JP2013199767A - Structural material having resin membrane and resin structural rib, and building method - Google Patents

Structural material having resin membrane and resin structural rib, and building method Download PDF

Info

Publication number
JP2013199767A
JP2013199767A JP2012068502A JP2012068502A JP2013199767A JP 2013199767 A JP2013199767 A JP 2013199767A JP 2012068502 A JP2012068502 A JP 2012068502A JP 2012068502 A JP2012068502 A JP 2012068502A JP 2013199767 A JP2013199767 A JP 2013199767A
Authority
JP
Japan
Prior art keywords
structural
resin
building
weight
structural material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012068502A
Other languages
Japanese (ja)
Inventor
Kenji Sugimoto
賢二 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012068502A priority Critical patent/JP2013199767A/en
Publication of JP2013199767A publication Critical patent/JP2013199767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Panels For Use In Building Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a building structure having a reduced gross weight of a building as the most fundamental load for reducing damage caused by earthquake force, while conventional building structural materials generally have a large specific gravity and the conventional thickness range of heat insulators creates a large difference in the break-even point due to fluctuation in the initial cost and the running cost resulting from oil price situation in recent years.SOLUTION: As means for producing various light-weight structures having different internal density like animal bones, the surface processing of various light-weight base materials such as heat insulators are performed to make a light-weight structural component, using a resin structural membrane such as FRP and resin structural ribs in a lattice form intersecting at 90 degrees or 60 degrees so as to be integrated into the structural membrane. The light-weight structural component constitutes a large panel with finishing construction for use in each of the roof, the wall, and the floor of a building. Assembling, demolition and recycling are thus effectively performed, achieving reduction in cost and energy saving. The earthquake damage is reduced due to the light weight of the produced building.

Description

建築の構造材料に関する。 It relates to structural materials of architecture.

建築や土木構造計画は、常時いくつかの荷重が加えられている状態を想定し、それに耐えうるように計画される。建物の荷重は、建築本体や内装材や衛生設備や電気設備などの建物と一体となった物総体の自重と、建物の用途によっての人や家具・物などの積載荷重と、積雪や風と地震の揺れなどの外部荷重に大別される。その中で地震の影響による荷重である地震力(以降地震力と表現する)は、それら建物総体の重さと、形状や地上からの高さや階数(層数)によって、細かく規定され算出されている。風の影響また雪の重さなども地域ごとに規定される。そしてそれらの荷重影響を確認しつつ、各種の性質を持つ地盤へと支持させる。以上が大まかな建築構造計画である。 Architectural and civil engineering plans are planned so that they can withstand some loads that are constantly applied. The building load is the weight of the whole thing integrated with the building such as the building body, interior materials, sanitary facilities, and electrical facilities, the load of people, furniture, etc. depending on the use of the building, snow and wind It is roughly classified into external loads such as earthquake shaking. Among them, the seismic force (hereinafter referred to as seismic force), which is the load caused by the earthquake, is precisely defined and calculated according to the weight of the building as a whole, the shape, the height from the ground, and the number of floors (number of layers). . The effects of wind and the weight of snow are also defined for each region. And while confirming the effect of those loads, it is supported to the ground with various properties. The above is a rough architectural structure plan.

建築構造では建物の重量は最も基本的な荷重であり、建物の総重量を減らすことが出来れば、基礎まで含めた地震力被害は軽減される。しかし建築構造材料は鉄筋コンクリートや鉄骨などの密度の高いものと、軽量のものでも木材やLGSを含めた軽量鉄骨等の、ある一定の方向に強い物性や形状の物しかなかった。また、火災などの影響を減じる外壁材や内装材などは、概して比重が重いものとなっている。 In the building structure, the weight of the building is the most basic load. If the total weight of the building can be reduced, the damage caused by the earthquake including the foundation will be reduced. However, building materials have strong physical properties and shapes in a certain direction, such as high-density materials such as reinforced concrete and steel frames, and light-weight materials such as lightweight steel frames including wood and LGS. In addition, outer wall materials and interior materials that reduce the influence of fire and the like are generally heavy in specific gravity.

また、近年の石油情勢や汎用エネルギーの将来性から、現在よりさらに建物の省エネルギー化を目指さなくてはならない状況にある。その主旨に従うと建物の省エネルギー化に主に貢献する部材は断熱材である。その断熱性能の多くは断熱材の厚さに左右される。一般には、建築の構造体が別にあり、その密度の高い構造体が冷橋になりやすいため、断熱材厚を確保しながら入念に断熱材層で構造体やその他を覆い、結露や温度差等が生じない室内空間を作る事が要求されている。 In addition, due to the recent petroleum situation and the future of general-purpose energy, it is necessary to aim for further energy saving of buildings. In accordance with the gist, a member that mainly contributes to energy saving of a building is a heat insulating material. Much of its thermal insulation performance depends on the thickness of the thermal insulation. In general, there is a separate structure of the building, and the dense structure tends to be a cold bridge, so carefully cover the structure and others with a heat insulating layer while ensuring the thickness of the heat insulating material, so that condensation, temperature difference, etc. It is required to create an indoor space that does not cause any problems.

従来の建築工法には、本来の建物目的ではなく、建物の維持をするための空間が存在している。特に木造などでは床下の空間や小屋裏の空間、外壁の通気層などである。これらは、木が腐るのを防いだり、屋根裏の結露を防止したり、壁体内結露が起きた後の後処理等であり、建物を維持するためには必要な構造や空間ではあるが、人間にとっては良好な空間とはいえない。そしてそれら多くの維持するための空間は、内部と外部の温度変化に起因する現象を解決する為の対策である。しかし、もしこれらの現象を排除できたら、より良好な環境を提供でき、これらに係る工数・工程やコストも削減できる。 In the conventional construction method, there is a space for maintaining the building, not the original purpose of the building. Especially in wooden buildings, it is the space under the floor, the space behind the hut, and the ventilation layer on the outer wall. These are trees that prevent rotting, prevent condensation in the attic, and post-treatment after wall condensation occurs. It is not a good space for me. Many of these spaces for maintenance are measures for solving the phenomenon caused by temperature changes between the inside and outside. However, if these phenomena can be eliminated, a better environment can be provided, and man-hours, processes and costs related to these can be reduced.

また、天災やその他の被害者を救援するための仮設住宅の居住性やコスト、建設速度なども、まだまだ改善すべき必要がある。一般の住宅建設工程が煩雑であるから、仮設住宅はそれらを省いて行うと言う方法論だが、求められる室内環境は同等のはずである。緊急時の仮設住宅においても、恒久的建物にでも共通して採用出来る工法が必要である。また、建物の解体工程や解体材のリサイクルなどの課題となっている。 There is also a need to improve the habitability, cost, construction speed, etc. of temporary housing for relief of natural disasters and other victims. Since the general housing construction process is complicated, the temporary housing is a method of omitting them, but the required indoor environment should be the same. Even in temporary housing in an emergency, a construction method that can be commonly used in permanent buildings is necessary. In addition, there are problems such as building demolition process and recycling of demolition materials.

動物の構造である骨や関節・腱などで構成される骨格において、その主要支柱となる骨は表層は密度が高く、内部に行くに従って密度が低くなっている。骨は、その強度と運動効率を満足させ、軽量化を進化の過程で果たした理想的な構造である。それに比較し、現在の建築や土木の構造は、コンクリート造でも木造であろうとも、構造部材そのものの材料密度は表面から内部まで一定である。特に圧縮材料ではない構造部分である梁等の変形中心軸部分に関しては、さらに中空とし軽量化されても良い。本案は、今まで構造材として論じられてこなかった密度変化がある構造材、あるいは構造材として用いられてこなかった他の材料についても、軽量で効率の良い構造部材としていくつか提供する。 In the skeleton composed of bones, joints, and tendons that are animal structures, the bones that are the main struts have a high density in the surface layer, and the density decreases toward the inside. Bone is an ideal structure that satisfies its strength and exercise efficiency and has achieved weight reduction in the process of evolution. In comparison, whether the current construction or civil engineering structure is concrete or wooden, the material density of the structural member itself is constant from the surface to the interior. In particular, a deformed central shaft portion such as a beam that is a structural portion that is not a compressed material may be further hollowed and lightened. This proposal provides some structural materials that have a density change that has not been discussed as structural materials, or other materials that have not been used as structural materials, as lightweight and efficient structural members.

本案は、FRP等の樹脂構造膜と、その構造膜と一体となる90度あるいは60度に交差する格子状の樹脂構造リブとで表面加工をした構造材を提供する。代表例として最初に極厚の押出発泡ポリスチレン等の表面に、FRP膜とそれに連続連動する構造リブを施したパネルを構造体とした建築構造を提供する。 This proposal provides a structural material that is surface-treated with a resin structure film such as FRP and a lattice-shaped resin structure rib that intersects with the structure film at 90 degrees or 60 degrees. As a representative example, we will provide an architectural structure that has a panel made of an FRP film and a structural rib that is continuously linked to the surface of an extremely thick extruded polystyrene.

さらに、軽量化のために内部密度を変え、再資源化材料を含めた、各種の材料で構成した構造体と、防火や耐候性などの各種の建築条件を満たした軽量な表面仕上材とを一体化した大型パネルを作る。このパネルは、大きく大別して、屋根・壁・中間床・最下階床・その他の構造補強部品など、必要強度や各種建築条件を満足させて作る。これらには、電気設備等の配線や衛生や換気設備等の貫通孔補強、あるいは窓やドアなどの開口部の補強なども施し、工期の短縮に貢献する。 Furthermore, to reduce the weight, the internal density is changed, and a structure composed of various materials including recycled materials, and a lightweight surface finish that satisfies various building conditions such as fire prevention and weather resistance. Make an integrated large panel. This panel is broadly divided and made to satisfy the required strength and various building conditions such as roof, wall, intermediate floor, bottom floor, and other structural reinforcement parts. These are also provided with wiring for electrical equipment, through-hole reinforcement for hygiene and ventilation equipment, or reinforcement for openings such as windows and doors, thereby contributing to shortening the construction period.

また、一般的に最も多く使われているコンクリート工法を軽量化する案も提供する。 It also provides a plan to reduce the weight of the most commonly used concrete method.

一般に、軽量で均一な建築材料はフォームポリスチレンやフォームウレタンあるいはフォームフェノールなどだが、それらは建築分野では省エネルギーに有効な断熱材として使われてきた。その厚さはせいぜい10cmほどである。しかし、エネルギー事情の将来や昨今の石油情勢を鑑みると、その厚さ程度では、省エネルギー対策工事費と建築環境維持費との損益分岐点に大きな差異が生じている。これは寒冷地になるほどその傾向が強い。本代表構造例は、より高い省エネルギー要求条件を満たすことができる。 In general, lightweight and uniform building materials such as foam polystyrene, foam urethane, and foam phenol have been used as heat insulating materials effective for energy saving in the building field. Its thickness is about 10cm at most. However, considering the future of the energy situation and the recent oil situation, there is a big difference in the break-even point between the energy-saving construction cost and the building environment maintenance cost, depending on the thickness. This tendency is stronger as it gets colder. This representative structure example can satisfy higher energy saving requirements.

本案の構造材は、従来の構造材料であるコンクリートや鉄などよりも比重が軽く圧縮強度も低い事から、必然的にその断面は大きくなる。通常の建築であれば断面が大きくなることは、用途上などの条件で不利側になるが、室内環境を確保する視点からは不利側ではない。それは、軽量材として使われる建築材料の多くは、例えばフォームポリスチレン等は一般的な建築用途断熱材か、あるいはその性能を少なからず有する物であり、その目的は良好な室内環境を得るために使用されているからである。むしろ通常の場合でも、エネルギー政策の面でも、断熱材は厚くすることが求められている事から、断熱材を構造体となるまで厚くしたとしてもメリットが有る。 The structural material of the present plan inevitably has a larger cross section because it has a lower specific gravity and lower compressive strength than conventional structural materials such as concrete and iron. If it is a normal building, a large cross section is disadvantageous in terms of usage, but it is not disadvantageous from the viewpoint of securing the indoor environment. Many of the building materials used as lightweight materials are, for example, foam polystyrene and the like, which are general heat insulating materials for building use or have a lot of performance, and their purpose is to obtain a good indoor environment. Because it is. Rather, both in the normal case and in terms of energy policy, it is required to increase the thickness of the heat insulating material, so there is a merit even if the heat insulating material is made thick until it becomes a structure.

本案は、建物の総重量を大幅に減じることから、その重量と密接な関係にある地震力を軽減することができ、その影響被害等も低減される。また、本案の構造体パネルは従来の構造材料よりも弾性であることと、圧縮力などを受ける壁パネルは全断面均等に負担すること、あるいは引っ張り力は面で負担することなど、力を分散してあるいは拡散的性質を持つ事から、地震力での影響による構造部材への応力集中が少なく、また弾性であるがゆえに変位にも追従し破壊度合いが少ない。これらの事で地震被害の軽減に貢献する。 Since this plan greatly reduces the total weight of the building, it can reduce the seismic force that is closely related to the weight of the building, and the damage caused by it will be reduced. In addition, the structural panel of this proposal is more elastic than conventional structural materials, and the wall panel that receives compressive force, etc., bears the entire cross section evenly, or the tensile force is shared by the surface. In addition, because of its diffusive nature, there is little stress concentration on the structural member due to the influence of seismic force, and since it is elastic, it also follows displacement and has a low degree of failure. These things contribute to the reduction of earthquake damage.

従来の建築重量よりも軽量であることは、それを支える基礎構造も簡略化できる。またそのことは、地震時で起きる地盤の液状化現象からの影響を軽微にすることができ、また最悪液状化など地盤の変位が起きてしまった場合にも、建物の軽量化は復旧工事を容易にする。 Being lighter than the conventional building weight can also simplify the foundation structure that supports it. This also reduces the impact of the ground liquefaction phenomenon that occurs in the event of an earthquake. make it easier.

本案のパネル構造は軽量であるため、従来のパネル型住宅より、パネル自体の大型化や設備等の事前のセットや化粧仕上等までの工程の統合が可能である。このことから建設現場での工程が省略され、施工工数あるいは人員削減などが計られ、建設時間の短縮あるいはコストダウン化が可能になる。 Since the panel structure of the present plan is lightweight, it is possible to integrate the processes from the conventional panel-type housing to the enlargement of the panel itself, the advance setting of facilities, etc. and the finishing of the cosmetics. As a result, the steps at the construction site are omitted, the number of construction steps or personnel can be reduced, and the construction time can be reduced or the cost can be reduced.

本案は、床下空間や階中間天井裏や屋根裏などの空間や外壁通気層を不要にする。一般には、それらの空間は建物を維持するための物だが、断熱材を構造体にする本案は腐食もなく透湿抵抗も極めて高いので、水蒸気の透湿もない。よって小屋裏空間も外壁通気層も不必要になる。 This plan eliminates the need for underfloor spaces, spaces such as mid-floor ceilings and attics, and outer wall ventilation layers. In general, these spaces are used to maintain buildings, but the proposed structure that uses thermal insulation as a structure does not corrode and has extremely high moisture resistance, so there is no moisture permeability. Therefore, neither the back space nor the outer wall ventilation layer is required.

本案での建築構造パネルの工程の簡略化や建設部材の軽量化は、災害などの緊急時に必要な仮設住宅の、運搬のしやすさや建設速度の速さ、それと室内空間の向上、解体のしやすさ、建設材料の再利用などにも貢献できる。また、壁パネルは軽量型鋼柱とブレースで構成された従来の仮設住宅システムの部材などにも対応できる。 The simplification of the building panel process and the weight reduction of construction members in this proposal are to improve the ease of transportation, the speed of construction, the improvement of indoor space, and the dismantling of temporary housing required in the event of an emergency such as a disaster. It can also contribute to ease and reuse of construction materials. The wall panel can also be used for a member of a conventional temporary housing system composed of lightweight steel columns and braces.

本案での建築構造パネルは自由な立体形状も補強できる。3次元で切削が行えるコンピューター制御の工作機を使用した後、あるいは発泡成型したフォームポリスチレン等の構造物に、本案における表面加工と構造補強をすることで、汎用性を高め自由な形状の建築構造や意匠が可能となる。 The building structure panel in this proposal can reinforce a free three-dimensional shape. After using a computer-controlled machine tool capable of cutting in three dimensions, or by applying surface treatment and structural reinforcement to the structure such as foamed polystyrene, the building structure has a versatile and free shape. And design are possible.

従来の建築工法の場合の剛接合は全て構造部材内部での作業であるために前もって計画的に作業が必要になるが、本代表構造例ならば組み立た後、隣接した構造部材同士の接合部近傍の表面加工だけで剛接合が可能になる。 In the case of the conventional construction method, since all rigid joints are work inside the structural members, work is required in advance, but in the case of this representative structural example, after assembling, the joints between adjacent structural members Rigid joining is possible only by surface processing in the vicinity.

また、本案の構造パネルは、従来の建築仕様と異なり、基材表面に加工を施すことから材料構成が単純である。例えば寒冷地では外壁から内壁仕上げまでの構造工程数、あるいは重ね合わされた層は9〜11に及ぶ。この工程や層を1〜3に減じることが出来る。この事は建設時の利便性はもちろんのこと、解体時の処理やリサイクルをも容易にする。 Moreover, the structural panel of this proposal has a simple material structure because the surface of the base material is processed unlike the conventional architectural specification. For example, in cold districts, the number of structural processes from the outer wall to the inner wall finish, or the number of superimposed layers ranges from 9 to 11. This process and layer can be reduced to 1-3. This not only provides convenience during construction, but also facilitates disposal and recycling during dismantling.

本案の樹脂構造はコンクリートにも適応できる。コンクリート型枠そのものをFRP等の樹脂構造膜で作り、その構造膜一体となる90度あるいは60度に交差する格子状の樹脂構造リブを施し、打設後も残存型枠とするならば鉄筋工事そのものが大幅に削減される。その場合鉄筋のかぶり厚を必要としないので、コンクリート工事に係る全体量を削減することができる。またそれはコンクリート構造の補修にも利用できる。 The resin structure of this proposal can also be applied to concrete. If the concrete form itself is made of a resin structure film such as FRP, and the resin structure ribs that cross the 90 or 60 degrees that are integrated with the structure film are applied, and if the remaining formwork is to be placed after placement, then the reinforcing bar construction This is greatly reduced. In that case, since the cover thickness of the reinforcing bars is not required, the total amount related to the concrete work can be reduced. It can also be used to repair concrete structures.

表面加工透視図Surface processing perspective view 構造膜と構造リブの透視図Perspective view of structural membrane and structural ribs 住宅断面モデル図House cross section model 建築モデル透視図Architectural model perspective view 自由な形態の構築物モデル図Free-form structure model diagram 組立構造部材例の透視図Perspective view of assembly structure member example 圧縮力と引張力の模式図Schematic diagram of compressive force and tensile force 圧縮力と引張力に応ずる材料構成を変えた模式図Schematic diagram with different material configurations depending on compressive and tensile forces 従来の仮設住宅に採用した例Example adopted for a conventional temporary housing 練物構造材断面図-木粉例Cross section of kneaded material-wood flour example 波板積層交差構造の断面図-ダンボール・鋼板・ポリカーボネート等樹脂板例Cross section of corrugated laminated structure-Examples of corrugated cardboard, steel plate, polycarbonate resin plate 積層ハニカム構造の断面図Cross section of laminated honeycomb structure 表面から段階的に混入粒子を荒くした充填材料の断面図-スチレンビーズ使用例Cross-sectional view of filling material with coarsely mixed particles from the surface-Example of using styrene beads 段階的に発泡密度を変化させた発泡樹脂材料の断面図Cross-sectional view of foamed resin material with foam density changed gradually 異種材料積層中空構造の断面図-各種の材料例Cross-sectional view of different material laminated hollow structure-Examples of various materials 表面を樹脂で強化し、構造リブを持った材料の断面図Cross-sectional view of a material whose surface is reinforced with resin and has structural ribs コンクリート型枠に使用した例の断面図Cross section of example used for concrete formwork コンクリート型枠に使用した例の立面図Elevation of example used for concrete formwork コンクリート補修用工具の透視図Perspective view of concrete repair tool 軽量パネル等を現場で剛接合用する工具の透視図Perspective view of tools for rigid joining of lightweight panels etc. on site

本案の特徴は、軽い材料を得るという主旨から、基材の比重が表面から内部方向あるいは引張り力側に行くに従って、段階的に軽くなることにある。必然的に密度あるいは基材の厚さなどと、応力を負担する位置がそれぞれの版強度に密接に影響する。
例として、図7の模式図は四角い断面を持った均一材料の梁である。自重を無視した場合、この中心軸は上下同質材料であるので部材断面の強度の中心軸である重心、及び変形軸と一致している。 図中のWは荷重によって生じる変数である。上部からの荷重が上下同じ強度の床や梁などにかかった場合、材料の上面に生じる圧縮力1.0Wと下面に生じる引張力1.0Wによってつり合う。もし、中心軸からの距離が2倍の位置に上下共に荷重に対する抵抗面があれば0.5W同士でもつり合う。このように構造中心軸からの距離によって必要な材料強度は大きく左右される。
The feature of this proposal is that the specific gravity of the base material becomes lighter in steps as it goes from the surface to the internal direction or to the tensile force side, from the point of obtaining a light material. Inevitably, the density, the thickness of the base material, and the position where the stress is borne influences the strength of each plate closely.
As an example, the schematic diagram of FIG. 7 is a beam of uniform material with a square cross section. When the dead weight is ignored, this central axis is made of the same material in the upper and lower sides, and therefore coincides with the center of gravity, which is the central axis of the strength of the member cross section, and the deformation axis. W in the figure is a variable caused by the load. When the load from the top is applied to a floor or beam of the same strength in the upper and lower sides, it is balanced by a compressive force of 1.0 W generated on the upper surface of the material and a tensile force of 1.0 W generated on the lower surface. If the distance from the central axis is twice as long as there is a resistance surface against the load on both the top and bottom, it will be entangled at 0.5W. Thus, the required material strength greatly depends on the distance from the structure central axis.

さらなる例として、図8は、圧縮力と引張力に応ずる構造材を変えた模式図である。上面は圧縮力に強い材料、下面を引張力に上方圧縮力が1.0であれば、0.5の強さの材料の単純梁として構成する。この場合強度の中心軸、いわゆる梁全体の変形軸は上方に移動しつり合う。同じ物を用いても、それを使う位置によって効果は異なる。このことから構造材は必ずしも内部まで、木材やコンクリートや鉄骨のように均一な材料で構成する必要はない。   As a further example, FIG. 8 is a schematic diagram in which the structural material responding to the compressive force and the tensile force is changed. If the upper surface is made of a material with a strong compressive force, and the lower surface is made of a tensile force and the upward compressive force is 1.0, it is constructed as a simple beam with a material having a strength of 0.5. In this case, the central axis of strength, that is, the deformation axis of the entire beam moves upward and balances. Even if the same thing is used, the effect differs depending on the position where it is used. For this reason, the structural material does not necessarily have to be made of a uniform material such as wood, concrete, or steel frame.

引張り力しか生じない部位には、軽量な樹脂膜やフイルム類や炭素繊維やアラミド繊維等の強化繊維などのように引張力に強い材料を使い、床のように直接人や物に接し荷重がかかる面としての強度が必要な部位には、圧縮応力も高い合板等一般の構造部材を使用し、圧縮・引張力を負担する部材間の、変形軸からの距離を保持するスペーサー材料として、より軽い構造か材料を使う事で各構造部材は軽量となる。 In areas where only tensile force is generated, materials that are strong in tension, such as lightweight resin films, films, and reinforced fibers such as carbon fibers and aramid fibers, are used. Use a general structural member such as plywood with high compressive stress for the part that requires strength as such a surface, and more as a spacer material that maintains the distance from the deformation axis between the members that bear compression and tensile force. By using a light structure or material, each structural member becomes light.

本案代表例として、図1は基材に密度の低い材料を用いて、骨のように表面が密で内部に行くに従って軽量となる構造を得る図である。1.の構造基材である押出発泡ポリスチレン等の表面から、複数以上の平行な1a,1b,1cなどの溝を作る。溝の製法は押出成型時か、あるいは発泡過程での金型によるものや、NCなどの3次元工作機あるいは図20に示す鋸刃切削によるものとする。 As a representative example of the present plan, FIG. 1 is a diagram that uses a low-density material as a base material to obtain a structure that is denser as a bone and becomes lighter toward the inside. A plurality of parallel grooves 1a, 1b, 1c, etc. are made from the surface of extruded foamed polystyrene, etc., which is the structural substrate of 1. The groove is produced by extrusion or by a mold in the foaming process, by a three-dimensional machine tool such as NC, or by saw blade cutting shown in FIG.

構造基材である押出発泡ポリスチレン等の構造的必要厚と寸法安定の為の部材寸法は、基材強度が低い故に通常の構造材料よりも大きくなり従来からの用途上の建築計画では不利側にあるが、それは省エネルギー化の必須要件である断熱性の要求を十分に満たすことで有利側に転じる。 The structural thickness required for structural foam such as extruded polystyrene, which is a structural base material, and the dimensions of the parts for dimensional stability are larger than normal structural materials due to the low base strength, which is disadvantageous in conventional architectural plans for applications. There is, however, an advantage when it meets the requirements for heat insulation, which is an essential requirement for energy saving.

実際の建築に用いる場合は基準法を遵守し構造計算を行い仕様を決定するのが定石なので強度に関しての判断は一概には言えない。しかし、一般的には断熱材にしか使われていない軽量な材料でも構造体になり得る考え方として、木造と本案代表例とで物性を単純比較する。 When it is used in actual construction, it is a fixed stone that complies with the standard law and performs structural calculations to determine the specifications. However, as a way of thinking that a light-weight material that is generally used only for heat insulation can be a structure, a simple comparison of physical properties is made between a wooden structure and a representative example of the present plan.

圧縮強度に関して、針葉樹繊維方向圧縮強度は27N/mm2であり、対して一般的な押出発泡ポリスチレンの圧縮強度は0.2N/mm2であり、圧縮強度は木材の1/135しかない。一般的モデルとして木構造住宅では、壁の内部に105mm×105mmで断面積が11025mm2の柱が910mm間隔に入って上部の荷重を負担している。その荷重負担状況を本代表構造案の建築構造パネルに置き換えると、壁厚250mm×壁長さ910mm、断面積227500mm2の壁となり、耐荷重は木材は297675N、本案では45500Nであり、まだ圧縮強度としては1/6.5である。しかし、通常時の構造柱は、常に材料耐力の100%の荷重を受けている訳ではなく、半分以下の場合が多い。これらも綿密な荷重配分計画をすることで成立する。 Regarding compressive strength, the compressive strength in the direction of conifer fiber is 27 N / mm 2, whereas the compression strength of general extruded polystyrene foam is 0.2 N / mm 2, and the compressive strength is only 1/135 of wood. As a general model, in a wooden house, pillars with 105mm x 105mm and 11025mm2 cross-sectional area are placed inside the wall and bear the upper load with 910mm spacing. Replacing the load bearing situation with the building structure panel of this representative structure plan, it becomes a wall with a wall thickness of 250 mm × wall length of 910 mm, a cross-sectional area of 227500 mm2, the load resistance is 297675N for wood, 45500N for this plan, and still as compressive strength Is 1 / 6.5. However, the structural column in the normal state does not always receive a load of 100% of the material yield strength, and is often less than half. These are also achieved by careful load distribution planning.

また、市販されている押出発泡ポリスチレン製品は、一般的な断熱材用途の圧縮強度0.2N/mm2から3.4N/mm2まで、その圧縮強度差は17倍ある。その中で設計に合う選択を行えばよい。また補強構造材質の挿入も可能である。さらにパネル設計段階で、構造膜と構造リブに圧縮力を負担させる設計を行えば構造材としての性能となる。 In addition, commercially available extruded polystyrene products have a compression strength difference of 17 times, ranging from 0.2 N / mm2 to 3.4 N / mm2 for general heat insulation materials. The selection that suits the design may be made. It is also possible to insert a reinforcing structural material. Furthermore, at the panel design stage, if the structure film and the rib are designed to bear a compressive force, the performance as a structural material is obtained.

また建築自重に関して言えば、一般の木造建物では、外壁材や内装材及び断熱材その他の構造材が必要になるのに対し、本代表構造案は主にこれのみで壁を構成している。一般木造壁自重は、構造用合板6kgと内装材10kgと外装材15kgの計31kg/m2を壁面積2.5m×0.91mの2.275m2として、乗ずると70.5kgとなる。さらに柱の重量16.5kgを加算すると87kgとなる。それに比べ本案壁自重は0.25×0.91×2.5とすると体積0.568m3であり、比重20kg/m3なので11.37kg。繊維強化樹脂重量5kgを加算すると17kg前後となり、壁の自重は木造のほぼ1/5となる。 In terms of building weight, general wooden buildings require outer wall materials, interior materials, heat insulating materials, and other structural materials, whereas this representative structure plan mainly constitutes walls. The total weight of a general wooden wall is 70.5 kg when multiplied by a total of 31 kg / m2 of 6 kg of structural plywood, 10 kg of interior material, and 15 kg of exterior material, with a wall area of 2.5 m × 0.91 m, 2.275 m2. Add 16.5kg of the column weight to 87kg. On the other hand, if the weight of the proposed wall is 0.25 x 0.91 x 2.5, the volume is 0.568m3, and the specific gravity is 20kg / m3, so it is 11.37kg. If we add 5kg of fiber reinforced resin weight, it will be around 17kg, and the weight of the wall will be about 1/5 that of wooden.

以上、材料としての圧縮強度と自重に関しての単純比較である。個別の建物の構造計画にもよるが、極厚のパネル化を行うことによって、平屋あるいは最上階構造などに関しては十分構造計画範囲であり、詳細設計を行うことで更なる適合範囲も可能となる。 The above is a simple comparison of the compressive strength and weight of the material. Although it depends on the structure plan of each individual building, by making an extremely thick panel, the structure plan is sufficient for the one-story or top floor structure, etc., and further adaptable range is possible by detailed design. .

その他の特徴として、引張強度は構造膜のFRP等の樹脂やフイルムの仕様によっては金属以上の強度にすることができることにより、耐力壁などには十分であり、面として対応することで応力集中による破壊などが発生しにくい。

また、組立後に剛接合に移行できる為、屋根や床版など積載荷重を直接受ける版は、一般の木造構造のように根太構造とせず、鉄筋コンクリートのように4辺固定のスラブとすることが出来る。このため、従来の木構造のように根太を受ける壁だけに荷重を集中させる事なく、壁形状に合わせ周囲の壁に分散負担させることができる。このため壁の必要圧縮強度は平均化される。

屋根版及び床版においては間取り等で負担区画は異なり、必要パネル強度は大きく変動はするが、荷重負担可能上限を設定させることで、取り扱いを簡素化させる。
Another feature is that the tensile strength can be higher than that of metal depending on the specifications of the resin or film such as FRP of the structural film, which is sufficient for bearing walls, etc. Destruction is difficult to occur.

In addition, since it can move to a rigid joint after assembly, a plate that directly receives a loading load, such as a roof or floor slab, can be a slab with four sides fixed like a reinforced concrete instead of a joist structure like a general wooden structure. . For this reason, it is possible to distribute and load the surrounding walls according to the wall shape without concentrating the load only on the wall receiving the joist like the conventional wood structure. For this reason, the required compressive strength of the wall is averaged.

In the roof slab and floor slab, the burden section differs depending on the floor plan, etc., and the required panel strength varies greatly, but the handling is simplified by setting an upper limit that can be loaded.

本案、図1の構造リブ2a,2b,2cの樹脂の間隔や高さと基材を覆う構造膜2と一体となる強化繊維層3も、その構造部位における応力から算出される。基材物性を損なわない樹脂を選択し、あるいは溶解防止などの先行処理を行なった後、構造リブ2a,2b,2cの樹脂の充填と構造膜2及び強化繊維層3を塗布形成する。表層の4.は化粧仕上コート類であり、一体となって密実な構造膜となる。 The reinforcing fiber layer 3 integrated with the structural film 2 covering the base and the interval and height of the resin of the present structure and the structural ribs 2a, 2b, and 2c in FIG. 1 is also calculated from the stress at the structural part. After selecting a resin that does not impair the physical properties of the base material or performing a pretreatment such as dissolution prevention, the resin filling of the structural ribs 2a, 2b, and 2c and the structural film 2 and the reinforcing fiber layer 3 are applied and formed. The surface layer 4 is a cosmetic finish coat, which forms a solid structural film.

図2は基材内側から見た、90度で交差した溝で形成された樹脂リブの図である。異なる高さのリブが配置され、内部側のリブ間隔より外部側のリブ間隔の方が狭くなっている。この交差方向やリブ高あるいは炭素繊維やアラミド繊維などの強化繊維敷設の有無や種別・量なども応力によって算出され決定される。 FIG. 2 is a view of a resin rib formed by grooves intersecting at 90 degrees, as viewed from the inside of the substrate. Ribs having different heights are arranged, and the rib interval on the outer side is narrower than the rib interval on the inner side. This crossing direction, rib height, presence / absence of reinforcing fiber such as carbon fiber or aramid fiber, type, amount, etc. are calculated and determined by stress.

特に構造的に膜の形状を維持する為のリブも必要のない部材については、リブを省略し一般的な壁紙や、ポリエチレンテレフタラート(PET,PETE)などのリサイクル可能なフイルム等だけで表装することもできる。 Especially for members that do not need ribs to maintain the shape of the film structurally, the ribs are omitted and only the recyclable film such as general wallpaper or polyethylene terephthalate (PET, PETE) is used. You can also.

図3は、これらを特徴とする、構造パネルを用いた住宅例の断面である。建物の各部位では通常は重力のみ作用し、地震時や風圧力時の場合にさらに力が加わる。5は屋根構造版、6は壁構造版、7は床構造版である。通常の構造用語のピン支持状態では、屋根版5では屋外側5aの面に圧縮力が働き、室内側5_2の面に引張力が働く。また7及び7’の床面でも同様に上側7a,7'aは圧縮力が働き、下側7b,7'bでは引張力が働く。6の壁は通常時には全断面に圧縮力が働き、地震時や風圧力時の場合一部に引張力が働く。5c,7cは、パネル端部に圧縮力や引張力やパネル及び積載荷重などが働くなどの想定が出来る。   FIG. 3 is a sectional view of an example of a house using a structural panel, characterized by these features. Each part of the building usually only works with gravity, and more force is applied in the event of an earthquake or wind pressure. 5 is a roof structure plate, 6 is a wall structure plate, and 7 is a floor structure plate. In the pin support state, which is a normal structural term, in the roof slab 5, a compressive force acts on the surface of the outdoor side 5a, and a tensile force acts on the surface of the indoor side 5_2. Similarly, on the floor surfaces of 7 and 7 ', the compressive force acts on the upper side 7a and 7'a, and the tensile force acts on the lower side 7b and 7'b. The wall of No. 6 normally has a compressive force on the entire cross section, and a tensile force acts on a part in the event of an earthquake or wind pressure. For 5c and 7c, it can be assumed that compressive force, tensile force, panel and loading load, etc. act on the panel edge.

一般の住宅工法でのほとんどの接合部は、このようなピンあるいはヒンジ接合だが、接合部に作用するそれらの力の相殺や、構造材料が持つたわみなどの特性を活かし、応力を分散させる事を目的に、現場にて構造版同士の接合部に図1・図2の構造膜を形成する工程を行うことで固定接合、いわゆる剛接合とすることも可能である。従来の建築工法の場合の剛接合は構造部材内部での作業が必要になるが、本代表構造例ならば隣接した構造部材同士の接合部近傍の表面加工だけで剛接合が可能になる。 Most joints in the general house construction method are pins or hinge joints like this, but it is possible to disperse the stress by taking advantage of the characteristics such as offset of those forces acting on the joints and deflection of the structural material. For the purpose, it is possible to achieve a fixed joint, that is, a so-called rigid joint by performing a process of forming the structural film of FIGS. Rigid joining in the case of a conventional construction method requires work inside the structural member, but in this representative structural example, rigid joining is possible only by surface processing in the vicinity of the joint portion between adjacent structural members.

またこの事は、一般的な建築構造においては主要構造は建物表面から隠されている事から、改修や補強を行う場合、表面の化粧を撤去して行わなければならないのに比べ、日常的なメンテナンスや地震時などの被害確認を目視でき、またその対処も容易にする。   In addition, since the main structure is hidden from the building surface in a general building structure, it is more routine than repairing and reinforcing it by removing the makeup on the surface. Damage confirmation during maintenance and earthquakes can be seen visually, and countermeasures can be made easily.

また本案の建築構造パネルは、床下空間や階中間天井裏や屋根裏などの空間や外壁通気層を不要にする。一般には、それらの空間は建物を湿度や温度を管理し建設材料の劣化を防ぎ維持するための物だが、断熱材を構造体にする本代表構造例は、腐食もなく透湿抵抗も極めて高いので、水蒸気の透湿もない。よって小屋裏空間も通気層も不必要になり、それらの工程も工費も不要である。 In addition, the building construction panel of the present plan eliminates the space under the floor, the space between the upper floor and the attic, and the outer wall ventilation layer. In general, these spaces are used to control the humidity and temperature of the building and prevent the deterioration of construction materials, but this representative structure example that uses heat insulation as a structure has no corrosion and extremely high moisture resistance. So there is no moisture vapor transmission. Therefore, the space in the shed and the ventilation layer are unnecessary, and neither the process nor the construction cost is required.

図4は、本代表構造例の材質を用いて、応力をパネル形状に反映した2階層のモデルの透視図である。9は組立後隣接する部材を剛接合とする場合の樹脂膜による表面処理である。10の臥梁は、風圧や地震力の影響や、5の屋根、6の壁からの力を均等に分配拡散させる部材である。図4にある中間層床版7'の下側は引張り力しか作用しないので、床中央部下側を弧型とさせ、引張応力の性能を高め床版の軽量化を図ることが可能である。 FIG. 4 is a perspective view of a two-layer model in which stress is reflected in the panel shape using the material of this representative structural example. 9 is a surface treatment with a resin film in the case where the adjacent members are rigidly joined after assembly. Ten beams are members that evenly distribute and diffuse the effects of wind pressure and seismic force, and the force from the roof and wall of 5. Since only the tensile force acts on the lower side of the intermediate layer slab 7 'shown in FIG. 4, it is possible to increase the performance of the tensile stress and reduce the weight of the floor slab by making the lower side of the floor center part an arc shape.

図5は自由な造型モデル図である。軽量な基材パネルで組み上げた後、隣接した構造部材同士の接合部近傍に、接合部材双方に貫入する構造リブを得るよう加工された溝に、構造樹脂を充填し、更なる繊維強化層を含めた構造膜を塗布形成することで一体となる。 FIG. 5 is a free molding model diagram. After assembling with a lightweight base material panel, in the vicinity of the joint between adjacent structural members, a groove processed to obtain a structural rib that penetrates both joint members is filled with structural resin, and a further fiber reinforced layer is added. It is integrated by coating and forming the included structural film.

さらに、図6の様にこれらの構造部材を組立構造材として細部に分けて制作し、後に一体化して梁や柱などの構造体とすることができる。例として鉄筋コンクリートラーメン工法に例えると部材14は主筋に相当し、柱総体の形状を保持する部材11と強化繊維層を含む樹脂層13はフープ筋に相当する。部材14_1は圧縮力を負担させる必要が有る場合の、木材あるいは鉄骨などの補強の構造材料である。部材12は幅止筋に相当し、柱内部側での変形を防ぐ。 Further, as shown in FIG. 6, these structural members can be produced in detail as an assembly structural material, and then integrated into a structure such as a beam or a column. For example, in the case of a reinforced concrete ramen construction method, the member 14 corresponds to a main reinforcement, and the member 11 that retains the shape of the entire column and the resin layer 13 including a reinforcing fiber layer correspond to a hoop reinforcement. The member 14_1 is a reinforcing structural material such as wood or steel when it is necessary to bear a compressive force. The member 12 corresponds to a width stop line and prevents deformation on the inner side of the column.

図17と図18は、本案の構造膜とそれと一体になる構造リブを用いることで、建築で最も多用されているコンクリート工事を簡略軽量化する案である。鉄筋工事も大幅に減じることもできる。また、型枠を兼ねた強度に設計すれば、型枠の取り外し工事も不要となり、施工工数の現象及び建物の軽量化に貢献する。 FIGS. 17 and 18 are proposals for simplifying and reducing the weight of the concrete work most frequently used in architecture by using the structural film of the present plan and the structural ribs integrated therewith. Reinforcement work can also be greatly reduced. Also, if the strength is combined with the formwork, the work for removing the formwork becomes unnecessary, which contributes to the phenomenon of construction man-hours and the weight reduction of the building.

45はFRPなどの樹脂構造膜、46aは構造リブ、46bはセパレーター金物48に付属するPコン48b用の穴の補強リブ、47はコンクリートである。型枠にこの構造膜と構造リブを設置してコンクリートを打ち込めば、構造膜及び構造リブが鉄筋の代わりとなって、鉄筋コンクリートと同様な強度が得られる。また、今までは重要な引っ張り力を受ける部材が鉄筋であったため、そのかぶり厚は必須だった。それゆえ目視ができなく、その施工状況などの検査には専門の探知機などが必要である。その検査の手間とコストがかかる事が要因になり、必要十分な検査がされて来とは言い難い。本案では施工状況を目視することができ、また不備であった場合においても適切な処理が可能になる。 45 is a resin structure film such as FRP, 46a is a structural rib, 46b is a reinforcing rib for a hole for a P-con 48b attached to the separator hardware 48, and 47 is concrete. If the structural film and the structural rib are installed in the mold and the concrete is driven in, the structural film and the structural rib replace the reinforcing bar, and the same strength as that of the reinforced concrete can be obtained. In addition, until now, the member that received an important tensile force was a reinforcing bar, so the cover thickness was indispensable. Therefore, visual inspection is impossible, and a special detector or the like is required for inspection of the construction status. It is difficult to say that necessary and sufficient inspections have been performed due to the time and cost of the inspections. In this plan, it is possible to visually check the construction status, and it is possible to perform appropriate processing even if it is incomplete.

本案の構造膜とそれと一体になる構造リブをコンクリート工事に使用することで、かぶり厚分のコンクリート使用量と、構造膜とそれと一体になる構造リブからなる引張り強度を必要鉄筋量に置き換えることで、大幅な鉄筋量を減じることが出来、コンクリート構造物の自重を減らすことが可能になる。また、図18のような専用切削工具を用いることで、既存のコンクリート部位の補強が可能になる。 By using the structural membrane of this plan and the structural rib integrated with it for concrete construction, the amount of concrete used for the cover thickness and the tensile strength consisting of the structural membrane and the structural rib integrated with it are replaced with the required amount of reinforcing bars. It is possible to greatly reduce the amount of reinforcing bars and reduce the weight of the concrete structure. Further, by using a dedicated cutting tool as shown in FIG. 18, the existing concrete part can be reinforced.

また、広く産業化の可能性を広げるため、目的用途や原材料や製法など、別に次のようなものを考案した。これらも本案代表例のように、樹脂膜と構造リブを施すことで優秀な構造体となる。 In addition, in order to broaden the possibility of industrialization, the following were devised, including the intended use, raw materials and manufacturing method. These also become excellent structures by applying a resin film and structural ribs, as in the present representative example.

図10は表面から段階的に密度が変わる材料の断面図である。これは接着剤と基材となる混入材での練り物を段階的に変化させ重ね合わせて作る。例として、最細木粉に接着剤を混ぜて作った27aに、粒度を大きくした木粉に接着剤を混入した層27bを積層し、さらに粒度を大きくした木粉に接着剤を混入した層27cを積層し、オガクズなど木片に近い粒度の材料に接着剤を混入した層27dを積層して作る。接着剤を混入した練り物である事を特徴としている。この製法は軽石や木材・ALC等の建設材廃材・ホタテ貝などの殻など、また震災時のガレキ再資源化など、一定の物性安定度を有した廃材などを粉砕して再利用する分野に適し、圧縮力が多いパネルあるいはパネルの端部などに適している。 FIG. 10 is a cross-sectional view of a material whose density changes stepwise from the surface. This is made by layering the kneaded mixture of the adhesive and the base material mixed in stages. As an example, 27a made by mixing adhesive with the finest wood flour, layer 27b in which adhesive is mixed with wood flour with a larger particle size, and layer 27c in which adhesive is mixed with wood flour with a larger particle size And a layer 27d in which an adhesive is mixed in a material having a particle size close to that of a piece of wood, such as sawdust. It is characterized by being a kneaded mixture with an adhesive. This method is used to grind and reuse pumice, wood, ALC, and other construction material waste, scallop shells, etc., and rubble recycling in the event of an earthquake, etc. Suitable for a panel having a large compressive force or an edge of the panel.

図11は表面から段階的に物理的密度を荒くした構造例の断面図である。紙やダンボールと、波板・折板などの圧延鋼板やポリカーボネートなどの樹脂版で製作した例である。29、31は使用目的で異なる耐候性仕上げ材などである。強度や目的によって異なるが、この構造は波型に成型した層を直交させて積層することを特徴にしている。30aの波型層に直行させた30b層、さらに粗い波型30cを直交させる。これは屋根などの大きなスパンを得る分野、あるいはポリカーボネート材などの樹脂板を使用しての、断熱採光部に適している。 FIG. 11 is a cross-sectional view of a structural example in which the physical density is gradually increased from the surface. In this example, paper and cardboard are used, and rolled steel plates such as corrugated plates and folded plates, and resin plates such as polycarbonate are used. 29 and 31 are weather resistant finishing materials that differ depending on the purpose of use. Although different depending on the strength and purpose, this structure is characterized by laminating layers formed into corrugated shapes at right angles. The 30b layer orthogonal to the 30a corrugation layer and the coarse corrugation 30c are orthogonalized. This is suitable for a field where a large span such as a roof is obtained, or a heat insulating daylighting part using a resin plate such as a polycarbonate material.

図12は表面から段階的に目的強度を変化させたハニカムコアでの構造例である。32は床仕上げ材、34はこのパネルにかかる引張り力を負担するフイルムである。強度及び精度が必要な層ハニカムコア33aと、引張り応力フイルムとを、所定の間隔位置に維持するため、積層することを特徴にしている。 FIG. 12 shows a structural example of a honeycomb core in which the target strength is changed stepwise from the surface. 32 is a floor finish, and 34 is a film that bears the tensile force applied to this panel. The layered honeycomb core 33a that requires strength and accuracy and the tensile stress film are laminated in order to maintain them at predetermined intervals.

図13は、表面から段階的にスチレンビーズなどの混入粒子を荒くした充填材の断面図である。35は初期制作材料面である。薄型材料面に樹脂等の接着剤を塗布し、その上に最細粒スチレンビーズ36aを流す。最細粒スチレンビーズはまんべんなく付着し、接着剤に触れてないビーズは人工的な風などで簡単に除去できる。その上に再度接着剤を吹付塗布し最細粒スチレンビーズの間隙をも埋める。再度段階的に大きくしたスチレンビーズ粒子36bを付着させる。36c,36dも同様の工程を行い所定の厚さにする。この材料は37のスチレンビーズの間隙を埋めている接着剤で使用した樹脂が、実質的な構造体であることを特徴としている。 FIG. 13 is a cross-sectional view of a filler in which mixed particles such as styrene beads are gradually roughened from the surface. 35 is an initial production material side. An adhesive such as a resin is applied to the thin material surface, and the finest styrene beads 36a are poured thereon. The finest styrene beads adhere evenly, and beads that do not touch the adhesive can be easily removed by artificial wind. On top of that, the adhesive is sprayed again to fill the gaps between the finest styrene beads. The styrene bead particles 36b which are enlarged stepwise again are attached. The same process is performed for 36c and 36d to a predetermined thickness. This material is characterized in that the resin used in the adhesive filling the gap between the 37 styrene beads is a substantial structure.

図14は段階的に発泡密度を変化させた発泡樹脂材料の断面図である。39は各建築条件による仕上げ材料であり、41は仕上げ材あるいは引っ張り応力フイルムである。発泡樹脂には押出発泡ポリスチレンやポリスチレンビーズボード、フェノールフォーム、硬質ウレタンフォーム、などがあるが、すでに強度や目的別に製品化されている。発泡樹脂板は圧縮力に強い製品は高価で弱い製品は安価であるから、強度などや各建築条件目的に合わせて積層する事を特徴としている。仕上げ材に近い層に密度が高く圧縮に強い樹脂版40aを使用し、41のフイルム位置を維持するためのスペーサー材としてより密度の低い樹脂版40bを積層している。 FIG. 14 is a cross-sectional view of a foamed resin material in which the foam density is changed stepwise. 39 is a finishing material according to each building condition, and 41 is a finishing material or a tensile stress film. Foamed resins include extruded foamed polystyrene, polystyrene bead board, phenolic foam, and rigid urethane foam, which have already been commercialized according to strength and purpose. Foamed resin boards are characterized by being laminated in accordance with the strength and other objectives of the building because products that are strong in compression force are expensive and those that are weak are inexpensive. A resin plate 40a having a high density and strong compression is used in a layer close to the finishing material, and a resin plate 40b having a lower density is laminated as a spacer material for maintaining the film position of 41.

図15は、軽量になる事を目的にして、用途・物性の異なる製品を積層し、中空とした事を特徴とする断面図である。42は床合板などである。43aの折板と、それに直交する折板43bと、完全な空間43cと、43bと43eの間隔を保持するように密着一体化した43dと、軽量発泡材43eと引っ張り力を負担するフイルム等の材料44で構成される。軽量化のため、骨の内部のように空間とするには、相対する層との位置を保持するためのスペーサーが必要になる。ここでの主な各部位の応力は、上層42,43a,43bは荷重による曲げと圧縮を負担し、中空層に点在する43dは空間に生じるせん断力と上下層からの圧縮を負担し、下層43e,44は引っ張りと圧縮を負担している。 FIG. 15 is a cross-sectional view characterized in that, for the purpose of reducing the weight, products having different uses and physical properties are laminated and made hollow. 42 is a plywood floor. 43a folded plate, a folded plate 43b orthogonal thereto, a complete space 43c, 43d tightly integrated so as to maintain a distance between 43b and 43e, a lightweight foam 43e and a film that bears tensile force, etc. Composed of material 44. In order to reduce the weight, in order to make a space like the inside of the bone, a spacer for maintaining the position with the opposite layer is required. The stress of each main part here, the upper layer 42, 43a, 43b bears bending and compression due to load, 43d scattered in the hollow layer bears the shear force generated in the space and compression from the upper and lower layers, The lower layers 43e and 44 bear tension and compression.

図16は先に示した本案の断面図である。
1の基材を押出発泡ポリスチレンを構造基材とし、その力を材料内部に伝達させるためと、応力に応じた強度を得るために、基材を切削あるいは成形して得た溝に樹脂を注入し異なる高さの構造リブ2a,2b,2cを作り、その付着力で表面に引張り強度等の応力に応じたFRP等の樹脂性の構造膜2を形成し、構造膜と構造基材とを一体化させる。

この構造リブ2a,2b,2cは、応力によってあるいは構造材料の密度や樹脂の付着強度によっては、一方向だけではなく90度に交差し網目状に、あるいは60度等必要に応じて交差させ、よりさらに安定させる。また、力学的あるいは形状安定化の必要がある場合には、この構造リブに引張強度がある繊維類で作られた糸を挿入し、流し込んだ樹脂との一体化させ強度をあげる。または樹脂そのものに強化繊維を混入撹拌して樹脂の強度を向上させることもできる。また、特別に圧縮耐力が必要な端部等には、樹脂あるいは金属などを挿入し同様な手法で樹脂と一体化し強化される。
FIG. 16 is a cross-sectional view of the above-described plan.
In order to transfer the force to the inside of the material and to obtain the strength corresponding to the stress, resin is injected into the groove obtained by cutting or molding the base material. However, the structural ribs 2a, 2b, 2c with different heights are formed, and the resinous structural film 2 such as FRP corresponding to the stress such as tensile strength is formed on the surface by the adhesion force, and the structural film and the structural substrate Integrate.

These structural ribs 2a, 2b, 2c are crossed not only in one direction but also at 90 degrees as a result of stress or structural material density and resin adhesion strength, or in a mesh form or at 60 degrees, etc. Make it even more stable. When mechanical or shape stabilization is required, a thread made of fibers having a tensile strength is inserted into the structural rib and integrated with the poured resin to increase the strength. Alternatively, the strength of the resin can be improved by mixing and stirring reinforcing fibers in the resin itself. Further, a resin or metal is inserted into an end portion or the like that requires special compressive strength, and is integrated and strengthened by the same method.

図17と図18は建築で最も多用されているコンクリート工事を簡略軽量化する案である。鉄筋工事も不要である。また、型枠を兼ねた強度に設計にし残存型枠とすれば、型枠の取り外し工事も不要となり、施工工数の現象及び建物の軽量化に貢献する。
45はFRPなどの樹脂構造膜、46aは構造リブ、46bはセパレーター金物48に付属するPコン48b用の穴の補強リブ、47はコンクリートである。型枠にこの構造膜と構造リブを設置してコンクリートを打ち込めば、構造膜及び構造リブが鉄筋の代わりとなって、鉄筋コンクリートと同様な強度が得られる。

構造計算における鉄筋の付着・定着に関する検討は、構造リブの素材・強度・形状・脚の長さに置き換えられる。コンクリート表面に引っ張り応力負担材を配置することで、鉄筋コンクリートでは不可欠だった鉄筋のかぶり厚さが減じられ、構造断面を小さくすることが出来る。これによって建築物などの構造自重を大きく軽減できる、あるいは同じ自重であれば構造強度を増すことが出来る。また、あらかじめ開口部補強までの構造リブを作成することもできる。また構造膜は化粧を兼ねることもできる。プレキャストコンクリート板なども、さらに精度が良く軽量なものが制作可能となる。
FIGS. 17 and 18 are plans to simplify and lighten the concrete work most frequently used in construction. Reinforcement work is also unnecessary. In addition, if the remaining formwork is designed to have a strength that doubles as a formwork, the work for removing the formwork is not necessary, contributing to the phenomenon of construction man-hours and the weight reduction of the building.
45 is a resin structure film such as FRP, 46a is a structural rib, 46b is a reinforcing rib for a hole for a P-con 48b attached to the separator hardware 48, and 47 is concrete. If the structural film and the structural rib are installed in the mold and the concrete is driven in, the structural film and the structural rib replace the reinforcing bar, and the same strength as that of the reinforced concrete can be obtained.

The study on the adhesion / fixation of reinforcing bars in the structural calculation is replaced by the material, strength, shape, and leg length of the structural ribs. By placing a tensile stress bearing material on the concrete surface, the cover thickness of the reinforcing bar, which was indispensable in reinforced concrete, is reduced, and the structural section can be reduced. As a result, the structural weight of a building or the like can be greatly reduced, or the structural strength can be increased with the same weight. In addition, a structural rib up to the opening reinforcement can be created in advance. The structural film can also serve as makeup. Precast concrete boards can be made with higher accuracy and lighter weight.

図19はコンクリート補修工事用の工具である。この工具の目的は構造補強強度に合致した樹脂リブ作ることであるから、これは鉄筋のかぶり厚の範囲の深さの溝を設計に基き平行に切削する工具である。平行な52と52に渡しかけられたスライドレール53に、角度を変える支持金物54でコンクリートカッターを取り付ける。このXYプロッターのような並行支持型以外にも、アーム型あるいはパンタグラフ型でも可能である。平行に溝を加工する事を特徴にしている。 FIG. 19 shows a tool for concrete repair work. Since the purpose of this tool is to make a resin rib that matches the structural reinforcement strength, this is a tool that cuts a groove with a depth in the range of the cover thickness of the reinforcing bar in parallel based on the design. A concrete cutter is attached to a slide rail 53 that passes over the parallel 52 and 52 with a support metal 54 that changes the angle. In addition to the parallel support type such as this XY plotter, an arm type or a pantograph type is also possible. It is characterized by processing grooves in parallel.

本代表例である図1、及び図16に有る構造リブで、現場での加工には図20のような軽量な加工機が適当である。基材1に付けられた目指線あるいは溝に合わせてガイド57を合せ、並行溝1b,1a,1b,1cの4本を切削する。フードはポリカーボネート製の集塵機能を備え、60の集塵袋へのホースに接続させる。フードの軸近辺に大きく開けられた風流入口から、刃先までシロッコファンのように遠心性をもった風流を作り、刃先をスチレン物性の変化が起きる摂氏80度になるのを防具のと同時に、61はノコ刃本体、その両面を61aのような溝を設け、溝切削時の熱と静電気をもった粉塵の付着を防いでいる。 A lightweight processing machine as shown in FIG. 20 is suitable for on-site processing with the structural ribs shown in FIGS. 1 and 16 as representative examples. The guide 57 is aligned with the finger line or groove attached to the substrate 1, and four parallel grooves 1b, 1a, 1b, 1c are cut. The hood has a polycarbonate dust collection function and is connected to a hose to 60 dust bags. At the same time as the armor, it creates a wind current with a centrifugal property like a sirocco fan from the wind inlet that is widely opened near the axis of the hood to the blade tip and the blade tip changes to 80 degrees Celsius when the styrene physical property changes. Has a saw blade body with grooves 61a on both sides to prevent adhesion of heat and static dust.

本案について、特に構造的に膜の形状を維持する為のリブも必要のない部材については、リブを省略し一般的な壁紙や、ポリエチレンテレフタラート(PET,PETE)などのリサイクル可能なフイルム等だけで表装することもできる。 With regard to this proposal, especially for members that do not require ribs to maintain the shape of the membrane structurally, the ribs are omitted and only general wallpaper, recyclable films such as polyethylene terephthalate (PET, PETE), etc. It can also be mounted.

本案図1、図2、図16についての、パネルや接合部を強化する場合の樹脂と構造膜及び強化繊維の組み合わせは、比較的安価で電波透過性に優れるガラス繊維強化プラスチック (GFRP)や、強度に優れ自動車部品などに使用されるガラス長繊維強化プラスチック(GMT)、アルミニウム合金の後継材料として使用される炭素繊維強化プラスチック (CFRP)、アラミド繊維(ケブラー)による強化で耐衝撃性に優れるアラミド繊維強化プラスチック (AFRP, KFRP)、ポリエチレン繊維(ダイニーマ)による強化プラスチックで高強度熱伝導性にも優れる、ポリエチレン繊維強化プラスチック (DFRP)、ザイロンによる強化できわめて高い強度と難燃性があるザイロン強化プラスチック(ZFRP)など、条件や用途によった組み合わせも使用できる。また、あらかじめ構造リブを制作して敷設する場合は、射出成型に適したABS樹脂等も使用できる。 The combination of resin, structural film, and reinforcing fiber for reinforcing panels and joints in the draft diagrams 1, 2, and 16 is relatively inexpensive and has excellent radio wave transmission, glass fiber reinforced plastic (GFRP), Aramid is excellent in impact resistance due to its strength by using long glass fiber reinforced plastic (GMT) used for automobile parts, carbon fiber reinforced plastic (CFRP) used as a successor of aluminum alloy, and aramid fiber (Kevlar). Fiber reinforced plastic (AFRP, KFRP), polyethylene fiber (Dyneema) reinforced plastic with excellent high-strength thermal conductivity, polyethylene fiber reinforced plastic (DFRP), Zylon reinforced Zylon reinforced with extremely high strength and flame resistance Combinations according to conditions and applications such as plastic (ZFRP) can also be used. Moreover, when producing and laying a structural rib in advance, ABS resin suitable for injection molding can be used.

図9は、本案図1、図2、図16を、従来からのの軽量型鋼とブレースで構成されたプレファブ様式の仮設住宅構造に採用した例である。部材15は土台、16は土台がずれるのを防ぐ合板。17は型鋼の下部フレーム、18は型鋼の柱、19は型鋼の上部フレームである。プレファブ様式の従来からの仮設住宅構造はこれら型鋼の各フレームの接点間同士を、鉄筋の斜材ブレースを交差させて安定させる。そののち柱間に3段程に分割された壁パネルを挿入して壁体としている。
本案のパネルは軽量であることから大型化が可能である。また、窓などの開口も可能であり、その補強も事前に行うことができる。この例は、パネルの周囲4辺を型鋼まで届く大きさに大きく出来る事から、構造膜及び構造リブを耐力壁として応用した例である。その際には斜材としてのブレースは不要となる。また通常のプレファブパネルの大きさとするならば、構造膜を接続する加工24を行えば耐力壁として利用できる。
また、課題となっている室内環境を悪くする型鋼周辺の冷橋を解消するため、型鋼部材を囲む込み室内側には露出させていない。部材22は天井パネルである。あまり荷重を受けることのないこのような場合の天井は、引っ張り側の室内側の構造膜は、仕上げ条件を満たせばフイルムで十分となる。部材23は一般的な床仕上げ材、部材24は壁パネルをさらに強固に接合する必要がある場合の、強化膜あるいはフイルムである。
FIG. 9 shows an example of adopting the draft FIGS. 1, 2 and 16 in a conventional prefabricated temporary housing structure composed of lightweight steel and braces. Member 15 is the base and 16 is the plywood that prevents the base from shifting. Reference numeral 17 denotes a lower frame of the shape steel, 18 denotes a column of the shape steel, and 19 denotes an upper frame of the shape steel. The conventional prefabricated temporary housing structure stabilizes the contact points of each frame of these steel shapes by crossing reinforcing steel brace braces. After that, a wall panel divided into three steps is inserted between the pillars to form a wall.
Since the panel of this plan is lightweight, it can be enlarged. Further, an opening such as a window is possible, and the reinforcement thereof can be performed in advance. This example is an example in which a structural film and a structural rib are applied as a bearing wall because the four sides of the panel can be enlarged to reach the steel plate. In that case, braces as diagonal materials are not necessary. If the size of the normal prefabricated panel is used, it can be used as a load bearing wall by performing processing 24 for connecting the structural film.
Moreover, in order to eliminate the cold bridge around the mold steel which worsens the indoor environment which is a problem, it is not exposed to the inner side of the enclosed room surrounding the mold steel member. The member 22 is a ceiling panel. In such a ceiling that does not receive much load, the structural film on the indoor side on the pulling side is sufficient if the film satisfies the finishing conditions. The member 23 is a general floor finishing material, and the member 24 is a reinforcing film or film when the wall panel needs to be joined more firmly.

本案の代表例図1,図16による住宅部材の大型パネル化は、解体やリサイクル時に有利となる。
従来の建築での木造壁を例にとっても、柱などの構造材・筋違いあるいは構造用合板・断熱材・内外の壁下地材・内外の壁仕上げ材・その他壁性能を維持するための通気層材などで構成されている。これらを材質ごとに現場にて分別し搬出しなければならないのに対し、2種あるいは数種の材料で成り立っている。
また、本案の代表例のパネルは基材表面の加工のみと言う着眼から、再度表面に構造膜を形成する程度で、元の用途への復元あるいは他の用途への転用が可能である。
パネル形状のままであれば建築に用いないとしても、基礎工事の土間などの地耐力を高める地盤改良材としても転用できる。さらに処理する場合には、表層の構造膜とリブはペレット化し骨材として鉄筋コンクリートの材料となり、基材は減容して再原料化あるいは燃料化あるいは焼却処理出来る。
Representative examples of this plan The construction of large-sized panels for housing members according to Figs. 1 and 16 is advantageous during dismantling and recycling.
Even in the case of wooden walls in conventional architecture, structural materials such as columns, streaks or structural plywood, heat insulating materials, inner and outer wall base materials, inner and outer wall finishing materials, and other ventilation layer materials to maintain wall performance Etc. While these materials must be sorted and transported on site, they consist of two or several materials.
Further, the panel of the representative example of the present plan can be restored to the original use or diverted to another use only by forming a structural film on the surface again from the viewpoint of processing only the surface of the substrate.
Even if it is not used for construction as long as it is in the panel shape, it can be diverted as a ground improvement material that enhances the earth resistance such as dirt in foundation work. In the case of further processing, the structural film and ribs on the surface layer are pelletized to become a reinforced concrete material as an aggregate, and the volume of the base material can be reduced to be recycled, fueled, or incinerated.

1 基材
1a 基材の溝加工 高
1b 基材の溝加工 中
1c 基材の溝加工 低
1d 基材の表皮
2 構造膜
2a 構造リブ 高
2b 構造リブ 中
2c 構造リブ 低
3 強化繊維層
4 耐候性化粧等
5 屋根版
5a 屋根版圧縮側
5b 屋根版引張り側
5c 屋根版支持固定部分
6 壁版
6a 壁版屋外側
6b 壁版室内側
7 最下階床版
7a 最下階床版圧縮側
7b 最下階床版引張り側
7c 最下階床版支持固定部分
7' 中間階床版
7'a 中間階床版圧縮側
7'b 中間階床版引張り側
7'c 中間階床版支持固定部分
8 土台
9 固定ジョイント
10 臥梁
11 外部形状保持材
12 内部形状保持材
13 強化繊維層を含む構造膜及び構造リブ
14 主要圧縮力負担部材
14a 圧縮力負担補強部材
15 仮設プレファブ住宅の土台
16 合板
17 型鋼壁下枠
18 型鋼壁柱枠
19 型鋼壁桁枠
20 本案開口部付耐力壁
21 本案床構造パネル
22 本案天井構造パネル
23 一般床仕上げ
24 本案構造膜あるいはフイルム
25 窓等の開口部
26 練り物製パネル表面
27a 最小木粉等の粉末と接着剤の混成物
27b 粒度を上げた木粉等と接着剤の混成物
27c 木粉とオガクズなどの木片と接着剤の混成物
27d オガクズ等木片と接着剤の混成物
28 練り物製パネル裏面
29 耐候性仕上材
30a 段ボール・板金等やポリカーボネートなどの樹脂板等で出来た波型折板
30b 30aに直交する波型折板
30c 30aより間隔・高さが大きい波型折板
30d 30cに直交する波型折板
30e 30cより間隔・高さが大きい波型折板
30f 30eに直交する波型折板
31 波板パネル室内側仕上材
32 ハニカムコアパネル用仕上材
33a 防振を高める為のハニカムコア
33b 剛性・精度を高めるためのハニカムコア
33c 引張用材料までの間隔調整ハニカムコア
34 ハニカムコア仕上材
35 パネル初期制作面
36a 最細粒スチレンビーズ
36b 粒度を上げたスチレンビーズ1
36c 粒度を上げたスチレンビーズ2
36d 最大粒度のスチレンビーズ
37 スチレンビーズ間に充填された接着樹脂
38 スチレンビーズパネル裏面
39 押出発泡ポリスチレン等樹脂パネル仕上材
40a 高密度押出発泡ポリスチレン等発泡樹脂板
40b 低密度押出発泡ポリスチレン等発泡樹脂板
41 押出発泡ポリスチレン等樹脂パネル背面仕上材
42 異種複合中空パネル仕上材
43a 段ボール・板金等やポリカーボネートなどの樹脂板等で出来た波型折板
43b 43aに直交する波型折板
43c 中空層
43d スペーサー
43e 低密度押出発泡ポリスチレン等発泡樹脂板等引張応力用基材
44 異種複合中空パネル引張応力材
45 FRP等の樹脂構造膜
46a 樹脂膜と一体の樹脂構造リブ
46b 型枠セパレーターの穴補強構造リブ
47 コンクリート
48 型枠セパレーター
48a 型枠金物取付軸
48b 打放しセパレーターに付属のPコン
48’ 自由穴によるセパレーター
49 既存の損傷コンクリート
50 既存コンクリートの損傷ヒビ等
51 工具取付脚
51a 取り付けアンカー
52 スライドレール取付スライド支持軸
53 工具取り付けスライドレール
54 切削方向回転盤
55 コンクリート溝切カッターとカバー
55a モーターと水タンク
56 損傷ヒビを補強する構造リブ用の溝
57 ガイド
58 集塵・保護カバー
59 同軸並列カッター
60 集塵袋へ
1 Base material
1a Substrate groove processing High
1b Substrate groove processing
1c Substrate grooving Low
1d Base material skin
2 Structure film
2a Structure rib High
2b Structure rib Medium
2c Structure rib Low
3 Reinforcing fiber layer
4 Weatherproof makeup, etc.
5 Roof plate
5a Roof plate compression side
5b Roof plate tension side
5c Roof plate support fixing part
6 Wall version
6a Outdoor wall
6b Inside wall version
7 Bottom floor slab
7a Bottom floor slab compression side
7b Lower floor slab tension side
7c Lower floor slab support and fixing part
7 'Intermediate floor deck
7'a Intermediate floor slab compression side
7'b Middle floor slab tension side
7'c Intermediate floor slab support fixing part
8 foundation
9 Fixed joint
10 臥 梁
11 External shape retaining material
12 Internal shape retaining material
13 Structural membranes and structural ribs containing reinforcing fiber layers
14 Major compressive force bearing members
14a Compressive force bearing reinforcement member
15 Foundation of temporary prefab house
16 Plywood
17 type steel wall bottom frame
18-inch steel wall column
19 type steel wall girder frame
20 Bearing wall with opening
21 Original floor structure panel
22 Proposed ceiling panel
23 General floor finish
24 Structure film or film
25 Openings such as windows
26 Kneaded panel surface
27a A mixture of powder such as minimum wood flour and adhesive
27b Compound of wood powder and adhesive with increased particle size
27c A mixture of wood powder and sawdust, etc.
27d A mixture of sawdust and wood glue
28 Kneaded panel back
29 Weatherproof finish
30a Corrugated folded board made of corrugated cardboard, sheet metal, etc. or resin board such as polycarbonate
30b Corrugated folded plate orthogonal to 30a
30c Corrugated folded plate with larger spacing and height than 30a
30d Corrugated folded plate orthogonal to 30c
30e Corrugated folded plate with larger spacing and height than 30c
30f Corrugated folded plate orthogonal to 30e
31 Corrugated panel interior finishing material
32 Finishing material for honeycomb core panel
33a Honeycomb core to enhance vibration isolation
33b Honeycomb core to increase rigidity and accuracy
33c Honeycomb core with spacing adjustment to tensile material
34 Finishing material for honeycomb core
35 Initial panel production
36a Finest styrene beads
36b Styrene beads with increased particle size 1
36c Styrene beads 2 with increased particle size
36d largest styrene beads
37 Adhesive resin filled between styrene beads
38 Back side of styrene bead panel
39 Extruded polystyrene and other resin panel finishing materials
40a Foamed resin board such as high density extruded polystyrene
40b Foamed resin board such as low density extruded polystyrene
41 Extruded polystyrene and other resin panel back finish
42 Heterogeneous composite hollow panel finish
43a Corrugated folded plates made of corrugated cardboard, sheet metal, etc. or resin plates such as polycarbonate
43b Corrugated folded plate orthogonal to 43a
43c hollow layer
43d spacer
43e Low density extruded polystyrene foam etc.
44 Heterogeneous composite hollow panel tensile stress material
45 Resin structure film such as FRP
46a Resin structure rib integrated with resin film
46b Reinforced structure rib for formwork separator
47 Concrete
48 formwork separator
48a Formwork mounting shaft
48b P-con supplied with the release separator
48 'Free hole separator
49 Existing damaged concrete
50 Damage to existing concrete
51 Tool mounting legs
51a Mounting anchor
52 Slide rail mounting slide support shaft
53 Tool mounting slide rail
54 Cutting direction turntable
55 Concrete grooving cutter and cover 55a Motor and water tank
56 Grooves for structural ribs to reinforce damaged cracks
57 Guide
58 Dust collection / protection cover
59 Coaxial parallel cutter
60 To dust bag

Claims (11)

FRP等の樹脂構造膜と、該構造膜と一体となる90度あるいは60度に交差する格子状の樹脂構造リブとで表面加工をした構造材。 A structural material surface-treated with a resin structure film such as FRP and a lattice-shaped resin structure rib that intersects with the structure film at 90 degrees or 60 degrees. 押出発泡ポリスチレン等の軽量な基材に、請求項1.に該当する加工を施した構造材。 A structural material obtained by applying a process corresponding to claim 1 to a lightweight base material such as extruded polystyrene. 押出発泡ポリスチレン等の軽量な基材に、樹脂フイルム等の構造膜で表面加工をした構造材。 A structural material that is surface-treated with a structural film such as a resin film on a lightweight base material such as extruded polystyrene. 軽量にするため、内部あるいは引張り力がかかる側に向けて、段階的に密度あるいは粒子を変えた材と接着剤との練物で構成される事を特徴にし、請求項1.あるいは請求項3.に該当する加工を施した構造材。 In order to reduce the weight, it is composed of a kneaded mixture of a material and an adhesive whose density or particles are gradually changed toward the inside or the side where the tensile force is applied. A structural material that has been processed according to. 紙や段ボールあるいは圧延鋼板やポリカーボネートなどの波板を、直交させるながら波の高さや間隔を段階的に差を付けて複数積層していくことを特徴にし、請求項1.あるいは請求項3.に該当する加工を施した構造材。 A plurality of corrugated sheets of paper, corrugated cardboard, rolled steel sheet, polycarbonate, etc. are stacked with a stepwise difference in wave height and interval while being orthogonal to each other. A structural material that has been processed. 密度を段階的に変化させ積層したハニカムコア構造で、請求項1.あるいは請求項3.に該当する加工を施した構造材。 A structural material having a honeycomb core structure in which the density is gradually changed and processed according to claim 1 or claim 3. 材料内に、表面から内部あるいは引張力がかかる側に向けて、段階的に直径が大きくなるポリスチレンビーズ粒子配列を持つ事を特徴とした、樹脂あるいはコンクリートあるいはその他の充填材で成る構造材。 A structural material made of resin, concrete, or other filler, characterized in that it has a polystyrene bead particle array that gradually increases in diameter from the surface toward the inside or the side where tensile force is applied. 段階的に発泡倍率を変えた製品を積層した発泡樹脂構造板とそれに請求項1.に該当する加工を施した構造材 Foamed resin structural board in which products with different expansion ratios are layered and a structural material that has been processed according to claim 1. 請求項1.の加工を施したコンクリート用残存型枠 Remaining formwork for concrete subjected to the processing of claim 1. 本請求の、用途や物性が異なる材料を積層し中空層を設けた構造材 The structural material according to the present invention in which materials having different uses and physical properties are laminated to provide a hollow layer 図20に示す現場剛接合構造リブ切削工具 On-site rigid joint structure rib cutting tool shown in Fig. 20
JP2012068502A 2012-03-24 2012-03-24 Structural material having resin membrane and resin structural rib, and building method Pending JP2013199767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068502A JP2013199767A (en) 2012-03-24 2012-03-24 Structural material having resin membrane and resin structural rib, and building method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068502A JP2013199767A (en) 2012-03-24 2012-03-24 Structural material having resin membrane and resin structural rib, and building method

Publications (1)

Publication Number Publication Date
JP2013199767A true JP2013199767A (en) 2013-10-03

Family

ID=49520207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068502A Pending JP2013199767A (en) 2012-03-24 2012-03-24 Structural material having resin membrane and resin structural rib, and building method

Country Status (1)

Country Link
JP (1) JP2013199767A (en)

Similar Documents

Publication Publication Date Title
US8782991B2 (en) Building roof structure having a round corner
US20090255213A1 (en) Sandwich panel with closed edge and methods of fabricating
US20070101675A1 (en) Method of constructing a building, such building, and wall and floor elements for use therein
EP3047078B1 (en) A construction system of wooden load-bearing structures for buildings and a structure thus obtained
US20100050549A1 (en) Joint of parallel sandwich panels
US20100050542A1 (en) System and method of forming at least a portion of a reinforced roof structure from sandwich panels
US20130326986A1 (en) System and Method for Light Steel Frame Construction
RU2656260C2 (en) Method for constructing building having strong thermal insulation and building constructed by means of said method
US20090320387A1 (en) Sandwich panel ground anchor and ground preparation for sandwich panel structures
Wolf et al. A full performance paper house
CN111630234B (en) Panel for building structures having a predetermined curvature and method for manufacturing the same
US8875475B2 (en) Multiple panel beams and methods
JP2013199767A (en) Structural material having resin membrane and resin structural rib, and building method
Stewart Building on the advantages of composites in construction
US20140272311A1 (en) Composite sandwich panels and method of forming round corners in composite sandwich panels
US20210032855A1 (en) Construction System
KR20130055945A (en) The insulation complex panel with structural wood and the construct method of wall therewith
Finch et al. Non-orthogonal light timber frame design: using digital manufacturing technologies to facilitate circular economy architecture
US20140260081A1 (en) Multiple panel column and methods
US20140260085A1 (en) Columnar structural component and method of forming
US20230137437A1 (en) Column Insulated Beam System and Method of Use
US20140260053A1 (en) Columnar structural component and method of forming
JP7412057B1 (en) Wooden axle trailer, fixing fittings for wood axle members, and method for manufacturing a wood axle trailer
Akovali et al. The use of plastics in building construction
CN212926685U (en) Bamboo wood and concrete combined wallboard finished piece