判定できれば、既存のあらゆる電気機器を適用することが可能である。   Thus, for example, when using an oscilloscope, it is possible to identify a large number of sparks at a time within the realistic number of channels, and when using an FFT device, sparks generated at a plurality of sites at arbitrary points in time can be identified. The light intensity can be grasped in a state where the light intensity can be compared. Here, an FFT device or an oscilloscope is mentioned, but any existing electrical device can be applied as long as it can be determined whether or not there is a specific frequency signal in the synthesized signal.

以上、説明したように本実施形態の発光位置特定システム100では、機体1が組み立てられる前または完成後のいずれの状態であっても、雷撃試験を行うことができ、光ファイバ110の外形寸法や数を調整することで、分解能を容易に高めることができる。したがって、機体1の様々な部位で生じるスパークを高精度で特定することが可能となる。   As described above, in the light emission position specifying system 100 according to the present embodiment, the lightning strike test can be performed in any state before or after the airframe 1 is assembled. The resolution can be easily increased by adjusting the number. Therefore, it is possible to specify sparks generated in various parts of the body 1 with high accuracy.

また、複数の部位の複数の角度のスパークを同時かつリアルタイムに取得できるので、雷撃を与えた場合の機体1の影響を迅速に把握したり、耐性を高める改変の効果を迅速に確かめることが可能となる。   In addition, it is possible to simultaneously acquire real-time sparks from multiple angles of multiple parts, so it is possible to quickly grasp the effects of the Aircraft 1 when a lightning strike is applied, and to quickly confirm the effect of modification that increases resistance. It becomes.

さらに、本実施形態では、光ファイバ束から分岐した複数の光ファイバ110の間に相当する位置でスパークが生じた場合であっても、光ファイバ110の受光可能角度によっては、複数の光ファイバ110全てでそのスパークの光を受光できる。したがって、複数の光ファイバ110に対応する周波数信号の振幅から、そのスパークの大きさおよび位置を特定することも可能である。   Furthermore, in the present embodiment, even if a spark is generated at a position corresponding to between the plurality of optical fibers 110 branched from the optical fiber bundle, the plurality of optical fibers 110 may depend on the light receiving angle of the optical fiber 110. All can receive the light of the spark. Therefore, the magnitude and position of the spark can be specified from the amplitude of the frequency signal corresponding to the plurality of optical fibers 110.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

本発明は、航空機の雷撃試験においてスパークによる発光位置を特定する発光位置特定システムに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a light emission position specifying system that specifies a light emission position by a spark in an aircraft lightning strike test.

1 …機体
100 …発光位置特定システム
110 …光ファイバ
110a …端部
122 …光電変換部
126 …乗算器
128 …合成器
130 …周波数信号判定装置
DESCRIPTION OF SYMBOLS 1 ... Airframe 100 ... Light emission position identification system 110 ... Optical fiber 110a ... End part 122 ... Photoelectric conversion part 126 ... Multiplier 128 ... Synthesizer 130 ... Frequency signal determination apparatus

Claims (2)

複数の光ファイバと、
前記複数の光ファイバに導かれた光を光電変換し、光強度を振幅で示す振幅信号を生成する光電変換部と、
前記振幅信号を、相異なる周波数信号にそれぞれ乗算する乗算器と、
乗算された複数の周波数信号を合成する合成器と、
合成された合成信号における特定の周波数信号の有無を判定する周波数信号判定装置と、
を備えることを特徴とする発光位置特定システム。
A plurality of optical fibers;
A photoelectric conversion unit that photoelectrically converts the light guided to the plurality of optical fibers and generates an amplitude signal indicating the light intensity in amplitude;
A multiplier for multiplying the amplitude signal by a different frequency signal;
A synthesizer for synthesizing a plurality of multiplied frequency signals;
A frequency signal determination device that determines the presence or absence of a specific frequency signal in the combined signal;
A light emission position specifying system comprising:
前記光ファイバの端部は、予め定められた受光可能角度となるように加工されていることを特徴とする請求項1に記載の発光位置特定システム。   The light emitting position specifying system according to claim 1, wherein an end portion of the optical fiber is processed to have a predetermined light receiving angle.
JP2012068770A 2012-03-26 2012-03-26 Light emission location system Active JP5824393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068770A JP5824393B2 (en) 2012-03-26 2012-03-26 Light emission location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068770A JP5824393B2 (en) 2012-03-26 2012-03-26 Light emission location system

Publications (2)

Publication Number Publication Date
JP2013200213A true JP2013200213A (en) 2013-10-03
JP5824393B2 JP5824393B2 (en) 2015-11-25

Family

ID=49520568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068770A Active JP5824393B2 (en) 2012-03-26 2012-03-26 Light emission location system

Country Status (1)

Country Link
JP (1) JP5824393B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077782A1 (en) * 2015-11-05 2017-05-11 シャープ株式会社 Sensor circuit
EP3226217A2 (en) 2016-03-31 2017-10-04 Subaru Corporation Optical observation system and optical observation method
CN110893914A (en) * 2018-09-12 2020-03-20 波音公司 Lightning direct effect test system and method
EP3650873A1 (en) 2018-11-07 2020-05-13 Subaru Corporation Discharge detection system and discharge detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188303A (en) * 1989-08-18 1991-08-16 Fujitsu Ltd Apparatus for detecting light emitting position
JPH08240825A (en) * 1995-03-06 1996-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical receiver
JPH08313446A (en) * 1995-05-19 1996-11-29 Toshiba Corp Image pickup apparatus
JPH08331057A (en) * 1995-03-27 1996-12-13 Sony Corp Optical signal transmitter, optical signal receiver, and optical signal transmitter-receiver
JPH0942914A (en) * 1995-07-27 1997-02-14 Nec Corp Optical fiber sensor
JPH09166418A (en) * 1995-12-14 1997-06-24 Toshiba Corp Position measuring apparatus and light-emitting device for position measurement
JP2000111398A (en) * 1998-09-30 2000-04-18 Hamamatsu Photonics Kk Measuring apparatus for self-luminescence from flame

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188303A (en) * 1989-08-18 1991-08-16 Fujitsu Ltd Apparatus for detecting light emitting position
JPH08240825A (en) * 1995-03-06 1996-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical receiver
JPH08331057A (en) * 1995-03-27 1996-12-13 Sony Corp Optical signal transmitter, optical signal receiver, and optical signal transmitter-receiver
JPH08313446A (en) * 1995-05-19 1996-11-29 Toshiba Corp Image pickup apparatus
JPH0942914A (en) * 1995-07-27 1997-02-14 Nec Corp Optical fiber sensor
JPH09166418A (en) * 1995-12-14 1997-06-24 Toshiba Corp Position measuring apparatus and light-emitting device for position measurement
JP2000111398A (en) * 1998-09-30 2000-04-18 Hamamatsu Photonics Kk Measuring apparatus for self-luminescence from flame

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077782A1 (en) * 2015-11-05 2017-05-11 シャープ株式会社 Sensor circuit
JPWO2017077782A1 (en) * 2015-11-05 2018-07-26 シャープ株式会社 Sensor circuit
EP3226217A2 (en) 2016-03-31 2017-10-04 Subaru Corporation Optical observation system and optical observation method
EP3226217A3 (en) * 2016-03-31 2017-11-22 Subaru Corporation Optical observation system and optical observation method
US10996103B2 (en) 2016-03-31 2021-05-04 Subaru Corporation Optical observation system and optical observation method
CN110893914A (en) * 2018-09-12 2020-03-20 波音公司 Lightning direct effect test system and method
US10739395B2 (en) * 2018-09-12 2020-08-11 The Boeing Company Lightning direct effects (LDE) testing system and method using a digitally-controlled reference light source
CN110893914B (en) * 2018-09-12 2024-06-04 波音公司 Lightning direct effect test system and method
EP3650873A1 (en) 2018-11-07 2020-05-13 Subaru Corporation Discharge detection system and discharge detection method
US11009466B2 (en) 2018-11-07 2021-05-18 Subaru Corporation Discharge detection system and discharge detection method

Also Published As

Publication number Publication date
JP5824393B2 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5824393B2 (en) Light emission location system
US4648124A (en) Apparatus for locating passive intermodulation interference sources
EP2412974B1 (en) System for estimating a condition of a non-conductive hollow structure exposed to a lightning strike
US10012688B2 (en) Discharge occurrence status evaluation device and evaluation method
RU2018104701A (en) DEVICE FOR GENERATING ULTRASONIC VIBRATION IN A TOOL AND FOR MEASURING VIBRATION PARAMETERS
CN103376373A (en) Electromagnetic wave interference detecting system
CN109932614A (en) A kind of cable fault investigation method and device
EP2660614A3 (en) Systems and methods to detect generator collector flashover
CN209417287U (en) A kind of Compact Laser Radar
CN104280718A (en) Transformer station abnormal sound monitoring and positioning method
CN109211975A (en) Fiber Reinforced Metal Laminates defect chirp coherent laser motivates infrared thermal wave destructive interference detection device and method
JP6144923B2 (en) Light observation method
Park et al. A structural health monitoring project for a composite unmanned aerial vehicle wing: Overview and evaluation tests
EP3455602B1 (en) Optical fiber communications with structural monitoring of composite structures
JP6745445B2 (en) Optical observation system and optical observation method
US8933393B2 (en) Electromagnetically-shielded optical system having a waveguide beyond cutoff extending through a shielding surface of an electromagnetically shielding enclosure
CN109343028A (en) A kind of Compact Laser Radar
EP2972218B1 (en) Focused optical configuration for nsms probes
US9294193B2 (en) System and method for providing active RF shielding
KR102333628B1 (en) Aircraft lightning indirect effect test apparatus using trigger
JP5725293B2 (en) Electrical equipment monitoring system and electrical equipment monitoring method
KR101634690B1 (en) Animal collision crash response system and the corresponding control method for a wind turbine
CN105510722A (en) Flat absorbing material insertion loss measurement apparatus and measurement method
CN104183102A (en) Wireless PCB tester
CN104535986B (en) laser radar optical efficiency detecting device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250