JP2013200200A - Directivity confirmation test method and device for directional ground relay - Google Patents

Directivity confirmation test method and device for directional ground relay Download PDF

Info

Publication number
JP2013200200A
JP2013200200A JP2012068556A JP2012068556A JP2013200200A JP 2013200200 A JP2013200200 A JP 2013200200A JP 2012068556 A JP2012068556 A JP 2012068556A JP 2012068556 A JP2012068556 A JP 2012068556A JP 2013200200 A JP2013200200 A JP 2013200200A
Authority
JP
Japan
Prior art keywords
phase
test
zero
voltage
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012068556A
Other languages
Japanese (ja)
Other versions
JP5888044B2 (en
Inventor
Masaharu Iyama
正治 猪山
Hirofumi Uchino
博文 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2012068556A priority Critical patent/JP5888044B2/en
Publication of JP2013200200A publication Critical patent/JP2013200200A/en
Application granted granted Critical
Publication of JP5888044B2 publication Critical patent/JP5888044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To meet a need to miniaturize the whole of a directivity confirmation test device of a directional ground relay to collect components of the device in a tester.SOLUTION: A testing single-phase transformer having a ground test voltage applied to the primary side is divided to a first testing single-phase transformer for voltage application and a second testing single-phase transformer for current circuit. One end of the secondary side of the first testing single-phase transformer is connected to a three-phase collection point of a main circuit, and the other end of the primary side is grounded. A testing impedance is connected to the secondary side of the second testing single-phase transformer, so that a zero-phase current flowing in the testing impedance and a zero-phase voltage detected by zero-phase voltage detection means are inputted to a directional ground relay. In addition, a reactor can be used as the testing impedance.

Description

本発明は、地絡方向継電器の方向性確認試験に関するもので、特に地絡方向継電器の単体試験だけではなく、零相電圧や零相電流の検出部材をも含めた総合的な方向性確認試験方法とその装置に関するものである。   The present invention relates to a direction confirmation test of a ground fault direction relay, and not only a unit test of a ground fault direction relay, but also a comprehensive direction confirmation test including a detection member of zero phase voltage and zero phase current. The present invention relates to a method and apparatus.

地絡方向継電器は、保護対象系統の地絡時に発生する零相電圧を接地形計器用変圧器(EVT)または零相コンデンサ分圧器(ZPC)などで検出し、保護対象系統の負荷回線を流れる零相電流を零相変流器(ZCT)で検出し、これら零相電圧と零相電流との位相関係から、系統の負荷側回線が健全であるか地絡故障回線であるかを弁別し、地絡故障回線のみ選択遮断することにより系統全体の安定運用を確保することを目的にして使用される。   The earth fault direction relay detects the zero-phase voltage generated at the time of the earth fault of the system to be protected by a grounded instrument transformer (EVT) or the zero-phase capacitor voltage divider (ZPC) and flows through the load line of the system to be protected. The zero-phase current is detected by a zero-phase current transformer (ZCT), and it is discriminated whether the load side line of the system is sound or a ground fault line from the phase relationship between these zero-phase voltage and zero-phase current. It is used for the purpose of ensuring stable operation of the entire system by selectively blocking only the ground fault line.

地絡発生時には当該の地絡故障回線に設置された地絡方向継電器のみが動作し、他の健全回線の地絡方向継電器は全て不動作となることにより、正しく故障回線のみ選択遮断することを確認するためには、単に地絡方向継電器の単体試験だけではなく、EVT(またはZPC)及びZCTを含めた総合的確認試験が必要となる。   When a ground fault occurs, only the ground fault direction relay installed on the relevant ground fault fault line operates, and all other ground fault direction relays are disabled, so that only the fault line is properly selected and cut off. In order to confirm, not only a unit test of the ground fault direction relay but also a comprehensive confirmation test including EVT (or ZPC) and ZCT is required.

総合的確認試験方法として特許文献1などが公知となっており、図4はその特許文献1に記載された試験方法の一つである。この試験方法は、停止状態の高圧母線1を三相一括短絡し、これを変圧比nの試験用単相変圧器Tfの二次側の一端に接続する。試験用単相変圧器Tfの二次側の他端は零相変流器ZCTを貫通させて接地する。   Patent Document 1 and the like are known as a comprehensive confirmation test method, and FIG. 4 is one of the test methods described in Patent Document 1. In this test method, the stopped high-voltage bus 1 is short-circuited in a three-phase manner and connected to one end of the secondary side of the test single-phase transformer Tf having a transformation ratio n. The other end of the secondary side of the test single-phase transformer Tf is grounded through the zero-phase current transformer ZCT.

試験用単相変圧器Tfの二次側からは、対地試験電圧(地絡時に主回路に含まれている零相電圧成分に相当)を印加し、試験用単相変圧器Tfの二次側に流れる零相電流I0を零相変流器ZCTで検出する。地絡方向継電器67Gは高圧母線1に接続された接地形計器用変圧器EVTからの零相電圧V0および負荷回線に設ける零相変流器ZCTからの零相電流の位相関係から、負荷回線側が健全であるか地絡故障回線であるかを弁別する。 From the secondary side of the test single-phase transformer Tf, a ground test voltage (corresponding to the zero-phase voltage component included in the main circuit at the time of ground fault) is applied, and the secondary side of the test single-phase transformer Tf the zero-phase current I 0 flowing through the detection by the zero-phase current transformer ZCT. The ground fault direction relay 67G is obtained from the phase relationship between the zero-phase voltage V 0 from the grounded-type instrument transformer EVT connected to the high-voltage bus 1 and the zero-phase current from the zero-phase current transformer ZCT provided in the load line. Discriminates whether the side is sound or a ground fault line.

ここで、試験用単相変圧器Tfの二次側の高圧側(系統に零相電圧を印加する側)と対地間に試験用インピーダンス回路Ztが接続され、試験用単相変圧器Tfの出力電圧に応じた電流が試験用インピーダンスZtを介して対地に流れ、その帰路電流を零相変流器ZCTの一次側に零相電流分として加算させている。   Here, the test impedance circuit Zt is connected between the secondary high-voltage side (the side where the zero-phase voltage is applied to the system) of the test single-phase transformer Tf and the ground, and the output of the test single-phase transformer Tf A current corresponding to the voltage flows to the ground via the test impedance Zt, and the return current is added to the primary side of the zero-phase current transformer ZCT as a zero-phase current component.

特許登録第4770403Patent registration No. 4770403

図4で示す特許文献1に記載された試験方法の場合、それ以前の従来方法に比較して大幅に軽量・小規模の試験機材により簡便に確認試験ができ、且つ高圧電源を用いずに低圧電源だけで試験が可能となるため、人的にも物的にも安全性を向上することができる利点を有している。   In the case of the test method described in Patent Document 1 shown in FIG. 4, it is possible to easily perform a confirmation test with a significantly lighter and small-scale test equipment as compared with the previous method, and the low pressure without using a high voltage power source. Since the test can be performed only with the power source, there is an advantage that the safety can be improved both personally and physically.

一方、試験時においては、地絡方向継電器の零相電圧整定や零相電流整定に対して、短時間とは言えこれを上回る電圧・電流を発生させることのできる容量が必要となるため、試験器に纏めようとした場合、全体の更なる小型化には限界が生じていた。また、試験用インピーダンスZtとして抵抗、コンデンサ或いはこれらを組み合わせて用いるが、抵抗を用いる方法の場合、抵抗容量が十分に大きくないと試験を繰り返していくうちに発熱が問題となることも予想される。コンデンサを用いれば発熱の問題は無くなるが、印加電圧に十分に耐えうる定格電圧で、試験電流を流すのに十分な静電容量のコンデンサの確保が困難となっている。   On the other hand, at the time of testing, it is necessary to have a capacity capable of generating a voltage / current exceeding this, even for a short time, for zero-phase voltage setting and zero-phase current setting of the ground fault direction relay. When trying to put them together in a vessel, there was a limit to further downsizing of the whole. In addition, a resistor, a capacitor, or a combination of these is used as the test impedance Zt, but in the case of a method using a resistor, it is expected that heat generation will become a problem as the test is repeated unless the resistance capacitance is sufficiently large. . If a capacitor is used, the problem of heat generation is eliminated, but it is difficult to secure a capacitor having a rated voltage that can sufficiently withstand the applied voltage and sufficient capacitance to allow a test current to flow.

本発明が目的とするとこは、更なる小型化と、より小さな容量のインピーダンスの使用が可能な地絡方向継電器の方向性確認試験方法とその装置を提供することにある。   It is an object of the present invention to provide a direction checking test method and apparatus for a ground fault direction relay capable of further miniaturization and use of impedance having a smaller capacity.

本発明の請求項1は、主回路と、主回路に接続される零相電圧検出手段、零相変流器及び地絡方向継電器を有する被試験対象物に対し、地絡時の主回路に含まれている零相電圧成分に相当する対地試験電圧を試験用単相変圧器にて印加し、発生した零相電圧と零相電流を地絡方向継電器に入力して試験する方法において、
前記対地試験電圧のを印加する試験用単相変圧器を、電圧印加用の第1と電流回路用の第2の試験用単相変圧器に分け、第2の試験用単相変圧器の二次側に試験用インピーダンスを接続し、試験用インピーダンスを流れる零相電流と前記零相電圧検出手段により検出された零相電圧を地絡方向継電器に入力し、零相電流と零相電圧との位相関係による地絡方向継電器の動作・不動作の弁別で確認試験を行うことを特徴としたものである。
Claim 1 of the present invention provides a main circuit, a zero-phase voltage detecting means connected to the main circuit, a zero-phase current transformer, and a test object having a ground fault direction relay. In the method of applying a ground test voltage corresponding to the included zero-phase voltage component with a test single-phase transformer and inputting the generated zero-phase voltage and zero-phase current to a ground fault direction relay and testing,
The test single-phase transformer that applies the ground test voltage is divided into a first test single-phase transformer for voltage application and a second test single-phase transformer for current circuit. The test impedance is connected to the secondary side, and the zero-phase current flowing through the test impedance and the zero-phase voltage detected by the zero-phase voltage detection means are input to the ground fault relay, and the zero-phase current and the zero-phase voltage are It is characterized in that a confirmation test is performed by discriminating the operation / non-operation of the ground fault direction relay according to the phase relationship.

本発明の請求項2は、主回路と、主回路に接続される零相電圧検出手段、零相変流器及び地絡方向継電器を有する被試験対象物に対し、地絡時の主回路に含まれている零相電圧成分に相当する対地試験電圧を試験用単相変圧器にて印加し、発生した零相電圧と零相電流を地絡方向継電器に入力して試験する装置において、
前記対地試験電圧を印加する試験用単相変圧器を、電圧印加用の第1と電流回路用の第2の試験用単相変圧器に分け、第1の試験用単相変圧器の二次側の一端を前記主回路の三相一括点に接続し、二次側の他端を接地すると共に、
第2の試験用単相変圧器の二次側の一端を接地し、二次側の他端に試験用インピーダンスを接続し、試験用インピーダンスの他端は前記零相変流器を貫通して接地するよう構成することを特徴としたものである。
Claim 2 of the present invention relates to a main circuit, a zero-phase voltage detecting means connected to the main circuit, a zero-phase current transformer, and a test object having a ground fault direction relay. In a device that applies a ground test voltage corresponding to the included zero-phase voltage component with a test single-phase transformer and inputs the generated zero-phase voltage and zero-phase current to a ground fault direction relay,
The test single-phase transformer for applying the ground test voltage is divided into a first test single-phase transformer for voltage application and a second test single-phase transformer for current circuit. One end of the side is connected to the three-phase collective point of the main circuit, the other end of the secondary side is grounded,
One end of the secondary side of the second test single-phase transformer is grounded, the test impedance is connected to the other end of the secondary side, and the other end of the test impedance passes through the zero-phase current transformer. It is configured to be grounded.

本発明の請求項3は、前記第1の試験用単相変圧器と第2の試験用単相変圧器の出力電圧位相は逆位相となるよう構成し、前記試験用インピーダンスを抵抗で構成したことを特徴としたものである。   According to a third aspect of the present invention, the output voltage phases of the first test single-phase transformer and the second test single-phase transformer are opposite to each other, and the test impedance is a resistor. It is characterized by that.

本発明の請求項4は、前記第1の試験用単相変圧器と第2の試験用単相変圧器の出力電圧位相を同相となるよう構成し、前記試験用インピーダンスをインダクタンスとしたことを特徴としたものである。   According to a fourth aspect of the present invention, the output voltage phase of the first test single-phase transformer and the second test single-phase transformer are configured to be in phase, and the test impedance is an inductance. It is a feature.

本発明の請求項5は、前記第1及び第2の試験用単相変圧器の一次側にそれぞれスライダックを接続し、各一次側に印加される試験電圧を各別に調整可能に構成したことを特徴としたものである。   According to claim 5 of the present invention, a slidac is connected to the primary side of each of the first and second test single-phase transformers so that the test voltage applied to each primary side can be adjusted separately. It is a feature.

本発明の請求項6は、主回路と、主回路に接続される零相電圧検出手段、零相変流器及び地絡方向継電器を有する被試験対象物に対し、地絡時の主回路に含まれている零相電圧成分に相当する対地試験電圧を試験用単相変圧器にて印加し、発生した零相電圧と零相電流を地絡方向継電器に入力して試験する装置において、
前記試験用単相変圧器の二次側の一端を前記主回路の三相一括点に接続し、二次側の他端を接地すると共に、
試験用インピーダンスにインダクタンスを用い、インダクタンスの一端を前記主回路の三相一括点に接続し、二次側の他端を前記零相変流器を貫通して接地するよう構成することを特徴としたものである。
According to a sixth aspect of the present invention, a main circuit, a zero-phase voltage detecting means connected to the main circuit, a zero-phase current transformer, and a ground fault direction relay, an object to be tested is a main circuit at the time of a ground fault. In a device that applies a ground test voltage corresponding to the included zero-phase voltage component with a test single-phase transformer and inputs the generated zero-phase voltage and zero-phase current to a ground fault direction relay,
One end of the secondary side of the test single-phase transformer is connected to the three-phase batch point of the main circuit, the other end of the secondary side is grounded,
An inductance is used as a test impedance, one end of the inductance is connected to a three-phase collective point of the main circuit, and the other end of the secondary side is configured to be grounded through the zero-phase current transformer. It is a thing.

以上のとおり、本発明によれば、試験用単相変圧器を電圧印加用と電流回路用に分け、電流回路用の試験用単相変圧器の二次側に試験用インピーダンスを接続することによって、試験用インピーダンスを構成する部品の選定は、零相電圧よりも低い電流回路用の変圧器の二次電圧との関係から決めることができ、その値や容量の小さなインピーダンスを用いることが可能となり小型・軽量化を図ることができる。また、試験用インピーダンスとしてリアクトルの使用が可能となり、
試験装置としての構成部品選定の柔軟性が向上するものである。
As described above, according to the present invention, the test single-phase transformer is divided into a voltage application and a current circuit, and the test impedance is connected to the secondary side of the test single-phase transformer for the current circuit. The selection of the components that constitute the test impedance can be determined from the relationship with the secondary voltage of the transformer for the current circuit, which is lower than the zero-phase voltage, and it is possible to use an impedance with a small value or capacity. It can be reduced in size and weight. In addition, a reactor can be used as a test impedance.
This improves the flexibility of component selection as a test apparatus.

本発明の実施形態を示す試験装置の構成図。The block diagram of the test device which shows embodiment of this invention. 本発明の他の実施形態を示す試験装置の構成図。The block diagram of the testing apparatus which shows other embodiment of this invention. 本発明の他の実施形態を示す試験装置の構成図。The block diagram of the testing apparatus which shows other embodiment of this invention. 従来の地絡方向継電器の方向性確認試験装置の構成図。The block diagram of the directionality confirmation test apparatus of the conventional ground fault direction relay.

保護対象系統である高圧・低圧系統の主回路(各実施例では高圧母線)、または運用時の主回路に電気的に接続される零相電圧検出手段、零相変流器などに対して試験用単相変圧器を介して等価的に零相電圧を印加し、この電圧印加によって発生した零相電圧を零相電圧検出手段にて検出する。また、試験用インピーダンスを流れる零相電流成分を零相変流器にて検出し、検出された零相電圧と零相電流を地絡方向継電器に入力して両者の位相関係から地絡方向継電器の総合確認試験方法において、本発明の実施例1,2では、試験用単相変圧器を2個用い、一方を電圧印加用とし、他方を電流回路用に分けたものである。また、実施例3では、試験用インピーダンスとしてインダクタンスの使用を可能としたものである。以下図に基づいて詳述する。   Test on main circuit of high-voltage / low-voltage system (high-voltage bus in each embodiment) that is the system to be protected, or zero-phase voltage detection means, zero-phase current transformer, etc. that are electrically connected to the main circuit during operation A zero-phase voltage is equivalently applied via the single-phase transformer for use, and the zero-phase voltage generated by the voltage application is detected by the zero-phase voltage detecting means. Also, the zero-phase current component flowing through the test impedance is detected by the zero-phase current transformer, and the detected zero-phase voltage and zero-phase current are input to the ground fault direction relay, and the ground fault direction relay is determined from the phase relationship between the two. In the first and second comprehensive confirmation test methods, the first and second embodiments of the present invention use two test single-phase transformers, one for voltage application and the other for current circuit. Further, in Example 3, it is possible to use an inductance as a test impedance. This will be described in detail below with reference to the drawings.

図1は、本発明の第1の実施例を示す試験装置の構成図を示したもので、図4と同一部分若しくは相当する部分に同一符号を示している。本発明の実施例1では、2個の試験用単相変圧器Tf1,Tf2が用いられる。第1の試験用単相変圧器Tf1の二次側の一端は三相の高圧母線1を一括した部位に接続され、二次側の他端は接地される。また、試験用単相変圧器Tf1の一次側には試験用電源から電圧調整用のスライダックSDを介して試験電圧が印加される。   FIG. 1 is a block diagram of a test apparatus showing a first embodiment of the present invention, and the same reference numerals are used to designate the same or corresponding parts as those in FIG. In the first embodiment of the present invention, two test single-phase transformers Tf1 and Tf2 are used. One end of the secondary side of the first test single-phase transformer Tf1 is connected to a portion where the three-phase high-voltage bus 1 is bundled, and the other end of the secondary side is grounded. A test voltage is applied from the test power source to the primary side of the test single-phase transformer Tf1 via the slidac SD for voltage adjustment.

第2の試験用単相変圧器Tf2の一次側は、スライダックSDを介して試験用電源が接続される。単相変圧器Tf2の二次側の一端は接地されるが、他端には試験用インピーダンスZtが接続され、試験用インピーダンスZtの他端は被試験対象の一つである零相変流器ZCTを貫通して接地される。インピーダンスZtとしては抵抗、コンデンサ、或いはこれらの組合せからなる回路が用いられるが、その場合単相変圧器Tf1,Tf2の電圧出力位相は逆相となるよう構成される。   The primary side of the second test single-phase transformer Tf2 is connected to a test power supply via the slidac SD. One end of the secondary side of the single-phase transformer Tf2 is grounded, but the other end of the test impedance Zt is connected to the other end, and the other end of the test impedance Zt is one of the objects to be tested. Grounded through the ZCT. As the impedance Zt, a circuit composed of a resistor, a capacitor, or a combination thereof is used. In this case, the voltage output phases of the single-phase transformers Tf1 and Tf2 are configured to be in reverse phase.

例えばインピーダンスZtとして抵抗を用いた場合には、主回路に印加される零相電圧位相が正の半波のとき、零相変流器ZCTを電源側(K側)から負荷側(L側)に貫通する零相電流が負の半波になるよう構成される。67は地絡方向継電器、EVTは零相電圧検出手段としての接地形計器用変圧器(またはコンデンサZPC)である。   For example, when a resistor is used as the impedance Zt, when the zero-phase voltage phase applied to the main circuit is a positive half wave, the zero-phase current transformer ZCT is changed from the power supply side (K side) to the load side (L side). The zero-phase current penetrating through is configured to be a negative half-wave. 67 is a ground fault direction relay, and EVT is a grounding type instrument transformer (or capacitor ZPC) as zero phase voltage detecting means.

図1において、試験用単相変圧器Tf1二次側に、地絡時に主回路に含まれている零相電圧成分に相当する対地試験電圧を発生させる電圧が試験用電源を介して印加される。試験用単相変圧器Tf1,Tf2の各二次側にはそれぞれ印加電圧に対応した零相電流I0が流れるが、試験用インピーダンスZtを流れる電流は試験用変圧器Tf2に印加された電圧に相当する零相電流I0分となって零相変流器ZCTにより検出され、地絡方向継電器67に入力される。地絡方向継電器67には、零相電圧検出手段EVTによって検出された零相電圧V0も入力されている。 In FIG. 1, a voltage for generating a ground test voltage corresponding to a zero-phase voltage component included in the main circuit at the time of a ground fault is applied to the secondary side of the test single-phase transformer Tf1 via a test power source. . A zero-phase current I 0 corresponding to the applied voltage flows on each secondary side of the test single-phase transformers Tf1 and Tf2, but the current flowing through the test impedance Zt is equal to the voltage applied to the test transformer Tf2. The corresponding zero-phase current I 0 is detected by the zero-phase current transformer ZCT and input to the ground fault direction relay 67. The zero-phase voltage V 0 detected by the zero-phase voltage detecting means EVT is also input to the ground fault direction relay 67.

この回路構成で対地試験電圧・電流を徐々に増加させ、零相電圧V0と零相変流器ZCTからの零相電流I0の位相関係で動作する地絡方向継電器67の「動作」「不動作」の有無を判別することで、零相電圧検出手段EVT、零相変流器ZCTを含めた保護回路の構成・接続が正しいか否かを弁別することが可能となる。 With this circuit configuration, the ground test voltage / current is gradually increased, and the “operation” and “operation” of the ground fault direction relay 67 operating in the phase relationship between the zero phase voltage V 0 and the zero phase current I 0 from the zero phase current transformer ZCT. By determining the presence or absence of “non-operation”, it is possible to discriminate whether or not the configuration and connection of the protection circuit including the zero-phase voltage detection means EVT and the zero-phase current transformer ZCT are correct.

すなわち、この実施例では第1の試験用単相変圧器Tf1を電圧印加用とし、第2の試験用単相変圧器Tr2を電流回路用に分けて構成したものである。このように構成することにより、電圧印加用の第1の試験用単相変圧器Tf1に流れる電流は、零相電圧検出手段EVTに設けられる三次回路の電流制限抵抗や主回路対地静電容量に流れる電流のみとなり、この電流は系統の各負荷回線に設置される遮断器を断路位置に引出しておくことにより大幅に軽減される。結果として電圧印加用としての試験用単相変圧器Tf1は、図4で示す試験用単相変圧器Tfよりも更に小さな容量とすることが可能となる。   That is, in this embodiment, the first test single-phase transformer Tf1 is configured for voltage application, and the second test single-phase transformer Tr2 is configured separately for a current circuit. With this configuration, the current flowing through the first test single-phase transformer Tf1 for voltage application is reduced to the current limiting resistance of the tertiary circuit provided in the zero-phase voltage detection means EVT or the main circuit ground capacitance. This current is only flowing, and this current is greatly reduced by drawing out the circuit breakers installed in each load line of the system to the disconnection position. As a result, the test single-phase transformer Tf1 for voltage application can have a smaller capacity than the test single-phase transformer Tf shown in FIG.

また、電流回路用の試験用単相変圧器Tf2は、試験用インピーダンスZtを適切に選定することでそれほど高い出力電圧でなくとも地絡方向継電器67を動作させ得るに十分な電流を流すことができ、その結果、試験用単相変圧器Tf2の容量も小さくすることが可能となった。   Further, the test single-phase transformer Tf2 for the current circuit allows a current sufficient to operate the ground fault direction relay 67 even if the output voltage is not so high by appropriately selecting the test impedance Zt. As a result, the capacity of the test single-phase transformer Tf2 can be reduced.

したがって、この実施例によれば、試験用単相変圧器を電圧印加用と電流回路用に分け、電流回路用の試験用単相変圧器Tf2の二次側に試験用インピーダンスZtを接続することによって、試験用インピーダンスZtを構成する部品の選定は、零相電圧よりも低い電流回路用の変圧器Tf2の二次電圧との関係から決めることができ、その値や容量の小さなインピーダンスを用いることが可能となる。図4の回路構成と比較して試験用単相変圧器が1個増えた部品構成となるが、試験装置全体としては図4よりも更に小型・軽量化を図ることが可能となった。   Therefore, according to this embodiment, the test single-phase transformer is divided into the voltage application and the current circuit, and the test impedance Zt is connected to the secondary side of the test single-phase transformer Tf2 for the current circuit. Therefore, the selection of the components constituting the test impedance Zt can be determined from the relationship with the secondary voltage of the transformer Tf2 for the current circuit, which is lower than the zero-phase voltage, and the impedance with a small value or capacity should be used. Is possible. Compared to the circuit configuration of FIG. 4, the number of test single-phase transformers is increased by one, but the overall test apparatus can be made smaller and lighter than FIG.

図2は第2の実施例を示したもので、図1との相違点は、試験用単相変圧器Tf1,Tf2の各一次側に電圧調整用のスライダックSD1,SD2を各別に設けたことである。スライダックSD1を調整することによって試験用単相変圧器Tf1を介して印加する負荷回線に対する対地試験電圧の調整を可能とし、また、スライダックSD2を調整することにより試験用単相変圧器Tf2からの零相電流の調整を可能としたものである。他は、実施例1と同様である。   FIG. 2 shows the second embodiment. The difference from FIG. 1 is that voltage control slidacs SD1 and SD2 are separately provided on the primary sides of the test single-phase transformers Tf1 and Tf2. It is. By adjusting the slidac SD1, it is possible to adjust the ground test voltage for the load line applied via the test single-phase transformer Tf1, and by adjusting the slidac SD2, the zero from the test single-phase transformer Tf2 can be adjusted. The phase current can be adjusted. Others are the same as in the first embodiment.

したがって、この実施例2によれば、電圧・電流がそれぞれ個別に任意調整が可能としたことにより、より柔軟な測定が可能となる。   Therefore, according to the second embodiment, the voltage and current can be arbitrarily adjusted individually, thereby enabling more flexible measurement.

なお、試験用単相変圧器を2個用いる図1及び図2の実施例において、Tf1とTf2の電圧出力位相を同相となるように回路構成し、試験用インピーダンスZtとしてインダクタンスを用いることにより、EVTで検出された零相電圧V0に対して零相変流器ZCTを電源側(K)から負荷側(L)に貫通する零相電流I0は略90゜遅れの関係になるので、図1及び図2と同様の試験が可能となる。すなわち、Tf1,Tf2の電圧出力位相を同相にすることによって、Ztとしてインダクタンスの使用が可能となり、試験装置としての構成部品選定の柔軟性が向上するものである。 In the embodiment of FIGS. 1 and 2 using two test single-phase transformers, the circuit is configured so that the voltage output phases of Tf1 and Tf2 are in phase, and the inductance is used as the test impedance Zt. Since the zero-phase current I 0 that penetrates the zero-phase current transformer ZCT from the power supply side (K) to the load side (L) with respect to the zero-phase voltage V 0 detected by the EVT has a relationship of approximately 90 ° delay, The same test as in FIGS. 1 and 2 is possible. That is, by making the voltage output phases of Tf1 and Tf2 in-phase, it is possible to use an inductance as Zt, and the flexibility of selecting a component as a test apparatus is improved.

図3は第3の実施例を示したもので、試験用単相変圧器をTfの1個とし、試験用インピーダンスZtとしてインダクタンスの使用を可能としたものである。すなわち、三相の高圧母線1を一括した負荷回路に、試験用単相変圧器Tfの二次側とインダクタンスZtの各一端が接続される。試験用単相変圧器Trの他端は接地され、インダクタンスZtの他端は零相変流器ZCTを貫通して接地される。また、試験用単相変圧器Tfの一次側は、スライダックSDを介して試験用電源に接続される。   FIG. 3 shows a third embodiment, in which the test single-phase transformer is one of Tf, and an inductance can be used as the test impedance Zt. That is, the secondary side of the test single-phase transformer Tf and each end of the inductance Zt are connected to a load circuit in which the three-phase high-voltage bus 1 is bundled. The other end of the test single-phase transformer Tr is grounded, and the other end of the inductance Zt is grounded through the zero-phase current transformer ZCT. Further, the primary side of the test single-phase transformer Tf is connected to a test power supply via the slidac SD.

図3の回路構成の場合、零相電圧検出手段EVTで検出された零相電圧V0に対して、インダクタンスZtを通り零相変流器ZCTを電源側(K)から負荷側(L)を貫通して流れる零相電流I0は略90゜遅れの関係になる。この回路構成で対地試験電圧・電流を徐々に増加させ、零相電圧V0と零相変流器ZCTからの零相電流I0の位相関係で動作する地絡方向継電器67の「動作」「不動作」の有無を判別することで、零相電圧検出手段EVT、零相変流器ZCTを含めた系統回線は健全か否かを弁別することが可能となる。 In the case of the circuit configuration of FIG. 3, with respect to the zero-phase voltage V 0 detected by the zero-phase voltage detection means EVT, the zero-phase current transformer ZCT passes through the inductance Zt from the power supply side (K) to the load side (L). The zero-phase current I 0 flowing through is in a relationship of approximately 90 ° delay. With this circuit configuration, the ground test voltage / current is gradually increased, and the “operation” and “operation” of the ground fault direction relay 67 operating in the phase relationship between the zero phase voltage V 0 and the zero phase current I 0 from the zero phase current transformer ZCT. By determining the presence or absence of “non-operation”, it is possible to discriminate whether or not the system line including the zero-phase voltage detecting means EVT and the zero-phase current transformer ZCT is healthy.

図1〜図4で示す回路構成は、電力ケーブルなどが接続されていないなどの理由で高圧母線等に接続される対地インピーダンスを流れる電流が小さい場合でも、試験用インピーダンスZtを流れる電流成分によって零相変流器ZCTの一次側に貫通して流れる電流を地絡方向継電器67の零相電流整定値を上回ることができる特徴を備えている。したがって、系統に接続される対地インピーダンスを流れる零相電流成分を考慮しなくても、試験用インピーダンスZtを流れる電流成分のみにより地絡方向継電器67の動作確認試験ができることから、電力ケーブルなどを試験回路から極力除外することにより、必要最小限の容量の試験機材での試験が可能となる。   The circuit configuration shown in FIG. 1 to FIG. 4 is zero due to the current component flowing through the test impedance Zt even when the current flowing through the ground impedance connected to the high voltage bus or the like is small because the power cable or the like is not connected. The current flowing through the primary side of the phase current transformer ZCT can exceed the zero-phase current settling value of the ground fault direction relay 67. Therefore, the operation check test of the ground fault direction relay 67 can be performed only by the current component flowing through the test impedance Zt without considering the zero-phase current component flowing through the ground impedance connected to the system. By excluding as much as possible from the circuit, it is possible to test with the test equipment with the minimum capacity.

この実施例3によれば、上記特徴を有する試験装置の試験用インピーダンスZtとしてインダクタンスの使用が可能となり、試験装置としての構成部品選定の柔軟性が向上するものである。   According to the third embodiment, it is possible to use an inductance as the test impedance Zt of the test apparatus having the above characteristics, and the flexibility of selection of the component parts as the test apparatus is improved.

1… 高圧母線
EVT… 零相電圧検出手段
ZCT… 零相変流器
Zt… 試験用インピーダンス
67… 地絡方向継電器
SD… スライダック
Tf… 試験用単相変圧器
DESCRIPTION OF SYMBOLS 1 ... High voltage bus EVT ... Zero phase voltage detection means ZCT ... Zero phase current transformer Zt ... Test impedance 67 ... Ground fault direction relay SD ... Slidac Tf ... Single phase transformer for test

Claims (6)

主回路と、主回路に接続される零相電圧検出手段、零相変流器及び地絡方向継電器を有する被試験対象物に対し、地絡時の主回路に含まれている零相電圧成分に相当する対地試験電圧を試験用単相変圧器にて印加し、発生した零相電圧と零相電流を地絡方向継電器に入力して試験する方法において、
前記対地試験電圧のを印加する試験用単相変圧器を、電圧印加用の第1と電流回路用の第2の試験用単相変圧器に分け、第2の試験用単相変圧器の二次側に試験用インピーダンスを接続し、試験用インピーダンスを流れる零相電流と前記零相電圧検出手段により検出された零相電圧を地絡方向継電器に入力し、零相電流と零相電圧との位相関係による地絡方向継電器の動作・不動作の弁別で確認試験を行うことを特徴とした地絡方向継電器の方向性確認試験方法。
A zero-phase voltage component included in the main circuit at the time of a ground fault with respect to an object to be tested having a main circuit and a zero-phase voltage detecting means, a zero-phase current transformer, and a ground fault direction relay connected to the main circuit. In a method of applying a ground test voltage corresponding to the above to a test single-phase transformer and inputting the generated zero-phase voltage and zero-phase current to a ground fault direction relay for testing,
The test single-phase transformer that applies the ground test voltage is divided into a first test single-phase transformer for voltage application and a second test single-phase transformer for current circuit. The test impedance is connected to the secondary side, and the zero-phase current flowing through the test impedance and the zero-phase voltage detected by the zero-phase voltage detection means are input to the ground fault relay, and the zero-phase current and the zero-phase voltage are A test method for confirming the directionality of a ground fault direction relay, characterized in that a confirmation test is performed by discriminating between operation and non-operation of the ground fault direction relay according to the phase relationship.
主回路と、主回路に接続される零相電圧検出手段、零相変流器及び地絡方向継電器を有する被試験対象物に対し、地絡時の主回路に含まれている零相電圧成分に相当する対地試験電圧を試験用単相変圧器にて印加し、発生した零相電圧と零相電流を地絡方向継電器に入力して試験する装置において、
前記対地試験電圧を印加する試験用単相変圧器を、電圧印加用の第1と電流回路用の第2の試験用単相変圧器に分け、第1の試験用単相変圧器の二次側の一端を前記主回路の三相一括点に接続し、二次側の他端を接地すると共に、
第2の試験用単相変圧器の二次側の一端を接地し、二次側の他端に試験用インピーダンスを接続し、試験用インピーダンスの他端は前記零相変流器を貫通して接地するよう構成することを特徴とした地絡方向継電器の方向性確認試験装置。
A zero-phase voltage component included in the main circuit at the time of a ground fault with respect to an object to be tested having a main circuit and a zero-phase voltage detecting means, a zero-phase current transformer, and a ground fault direction relay connected to the main circuit. In a device that applies a ground test voltage corresponding to the above to a test single-phase transformer and inputs the generated zero-phase voltage and zero-phase current to a ground fault relay,
The test single-phase transformer for applying the ground test voltage is divided into a first test single-phase transformer for voltage application and a second test single-phase transformer for current circuit. One end of the side is connected to the three-phase collective point of the main circuit, the other end of the secondary side is grounded,
One end of the secondary side of the second test single-phase transformer is grounded, the test impedance is connected to the other end of the secondary side, and the other end of the test impedance passes through the zero-phase current transformer. A grounding direction relay directionality confirmation test device characterized by being configured to be grounded.
前記第1の試験用単相変圧器と第2の試験用単相変圧器の出力電圧位相は逆位相となるよう構成し、前記試験用インピーダンスを抵抗で構成したことを特徴とした請求項2記載の地絡方向継電器の方向性確認試験装置。 3. The output voltage phase of the first test single-phase transformer and the second test single-phase transformer are configured to be opposite phases, and the test impedance is configured by a resistor. Directional confirmation test device for the earth fault direction relay described. 前記第1の試験用単相変圧器と第2の試験用単相変圧器の出力電圧位相を同相となるよう構成し、前記試験用インピーダンスをインダクタンスとしたことを特徴とした請求項2記載の地絡方向継電器の方向性確認試験装置。 3. The output voltage phase of the first test single-phase transformer and the second test single-phase transformer are configured to be in phase, and the test impedance is an inductance. Directional confirmation test device for ground fault direction relay. 前記第1及び第2の試験用単相変圧器の一次側にそれぞれスライダックを接続し、各一次側に印加される試験電圧を各別に調整可能に構成したことを特徴とした請求項2又は3記載の何れかである地絡方向継電器の方向性確認試験装置。 4. A slidac is connected to the primary side of each of the first and second test single-phase transformers so that the test voltage applied to each primary side can be adjusted separately. The directionality confirmation test apparatus of the ground fault direction relay which is either of description. 主回路と、主回路に接続される零相電圧検出手段、零相変流器及び地絡方向継電器を有する被試験対象物に対し、地絡時の主回路に含まれている零相電圧成分に相当する対地試験電圧を試験用単相変圧器にて印加し、発生した零相電圧と零相電流を地絡方向継電器に入力して試験する装置において、
前記試験用単相変圧器の二次側の一端を前記主回路の三相一括点に接続し、二次側の他端を接地すると共に、
試験用インピーダンスにインダクタンスを用い、インダクタンスの一端を前記主回路の三相一括点に接続し、二次側の他端を前記零相変流器を貫通して接地するよう構成することを特徴とした地絡方向継電器の方向性確認試験装置。
A zero-phase voltage component included in the main circuit at the time of a ground fault with respect to an object to be tested having a main circuit and a zero-phase voltage detecting means, a zero-phase current transformer, and a ground fault direction relay connected to the main circuit. In a device that applies a ground test voltage corresponding to the above to a test single-phase transformer and inputs the generated zero-phase voltage and zero-phase current to a ground fault relay,
One end of the secondary side of the test single-phase transformer is connected to the three-phase batch point of the main circuit, the other end of the secondary side is grounded,
An inductance is used as a test impedance, one end of the inductance is connected to a three-phase collective point of the main circuit, and the other end of the secondary side is configured to be grounded through the zero-phase current transformer. Direction test device for ground fault relays.
JP2012068556A 2012-03-26 2012-03-26 Direction confirmation test method and apparatus for ground fault direction relay Active JP5888044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068556A JP5888044B2 (en) 2012-03-26 2012-03-26 Direction confirmation test method and apparatus for ground fault direction relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068556A JP5888044B2 (en) 2012-03-26 2012-03-26 Direction confirmation test method and apparatus for ground fault direction relay

Publications (2)

Publication Number Publication Date
JP2013200200A true JP2013200200A (en) 2013-10-03
JP5888044B2 JP5888044B2 (en) 2016-03-16

Family

ID=49520556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068556A Active JP5888044B2 (en) 2012-03-26 2012-03-26 Direction confirmation test method and apparatus for ground fault direction relay

Country Status (1)

Country Link
JP (1) JP5888044B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198533A (en) * 2014-04-02 2015-11-09 中国電力株式会社 Actual load direction testing device for ground-fault direction relay
CN105807247A (en) * 2016-05-19 2016-07-27 国网四川省电力公司电力科学研究院 Auxiliary wiring device and method for detecting three-phase three-element combined transformer
CN107783016A (en) * 2017-10-02 2018-03-09 国网山西省电力公司电力科学研究院 Multiphase Parallel completes the measuring method of GIS pressure tests before transformer station puts into operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137239A (en) * 1991-11-13 1993-06-01 Meidensha Corp Method and circuit for testing ground directional relay
JPH11295369A (en) * 1998-04-09 1999-10-29 Soukou Denki Seisakusho:Kk Relay testing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137239A (en) * 1991-11-13 1993-06-01 Meidensha Corp Method and circuit for testing ground directional relay
JPH11295369A (en) * 1998-04-09 1999-10-29 Soukou Denki Seisakusho:Kk Relay testing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198533A (en) * 2014-04-02 2015-11-09 中国電力株式会社 Actual load direction testing device for ground-fault direction relay
CN105807247A (en) * 2016-05-19 2016-07-27 国网四川省电力公司电力科学研究院 Auxiliary wiring device and method for detecting three-phase three-element combined transformer
CN107783016A (en) * 2017-10-02 2018-03-09 国网山西省电力公司电力科学研究院 Multiphase Parallel completes the measuring method of GIS pressure tests before transformer station puts into operation
CN107783016B (en) * 2017-10-02 2019-11-05 国网山西省电力公司电力科学研究院 Multiphase Parallel completes the measuring method of GIS pressure test before substation puts into operation

Also Published As

Publication number Publication date
JP5888044B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5726047B2 (en) Operation test apparatus and operation test method for high-voltage system protection equipment
JP3763852B2 (en) Method and circuit for monitoring insulation and fault current in AC power supply
CN107438929B (en) Method for being protected in combined power transmission line
KR102050255B1 (en) Method and test device for testing wiring of transducers
CN105610138B (en) The electric protective device and method of subsystem are selectively disconnected in the case where the second failure occurs for IT power supply system
US9225159B2 (en) Three-phase ground fault circuit interrupter
Venikar et al. A novel offline to online approach to detect transformer interturn fault
US8923025B2 (en) Apparatus and methods for feedback sensing in multi-cell power supplies
CN101022066A (en) Residual current circuit breaker
CN106405322A (en) Expanded method and device for search of insulation faults by utilizing multi-functional testing current
JP4770403B2 (en) Operation test method for ground fault direction relay
JP5888044B2 (en) Direction confirmation test method and apparatus for ground fault direction relay
AU2013333854B2 (en) System for protection of a plurality of DC voltage sources
KR101917057B1 (en) Actual ground and short fault verification system for directional protective relay
Das et al. 13.8-kV selective high-resistance grounding system for a geothermal generating plant—A case study
JP2008263762A (en) Ground fault protective relay system
CN102124622B (en) Fault-current detection device
JP4146851B2 (en) Electrical equipment testing aids
US11394309B2 (en) Voltage doubling AC power supply using electricity from two circuits with transformer for phase control and input circuit isolation
KR102095406B1 (en) Earth leakage breaker
JPH05137239A (en) Method and circuit for testing ground directional relay
Shruthi et al. Modelling and simulation studies of inter-winding faults in a three phase distribution transformer using EMTDC/PSCAD
WO2016012554A2 (en) Power switching arrangement for line insulation monitoring
Fischer et al. Analysis of an autotransformer restricted earth fault application
KR102594913B1 (en) Elb precision tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5888044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150