JP2013198304A - Rotor structure of permanent magnet type rotary machine - Google Patents

Rotor structure of permanent magnet type rotary machine Download PDF

Info

Publication number
JP2013198304A
JP2013198304A JP2012063088A JP2012063088A JP2013198304A JP 2013198304 A JP2013198304 A JP 2013198304A JP 2012063088 A JP2012063088 A JP 2012063088A JP 2012063088 A JP2012063088 A JP 2012063088A JP 2013198304 A JP2013198304 A JP 2013198304A
Authority
JP
Japan
Prior art keywords
core
pole
iron core
rotor
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012063088A
Other languages
Japanese (ja)
Inventor
Takeshi Akiyama
剛 秋山
Daiki Matsuhashi
大器 松橋
Takashi Okitsu
隆志 沖津
Keisuke Matsuo
圭祐 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2012063088A priority Critical patent/JP2013198304A/en
Publication of JP2013198304A publication Critical patent/JP2013198304A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rotor structure of a permanent magnet type rotary machine that has advantages of both a completely split iron core structure and a completely integrated iron core structure.SOLUTION: In a rotor structure of a permanent magnet type rotary machine constituted having a rotor iron core 1 and a permanent magnet 2 arranged alternately in a circumferential direction, the rotor iron core 1 comprises integrated iron cores 111, 121 comprising a plurality of integrated iron core pieces 111A, 121A arranged in peripheral directions respectively for every other pole and integrated iron core connection parts 111B, 121B connecting the plurality of integrated iron core pieces 111A, 121B in one body radially inside, and an N-pole iron core 11 and an S-pole iron core 12 comprising a plurality of split iron cores 112, 122 overlaid axial one-end surfaces of the plurality of integrated iron core pieces 111A, 121A, the N-pole iron core 11 and S-pole iron core 12 being arranged such that the axial one-end surfaces are opposed and the N-pole iron core 11 and S-pole iron core 12 are arranged alternately in the circumferential direction.

Description

本発明は、永久磁石を使用した永久磁石形回転電機の回転子構造に関し、特に、永久磁石形回転電機の高磁束密度化を実現するための回転子構造に関する。   The present invention relates to a rotor structure of a permanent magnet type rotating electrical machine using a permanent magnet, and more particularly to a rotor structure for realizing a high magnetic flux density of a permanent magnet type rotating electrical machine.

従来、永久磁石形回転電機においては、高いギャップ磁束密度を実現する方法としてスポーク型に磁石を配置する技術が知られている(例えば、特許文献1参照)。そして、現在スポーク型に磁石を配置するための回転子構造としては、鉄心を完全に分割する完全分割鉄心構造と、鉄心を僅かにつなげておく完全一体鉄心構造との二種類の構造が考えられている。   Conventionally, in a permanent magnet type rotating electric machine, a technique of arranging a magnet in a spoke form is known as a method for realizing a high gap magnetic flux density (see, for example, Patent Document 1). There are currently two types of rotor structures that can be used to arrange magnets in the spoke type: a fully divided core structure that completely divides the iron core, and a fully integrated core structure that slightly connects the iron core. ing.

特開2011−78298号公報JP 2011-78298 A

しかしながら、完全分割鉄心構造においては、完全に分割された回転子鉄心を精度よく一体化させるために多くの分割鉄心を固定するための部材および組み付け固定のための工数が必要となる問題があった。また、分割鉄心に軸方向に貫通する貫通穴を設け、さらに鉄心の両端面に板部材を設けて、丸棒等の支持部材を貫通穴に嵌入させて前記分割鉄心を固定することが考えられるが、この方法を鉄心積厚の長い回転機に適用した場合、前記支持部材も積厚に依存して長くなり、積厚に依存した前記分割鉄心の遠心力と回転力の大きさに対して前記支持部材の強度及び剛性が不足するという問題が考えられた。   However, in the completely divided core structure, there is a problem that a large number of members for fixing the divided core and man-hours for assembling and fixing are required in order to accurately integrate the completely divided rotor core. . Further, it is conceivable to provide a through-hole penetrating in the axial direction in the split iron core, further providing plate members on both end faces of the iron core, and fixing the split iron core by inserting a support member such as a round bar into the through-hole. However, when this method is applied to a rotating machine having a long core thickness, the support member also becomes long depending on the thickness, and the centrifugal force and the rotational force of the split core depending on the thickness are large. The problem of insufficient strength and rigidity of the support member was considered.

他の方法として分割鉄心を一体化させるために回転子外周に例えば非磁性体の円筒状部材(非磁性のリング部材)を設ける場合には、円筒状部材の肉厚と、その円筒状部材を回転子へ組付ける際の精度を考慮した分だけ回転機の固定子と回転子間のギャップが広がることになり、効果的にギャップ磁束密度を向上させることが難しいという問題があった。
回転子の回転時の遠心力に耐えるためには、分割鉄心を強固に一体化させるために円筒状部材の強度および剛性が必要となるが、これは円筒状部材の肉厚に依存する。つまり、円筒状部材の強度向上とギャップ磁束密度向上はトレードオフの関係となるという問題もあった。
As another method, for example, when a non-magnetic cylindrical member (non-magnetic ring member) is provided on the outer periphery of the rotor to integrate the divided iron cores, the thickness of the cylindrical member and the cylindrical member are The gap between the rotor and the rotor of the rotating machine widens by taking into account the accuracy when assembled to the rotor, and there is a problem that it is difficult to effectively improve the gap magnetic flux density.
In order to withstand the centrifugal force during the rotation of the rotor, the strength and rigidity of the cylindrical member are required to firmly integrate the split iron core, but this depends on the thickness of the cylindrical member. That is, there is a problem that the improvement of the strength of the cylindrical member and the improvement of the gap magnetic flux density are in a trade-off relationship.

また、分割鉄心と回転機軸は、鉄心端面の板部材を介して締結されることから、分割鉄心と回転機軸の締結強度は板部材のみが担うため、鉄心の積厚が増加するほど、構造の信頼性が低くなるという問題も考えられた。   Moreover, since the split iron core and the rotating machine shaft are fastened through the plate member on the end surface of the iron core, the fastening strength of the split iron core and the rotating machine shaft is solely borne by the plate member. There was also a problem of low reliability.

他方、上述した完全一体鉄心構造では、つながり部分において磁束の漏れが避けられないため、ギャップ磁束密度が低下してしまう。特に希土類を使用しない残留磁束密度の低い永久磁石(フェライト磁石など)を使用した場合では、鉄心のつながり部分を磁気飽和させることが困難になり、ギャップの磁束密度が大きく低下してしまうという問題があった。   On the other hand, in the above-described fully integrated iron core structure, leakage of magnetic flux is unavoidable at the connecting portion, and therefore the gap magnetic flux density is reduced. In particular, when a permanent magnet (such as a ferrite magnet) that does not use rare earth and has a low residual magnetic flux density is used, it is difficult to magnetically saturate the connecting portion of the iron core, and the magnetic flux density of the gap is greatly reduced. there were.

鉄心のつながり部分を磁気飽和させるには、つながり部分を極力細くする必要があり、ギャップの磁束密度向上は鉄心の製作上の精度およびつながり部分の強度とのトレードオフとなる。   In order to magnetically saturate the connecting portion of the iron core, it is necessary to make the connecting portion as thin as possible. Improvement in the magnetic flux density of the gap is a trade-off between accuracy in manufacturing the iron core and strength of the connecting portion.

また、磁束の漏れを低減させるため、通常つながり部分を細くすることから、つながり部分を強度部材として期待することは困難であり、鉄心と回転機軸との締結に関する強度的な問題点は完全分割鉄心構造とほとんど変わらない。   In order to reduce the leakage of magnetic flux, the connecting part is usually made thin, so it is difficult to expect the connecting part as a strength member. The strength problem related to the fastening between the iron core and the rotating machine shaft is a completely divided iron core. Almost the same as the structure.

このようなことから本発明は、完全分割鉄心構造及び完全一体鉄心構造双方の利点を兼ね備えた永久磁石形回転電機の回転子構造を提供することを目的とする。   In view of the above, an object of the present invention is to provide a rotor structure of a permanent magnet type rotating electrical machine that has the advantages of both a fully divided iron core structure and a fully integrated iron core structure.

上記の課題を解決するための第1の発明に係る永久磁石形回転電機の回転子構造は、回転子鉄心と永久磁石とを周方向に交互に配置した構成を有する永久磁石形回転電機の回転子構造において、前記回転子鉄心が、それぞれ周方向に一極置きに配置される複数の一体鉄心片及び前記複数の一体鉄心片を径方向内側で一体的に連結する一体鉄心連結部からなる一体鉄心と、前記複数の一体鉄心片の軸方向一端面にそれぞれ重ね合わされる複数の分割鉄心とから構成されるN極鉄心及びS極鉄心とを備え、前記N極鉄心と前記S極鉄心とが、前記軸方向一端面が対向するように且つ前記N極鉄心と前記S極鉄心とが周方向に交互に配設されるように組み合わされたことを特徴とする。   The rotor structure of the permanent magnet type rotating electric machine according to the first invention for solving the above-mentioned problems is the rotation of the permanent magnet type rotating electric machine having a configuration in which the rotor cores and the permanent magnets are alternately arranged in the circumferential direction. In the child structure, the rotor core is an integrated unit composed of a plurality of integral core pieces arranged at every other pole in the circumferential direction and an integral core connecting portion that integrally couples the plurality of integral core pieces radially inward. An N-pole core and an S-pole core, each composed of an iron core and a plurality of divided iron cores superimposed on one axial end surface of the plurality of integral core pieces, and the N-pole core and the S-pole core are The N pole iron core and the S pole iron core are combined so that the one end surfaces in the axial direction face each other and are alternately arranged in the circumferential direction.

また、上記の課題を解決するための第2の発明に係る永久磁石形回転電機の回転子構造は、第1の発明に係る永久磁石形回転電機の回転子構造において、前記一体鉄心の軸方向の厚さに比較して前記分割鉄心の軸方向の厚さが軸方向への磁束漏れを防止する磁気抵抗を確保できる距離相当分以上である所定厚さだけ厚く構成されたことを特徴とする。   Further, a rotor structure of a permanent magnet type rotating electrical machine according to a second invention for solving the above-mentioned problems is the rotor structure of the permanent magnet type rotating electrical machine according to the first invention, wherein the axial direction of the integral iron core is the same. The axial thickness of the divided iron core is configured to be thicker by a predetermined thickness that is equal to or greater than a distance that can ensure a magnetic resistance that prevents magnetic flux leakage in the axial direction. .

また、上記の課題を解決するための第3の発明に係る永久磁石形回転電機の回転子構造は、第2の発明に係る永久磁石形回転電機の回転子構造において、軸方向に対し、前記N極鉄心と前記S極鉄心との間に前記所定厚さの円環状部材が介装されたことを特徴とする。   Further, a rotor structure of a permanent magnet type rotating electrical machine according to a third invention for solving the above-described problem is the rotor structure of the permanent magnet type rotating electrical machine according to the second invention, wherein The annular member having the predetermined thickness is interposed between the N pole iron core and the S pole iron core.

また、上記の課題を解決するための第4の発明に係る永久磁石形回転電機の回転子構造は、第1ないし第3のいずれか一つの発明に係る永久磁石形回転電機の回転子構造において、前記回転子鉄心が軸方向に複数積層されてなることを特徴とする。   A rotor structure of a permanent magnet type rotating electrical machine according to a fourth aspect of the present invention for solving the above problem is the rotor structure of the permanent magnet type rotating electrical machine according to any one of the first to third aspects of the invention. A plurality of the rotor cores are laminated in the axial direction.

また、上記の課題を解決するための第5の発明に係る永久磁石形回転電機の回転子構造は、第1ないし第4のいずれか一つの発明に係る永久磁石形回転電機の回転子構造において、前記回転子鉄心が径方向に対して前記一体鉄心連結部と前記分割鉄心との間に間隙を有し、前記間隙に径方向に着磁された他の永久磁石を配設したことを特徴とする。   In addition, a rotor structure of a permanent magnet type rotating electrical machine according to a fifth aspect of the present invention for solving the above problems is the rotor structure of the permanent magnet type rotating electrical machine according to any one of the first to fourth aspects of the invention. The rotor core has a gap between the integral core connecting portion and the split core with respect to the radial direction, and another permanent magnet magnetized in the radial direction is disposed in the gap. And

上述した本発明に係る永久磁石形回転電機の回転子構造によれば、従来の完全分割鉄心構造に比較して回転機軸との組付け精度の向上及び組み立ての容易化が可能であるとともに、従来の完全一体鉄心構造に比較して磁束の漏れを防止して高いギャップ磁束密度を得ることができる。   According to the rotor structure of the permanent magnet type rotating electric machine according to the present invention described above, the assembly accuracy with the rotating machine shaft can be improved and the assembly can be facilitated as compared with the conventional fully divided core structure. Compared with the fully integrated iron core structure, leakage of magnetic flux can be prevented and a high gap magnetic flux density can be obtained.

また、積層厚の大きい電動機に適用する場合であっても強度を維持しつつ容易に必要な積層厚を確保することが可能となる。   Further, even when applied to an electric motor having a large thickness, it is possible to easily secure a necessary thickness while maintaining strength.

また、一体鉄心連結部と分割鉄心との間に形成される間隙に径方向に着磁された他の永久磁石を配設すれば、永久磁石の内外径部に回転子鉄心による磁気回路が存在することとなり、回転子鉄心と回転機軸との締結強度を備えながらも効果的にギャップ磁束密度の向上を図ることができる。   In addition, if another permanent magnet magnetized in the radial direction is disposed in the gap formed between the integral core connecting portion and the split core, a magnetic circuit using the rotor core exists in the inner and outer diameter portions of the permanent magnet. Thus, the gap magnetic flux density can be effectively improved while providing the fastening strength between the rotor core and the rotating machine shaft.

図1(a)は本発明の第1の実施例に係る永久磁石形回転電機の回転子構造における一体鉄心を示す斜視図、図1(b)は図1(a)を正面から見た縦断面図である。FIG. 1A is a perspective view showing an integral iron core in a rotor structure of a permanent magnet type rotating electric machine according to a first embodiment of the present invention, and FIG. 1B is a longitudinal section of FIG. 1A viewed from the front. FIG. 本発明の第1の実施例に係る永久磁石形回転電機の回転子構造における同極鉄心を示す斜視図である。1 is a perspective view showing a homopolar core in a rotor structure of a permanent magnet type rotating electric machine according to a first embodiment of the present invention. 本発明の第1の実施例に係る永久磁石形回転電機の回転子構造における一体鉄心を示す斜視図である。It is a perspective view which shows the integral iron core in the rotor structure of the permanent magnet type rotary electric machine which concerns on 1st Example of this invention. 本発明の第1の実施例に係る永久磁石形回転電機の回転子構造における分割鉄心を示す斜視図である。It is a perspective view which shows the division | segmentation iron core in the rotor structure of the permanent magnet type rotary electric machine which concerns on 1st Example of this invention. 本発明の第1の実施例に係る永久磁石形回転電機の回転子構造における回転子鉄心の分解斜視図である。It is a disassembled perspective view of the rotor core in the rotor structure of the permanent magnet type rotary electric machine which concerns on 1st Example of this invention. 図6(a)は本発明の第1の実施例に係る永久磁石形回転電機の正面図、図6(b)は図6(a)のVI-VI断面図である。FIG. 6A is a front view of the permanent magnet type rotating electric machine according to the first embodiment of the present invention, and FIG. 6B is a cross-sectional view taken along the line VI-VI in FIG. 本発明の第2の実施例に係る永久磁石形回転電機の回転子構造における回転子鉄心を示す斜視図である。It is a perspective view which shows the rotor core in the rotor structure of the permanent magnet type rotary electric machine which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る永久磁石形回転電機の回転子構造を示す分解斜視図である。It is a disassembled perspective view which shows the rotor structure of the permanent magnet type rotary electric machine which concerns on the 2nd Example of this invention. 図9(a)は本発明の第2の実施例に係る永久磁石形回転電機の正面図、図9(b)は図9(a)のIX-IX断面図である。FIG. 9A is a front view of a permanent magnet type rotating electric machine according to the second embodiment of the present invention, and FIG. 9B is a cross-sectional view taken along the line IX-IX in FIG. 図10(a)は本発明の第3の実施例に係る永久磁石形回転電機の回転子構造鉄心を示す斜視図、図10(b)は図10(a)の一体鉄心を省略して示す正面図である。FIG. 10A is a perspective view showing a rotor structure iron core of a permanent magnet type rotating electric machine according to a third embodiment of the present invention, and FIG. 10B shows the integral iron core of FIG. It is a front view. 図11(a)は本発明の第3の実施例に係る永久磁石形回転電機の回転子構造の回転子鉄心を一部省略して示す斜視図、図11(b)は本発明の第3の実施例に係る永久磁石形回転電機の回転子構造の回転子鉄心を一部省略して示す他の斜視図である。FIG. 11A is a perspective view showing a rotor core of a rotor structure of a permanent magnet type rotating electric machine according to a third embodiment of the present invention with a part omitted, and FIG. 11B is a third view of the present invention. It is another perspective view which abbreviate | omits and shows the rotor core of the rotor structure of the permanent magnet type rotary electric machine which concerns on an Example of this.

以下、図面を参照しつつ本発明に係る永久磁石形回転電機の回転子構造を詳細に説明する。   Hereinafter, a rotor structure of a permanent magnet type rotating electrical machine according to the present invention will be described in detail with reference to the drawings.

(高ギャップ磁束密度を実現する回転子構造)
図1ないし図6を用いて本発明に係る永久磁石形回転電機の回転子構造の第1の実施例について説明する。
(Rotor structure realizing high gap magnetic flux density)
A first embodiment of a rotor structure of a permanent magnet type rotating electric machine according to the present invention will be described with reference to FIGS.

図1に示すように、本実施例に係る永久磁石形回転電機の回転子構造において、回転子鉄心1は、N極鉄心11と、S極鉄心12と、非磁性体からなる円環状部材13とを備えて構成されている。なお、本実施例では回転子鉄心1の一例として8極のものを示している。   As shown in FIG. 1, in the rotor structure of the permanent magnet type rotating electric machine according to the present embodiment, the rotor core 1 includes an N pole core 11, an S pole core 12, and an annular member 13 made of a nonmagnetic material. And is configured. In the present embodiment, an 8-pole type is shown as an example of the rotor core 1.

N極鉄心11とS極鉄心12とは、それぞれ周方向に等間隔に配置された四つの鉄心片11A,12Aを備えており、N極鉄心11とS極鉄心12とを周方向に一極分位相をずらして組み合わせることにより、N極鉄心11の鉄心片11Aと、S極鉄心12の鉄心片12Aとが周方向に交互に配置されるように構成されている。さらに、周方向に対して、N極鉄心11の鉄心片11AとS極鉄心12の鉄心片12Aとの間には永久磁石2が配設されており、これにより、回転子鉄心1と永久磁石2とが周方向に交互に配置された構成となっている。   The N-pole iron core 11 and the S-pole iron core 12 are each provided with four iron core pieces 11A and 12A arranged at equal intervals in the circumferential direction, and the N-pole iron core 11 and the S-pole iron core 12 have a single pole in the circumferential direction. By combining the phase shifts, the core pieces 11A of the N-pole core 11 and the core pieces 12A of the S-pole core 12 are alternately arranged in the circumferential direction. Further, the permanent magnet 2 is disposed between the iron core piece 11A of the N-pole iron core 11 and the iron core piece 12A of the S-pole iron core 12 with respect to the circumferential direction, whereby the rotor iron core 1 and the permanent magnet are arranged. 2 are arranged alternately in the circumferential direction.

図2ないし図4を用いてN極鉄心11及びS極鉄心12の構成について詳細に説明する。   The configurations of the N pole core 11 and the S pole core 12 will be described in detail with reference to FIGS.

N極鉄心11は、図2に示すように、一つのN極側一体鉄心111と四つのN極側分割鉄心112とを軸方向に重ね合わせて構成されている。   As shown in FIG. 2, the N pole core 11 is configured by superimposing one N pole side integrated core 111 and four N pole side split cores 112 in the axial direction.

N極側一体鉄心111は、図3に示すように、周方向に一極置きに配置された四つのN極側一体鉄心片111Aと、それぞれのN極側一体鉄心片111Aを径方向内側で連結するN極側一体鉄心連結部111Bとから構成されている。
N極側一体鉄心片111Aはそれぞれ概ね扇形に形成されたN極側一体鉄心片本体部分111aと、該N極側一体鉄心片本体部分111aの径方向外側で周方向に沿って延びる二つのN極側一体鉄心外フランジ部111bと、N極側一体鉄心片本体部分111aの径方向内側で周方向に沿って延びるとともにN極側一体鉄心連結部111BにつながるN極側一体鉄心片基端部111cとから構成されている。
N極側一体鉄心連結部111Bは概ね環状に形成され、その内周111dの径は電動機軸3(図6参照)を嵌入可能に設定され、その外周111eの径は後述するN極側分割鉄心112の内接円に比較して小径に設定されている。
ここで、N極側一体鉄心111の回転機軸3の軸方向(以下、単に「軸方向」という)の厚さ(以下、一体鉄心厚という)をt1とする。
As shown in FIG. 3, the N-pole-side integrated core 111 includes four N-pole-side integrated core pieces 111A arranged at every other pole in the circumferential direction, and each N-pole-side integrated core piece 111A on the radially inner side. It is comprised from the N pole side integral iron core connection part 111B to connect.
Each of the N-pole-side integrated core pieces 111A has a substantially fan-shaped N-pole-side integrated core piece main body portion 111a, and two N poles extending along the circumferential direction on the radially outer side of the N-pole side integrated core piece main body portion 111a. The pole-side integral core outer flange portion 111b and the pole-side integral core piece base end portion extending along the circumferential direction on the radially inner side of the pole-side integral core piece main body portion 111a and connected to the pole-side integral core connecting portion 111B 111c.
The N pole-side integrated core connecting portion 111B is formed in a generally annular shape, and the diameter of the inner periphery 111d is set so that the motor shaft 3 (see FIG. 6) can be fitted, and the diameter of the outer periphery 111e is an N pole side split core that will be described later. The diameter is set smaller than the 112 inscribed circle.
Here, the thickness in the axial direction (hereinafter simply referred to as “axial direction”) of the rotating machine shaft 3 of the N-pole-side integrated iron core 111 (hereinafter referred to as “integral iron core thickness”) is defined as t1.

また、N極側分割鉄心112は、図4に示すように、それぞれ概ね扇形に形成されたN極側分割鉄心本体部分112aと、N極側分割鉄心本体部分112aの径方向外側で周方向に沿って延びる二つのN極側分割鉄心外フランジ部112bと、N極側分割鉄心本体部分112aの径方向内側で周方向に沿って延びるN極側分割鉄心内フランジ部112cとから構成されている。
ここで、N極側分割鉄心112の軸方向の厚さ(以下、分割鉄心厚という)をt2とすると、分割鉄心厚t2は、一体鉄心厚t1より厚く、具体的には、t2=t1+t3(ただし、t3は円環状部材13の軸方向の厚さ)となるように形成されている。
N極側分割鉄心本体部分112a、N極側分割鉄心外フランジ部112bは、それぞれN極側一体鉄心片本体部分111a、N極側一体鉄心外フランジ部111bと軸方向の厚さを除き同形状に形成されている。
Further, as shown in FIG. 4, the N pole-side split core 112 is arranged in the circumferential direction on the radially outer side of the N pole-side split core main body portion 112 a and the N pole-side split core main body portion 112 a, which are each formed in a generally fan shape. Two N pole side split core outer flange portions 112b extending along the N pole side split core inner flange portion 112c extending along the circumferential direction radially inward of the N pole side split core body portion 112a. .
Here, when the thickness in the axial direction of the N-pole-side split core 112 (hereinafter referred to as the split core thickness) is t2, the split core thickness t2 is thicker than the integral core thickness t1, specifically, t2 = t1 + t3 ( However, t3 is formed so as to be the thickness of the annular member 13 in the axial direction).
The N pole side split core body portion 112a and the N pole side split core outer flange portion 112b have the same shape as the N pole side integral core piece main body portion 111a and the N pole side integral core outer flange portion 111b except for the axial thickness. Is formed.

本実施例においては、このように構成されるN極側一体鉄心111とN極側分割鉄心112とを、図2に示すように各N極側一体鉄心片111Aの軸方向の一端面にそれぞれN極側分割鉄心112を重ね合わせることによりN極鉄心11を構成している。なお、N極側一体鉄心片111AとN極側分割鉄心112とを例えばカシメ、接着または溶接などにより固定すれば、N極側一体鉄心111とN極側分割鉄心112とを一体的に形成することができる。   In the present embodiment, the N-pole-side integrated core 111 and the N-pole-side divided core 112 configured as described above are respectively disposed on one axial end surface of each N-pole-side integrated core piece 111A as shown in FIG. The N pole core 11 is configured by superimposing the N pole side split cores 112. If the N-pole side integrated core piece 111A and the N-pole side divided core 112 are fixed by, for example, caulking, bonding, or welding, the N-pole side integrated core 111 and the N-pole side divided core 112 are integrally formed. be able to.

S極鉄心12は、N極鉄心11と同一形状であるので詳細な説明は省略するが、図2ないし図4に括弧で符号を示すように、一つのS極側一体鉄心121と四つのS極側分割鉄心122とを軸方向に重ね合わせて構成されている。
S極側一体鉄心121は、図3に示すようにそれぞれS極側一体鉄心片本体部121a、二つのS極側一体鉄心片外フランジ部121b、及びS極側一体鉄心片基端部121cを備える四つのS極側鉄心片121Aと、該S極側鉄心片121Aを径方向内側で連結するS極側一体鉄心連結部121Bとから構成されている。
また、S極側分割鉄心122は、図4に示すようにS極側分割鉄心本体部122aと、S極側分割鉄心外フランジ部122bと、S極側分割鉄心内フランジ部122cから構成されている。
Since the S pole iron core 12 has the same shape as the N pole iron core 11, a detailed description thereof will be omitted. However, as shown in parentheses in FIGS. 2 to 4, one S pole side integrated iron core 121 and four S pole irons are provided. The pole-side divided iron core 122 is configured to overlap in the axial direction.
As shown in FIG. 3, the S-pole-side integrated core 121 includes an S-pole-side integrated core piece main body 121 a, two S-pole-side integrated core pieces outer flanges 121 b, and an S-pole-side integrated core piece base end 121 c, respectively. The four S pole side iron core pieces 121A are provided, and the S pole side iron core piece 121B that connects the S pole side iron core pieces 121A radially inward.
Further, as shown in FIG. 4, the S pole side split core 122 is composed of an S pole side split core main body 122a, an S pole side split core outer flange 122b, and an S pole side split core inner flange 122c. Yes.

そして、S極鉄心12は、N極鉄心11と同様、図2に示すようにS極側一体鉄心121の各S極側一体鉄心片121Aの軸方向の一端面にそれぞれS極側分割鉄心122を重ね合わせることにより構成されている。S極側一体鉄心片121AとS極側分割鉄心122とをカシメ、接着または溶接などにより固定すれば、S極側一体鉄心121とS極側分割鉄心122とを一体的に形成することができる。   As in the case of the N pole core 11, the S pole core 12 has an S pole side split core 122 on one end surface in the axial direction of each S pole side integral core piece 121 </ b> A of the S pole side integral core 121, as shown in FIG. 2. It is comprised by superimposing. If the S pole-side integrated core piece 121A and the S pole-side split core 122 are fixed by caulking, bonding, welding, or the like, the S-pole side integrated core 121 and the S pole-side split core 122 can be formed integrally. .

また、円環状部材13は、その内径がN極側一体鉄心連結部111B及びS極側一体鉄心連結部121Bの内周面111d,121dの径と等しく、その外径がN極側一体鉄心連結部111B及びS極側一体鉄心連結部121Bの外周面111e,121eの径と等しくなるように形成されている。   Further, the inner diameter of the annular member 13 is equal to the diameters of the inner peripheral surfaces 111d and 121d of the N pole side integrated core connecting portion 111B and the S pole side integrated core connecting portion 121B, and the outer diameter thereof is the N pole side integrated core connecting portion. It is formed so that it may become equal to the diameter of the outer peripheral surfaces 111e and 121e of the part 111B and the S pole side integral iron core connection part 121B.

本実施例に係る永久磁石形回転電機の回転子構造においては、上述したように構成されるN極鉄心11とS極鉄心12とを、図5に示すように円環状部材13を介して組み合わせ、一体的に固定することにより、回転子鉄心1を構成している。   In the rotor structure of the permanent magnet type rotating electric machine according to the present embodiment, the N-pole iron core 11 and the S-pole iron core 12 configured as described above are combined via an annular member 13 as shown in FIG. The rotor core 1 is configured by being fixed integrally.

より詳しくは、周方向に隣接するN極鉄心11の鉄心片11A間に、S極鉄心12の鉄心片12Aが位置するように、すなわち、円環状部材13を挟んでN極鉄心11とS極鉄心12のそれぞれN極側分割鉄心112、S極側分割鉄心122が重ね合わされる一端面側を対向させた状態から、例えばN極鉄心11を周方向に回転させて回転機極数の一極分位相をずらしたうえでN極鉄心11とS極鉄心12とを組み合わせ、一体的に固定することにより、回転子鉄心1を構成している。   More specifically, the core piece 12A of the S pole core 12 is positioned between the core pieces 11A of the N pole core 11 adjacent in the circumferential direction, that is, the N pole core 11 and the S pole with the annular member 13 interposed therebetween. From the state in which the one end surfaces where the N-pole side divided core 112 and the S-pole side divided core 122 are superimposed are respectively opposed to each other, the N pole core 11 is rotated in the circumferential direction, for example, so that the number of rotating machine poles is one. The rotor core 1 is configured by combining the N-pole iron core 11 and the S-pole iron core 12 and fixing them together after shifting the phase.

これにより、回転子1の軸方向の一方の端面においてはN極側分割鉄心112とS極側一体鉄心片121Aとが周方向に交互に配設され、他方の端面においてはN極側一体鉄心片111AとS極側分割鉄心122とが周方向に交互に配設された状態となる。   As a result, the N pole side split cores 112 and the S pole side integral core pieces 121A are alternately arranged in the circumferential direction on one end face in the axial direction of the rotor 1, and the N pole side integral core is disposed on the other end face. The pieces 111A and the S pole side divided cores 122 are alternately arranged in the circumferential direction.

ここで、N極鉄心11とS極鉄心12とは、円環状部材13を介して組み合わされている。上述したように円環状部材13は、内径が一体鉄心連結部111cの内径と同一に形成されるとともに外径が一体鉄心連結部111cの外径と同一に形成され、且つ軸方向の厚さが一体鉄心厚t1と分割鉄心厚t2との差であるt3となっている。
そのため、円環状部材13はN極側分割鉄心112及びS極側分割鉄心122の軸心側に形成される中空部に配設されることにより、N極鉄心11とS極鉄心12とを重ね合わせたときに、N極鉄心11の軸方向両端面とS極鉄心12の軸方向両端面とがそれぞれ同一面上に揃った状態となるようにすることができる。
Here, the N-pole iron core 11 and the S-pole iron core 12 are combined via an annular member 13. As described above, the annular member 13 has an inner diameter that is the same as the inner diameter of the integral core connecting portion 111c, an outer diameter that is the same as the outer diameter of the integral core connecting portion 111c, and an axial thickness. The difference between the integral core thickness t1 and the split core thickness t2 is t3.
Therefore, the annular member 13 is disposed in a hollow portion formed on the axial center side of the N-pole side divided core 112 and the S-pole side divided core 122 so that the N-pole core 11 and the S-pole core 12 are overlapped. When they are put together, both end surfaces in the axial direction of the N-pole iron core 11 and both end surfaces in the axial direction of the S-pole iron core 12 can be arranged on the same plane.

なお、図1〜5に示す例では、N極側一体鉄心111とN極側分割鉄心112、S極側一体鉄心121とS極側分割鉄心122とを固定する方法としてカシメ固定を採用している。そのため、N極側一体鉄心111、N極側分割鉄心112、S極側一体鉄心121、及びS極側分割鉄心122はそれぞれカシメ固定を行うための貫通孔14を備えている。   In the examples shown in FIGS. 1 to 5, caulking is adopted as a method of fixing the N pole side integrated core 111 and the N pole side split core 112, the S pole side integrated core 121 and the S pole side split core 122. Yes. Therefore, each of the N-pole side integrated iron core 111, the N-pole side divided iron core 112, the S-pole side integrated iron core 121, and the S-pole side divided iron core 122 includes a through hole 14 for performing caulking and fixing.

このように構成される回転子鉄心1は一体鉄心111,121の内径部にて、図示しない非磁性のボスを介して回転機軸3に取り付けられるか、または非磁性の回転機軸3に直接取り付けられることで永久磁石の磁束の漏れを防止しながらも回転機軸3に回転力を伝達することができる。   The thus configured rotor iron core 1 is attached to the rotating machine shaft 3 through a nonmagnetic boss (not shown) at the inner diameter portion of the integral iron cores 111 and 121 or directly attached to the nonmagnetic rotating machine shaft 3. Thus, the rotational force can be transmitted to the rotating machine shaft 3 while preventing leakage of the magnetic flux of the permanent magnet.

回転子鉄心1の回転機軸3(又はボス)への締結方法の具体例としては一体鉄心111,121の内径部にてキー締結することで、回転子鉄心1を組み立てる際の位相制度を高めることができる。
また、一体鉄心111,121の内径部と回転機軸3(又はボス)にて収縮締結(圧入又は焼嵌め)も可能である。
As a specific example of a method of fastening the rotor core 1 to the rotating machine shaft 3 (or boss), the phase system when the rotor core 1 is assembled is enhanced by key fastening at the inner diameter portions of the integral cores 111 and 121. Can do.
Further, shrinkage fastening (press-fit or shrink fitting) is also possible with the inner diameter portions of the integrated iron cores 111 and 121 and the rotating machine shaft 3 (or boss).

上述した本発明に係る永久磁石形回転電機の回転子構造によれば、X−Y−Z三軸直交座標系において、軸方向をZ方向とした際のXY平面内では回転子1の異極間は分割されているため、XY面内方向の磁束の漏れを防止することができる。   According to the above-described rotor structure of the permanent magnet type rotating electrical machine according to the present invention, in the XYZ triaxial orthogonal coordinate system, the different polarity of the rotor 1 in the XY plane when the axial direction is the Z direction. Since the space is divided, leakage of magnetic flux in the XY in-plane direction can be prevented.

さらに、分割鉄心厚t2を一体鉄心厚t1よりも厚くしておくことで対向するN極側一体鉄心111とS極側一体鉄心121との間における軸方向を経由する磁束の漏れを防止することができる。このことから、分割鉄心厚t2は一体鉄心厚t1に対して、軸方向への磁束漏れを防止できるだけの磁気抵抗を確保できる距離相当分以上厚くしておくことが望ましい。   Further, by making the divided core thickness t2 thicker than the integral core thickness t1, leakage of magnetic flux via the axial direction between the opposing north pole side integral core 111 and south pole side integral core 121 is prevented. Can do. For this reason, it is desirable that the divided core thickness t2 is greater than the integral core thickness t1 by a distance corresponding to a distance that can secure a magnetic resistance sufficient to prevent magnetic flux leakage in the axial direction.

また、軸方向の厚さt3の非磁性体からなる円環状部材13を、N極側一体鉄心111とS極側一体鉄心121との間に組み込む構成としたことにより、N極鉄心11とS極鉄心12とを、N極鉄心11の軸方向両端面とS極鉄心12の軸方向両端面とがそれぞれ同一面上に揃った状態として回転子鉄心1の軸方向の積厚寸法を得ると同時に、N極側一体鉄心111とS極側一体鉄心121との磁気回路の短絡を回避することができる。   Further, since the annular member 13 made of a non-magnetic material having a thickness t3 in the axial direction is incorporated between the N pole side integrated core 111 and the S pole side integrated core 121, the N pole core 11 and the S pole When the pole core 12 is in a state in which both end faces in the axial direction of the N pole core 11 and both end faces in the axial direction of the S pole core 12 are aligned on the same plane, the axial thickness of the rotor core 1 is obtained. At the same time, it is possible to avoid a short circuit of the magnetic circuit between the N pole side integrated iron core 111 and the S pole side integrated iron core 121.

なお、本実施例に係る永久磁石形回転電機の回転子構造における他の回転子鉄心1の組立方法として、N極側一体鉄心111とN極側分割鉄心112、及びS極側一体鉄心121とS極側分割鉄心122をあらかじめ固定することなく、図6に示すようにN極側一体鉄心111、S極側一体鉄心121、N極側分割鉄心112、S極側分割鉄心122、及び板部材15,16を配置した後、これらを棒状支持部材17を用いて一括で固定することも可能である。   In addition, as an assembling method of the other rotor core 1 in the rotor structure of the permanent magnet type rotating electric machine according to the present embodiment, the N pole side integrated core 111, the N pole side split core 112, and the S pole side integrated core 121 Without fixing the S pole side split core 122 in advance, as shown in FIG. 6, the N pole side integral core 111, the S pole side integral core 121, the N pole side split core 112, the S pole side split core 122, and the plate member After arranging 15 and 16, it is also possible to fix them together using the rod-like support member 17.

ここで、板部材15,16は環状の板体でありそれぞれN極側分割鉄心112およびS極側分割鉄心122に対応する位置に上述した貫通孔14と同一形状に穿設された貫通孔15a,16aを有している。また、棒状支持部材17は円柱状に形成され貫通孔14及び貫通孔15a,16aに嵌入可能に形成されている。   Here, the plate members 15 and 16 are annular plate bodies, and the through holes 15a are formed in the same shape as the above-described through holes 14 at positions corresponding to the N pole side divided cores 112 and the S pole side divided cores 122, respectively. 16a. The rod-like support member 17 is formed in a columnar shape so as to be fitted into the through hole 14 and the through holes 15a and 16a.

図6に示し上述した組み立て方法を用いれば、従来の完全分割鉄心を用いた回転子構造に比較して、一体鉄心111,121が存在するため、分割鉄心112,122に作用する遠心力による負荷を分散させることができ、より強固に分割鉄心112,122を保持することができるという利点が得られる。
これに対し、従来の完全分割鉄心を用いた回転子構造においては、分割鉄心を回転機軸(又はボス)に支持する部材は板部材のみであり、分割鉄心に作用する遠心力は丸棒等の棒状支持部材と板部材とに負荷されていたことから、棒状支持部材及び板部材に強度及び剛性が要求され、本実施例に係る永久磁石形回転電機の回転子構造に比較して強固に分割鉄心を保持することが困難であった。
なお、N極側一体鉄心111とN極側分割鉄心112、S極側一体鉄心121とS極側分割鉄心122をあらかじめ固定しておけば、より高強度な回転子鉄心を得ることができる。
If the assembly method shown in FIG. 6 and described above is used, the integrated iron cores 111 and 121 exist as compared with the conventional rotor structure using a completely divided iron core, so that the load caused by the centrifugal force acting on the divided iron cores 112 and 122 is increased. Can be dispersed, and the divided cores 112 and 122 can be held more firmly.
In contrast, in a conventional rotor structure using a fully divided core, the member that supports the split core on the rotating machine shaft (or boss) is only a plate member, and the centrifugal force acting on the split core is a round bar or the like. Since the rod-like support member and the plate member are loaded, the rod-like support member and the plate member are required to have strength and rigidity, and are divided more firmly than the rotor structure of the permanent magnet type rotating electric machine according to this embodiment. It was difficult to hold the iron core.
Note that if the N-pole side integrated core 111 and the N-pole side divided core 112, the S-pole side integrated core 121 and the S-pole side divided core 122 are fixed in advance, a rotor core with higher strength can be obtained.

このように、本実施例に係る永久磁石形回転電機の回転子構造は、従来の完全分割鉄心構造に比較して、回転機軸3との組付け精度を向上でき、また、従来の完全分割鉄心構造に比較して、組み立てが容易で量産が容易にできるという利点を有する。   Thus, the rotor structure of the permanent magnet type rotating electric machine according to the present embodiment can improve the assembly accuracy with the rotating machine shaft 3 as compared with the conventional fully divided core structure, and the conventional fully divided core. Compared to the structure, it has the advantage that it is easy to assemble and mass production is easy.

さらに、従来の完全一体鉄心構造と比較して、磁束の漏れを防止することができるため、高いギャップ磁束密度が得られる。   Furthermore, since the leakage of magnetic flux can be prevented as compared with the conventional fully integrated iron core structure, a high gap magnetic flux density can be obtained.

また、N極側一体鉄心111、S極側一体鉄心121の内径と回転機軸3(又はボス)とを締結するようにすれば、締結強度の信頼性が向上する。   Further, if the inner diameters of the N-pole side integrated iron core 111 and the S-pole side integrated iron core 121 and the rotating machine shaft 3 (or boss) are fastened, the reliability of the fastening strength is improved.

なお、上述した実施例においては、円環状部材13を用いて回転子鉄心1の軸方向の端面の位置決めを行う例を示したが、本発明は上述した実施例に限定されるものではなく、例えば、非磁性の回転機軸3(又はボス)に段付き部を設け、N極側一体鉄心111及びS極側一体鉄心121をこの段付き部に突き当てるなどして回転子鉄心1の軸方向の端面の位置決めを行うなどしてもよい。   In the above-described embodiment, the example in which the end surface in the axial direction of the rotor core 1 is positioned using the annular member 13 is shown, but the present invention is not limited to the above-described embodiment, For example, a nonmagnetic rotating machine shaft 3 (or boss) is provided with a stepped portion, and the N pole side integrated iron core 111 and the S pole side integrated iron core 121 are abutted against the stepped portion, so that the axial direction of the rotor core 1 is increased. You may position the end surface of this.

また、上述した実施例ではN極鉄心11、S極鉄心12をそれぞれ別体として形成されたN極側一体鉄心111とN極側分割鉄心112、S極側一体鉄心121とS極側分割鉄心122を重ね合わせることによって形成する例を示したが、N極鉄心11及びS極鉄心12は上述した構成に限定されるものではなく、例えば、N極側一体鉄心111とN極側分割鉄心112、S極側一体鉄心121とS極側分割鉄心122を圧粉鉄心などにより初めから一体物として製作するなど、本発明の趣旨を逸脱しない範囲で種々の変更が可能であることは言うまでもない。   In the above-described embodiment, the N pole core 11 and the S pole core 12 are separately formed, and the N pole side integrated core 111 and the N pole side split core 112, the S pole side integrated core 121 and the S pole side split core are formed. Although the example formed by superimposing 122 is shown, the N pole core 11 and the S pole core 12 are not limited to the above-described configuration. For example, the N pole side integrated core 111 and the N pole side divided core 112 are used. Needless to say, various modifications can be made without departing from the spirit of the present invention, for example, the S pole-side integrated core 121 and the S pole-side split core 122 are manufactured as a single unit from the beginning with a dust core or the like.

(積厚寸法の大きい回転機に適用)
図7ないし図9を用いて本発明に係る永久磁石形回転電機の回転子構造の第2の実施例について説明する。
(Applicable to rotating machines with large thickness)
A second embodiment of the rotor structure of the permanent magnet type rotating electric machine according to the present invention will be described with reference to FIGS.

本実施例は、上述した第1の実施例において説明した回転子鉄心1を軸方向に複数(本実施例では四つ)積層して積層型の回転子鉄心(以下、積層型回転子鉄心という)10を構成したものである。すなわち、図7に示すように、積層型回転子鉄心10は、四つの回転子鉄心1A〜1Dを軸方向に積層して構成されている。なお、図7及び図8に示す回転子鉄心1A〜1Dは、図1ないし図6に示し上述した回転子鉄心1と同一の構成を備えるものであり、以下、実施例1において説明した部材と同様の作用効果を奏する部材には同一の符号を付し、重複する説明は省略する。   In this embodiment, a plurality of rotor cores 1 described in the first embodiment described above are stacked in the axial direction (four in this embodiment) to form a stacked rotor core (hereinafter referred to as a stacked rotor core). ) 10. That is, as shown in FIG. 7, the laminated rotor core 10 is configured by stacking four rotor cores 1 </ b> A to 1 </ b> D in the axial direction. The rotor cores 1A to 1D shown in FIGS. 7 and 8 have the same configuration as the rotor core 1 shown in FIGS. 1 to 6 and described above. Members having similar operational effects are denoted by the same reference numerals, and redundant description is omitted.

図8及び図9に示すように、回転子鉄心1Aと回転子鉄心1B、回転子鉄心1Bと回転子鉄心1C、回転子鉄心1Cと回転子鉄心1Dは軸方向に相互に鏡面対称に配置されている。換言すると、回転子鉄心1Aと回転子鉄心1C、回転子鉄心1Bと回転子鉄心1Dが同一の向きに配置されている。周方向においてN極鉄心11とS極鉄心12との間には永久磁石2が配設されている。   As shown in FIGS. 8 and 9, the rotor core 1A and the rotor core 1B, the rotor core 1B and the rotor core 1C, and the rotor core 1C and the rotor core 1D are arranged mirror-symmetrically with each other in the axial direction. ing. In other words, the rotor core 1A and the rotor core 1C, and the rotor core 1B and the rotor core 1D are arranged in the same direction. A permanent magnet 2 is disposed between the N-pole iron core 11 and the S-pole iron core 12 in the circumferential direction.

つまり、軸方向に相互に隣接する回転子鉄心1Aと回転子鉄心1B、回転子鉄心1Cと回転子鉄心1DとはN極側一体鉄心片111A同士及びS極側分割鉄心122同士が対向配置され、回転子鉄心1Bと回転子鉄心1CとはN極側分割鉄心112同士及びS極側一体鉄心片121A同士が対向配置されている。このように、本実施例に係る永久磁石形回転電機の回転子構造においては、軸方向において一体鉄心同士、又は分割鉄心同士が軸方向に隣り合うように配置されている。   That is, the rotor core 1A and the rotor core 1B, which are adjacent to each other in the axial direction, and the rotor core 1C and the rotor core 1D are arranged so that the N-pole side integrated core pieces 111A and the S-pole side split cores 122 face each other. The rotor core 1B and the rotor core 1C are arranged such that the N pole side divided cores 112 and the S pole side integrated core pieces 121A face each other. As described above, in the rotor structure of the permanent magnet type rotating electric machine according to the present embodiment, the integrated iron cores or the divided iron cores are arranged adjacent to each other in the axial direction in the axial direction.

なお、本実施例に係る永久磁石形回転電機の回転子構造においては、N極側分割鉄心112及びS極側分割鉄心122に作用する遠心力および回転力はそれぞれN極側一体鉄心111及びS極側一体鉄心121が負担することとなる。そのため、N極側一体鉄心111とN極側分割鉄心112との固定部の強度、及びS極側一体鉄心121とS極側分割鉄心122との固定部の強度、及びN極側一体鉄心111、S極側一体鉄心121の強度に応じて一体鉄心厚t1及び分割鉄心厚t2を決定し、回転機として必要な厚さとなる個数だけ回転子鉄心1を軸方向に積層することで、積層型回転子鉄心10を構成するものとする。   In the rotor structure of the permanent magnet type rotating electric machine according to the present embodiment, the centrifugal force and the rotational force acting on the N pole side split core 112 and the S pole side split core 122 are the N pole side cores 111 and S, respectively. The pole-side integrated iron core 121 bears. Therefore, the strength of the fixed portion between the N-pole side integrated core 111 and the N-pole side divided core 112, the strength of the fixed portion between the S-pole side integrated core 121 and the S-pole side divided core 122, and the N-pole side integrated core 111 The integral core thickness t1 and the split core thickness t2 are determined according to the strength of the S pole side integral core 121, and the rotor cores 1 are laminated in the axial direction by the number of thicknesses required as a rotating machine, thereby obtaining a laminated type. The rotor core 10 is assumed to be configured.

また、図7,8に示す例では、上述した実施例1同様、N極側一体鉄心111とN極側分割鉄心112、S極側一体鉄心122とS極側分割鉄心122とを固定する方法としてカシメ固定を採用している。そのため、N極側一体鉄心111、N極側分割鉄心112、S極側一体鉄心122、及びS極側分割鉄心122はそれぞれカシメ固定を行うための貫通孔14を備えている。   In the example shown in FIGS. 7 and 8, the method of fixing the N pole side integrated core 111 and the N pole side split core 112, the S pole side integrated core 122 and the S pole side split core 122 as in the first embodiment described above. As it adopts caulking fixing. Therefore, each of the N-pole-side integrated core 111, the N-pole-side divided core 112, the S-pole-side integrated core 122, and the S-pole-side divided core 122 includes a through-hole 14 for performing caulking and fixing.

このように構成される積層型回転子鉄心10はN極側一体鉄心111、S極側一体鉄心121の内径部にて、図示しない非磁性のボスを介して回転機軸3に取り付けられるか、または非磁性の回転機軸3に直接取り付けられることで永久磁石2の磁束の漏れを防止しながらも回転機軸3に回転力を伝達することができる。   The laminated rotor core 10 configured in this way is attached to the rotating machine shaft 3 via a non-magnetic boss (not shown) at the inner diameter part of the N pole side integrated core 111 and the S pole side integrated core 121, or By being directly attached to the non-magnetic rotating machine shaft 3, the rotational force can be transmitted to the rotating machine shaft 3 while preventing leakage of the magnetic flux of the permanent magnet 2.

積層型回転子鉄心10の回転機軸3(又はボス)への締結方法の具体例としては、第1の実施例と同様、N極側一体鉄心111、S極側一体鉄心121の内径部にてキー締結することで、積層型回転子鉄心10を組み立てる際の位相精度を高めることができる。
また、N極側一体鉄心111、S極側一体鉄心121の内径部と回転機軸3(又はボス)にて収縮締結(圧入又は焼嵌め)も可能である。
As a specific example of the method of fastening the laminated rotor core 10 to the rotating machine shaft 3 (or boss), as in the first embodiment, at the inner diameter portion of the N pole side integrated core 111 and the S pole side integrated core 121 By phase fastening, the phase accuracy when assembling the laminated rotor core 10 can be increased.
Further, shrinkage fastening (press-fit or shrink fitting) is also possible by the inner diameter portion of the N-pole side integrated core 111 and the S-pole side integrated core 121 and the rotating machine shaft 3 (or boss).

また、図9に示すように実施例1と同様、N極側一体鉄心111とN極側分割鉄心112、及びS極側一体鉄心121とS極側分割鉄心122をあらかじめ固定することなく、N極側一体鉄心111、S極側一体鉄心121、N極側分割鉄心112、S極側分割鉄心122、及び板部材15,16を配置した後、これらを棒状支持部材17を用いて一括で固定することも可能である。   Further, as shown in FIG. 9, similarly to the first embodiment, the N pole side integrated core 111 and the N pole side split core 112, and the S pole side integrated core 121 and the S pole side split core 122 are not fixed in advance. After the pole-side integrated core 111, the S-pole side integrated core 121, the N-pole side split core 112, the S-pole side split core 122, and the plate members 15 and 16 are arranged, they are fixed together using the rod-like support member 17. It is also possible to do.

図9に示すような構成とすれば、棒状支持部材17はN極側分割鉄心112、S極側分割鉄心122に対応する部分にのみ該N極側分割鉄心112、S極側分割鉄心122の遠心力による負荷がかかることとなるため、棒状支持部材17と各N極側一体鉄心111、S極側一体鉄心121との固定端にN極側分割鉄心112、S極側分割鉄心122の遠心力による応力を分散することが可能となり、従来の完全分割鉄心を用いた回転子構造に比較して、応力の絶対値を低減させることができる。   With the configuration shown in FIG. 9, the rod-shaped support member 17 has the N-pole side divided core 112 and the S-pole side divided core 122 only in portions corresponding to the N-pole side divided core 112 and the S-pole side divided core 122. Since a load due to centrifugal force is applied, the N pole side split core 112 and the S pole side split core 122 are centrifuged at fixed ends of the rod-shaped support member 17 and the N pole side integrated cores 111 and S pole side integrated cores 121. The stress due to the force can be dispersed, and the absolute value of the stress can be reduced as compared with a conventional rotor structure using a completely divided core.

これに対し、従来の完全分割鉄心を用いた回転子構造においては、全ての分割鉄心の遠心力による応力が棒状支持部材の軸方向両端面に配置される板部材との固定端の間に負荷される構成であったため、積層型回転子鉄心の積厚が増加するほど、径方向外側に撓みやすく、板部材との固定端にかかる応力が過大になっていた。   On the other hand, in the conventional rotor structure using a fully divided core, the stress due to the centrifugal force of all the split cores is applied between the fixed ends of the rod members that are arranged on both end surfaces in the axial direction. Therefore, the greater the thickness of the laminated rotor core, the more easily it is deflected radially outward and the stress applied to the fixed end with the plate member becomes excessive.

なお、N極側一体鉄心111とN極側分割鉄心112、S極側一体鉄心121とS極側分割鉄心122をあらかじめ固定しておくことにより、さらに高強度な積層型回転子鉄心10を得られることは、実施例1において説明したとおりである。   The N-pole side integrated core 111 and the N-pole side divided core 112, and the S-pole side integrated core 121 and the S-pole side divided core 122 are fixed in advance to obtain a laminated rotor core 10 with higher strength. This is as described in the first embodiment.

上述した本実施例に係る永久磁石形回転電機の回転子構造によれば、軸方向を経由する磁束の漏れを防止することができることに加え、実施例1において説明した回転子鉄心1を一つのユニットとして、該一つのユニットについて必要な強度を検討すればよく、強度的に回転機の必要鉄心積厚に依存しない回転子構造を得ることができる。換言すると、積層型回転子鉄心10全体の強度及び剛性が回転子鉄心1の積層数に依存しないため、回転子鉄心1が必要な強度を満たしてさえいれば、積層型回転子鉄心10全体について必要な強度を得られることとなる。   According to the rotor structure of the permanent magnet type rotating electrical machine according to the above-described embodiment, in addition to preventing leakage of magnetic flux passing through the axial direction, the rotor core 1 described in Embodiment 1 is combined with one rotor core 1. As a unit, the required strength of the single unit may be examined, and a rotor structure that does not depend on the required core thickness of the rotating machine in strength can be obtained. In other words, since the strength and rigidity of the entire laminated rotor core 10 do not depend on the number of laminated layers of the rotor core 1, as long as the rotor core 1 satisfies the required strength, the laminated rotor core 10 as a whole is required. The required strength can be obtained.

このように、鉄心積厚の大きい回転機に適用する場合には図1に示し上述した回転子鉄心1を一つのユニットとして、該ユニットの数を増加させることで対応でき、ユニット数に応じて積厚内にN極側一体鉄心111、S極側一体鉄心121も増加することとなるため、回転機軸3との締結強度も合わせて増加させることができる。すなわち、回転子鉄心1の積厚に対する棒状支持部材17の強度および剛性の依存性が低いため、積厚の大きい電動機にも容易に対応することができる。   Thus, when applied to a rotating machine having a large core thickness, the rotor core 1 shown in FIG. 1 and described above can be handled as one unit, and the number of units can be increased. Since the N pole side integrated iron core 111 and the S pole side integrated iron core 121 are also increased within the stacking thickness, the fastening strength with the rotating machine shaft 3 can also be increased. That is, since the dependence of the strength and rigidity of the rod-like support member 17 on the stack thickness of the rotor core 1 is low, it is possible to easily cope with an electric motor having a large stack thickness.

(ギャップ磁束密度の向上)
図10および図11を用いて本発明に係る永久磁石形回転電機の回転子構造の第3の実施例について説明する。
(Improvement of gap magnetic flux density)
A third embodiment of the rotor structure of the permanent magnet type rotating electric machine according to the present invention will be described with reference to FIGS. 10 and 11.

図10に示すように、本実施例に係る永久磁石形回転電機の回転子構造は、上述した第2の実施例に係る永久磁石形回転電機の回転子構造において、N極側分割鉄心112とS極側一体鉄心連結部121Bとの間に形成される間隙、及び、N極側一体鉄心連結部111BとS極側分割鉄心122との間に形成される間隙に、径方向に着磁された永久磁石4を配設するものである。その他の構成については上述した第2の実施例に係る永久磁石形回転電機の回転子構造と同様であり、以下、同様の作用効果を奏する部材には同一の符号を付し、重複する説明は省略する。   As shown in FIG. 10, the rotor structure of the permanent magnet type rotating electric machine according to the present embodiment is the same as the rotor structure of the permanent magnet type rotating electric machine according to the second embodiment described above. It is magnetized in the radial direction in the gap formed between the south pole side integral core connecting portion 121B and the gap formed between the north pole side integral core connecting portion 111B and the south pole side split core 122. A permanent magnet 4 is provided. Other configurations are the same as those of the rotor structure of the permanent magnet type rotating electric machine according to the second embodiment described above. Hereinafter, the same reference numerals are given to the members having the same functions and effects, and the overlapping description is omitted. Omitted.

ここで、第2の実施例において説明したように、本実施例に係る永久磁石形回転電機の回転子構造においては、軸方向においてN極側一体鉄心111、S極側一体鉄心121同士、又はN極側分割鉄心112、S極側分割鉄心122同士が隣り合うように配置されている。   Here, as explained in the second embodiment, in the rotor structure of the permanent magnet type rotating electric machine according to the present embodiment, the N pole side integrated iron core 111, the S pole side integrated iron cores 121 in the axial direction, or The N pole side split cores 112 and the S pole side split cores 122 are arranged adjacent to each other.

そのため、本実施例においては図11に示すように、軸方向両端に位置する分割鉄心(図11ではN極側分割鉄心112)と一体鉄心連結部(図11ではS極側一体鉄心連結部121B)との間の間隙に配設される永久磁石4(以下、第一永久磁石41という)は軸方向の厚さをt2とする一方、軸方向両端以外ではN極側分割鉄心112、S極側分割鉄心122、N極側一体鉄心連結部121B、及びS極側一体鉄心連結部111Bはそれぞれ二つが軸方向に隣り合った状態となっているため、このN極側分割鉄心112とN極側一体鉄心連結部121B、またはS極側分割鉄心122とN極側一体鉄心連結部111Bの間に形成される間隙に配設される永久磁石4(以下、第二永久磁石42という)は軸方向の厚さをt2×2としている。   Therefore, in this embodiment, as shown in FIG. 11, the split cores (N pole side split cores 112 in FIG. 11) and the integral core connecting portions (in FIG. 11, S pole side integral core connecting portions 121B) located at both ends in the axial direction. The permanent magnet 4 (hereinafter referred to as the first permanent magnet 41) disposed in the gap between the first and second magnets has an axial thickness t 2, while the poles on the N-pole side split core 112 and the S-pole are not provided at both ends in the axial direction. Since the two side-divided cores 122, the N-pole side integrated core connecting part 121B, and the S-pole side integrated core connecting part 111B are adjacent to each other in the axial direction, the N-pole side split core 112 and the N pole The permanent magnet 4 (hereinafter referred to as the second permanent magnet 42) disposed in the gap formed between the side-integrated core connecting portion 121B or the S-pole-side split core 122 and the N-pole-side integrated core connecting portion 111B is a shaft. The thickness in the direction is t2 × 2.

なお、本実施例のように回転子が複数の回転子鉄心1を積層してなる場合、実施例1において説明した回転子鉄心1を一つのユニットとして、それぞれのユニットを積層する過程において永久磁石4(41または42)を順次組み込むようにすればよい。   When the rotor is formed by laminating a plurality of rotor cores 1 as in the present embodiment, the rotor core 1 described in the first embodiment is regarded as one unit, and a permanent magnet is formed in the process of laminating each unit. 4 (41 or 42) may be sequentially incorporated.

上述した本実施例に係る永久磁石形回転電機の回転子構造によれば、N極側分割鉄心112とN極側一体鉄心連結部121B、またはS極側分割鉄心122とN極側一体鉄心連結部111Bとの間に形成される間隙に径方向に着磁された永久磁石4(41または42)を配設することで、図10(b)に矢印で示すように永久磁石2の内外径部に回転子鉄心10による磁気回路が存在するため、回転子鉄心10と図示しない回転機軸(又はボス)との締結強度を備えながらも効果的にギャップ磁束密度の向上を図ることができる。   According to the rotor structure of the permanent magnet type rotating electric machine according to the above-described embodiment, the N pole side split core 112 and the N pole side integral core connecting portion 121B, or the S pole side split core 122 and the N pole side integral core connection. By arranging the permanent magnet 4 (41 or 42) magnetized in the radial direction in the gap formed between the portion 111B and the inner and outer diameters of the permanent magnet 2 as shown by arrows in FIG. Since the magnetic circuit by the rotor core 10 exists in the part, the gap magnetic flux density can be effectively improved while providing the fastening strength between the rotor core 10 and a rotating machine shaft (or boss) (not shown).

なお、本実施例においては、上述した第2の実施例に係る永久磁石形回転電機の回転子構造においてN極側分割鉄心112とN極側一体鉄心連結部121B、またはS極側分割鉄心122とN極側一体鉄心連結部111Bとの間隙に径方向に着磁された永久磁石4を配設する例を示したが、本発明は上述した実施例に限定されるものではなく、例えば、上述した第1の実施例に係る永久磁石形回転電機の回転子構造においてN極側分割鉄心112とN極側一体鉄心連結部121B、またはS極側分割鉄心122とN極側一体鉄心連結部111Bとの間隙に径方向に着磁された永久磁石4を配設する等、本発明の趣旨を逸脱しない範囲で種々の変更が可能であることは言うまでもない。   In this embodiment, in the rotor structure of the permanent magnet type rotating electric machine according to the second embodiment described above, the N pole side split core 112 and the N pole side integral core connecting portion 121B or the S pole side split core 122 are used. Although the example which arrange | positions the permanent magnet 4 magnetized by radial direction in the gap | interval of N pole side integral iron core connection part 111B was shown, this invention is not limited to the Example mentioned above, for example, In the rotor structure of the permanent magnet type rotating electric machine according to the first embodiment described above, the N pole side split core 112 and the N pole side integral core connecting portion 121B, or the S pole side split core 122 and the N pole side integral core connecting portion. Needless to say, various modifications can be made without departing from the spirit of the present invention, such as disposing the permanent magnet 4 magnetized in the radial direction in the gap with 111B.

本発明は、永久磁石形回転電機の回転子構造に適用して好適なものである。   The present invention is suitable for application to a rotor structure of a permanent magnet type rotating electrical machine.

1,1A〜1D,10 回転子鉄心
2 永久磁石
3 回転機軸
4 永久磁石
11 N極鉄心
11A 鉄心片
12 S極鉄心
12A 鉄心片
41 第一永久磁石
42 第二永久磁石
111 N極側一体鉄心
111A N極側一体鉄心片
111B N極側一体鉄心連結部
111a N極側一体鉄心片本体部分
111b N極側一体鉄心外フランジ部
111c N極側一体鉄心片基端部
111d N極側一体鉄心連結部内周
111e N極側一体鉄心連結部外周
112 N極側分割鉄心
112a N極側分割鉄心本体部分
112b N極側分割鉄心外フランジ部
112c N極側分割鉄心内フランジ部
121 S極側一体鉄心
121A S極側一体鉄心片
121B S極側一体鉄心連結部
121a S極側一体鉄心片本体部分
121b S極側一体鉄心外フランジ部
121c S極側一体鉄心片基端部
121d S極側一体鉄心連結部内周
121e S極側一体鉄心連結部外周
122 S極側分割鉄心
122a S極側分割鉄心本体部分
122b S極側分割鉄心外フランジ部
122c S極側分割鉄心内フランジ部
1, 1A to 1D, 10 Rotor core 2 Permanent magnet 3 Rotating machine shaft 4 Permanent magnet 11 N pole core 11A Iron core piece 12 S pole iron core 12A Iron core piece 41 First permanent magnet 42 Second permanent magnet 111 N pole side integrated iron core 111A N pole side integral core piece 111B N pole side integral core piece connecting portion 111a N pole side integral core piece main body portion 111b N pole side integral iron core outer flange part 111c N pole side integral core piece base end 111d N pole side integral core piece connecting portion Periphery 111e N pole side integrated core outer periphery 112 N pole side split core 112a N pole side split core body 112b N pole side split core outer flange 112c N pole side split core inner flange 121 S pole side core 121A S S pole side integral core piece 121B S pole side integral core piece connection part 121a S pole side integral core piece main body part 121b S pole side integral core outer flange part 1 1c S pole side integrated core one end 121d S pole side integrated core connecting part inner periphery 121e S pole side integrated core connecting part outer periphery 122 S pole side split core 122a S pole side split core body part 122b S pole side split core outer flange 122c S pole side split core inner flange

Claims (5)

回転子鉄心と永久磁石とを周方向に交互に配置した構成を有する永久磁石形回転電機の回転子構造において、
前記回転子鉄心が、それぞれ周方向に一極置きに配置される複数の一体鉄心片及び前記複数の一体鉄心片を径方向内側で一体的に連結する一体鉄心連結部からなる一体鉄心と、前記複数の一体鉄心片の軸方向一端面にそれぞれ重ね合わされる複数の分割鉄心とから構成されるN極鉄心及びS極鉄心とを備え、
前記N極鉄心と前記S極鉄心とが、前記軸方向一端面が対向するように且つ前記N極鉄心と前記S極鉄心とが周方向に交互に配設されるように組み合わされた
ことを特徴とする永久磁石形回転電機の回転子構造。
In the rotor structure of a permanent magnet type rotating electrical machine having a configuration in which a rotor core and permanent magnets are alternately arranged in the circumferential direction,
The rotor core is composed of a plurality of integral core pieces arranged at every other pole in the circumferential direction, and an integral core consisting of an integral core connecting portion that integrally connects the plurality of integral core pieces radially inward, and An N-pole iron core and an S-pole iron core each composed of a plurality of divided iron cores respectively superimposed on one axial end surface of the plurality of integral iron core pieces;
The N pole iron core and the S pole iron core are combined such that the one end surfaces in the axial direction face each other and the N pole iron core and the S pole iron core are alternately arranged in the circumferential direction. The rotor structure of the permanent magnet type rotating electric machine characterized by the above.
前記一体鉄心の軸方向の厚さに比較して前記分割鉄心の軸方向の厚さが軸方向への磁束漏れを防止する磁気抵抗を確保できる距離相当分以上である所定厚さだけ厚く構成された
ことを特徴とする請求項1記載の永久磁石形回転電機の回転子構造。
Compared to the axial thickness of the integral iron core, the axial thickness of the divided core is configured to be thicker by a predetermined thickness that is equal to or more than a distance that can secure a magnetic resistance that prevents magnetic flux leakage in the axial direction. The rotor structure of the permanent magnet type rotating electric machine according to claim 1.
軸方向に対し、前記N極鉄心と前記S極鉄心との間に前記所定厚さの円環状部材が介装された
ことを特徴とする請求項2記載の永久磁石形回転電機の回転子構造。
The rotor structure of the permanent magnet type rotating electric machine according to claim 2, wherein an annular member having the predetermined thickness is interposed between the N pole iron core and the S pole iron core in the axial direction. .
前記回転子鉄心が軸方向に複数積層されてなる
ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の永久磁石形回転電機の回転子構造。
The rotor structure of the permanent magnet type rotating electric machine according to any one of claims 1 to 3, wherein a plurality of the rotor cores are laminated in an axial direction.
前記回転子鉄心が径方向に対して前記一体鉄心連結部と前記分割鉄心との間に間隙を有し、
前記間隙に径方向に着磁された他の永久磁石を配設した
ことを特徴とする請求項1ないし請求項4のいずれか1項に記載の永久磁石形回転電機の回転子構造。
The rotor core has a gap between the integral core connecting portion and the split core with respect to the radial direction;
The rotor structure of the permanent magnet type rotating electric machine according to any one of claims 1 to 4, wherein another permanent magnet magnetized in a radial direction is disposed in the gap.
JP2012063088A 2012-03-21 2012-03-21 Rotor structure of permanent magnet type rotary machine Pending JP2013198304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063088A JP2013198304A (en) 2012-03-21 2012-03-21 Rotor structure of permanent magnet type rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063088A JP2013198304A (en) 2012-03-21 2012-03-21 Rotor structure of permanent magnet type rotary machine

Publications (1)

Publication Number Publication Date
JP2013198304A true JP2013198304A (en) 2013-09-30

Family

ID=49396614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063088A Pending JP2013198304A (en) 2012-03-21 2012-03-21 Rotor structure of permanent magnet type rotary machine

Country Status (1)

Country Link
JP (1) JP2013198304A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065188A (en) * 2013-03-21 2014-09-24 株式会社捷太格特 Magnet-embedded Rotor, Method For Manufacturing Magnet-embedded Rotor, And Orientation And Magnetization Device
WO2018043288A1 (en) * 2016-09-05 2018-03-08 三菱電機株式会社 Dynamo-electric machine
WO2018100967A1 (en) * 2016-11-30 2018-06-07 日本電産株式会社 Rotor, motor, and method for producing rotor
CN108463941A (en) * 2016-01-14 2018-08-28 泰恩河畔纽卡斯尔大学 Rotor assembly
DE102017209355A1 (en) * 2017-06-01 2018-12-06 Continental Automotive Gmbh Arrangement of laminations, rotor for use in an electric motor with such an arrangement of laminations and electric motor with such a rotor
CN111200323A (en) * 2018-11-20 2020-05-26 日本电产株式会社 Rotor and motor
US11201513B2 (en) 2018-11-20 2021-12-14 Nidec Corporation Rotor and motor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065188B (en) * 2013-03-21 2019-05-10 株式会社捷太格特 Magnet embedded type rotor and its manufacturing method and orientation magnetizing assembly
JP2014207848A (en) * 2013-03-21 2014-10-30 株式会社ジェイテクト Magnet embedded rotor, manufacturing method of the same, and orientation magnetization device
US10141800B2 (en) 2013-03-21 2018-11-27 Jtekt Corporation Magnet-embedded rotor, method for manufacturing magnet-embedded rotor, and orientation and magnetization device
CN104065188A (en) * 2013-03-21 2014-09-24 株式会社捷太格特 Magnet-embedded Rotor, Method For Manufacturing Magnet-embedded Rotor, And Orientation And Magnetization Device
US11336137B2 (en) 2016-01-14 2022-05-17 Advanced Electric Machines Group Limited Rotor assembly
CN108463941A (en) * 2016-01-14 2018-08-28 泰恩河畔纽卡斯尔大学 Rotor assembly
WO2018043288A1 (en) * 2016-09-05 2018-03-08 三菱電機株式会社 Dynamo-electric machine
CN109983652A (en) * 2016-11-30 2019-07-05 日本电产株式会社 The manufacturing method of rotor, motor and rotor
JPWO2018100967A1 (en) * 2016-11-30 2019-10-17 日本電産株式会社 Rotor, motor, and method of manufacturing rotor
US11043860B2 (en) 2016-11-30 2021-06-22 Nidec Corporation Rotor, motor, and rotor manufacturing method
CN109983652B (en) * 2016-11-30 2021-06-25 日本电产株式会社 Rotor, motor, and method for manufacturing rotor
JP7017146B2 (en) 2016-11-30 2022-02-08 日本電産株式会社 Rotor, motor, and how to make the rotor
WO2018100967A1 (en) * 2016-11-30 2018-06-07 日本電産株式会社 Rotor, motor, and method for producing rotor
DE102017209355A1 (en) * 2017-06-01 2018-12-06 Continental Automotive Gmbh Arrangement of laminations, rotor for use in an electric motor with such an arrangement of laminations and electric motor with such a rotor
CN111200323A (en) * 2018-11-20 2020-05-26 日本电产株式会社 Rotor and motor
US11108288B2 (en) 2018-11-20 2021-08-31 Nidec Corporation Rotor and motor
US11201513B2 (en) 2018-11-20 2021-12-14 Nidec Corporation Rotor and motor
CN111200323B (en) * 2018-11-20 2022-10-25 日本电产株式会社 Rotor and motor

Similar Documents

Publication Publication Date Title
JP2013198304A (en) Rotor structure of permanent magnet type rotary machine
JP5739651B2 (en) Rotor and motor
JP5936060B2 (en) Rotating electrical machine rotor
US9281723B2 (en) Rotary electric machine with tapered permanent magnet
JP6083059B2 (en) Rotor structure of permanent magnet rotating machine
US8829758B2 (en) Rotary electric machine
US20070063610A1 (en) Permanent magnet rotary motor
JP5918967B2 (en) Rotor, motor and method of manufacturing rotor
JP2013034344A (en) Rotary electric machine
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
JP2006087283A (en) Permanent magnet type rotation motor
JP2007236130A (en) Rotary electric machine
JP5702118B2 (en) Rotor structure and motor
JP4771010B1 (en) Rotating electric machine and wind power generation system
JP2011015555A (en) Dynamo-electric machine
JP2013005595A (en) Rotary electric machine
JP6584296B2 (en) Three-axis active control type magnetic bearing and its assembling method
JP2014073011A (en) Stator for rotary electric machine and rotary electric machine
JP2005312153A (en) Permanent magnet type rotor and its manufacturing method
JP2011045198A (en) Stator for axial-gap motor
JP2011109786A (en) Electric motor rotor
WO2013111335A1 (en) Rotary electric machine
JP4995983B1 (en) Rotor core, rotor and rotating electric machine
JP3187632U (en) Hybrid stepping motor rotor
JP7391783B2 (en) How to assemble magnetic poles, motors, and magnetic poles