JP2013198227A - Inner gas replacement method for rotary electric machine and inner gas replacement device - Google Patents

Inner gas replacement method for rotary electric machine and inner gas replacement device Download PDF

Info

Publication number
JP2013198227A
JP2013198227A JP2012061057A JP2012061057A JP2013198227A JP 2013198227 A JP2013198227 A JP 2013198227A JP 2012061057 A JP2012061057 A JP 2012061057A JP 2012061057 A JP2012061057 A JP 2012061057A JP 2013198227 A JP2013198227 A JP 2013198227A
Authority
JP
Japan
Prior art keywords
machine
gas
rotating electrical
electrical machine
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012061057A
Other languages
Japanese (ja)
Other versions
JP5787802B2 (en
Inventor
Takashi Kishibe
高士 岸部
Toshio Ichikawa
登志雄 市川
Takehiko Imai
岳彦 今井
Tatsumi Uehara
辰已 植原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012061057A priority Critical patent/JP5787802B2/en
Publication of JP2013198227A publication Critical patent/JP2013198227A/en
Application granted granted Critical
Publication of JP5787802B2 publication Critical patent/JP5787802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inner gas replacement method for a rotary electric machine and an inner gas replacement device that can perform replacement work of inner gas in a period of time shorter than those of a conventional method, and a conventional device.SOLUTION: An inner gas replacement method for a rotary electric machine 1 includes a step of supplying inert gas for preventing mixture of hydrogen gas and air inside a lower pipe 7 installed at an inner lower portion of the rotary electric machine 1 at a stretch within an acceptable range of an inner pressure of the rotary electric machine 1, agitating the inert gas guided inside the rotary electric machine 1 from an inside of the lower pipe 7 via holes provided on a surface of the lower pipe 7 and the air existing inside the rotary electric machine 1 therein and filling an inside of the rotary electric machine 1 with the inert gas by guiding the air existing inside the rotary electric machine 1 inside an upper pipe 6 via holes provided on a surface of the upper pipe 6 installed at an inner upper portion of the rotary electric machine 1 and discharging the air outside the rotary electric machine 1.

Description

本発明は、回転電機の機内ガス置換方法及び機内ガス置換装置に関する。   The present invention relates to an in-machine gas replacement method and an in-machine gas replacement apparatus for a rotating electrical machine.

大型のタービン発電機では冷媒として機内へ水素ガスを封入している。水素ガスは可燃性ガスであることから、空気と混合することなく発電機機内へ水素ガスを封入するように、炭酸ガスや窒素ガス等の不活性ガス(以下、「中間置換ガス」と称する。)を介在させることでガス置換作業を実施している。ガスの置換は、空気、中間置換ガス及び水素の比重差を利用して行われる。このような中間置換ガスを介在させて回転電機機内のガスを置換する方法は、例えば、特開2003−153502号公報(特許文献1)に記載される。   A large turbine generator encloses hydrogen gas as a refrigerant in the machine. Since hydrogen gas is a flammable gas, it is referred to as an inert gas (hereinafter referred to as “intermediate replacement gas”) such as carbon dioxide gas or nitrogen gas so that the hydrogen gas is sealed in the generator without being mixed with air. ) Is used to replace the gas. The gas replacement is performed by utilizing a specific gravity difference between air, an intermediate replacement gas, and hydrogen. A method of replacing the gas in the rotating electrical machine by interposing such an intermediate replacement gas is described in, for example, Japanese Patent Application Laid-Open No. 2003-153502 (Patent Document 1).

特開2003−153502号公報JP 2003-153502 A

しかしながら、上述した特許文献1に記載されるような従来の回転電機機内ガス置換方法では、多くの時間がかかる。例えば、特許文献1に記載した発明では、水素ガスと中間置換ガスとが攪拌しないような小さな速度(流量)で作業を行う必要がある点等が置換作業時間の増大に繋がっている。   However, the conventional gas replacement method in a rotating electrical machine as described in Patent Document 1 described above takes a lot of time. For example, in the invention described in Patent Document 1, it is necessary to perform work at such a low speed (flow rate) that hydrogen gas and the intermediate replacement gas do not stir, leading to an increase in replacement work time.

本発明は、上述した課題を解決するためになされたものであり、従来よりも短時間で機内ガスの置換作業を行い得る回転電機の機内ガス置換方法及び機内ガス置換装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an in-machine gas replacement method and an in-machine gas replacement apparatus for a rotating electrical machine that can perform an in-machine gas replacement operation in a shorter time than before. And

本発明の実施形態に係る回転電機の機内ガス置換方法は、上述した課題を解決するため、回転電機の機内の下部に設置される下部管の管内に不活性ガスを前記回転電機の機内圧力の許容範囲内で一気に供給し、前記下部管に形成された孔から前記回転電機の機内に導かれる前記不活性ガスと前記回転電機の機内に存在する空気とを前記回転電機の機内で攪拌させて、前記回転電機の機内の上部に設置される上部管に形成された孔から前記空気を前記上部管の管内に導いて機外へ放出することで、前記回転電機の機内に前記不活性ガスを封入する第1の工程、前記上部管の管内に水素ガスを前記回転電機の機内圧力の許容範囲内で一気に供給し、前記上部管の孔から前記回転電機の機内に導かれる前記水素ガスと前記回転電機の機内に封入されている不活性ガスとを前記回転電機の機内で攪拌させて、前記下部管の孔から前記回転電機の機内に封入されている不活性ガスを前記下部管の管内に導いて機外へ放出することで、前記回転電機の機内に前記水素ガスを封入する第2の工程、前記下部管の管内に不活性ガスを前記回転電機の機内圧力の許容範囲内で一気に供給し、前記下部管の孔から前記回転電機の機内に導かれる前記不活性ガスと前記回転電機の機内に封入されている水素ガスとを前記回転電機の機内で攪拌させて、前記上部管の孔から前記回転電機の機内に封入されている水素ガスを前記上部管の管内に導いて機外へ放出することで、前記回転電機の機内に封入されている水素ガスを機外へ放出する第3の工程、及び、前記上部管の管内に空気を前記回転電機の機内圧力の許容範囲内で一気に供給し、前記上部管の孔から前記回転電機の機内に導かれる空気と前記回転電機の機内に封入されている不活性ガスとを前記回転電機の機内で攪拌させて、前記下部管の孔から前記回転電機の機内に封入されている不活性ガスを前記下部管の管内に導いて機外へ放出することで、前記回転電機の機内に封入されている不活性ガスを機外へ放出する第4の工程の、少なくとも何れかの工程を備えることを特徴とする。   In order to solve the above-described problems, an in-machine gas replacement method for a rotating electrical machine according to an embodiment of the present invention supplies an inert gas to the in-machine pressure of the rotating electrical machine in a pipe of a lower pipe installed in a lower part of the rotating electrical machine. Supply at a stroke within an allowable range, and stir the inert gas guided into the rotating electrical machine from the hole formed in the lower pipe and the air present in the rotating electrical machine in the rotating electrical machine. The inert gas is introduced into the rotary electric machine by introducing the air into the pipe of the upper pipe through the hole formed in the upper pipe installed in the upper part of the rotary electric machine and releasing the air outside the machine. The first step of sealing, supplying hydrogen gas into the pipe of the upper pipe at a stretch within an allowable range of the internal pressure of the rotating electric machine, and the hydrogen gas guided into the rotary electric machine from the hole of the upper pipe and the Enclosed in a rotating electrical machine The inert gas being agitated in the rotary electric machine, and the inert gas sealed in the rotary electric machine is introduced into the lower pipe from the hole of the lower pipe and released to the outside of the machine. In the second step of sealing the hydrogen gas in the rotary electric machine, an inert gas is supplied into the lower pipe within a permissible range of the internal pressure of the rotary electric machine, and from the hole of the lower pipe. The inert gas introduced into the rotating electrical machine and the hydrogen gas sealed in the rotating electrical machine are stirred in the rotating electrical machine and sealed in the rotating electrical machine from the hole of the upper pipe. A third step of releasing the hydrogen gas enclosed in the rotary electric machine out of the machine by guiding the hydrogen gas being introduced into the pipe of the upper pipe and releasing it outside the machine; and the upper pipe The pressure in the machine of the rotating electrical machine Supplying at a stretch within an allowable range, stirring the air guided into the rotating electrical machine from the hole of the upper pipe and the inert gas sealed in the rotating electrical machine, in the rotating electrical machine, The inert gas sealed in the rotating electric machine is guided from the hole of the lower pipe into the pipe of the lower electric pipe and discharged outside the machine, so that the inert gas sealed in the rotating electric machine is machined. It is characterized by comprising at least one of the fourth steps of releasing to the outside.

本発明の実施形態に係る回転電機の機内ガス置換装置は、上述した課題を解決するため、不活性ガスを供給する不活性ガス供給部と回転電機の機内とを調整弁を介して接続する流路であり、前記不活性ガス供給部から前記回転電機の機内へ前記不活性ガスを供給する不活性ガス供給ラインと、水素ガスを供給する水素ガス供給部と回転電機の機内とを調整弁を介して接続する流路であり、前記水素ガス供給部から前記回転電機の機内へ前記水素ガスを供給する水素ガス供給ラインと、前記回転電機の機内と大気とを調整弁を介して接続する流路であり、前記回転電機の機内に残存するガスを機外へ放出する大気放出ラインと、前記回転電機の機内と圧縮空気供給装置とを調整弁を介して接続する流路であり、前記圧縮空気供給装置から空気を供給する空気取入ラインと、前記不活性ガス供給部のガス供給弁、前記不活性ガス供給ラインの調整弁、前記水素ガス供給部のガス供給弁、前記水素ガス供給ラインの調整弁、前記大気放出ラインの調整弁及び空気取入ラインの調整弁の各々の開度を制御する弁制御部と、を具備し、前記弁制御部は、前記不活性ガス供給部から受け取る前記不活性ガスの供給量、前記水素ガス供給部から受け取る前記水素ガスの供給量及び前記圧縮空気供給装置から受け取る空気の供給量の情報に基づいて、前記不活性ガス供給部のガス供給弁、前記不活性ガス供給ラインの調整弁、前記水素ガス供給部のガス供給弁、前記水素ガス供給ラインの調整弁、前記大気放出ラインの調整弁及び空気取入ラインの調整弁の少なくともいずれかを開閉して、前記水素ガス供給ライン、前記大気放出ライン、前記空気取入ライン及び前記不活性ガス供給ラインの開閉制御することを特徴とする。   In order to solve the above-described problem, an in-machine gas replacement device for a rotating electrical machine according to an embodiment of the present invention is configured to connect an inert gas supply unit that supplies an inert gas and the interior of the rotating electrical machine via a regulating valve. An inert gas supply line that supplies the inert gas from the inert gas supply unit into the rotary electric machine, a hydrogen gas supply unit that supplies hydrogen gas, and a rotary valve. A hydrogen gas supply line that supplies the hydrogen gas from the hydrogen gas supply unit into the rotary electric machine, and a flow that connects the rotary electric machine and the atmosphere via a regulating valve. An air discharge line for releasing the gas remaining in the rotary electric machine to the outside of the machine, and a flow path for connecting the rotary electric machine and the compressed air supply device via a regulating valve, the compression Air from the air supply device An air intake line to be supplied, a gas supply valve of the inert gas supply unit, an adjustment valve of the inert gas supply line, a gas supply valve of the hydrogen gas supply unit, an adjustment valve of the hydrogen gas supply line, the atmosphere A valve control unit for controlling the opening degree of each of the regulating valve for the discharge line and the regulating valve for the air intake line, wherein the valve control unit supplies the inert gas received from the inert gas supply unit. The gas supply valve of the inert gas supply unit, the inert gas supply line based on the information of the amount, the supply amount of the hydrogen gas received from the hydrogen gas supply unit, and the supply amount of air received from the compressed air supply device And opening and closing at least one of a regulating valve for the hydrogen gas supply unit, a regulating valve for the hydrogen gas supply line, a regulating valve for the atmospheric discharge line, and a regulating valve for the air intake line. Scan supply line, the air discharge line, characterized by opening and closing control of the air intake line and the inert gas supply line.

本発明によれば、従来よりも短時間で機内ガスの置換作業を行うことができる。   According to the present invention, the in-machine gas replacement operation can be performed in a shorter time than conventional.

本発明の実施形態に係る回転電機機内ガス置換方法を実施する装置の一例である従来の回転電機機内ガス置換装置の構成を示した概略図。Schematic which showed the structure of the conventional rotary electric machine gas replacement apparatus which is an example of the apparatus which implements the rotary electric machine gas replacement method which concerns on embodiment of this invention. 本発明の実施形態に係る回転電機機内ガス置換方法が具備する水素ガス封入手順の中間置換ガス封入工程を説明する説明図。Explanatory drawing explaining the intermediate | middle substitution gas enclosure process of the hydrogen gas enclosure procedure which the gas substitution method in the rotary electric machine which concerns on embodiment of this invention comprises. 本発明の実施形態に係る回転電機機内ガス置換方法が具備する水素ガス封入手順の水素ガス封入工程を説明する説明図。Explanatory drawing explaining the hydrogen gas enclosure process of the hydrogen gas enclosure procedure which the gas replacement method in the rotary electric machine which concerns on embodiment of this invention comprises. 本発明の実施形態に係る回転電機機内ガス置換方法が具備する水素ガス放出手順の水素ガス放出工程を説明する説明図。Explanatory drawing explaining the hydrogen gas discharge | release process of the hydrogen gas discharge | release procedure which the gas replacement method in the rotary electric machine which concerns on embodiment of this invention comprises. 本発明の実施形態に係る回転電機機内ガス置換方法が具備する水素ガス放出手順の中間置換ガス放出工程を説明する説明図。Explanatory drawing explaining the intermediate | middle substitution gas discharge | release process of the hydrogen gas discharge | release procedure which the gas substitution method in the rotary electric machine which concerns on embodiment of this invention comprises. 本発明の実施形態に係る回転電機機内ガス置換装置の構成を示した概略図。Schematic which showed the structure of the gas replacement apparatus in rotary electric machines based on embodiment of this invention.

以下、本発明の実施形態に係る回転電機の機内ガス置換方法及び機内ガス置換装置を添付の図面を参照して説明する。   Hereinafter, an in-machine gas replacement method and an in-machine gas replacement apparatus for a rotating electrical machine according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の実施形態に係る回転電機の機内ガス置換方法(以下、「回転電機機内ガス置換方法」と称する。)を実施する装置(以下、「回転電機機内ガス置換装置」と称する。)の一例である従来の回転電機機内ガス置換装置10の構成を示した概略図である。   FIG. 1 shows an apparatus (hereinafter referred to as a “rotary electric machine gas replacement device”) that implements an in-machine gas replacement method (hereinafter referred to as a “rotary electric machine gas replacement method”) according to an embodiment of the present invention. .) Is a schematic diagram showing a configuration of a conventional rotary electric machine gas replacement device 10 as an example.

回転電機機内ガス置換装置10は、水素冷却式の回転電機1の機内に存在するガス(機内ガス)を、水素ガスと空気との混合を防止する不活性ガス(中間置換ガス)、水素または空気に置換する装置であり、従来の回転電機機内ガス置換方法を実施可能な回転電機機内ガス置換装置である。不活性ガス(中間置換ガス)としては、例えば、窒素、二酸化炭素及び希ガスから選ばれる少なくとも一種類を主成分とするガスが適用される。   The rotating electrical machine internal gas replacement device 10 uses an inert gas (intermediate replacement gas), hydrogen or air to prevent the gas (internal gas) existing in the hydrogen-cooled rotating electrical machine 1 from being mixed with hydrogen gas and air. This is an apparatus for replacing a gas in a rotating electrical machine and capable of performing a conventional gas replacing method in a rotating electrical machine. As the inert gas (intermediate replacement gas), for example, a gas mainly containing at least one selected from nitrogen, carbon dioxide, and a rare gas is applied.

本発明の実施形態に係る回転電機機内ガス置換方法は、例えば、既存の回転電機機内ガス置換装置10の一部または全部を使用して、回転電機1の機内ガスを、水素ガス、不活性ガスまたは空気に置換する、すなわち、機内ガスを入れ替えることができる。   The rotating electrical machine internal gas replacement method according to the embodiment of the present invention uses, for example, a part or all of the existing rotating electrical machine internal gas replacement device 10 to convert the in-machine gas of the rotating electrical machine 1 into hydrogen gas or inert gas. Alternatively, the air can be replaced, that is, the in-flight gas can be replaced.

水素冷却式の回転電機1の機内には、運転時に機内を冷却する冷媒として水素ガスが封入され、この水素ガスを機外の水素冷却系(図において省略)によって循環させることによって、回転電機1で発生する熱による温度上昇を所定範囲内に抑えている。回転電機1の回転軸2を支持する軸受3の近傍には軸シール部4が設けられ、軸シール部4に供給する密封油によって、機内に封入した水素ガスが密封される。また、回転電機1の機内には、水素ガスの封入及び排気を想定して、例えば、冷媒としての水素ガス、不活性ガス、空気等の気体を供給及び放出する上部管6と下部管7とが設けられる。なお、符号9は、点検等の際に機内アクセス用に設けられたマンホールである。   The hydrogen-cooled rotary electric machine 1 is filled with hydrogen gas as a refrigerant that cools the inside of the machine during operation, and this hydrogen gas is circulated by a hydrogen cooling system (not shown) outside the machine, thereby rotating the rotary electric machine 1. The temperature rise due to the heat generated in is kept within a predetermined range. A shaft seal portion 4 is provided in the vicinity of the bearing 3 that supports the rotating shaft 2 of the rotating electrical machine 1, and the hydrogen gas sealed in the machine is sealed by the sealing oil supplied to the shaft seal portion 4. In addition, assuming that hydrogen gas is sealed and exhausted in the rotary electric machine 1, for example, an upper pipe 6 and a lower pipe 7 for supplying and releasing a gas such as hydrogen gas, an inert gas, and air as a refrigerant, Is provided. Reference numeral 9 denotes a manhole provided for in-flight access during inspection or the like.

上部管6は、水素ガス供給部11から水素ガスを複数の孔を設けた上部管6に供給し、上部管6の孔から管外に分散させることによって機内に水素ガスを導入する水素ガス供給ライン12と、機内ガスとしての水素ガスを上部管6から大気へ放出する大気放出ライン13と、機外から空気を取り入れて上部管6に供給し、上部管6の孔から管外に分散させることによって機内に導入する空気取入ライン14と接続される。   The upper pipe 6 supplies hydrogen gas from the hydrogen gas supply section 11 to the upper pipe 6 provided with a plurality of holes, and disperses the hydrogen gas from the holes of the upper pipe 6 to the outside of the pipe to introduce hydrogen gas into the machine. A line 12, an atmospheric discharge line 13 for releasing hydrogen gas as an in-machine gas from the upper pipe 6 to the atmosphere, an air is taken in from the outside of the machine and supplied to the upper pipe 6, and dispersed from the hole of the upper pipe 6 to the outside of the pipe. Thus, the air intake line 14 to be introduced into the machine is connected.

回転電機1では、水素ガス供給部11に貯えられている水素ガスを、水素ガス供給ライン12を通して水素ガス供給部11から上部管6へ供給することができる。例えば、図1に示される回転電機1では、水素ガス供給部11の水素ガス供給源である水素ガスボンベ15に加圧貯蔵される水素ガスは、水素ガス供給弁16を通り、減圧弁17で減圧され、減圧弁17と上部管6とを接続する流路の開度を調整する調整弁18が取り付けられた配管19を通って上部管6へ供給される。なお、水素ガス供給源としての水素ガスボンベ15は、例えば、機内容積の3倍量等、機内容積に対応させた量を予め用意しておく方が好ましい。   In the rotating electrical machine 1, the hydrogen gas stored in the hydrogen gas supply unit 11 can be supplied from the hydrogen gas supply unit 11 to the upper pipe 6 through the hydrogen gas supply line 12. For example, in the rotating electrical machine 1 shown in FIG. 1, the hydrogen gas pressurized and stored in the hydrogen gas cylinder 15 that is the hydrogen gas supply source of the hydrogen gas supply unit 11 passes through the hydrogen gas supply valve 16 and is decompressed by the pressure reducing valve 17. Then, the pressure is supplied to the upper pipe 6 through the pipe 19 to which the adjustment valve 18 for adjusting the opening degree of the flow path connecting the pressure reducing valve 17 and the upper pipe 6 is attached. The hydrogen gas cylinder 15 as the hydrogen gas supply source is preferably prepared in advance in an amount corresponding to the internal volume, for example, three times the internal volume.

また、回転電機1では、機内に存在する水素ガスを、上部管6の孔から管内に導入して大気放出ライン13に導き、大気放出ライン13を通して大気中に放出することができる。例えば、図1に示される回転電機1では、機内に存在する水素ガスが、上部管6の孔から上部管6の内部に導かれ、上部管6からさらに配管19に導かれる。その後、配管19に導かれた水素ガスは、さらに、配管19から大気に通じる流路の開度を調整する調整弁21及び調整弁22が取り付けられた大気放出管23へ導かれ、大気放出管23の開口部23aから大気中へ放出される。   Further, in the rotating electrical machine 1, hydrogen gas existing in the machine can be introduced into the pipe through the hole of the upper pipe 6, led to the atmospheric discharge line 13, and released into the atmosphere through the atmospheric discharge line 13. For example, in the rotating electrical machine 1 shown in FIG. 1, hydrogen gas existing in the machine is led into the upper pipe 6 from the hole of the upper pipe 6 and further led to the pipe 19 from the upper pipe 6. Thereafter, the hydrogen gas led to the pipe 19 is further led to the atmospheric discharge pipe 23 to which the regulating valve 21 and the regulating valve 22 for adjusting the opening degree of the flow path leading from the pipe 19 to the atmosphere are attached. 23 is released from the opening 23a into the atmosphere.

さらに、回転電機1では、機外から取り入れた空気(乾燥空気)を、空気取入ライン14を通して上部管6へ供給することができる。例えば、図1に示される回転電機1では、調整弁25が取り付けられた空気取入管26が配管19と接続されている。空気取入管26の開口部26aに圧縮した乾燥空気を機内に供給する圧縮空気供給装置29を接続することで、圧縮空気供給装置29から供給される空気は、空気取入管26、配管19、そして、上部管6へ導かれ機内に供給される。   Further, in the rotating electrical machine 1, air (dry air) taken from outside the machine can be supplied to the upper pipe 6 through the air intake line 14. For example, in the rotating electrical machine 1 shown in FIG. 1, the air intake pipe 26 to which the adjustment valve 25 is attached is connected to the pipe 19. By connecting a compressed air supply device 29 for supplying compressed dry air into the machine to the opening 26a of the air intake tube 26, the air supplied from the compressed air supply device 29 is supplied to the air intake tube 26, the pipe 19, and Then, it is guided to the upper pipe 6 and supplied into the machine.

下部管7は、不活性ガス供給部31から供給される窒素ガス等の不活性ガスを複数の孔を設けた下部管7から分散させて機内に導入する不活性ガス供給ライン33と、機内ガスとしての不活性ガスを大気へ放出する大気放出ライン34と接続される。   The lower pipe 7 includes an inert gas supply line 33 for introducing an inert gas such as nitrogen gas supplied from an inert gas supply unit 31 from the lower pipe 7 provided with a plurality of holes into the machine, and an in-machine gas. And an atmospheric discharge line 34 for releasing the inert gas to the atmosphere.

回転電機1では、不活性ガス供給部31に貯えられている不活性ガスを、不活性ガス供給ライン33を通して不活性ガス供給部31から下部管7へ供給することができる。例えば、図1に示される回転電機の機内ガス置換装置10では、窒素ガスを不活性ガスとして使用している。窒素ガスは、その性状から容易に使用量を測定することができ、希ガス等に比べて安価である点で、ガス置換作業及び機内ガスの濃度推定を容易に行うことができる。   In the rotating electrical machine 1, the inert gas stored in the inert gas supply unit 31 can be supplied from the inert gas supply unit 31 to the lower pipe 7 through the inert gas supply line 33. For example, in the in-machine gas replacement device 10 for a rotating electrical machine shown in FIG. 1, nitrogen gas is used as an inert gas. The amount of nitrogen gas used can be easily measured from its properties, and the gas replacement operation and in-machine gas concentration estimation can be easily performed in that it is less expensive than rare gases.

図1に示される回転電機1では、不活性ガス供給源としての窒素ガスボンベ35に加圧貯蔵される窒素ガスが、窒素ガス供給弁36を通り、減圧弁37で減圧され、調整弁38が取り付けられた配管39を通って下部管7へ供給される。なお、不活性ガス供給源としての窒素ガスボンベ35は、例えば、機内容積の3倍量等、機内容積に対応させた量を予め用意しておく方が好ましい。   In the rotating electrical machine 1 shown in FIG. 1, nitrogen gas pressurized and stored in a nitrogen gas cylinder 35 serving as an inert gas supply source passes through the nitrogen gas supply valve 36, is decompressed by the decompression valve 37, and the adjustment valve 38 is attached. It is supplied to the lower pipe 7 through the pipe 39 provided. The nitrogen gas cylinder 35 as an inert gas supply source is preferably prepared in advance in an amount corresponding to the internal volume, such as three times the internal volume.

また、回転電機1では、機内に存在する不活性ガスを、下部管7の孔から管内に導入して大気放出ライン34に導き、大気放出ライン34を通して大気中に放出することができる。例えば、図1に示される回転電機1では、機内に存在する不活性ガスが、下部管7の孔から下部管7の内部に導かれ、下部管7からさらに配管39に導かれる。その後、配管39に導かれた不活性ガスは、配管39と大気放出管23とを接続する流路の開度を調整する調整弁41が取り付けられた配管43へ導かれ、さらに、配管43から大気放出管23へ導かれ、開口部23aから大気中へ放出される。   Further, in the rotating electrical machine 1, the inert gas present in the machine can be introduced into the pipe through the hole of the lower pipe 7, led to the atmospheric discharge line 34, and released into the atmosphere through the atmospheric discharge line 34. For example, in the rotating electrical machine 1 shown in FIG. 1, the inert gas existing in the machine is led into the lower pipe 7 from the hole of the lower pipe 7 and further led to the pipe 39 from the lower pipe 7. Thereafter, the inert gas led to the pipe 39 is led to the pipe 43 to which the adjustment valve 41 for adjusting the opening degree of the flow path connecting the pipe 39 and the atmospheric discharge pipe 23 is attached. It is guided to the atmospheric discharge pipe 23 and is released into the atmosphere from the opening 23a.

一方、回転電機機内ガス置換装置10は、回転電機1の機内ガスの濃度(純度)及び圧力等を監視制御するガス制御盤45と、回転電機1の機内と大気とを接続する大気放出ライン13,34を通るガスの濃度(純度)を計測する掃気盤46とを備える。   On the other hand, the rotating electrical machine internal gas replacement device 10 includes a gas control panel 45 that monitors and controls the concentration (purity) and pressure of the in-machine gas of the rotating electrical machine 1, and an atmospheric discharge line 13 that connects the interior of the rotating electrical machine 1 and the atmosphere. , 34, and a scavenging board 46 for measuring the concentration (purity) of the gas.

ここで、符号51,52,53,54は、それぞれ、ドラフトゲージ、機内圧力計、ガス純度計、及び、大気放出管である。また、符号56は、ガス純度計である。さらに、符号P1は配管19と大気放出管23との分岐点(合流点)、符号P2は配管19と空気取入管26との分岐点(合流点)、符号P3は配管39と配管43との分岐点(合流点)、符号P4は大気放出管23の調整弁21と調整弁22との間に設けられた大気放出管23と配管43との分岐点(合流点)である。   Here, reference numerals 51, 52, 53, and 54 denote a draft gauge, an in-machine pressure gauge, a gas purity meter, and an atmospheric discharge pipe, respectively. Reference numeral 56 denotes a gas purity meter. Further, reference numeral P1 denotes a branch point (junction point) between the pipe 19 and the atmospheric discharge pipe 23, reference numeral P2 denotes a branch point (junction point) between the pipe 19 and the air intake pipe 26, and reference numeral P3 denotes a pipe 39 and a pipe 43. A branch point (merging point), symbol P4, is a branch point (merging point) between the atmospheric discharge pipe 23 and the pipe 43 provided between the regulating valve 21 and the regulating valve 22 of the atmospheric discharge pipe 23.

なお、図1に示される回転電機1では、水素ガス供給ライン12、大気放出ライン13及び空気取入ライン14の一部が共通する流路を有する構成であるが、各々が独立に構成される場合もある。さらに、不活性ガス供給ライン33及び大気放出ライン34についても、水素ガス供給ライン12、大気放出ライン13及び空気取入ライン14と同様に、各々が独立に構成される場合もある。   In the rotating electrical machine 1 shown in FIG. 1, the hydrogen gas supply line 12, the atmospheric discharge line 13, and a part of the air intake line 14 have a common flow path, but each is configured independently. In some cases. Further, the inert gas supply line 33 and the atmospheric discharge line 34 may be configured independently, similarly to the hydrogen gas supply line 12, the atmospheric discharge line 13, and the air intake line 14.

次に、本発明の実施形態に係る回転電機機内ガス置換方法について説明する。なお、以下に説明する本発明の実施形態に係る回転電機機内ガス置換方法は、図1に示される回転電機機内ガス置換装置10を使用して行う場合の例である。   Next, a gas replacement method for a rotating electrical machine according to an embodiment of the present invention will be described. The rotary electric machine gas replacement method according to the embodiment of the present invention described below is an example in the case of using the rotary electric machine gas replacement apparatus 10 shown in FIG.

図2,3は、本発明の実施形態に係る回転電機機内ガス置換方法が具備する水素ガス封入手順を説明する説明図であり、図4,5は、本発明の実施形態に係る回転電機機内ガス置換方法が具備する水素ガス放出手順を説明する説明図である。図2,3,4,5の各図に示される各調整弁18,21,22,25,38,41は、必要時には開放されるが通常時は閉止している常閉弁である。   2 and 3 are explanatory views for explaining a hydrogen gas filling procedure provided in the gas replacement method for a rotating electrical machine according to the embodiment of the present invention, and FIGS. 4 and 5 illustrate the interior of the rotating electrical machine according to the embodiment of the present invention. It is explanatory drawing explaining the hydrogen gas discharge | release procedure which the gas replacement method comprises. Each of the regulating valves 18, 21, 22, 25, 38, and 41 shown in FIGS. 2, 3, 4, and 5 is a normally closed valve that is opened when necessary but normally closed.

本発明の実施形態に係る回転電機機内ガス置換方法は、水素冷却式の回転電機1の機内に存在するガス(機内ガス)を、不活性ガス、水素ガスまたは空気に置換する方法である。本発明の実施形態に係る回転電機機内ガス置換方法は、回転電機1の機内に水素ガスを封入する水素ガス封入手順(図2,3)及び回転電機の機内から水素ガスを放出する水素ガス放出手順(図4,5)の少なくとも一方の手順を具備する。   The in-machine gas replacement method of the rotating electrical machine according to the embodiment of the present invention is a method of replacing the gas (in-machine gas) present in the machine of the hydrogen-cooled rotating electrical machine 1 with an inert gas, hydrogen gas, or air. The gas replacement method for a rotating electrical machine according to an embodiment of the present invention includes a hydrogen gas sealing procedure (FIGS. 2 and 3) for sealing hydrogen gas in the rotating electrical machine 1 and a hydrogen gas release for releasing the hydrogen gas from the rotating electrical machine. At least one of the procedures (FIGS. 4 and 5) is provided.

水素ガス封入手順は、回転電機1の機内が空気で満たされている状態から不活性ガスを供給して回転電機1の機内ガスを空気から不活性ガス(中間置換ガス)に置換する中間置換ガス封入工程と、回転電機1の機内に不活性ガス(中間置換ガス)が封入されている状態から水素ガスを供給して回転電機1の機内ガスを不活性ガスから水素ガスに置換して回転電機1の機内に水素ガスを封入する水素ガス封入工程との少なくとも一方の工程を備える。   The hydrogen gas filling procedure is an intermediate replacement gas in which an inert gas is supplied from a state where the interior of the rotating electrical machine 1 is filled with air and the interior gas of the rotating electrical machine 1 is replaced with an inert gas (intermediate replacement gas) from the air. Rotating electrical machine by supplying hydrogen gas from the sealing step and a state where an inert gas (intermediate replacement gas) is sealed in the rotating electric machine 1 and replacing the in-machine gas of the rotating electric machine 1 from the inert gas to the hydrogen gas At least one of a hydrogen gas filling step of filling hydrogen gas in one machine.

また、水素ガス放出手順は、回転電機1の機内に水素ガスが封入されている状態から不活性ガス(中間置換ガス)を供給して回転電機1の機内ガスを水素ガスから中間置換ガスに置換することによって回転電機1の機内から水素ガスを放出する水素ガス放出工程と、回転電機1の機内に不活性ガス(中間置換ガス)が封入されている状態から空気を供給して回転電機1の機内ガスを中間置換ガスから空気に置換することによって回転電機1の機内から中間置換ガスを放出する中間置換ガス放出工程との少なくとも一方の工程を備える。   In addition, the hydrogen gas release procedure supplies an inert gas (intermediate replacement gas) from a state in which hydrogen gas is sealed in the rotating electrical machine 1 to replace the in-machine gas of the rotating electrical machine 1 from hydrogen gas to an intermediate replacement gas. Thus, the hydrogen gas releasing step for releasing hydrogen gas from the machine of the rotating electrical machine 1 and the supply of air from the state where the inert gas (intermediate replacement gas) is sealed in the machine of the rotating electrical machine 1 It comprises at least one step of an intermediate replacement gas releasing step of discharging the intermediate replacement gas from the inside of the rotating electrical machine 1 by replacing the in-machine gas with air from the intermediate replacement gas.

中間置換ガス封入工程(図2)では、まず、機内ガスである空気を上部管6から大気中へ放出する放出口を確保する。より詳細には、常閉弁である調整弁18,21,22,25,38,41のうち、調整弁21,22を開いて、上部管6が、配管19、調整弁21、調整弁22及び大気放出管23を介して大気と接続された状態(大気開放状態)にする。   In the intermediate replacement gas sealing step (FIG. 2), first, a discharge port for releasing air, which is an in-machine gas, from the upper pipe 6 into the atmosphere is secured. More specifically, among the regulating valves 18, 21, 22, 25, 38, 41 that are normally closed valves, the regulating valves 21, 22 are opened, and the upper pipe 6 is connected to the pipe 19, the regulating valve 21, the regulating valve 22. And a state connected to the atmosphere via the atmosphere discharge pipe 23 (atmospheric release state).

続いて、不活性ガス供給部31に貯えられている不活性ガス(中間置換ガス)としての窒素ガスを下部管7に供給する。より詳細には、調整弁38を微開し、配管39を流れるガスの音が通常時に生じる音と異なっていないか及び機内圧力計52で計測される機内圧力の上昇がないかを確認した後、調整弁38をさらに開く。   Subsequently, nitrogen gas as an inert gas (intermediate replacement gas) stored in the inert gas supply unit 31 is supplied to the lower pipe 7. More specifically, after slightly opening the adjustment valve 38 and confirming that the sound of the gas flowing through the pipe 39 is not different from the sound generated during normal time and whether there is an increase in the in-machine pressure measured by the in-machine pressure gauge 52 Then, the regulating valve 38 is further opened.

調整弁38の開度は、機内圧力が予め設定されている安全限界の圧力上限値を超えない範囲内で最大限にする。すなわち、可能な限り一気に窒素ガスを機内に供給する。窒素ガスの供給速度(単位時間当たりの供給量)は、排気側となる大気放出ライン13の排気能力(単位時間当たりの排気量)に応じて決定される。   The opening degree of the regulating valve 38 is maximized within a range where the in-machine pressure does not exceed a preset safety limit pressure upper limit value. That is, nitrogen gas is supplied into the machine as quickly as possible. The supply speed of nitrogen gas (supply amount per unit time) is determined according to the exhaust capacity (exhaust amount per unit time) of the atmospheric discharge line 13 on the exhaust side.

また、窒素ガスの供給終了のタイミングは、機内に水素ガスが混入した際に爆発が生じない程度(水素濃度の爆発限界下限未満)に窒素ガスの濃度が高まった時点であり、例えば、機内の窒素ガス濃度95%に到達した時点とする。   In addition, the timing of the end of the supply of nitrogen gas is the time when the concentration of nitrogen gas has increased to a level that does not cause an explosion when hydrogen gas is mixed into the aircraft (below the lower explosion limit of hydrogen concentration). It is assumed that the nitrogen gas concentration reaches 95%.

中間置換ガス封入工程において、窒素ガス濃度が所定濃度以上に到達しているか否かの判断は、機内への窒素ガス供給量に基づいて行う。窒素ガス供給量は、例えば、予め容量が既知の窒素ガスボンベ35の消費本数や、不活性ガス供給部31の不活性ガス供給量を計測する流量センサの情報に基づいて計測される計測結果から判断することができる。   In the intermediate replacement gas sealing step, whether or not the nitrogen gas concentration has reached a predetermined concentration or more is determined based on the amount of nitrogen gas supplied into the machine. The nitrogen gas supply amount is determined from, for example, a measurement result measured based on the number of nitrogen gas cylinders 35 whose capacity is known in advance or information on a flow sensor that measures the inert gas supply amount of the inert gas supply unit 31. can do.

また、容器内のガスを別のガスで置換する際に必要となるガス供給量(ガス消費量)と容器内のガス濃度とは以下の式(1)で示す関係がある。なお、式(1)で示される「ln」は底をネイピア数e(=2.718・・・)とする対数(自然対数)を示す表記である。すなわち、lnY=logY(Y>0)を意味する。 Further, the gas supply amount (gas consumption amount) required when replacing the gas in the container with another gas and the gas concentration in the container have a relationship represented by the following formula (1). In addition, “ln” shown in Expression (1) is a notation indicating a logarithm (natural logarithm) with the base as the Napier number e (= 2.718...). That is, lnY = log e Y (Y> 0).

Figure 2013198227
Figure 2013198227

例えば、機内に封入する窒素ガスの純度(封入ガス純度:Z)が100%、ガス封入前の機内における窒素ガスの濃度(封入前容器内ガス濃度:Z)が0%、ガス封入後の機内における窒素ガスの濃度(封入後容器内ガス濃度:Z)が95%とすると、上述した式(1)に代入し、必要となるガス消費量は、ln{100/100−95}≒2.99であり、機内容積の約3倍である。すなわち、機内容積の3倍量となる窒素ガスを供給し終えた時点で、機内の窒素ガス濃度は95%に到達したと判断することができる。 For example, the purity of nitrogen gas sealed in the machine (filled gas purity: Z 0 ) is 100%, the concentration of nitrogen gas in the machine before gas filling (gas concentration in the container before filling: Z 1 ) is 0%, after gas filling Assuming that the concentration of nitrogen gas in the machine (gas concentration in the container after encapsulation: Z 2 ) is 95%, the gas consumption required for substitution into the above-described equation (1) is ln {100 / 100-95}. ≈2.99, about 3 times the internal volume. That is, it can be determined that the nitrogen gas concentration in the machine has reached 95% when the supply of nitrogen gas that is three times the volume of the machine is completed.

機内に水素ガスが混入した際に爆発が生じない程度に窒素ガスの濃度が高まったと判断できる窒素ガスを機内に供給し終えると、調整弁38を閉止して窒素ガスの供給を停止して、空気から不活性ガス(中間置換ガス)である窒素ガスへの置換を完了する。すなわち、中間置換ガス封入工程の全処理ステップを完了する。   When the supply of nitrogen gas that can be determined to have increased to such an extent that no explosion occurs when hydrogen gas is mixed into the machine, the regulator valve 38 is closed to stop the supply of nitrogen gas. The replacement of air with nitrogen gas, which is an inert gas (intermediate replacement gas), is completed. That is, all processing steps of the intermediate replacement gas sealing process are completed.

なお、中間置換ガス封入工程では、ガス純度計56を使用せずに上記式(1)による算出結果から機内の窒素ガス濃度を判断することにしているが、ガス純度計56を使用して機内の窒素ガス濃度を二重チェックしても良い。   In the intermediate replacement gas sealing step, the nitrogen gas concentration in the machine is determined from the calculation result according to the above formula (1) without using the gas purity meter 56. You may double check the nitrogen gas concentration.

また、上述した中間置換ガス封入工程では、上記式(1)の算出結果から、機内容積の3倍量となる窒素ガスを供給し終えた時点で、機内の窒素ガス濃度は95%に到達したと判断することにしているが、必ずしも3倍量である必要はなく、少なくとも3倍量であれば良い。例えば、数%程度の余裕を見込んで3.1倍量に到達した時点で機内の窒素ガス濃度は95%に到達したと判断するようにしても良い。   Further, in the above-described intermediate replacement gas sealing step, the nitrogen gas concentration in the machine reached 95% from the calculation result of the above formula (1) when the supply of nitrogen gas that is three times the volume in the machine was completed. However, it is not always necessary to use a triple amount, and it is sufficient that the amount is at least a triple amount. For example, it may be determined that the nitrogen gas concentration in the machine has reached 95% when the amount reaches 3.1 times with an allowance of about several percent.

次に、水素ガス封入工程(図3)では、まず、機内ガスである窒素ガスを下部管7から大気中へ放出する放出口を確保する。より詳細には、常閉弁である調整弁18,21,22,25,38,41のうち、調整弁41,22を開いて、下部管7が、配管19、調整弁41、調整弁22及び大気放出管23を介して大気と接続された状態(大気開放状態)にする。   Next, in the hydrogen gas filling step (FIG. 3), first, a discharge port for releasing nitrogen gas, which is the in-machine gas, from the lower pipe 7 to the atmosphere is secured. More specifically, among the regulating valves 18, 21, 22, 25, 38, 41 that are normally closed valves, the regulating valves 41, 22 are opened, and the lower pipe 7 is connected to the pipe 19, the regulating valve 41, the regulating valve 22. And a state connected to the atmosphere via the atmosphere discharge pipe 23 (atmospheric release state).

続いて、水素ガス供給部11に貯えられている水素ガスを上部管6に供給する。より詳細には、調整弁18を微開し、配管19を流れるガスの音が通常時に生じる音と異なっていないか、機内圧力計52で計測される機内圧力の上昇がないか及び軸受3付近から水素ガスの漏れが生じていないかを確認した後、調整弁18をさらに開く。   Subsequently, the hydrogen gas stored in the hydrogen gas supply unit 11 is supplied to the upper pipe 6. More specifically, the adjustment valve 18 is opened slightly, and the sound of the gas flowing through the pipe 19 is not different from the sound generated at the normal time, whether there is an increase in the in-machine pressure measured by the in-machine pressure gauge 52, and the vicinity of the bearing 3 After confirming that no hydrogen gas leaks from the control valve 18, the regulating valve 18 is further opened.

調整弁18の開度は、機内圧力が予め設定されている安全限界の圧力上限値を超えない範囲内で最大限にする。すなわち、可能な限り一気に水素ガスを機内に供給する。水素ガスの供給速度(単位時間当たりの供給量)は、排気側となる大気放出ライン34の排気能力(単位時間当たりの排気量)に応じて決定される。   The opening degree of the regulating valve 18 is maximized within a range in which the in-machine pressure does not exceed a preset safety limit pressure upper limit value. That is, hydrogen gas is supplied into the machine as quickly as possible. The supply rate of hydrogen gas (supply amount per unit time) is determined according to the exhaust capacity (exhaust amount per unit time) of the atmospheric discharge line 34 on the exhaust side.

また、水素ガスの供給終了のタイミングは、水素ガスの濃度が所定濃度、例えば、機内の水素ガス濃度95%に到達した時点とする。水素ガス濃度が所定濃度以上に到達しているか否かは、上述した中間置換ガス封入工程と同様に、上述の式(1)を用いて、機内への水素ガス供給量で判断する。すなわち、機内容積の3倍量となる水素ガスを供給し終えた時点で、機内の水素ガス濃度は95%に到達したと判断する。   In addition, the timing of the end of the supply of hydrogen gas is the time when the concentration of hydrogen gas reaches a predetermined concentration, for example, 95% of the hydrogen gas concentration in the machine. Whether or not the hydrogen gas concentration has reached a predetermined concentration or more is determined by the amount of hydrogen gas supplied into the apparatus using the above equation (1), as in the above-described intermediate replacement gas sealing step. That is, it is determined that the hydrogen gas concentration in the machine has reached 95% when the supply of hydrogen gas that is three times the volume of the machine is completed.

なお、機内の水素ガス濃度は、ガス純度計53を使用して二重チェックすることもできる。また、中間置換ガス封入工程と同様に、機内の水素ガス濃度が95%に到達したと判断するタイミングは、必ずしも機内容積の3倍量である必要はなく、3倍量以上のタイミングであれば任意である。   The hydrogen gas concentration in the machine can be double checked using the gas purity meter 53. Similarly to the intermediate replacement gas filling step, the timing for determining that the hydrogen gas concentration in the machine has reached 95% does not necessarily have to be three times the volume of the machine, and if it is more than three times the timing. Is optional.

機内の水素ガスの濃度が所定濃度以上に到達したと判断できる水素ガスを機内に供給し終えると、調整弁18を閉止して水素ガスの供給を停止して、窒素ガスから水素ガスへの置換を完了する。すなわち、水素ガス封入工程の全処理ステップを完了する。   When the supply of hydrogen gas that can be determined that the concentration of hydrogen gas in the machine has reached a predetermined concentration or more is completed, the adjustment valve 18 is closed to stop the supply of hydrogen gas, and the replacement of nitrogen gas with hydrogen gas is performed. To complete. That is, all the processing steps of the hydrogen gas filling process are completed.

水素ガス放出工程(図4)では、まず、機内ガスである水素ガスを上部管6から大気中へ放出する放出口を確保する。より詳細には、常閉弁である調整弁18,21,22,25,38,41のうち、調整弁21,22を開いて、上部管6が、配管19、調整弁21、調整弁22及び大気放出管23を介して大気と接続された状態(大気開放状態)にする。   In the hydrogen gas releasing step (FIG. 4), first, a discharge port for releasing the hydrogen gas, which is the in-machine gas, from the upper pipe 6 into the atmosphere is secured. More specifically, among the regulating valves 18, 21, 22, 25, 38, 41 that are normally closed valves, the regulating valves 21, 22 are opened, and the upper pipe 6 is connected to the pipe 19, the regulating valve 21, the regulating valve 22. And a state connected to the atmosphere via the atmosphere discharge pipe 23 (atmospheric release state).

続いて、不活性ガス供給部31に貯えられている不活性ガス(中間置換ガス)としての窒素ガスを下部管7に供給する。より詳細には、調整弁38を微開し、配管39を流れるガスの音が通常時に生じる音と異なっていないか、機内圧力計52で計測される機内圧力の上昇がないか及び軸受3付近から水素ガスの漏れが生じていないかを確認した後、調整弁38をさらに開く。   Subsequently, nitrogen gas as an inert gas (intermediate replacement gas) stored in the inert gas supply unit 31 is supplied to the lower pipe 7. More specifically, the adjustment valve 38 is opened slightly, and the sound of the gas flowing through the pipe 39 is not different from the sound generated at the normal time, whether there is an increase in the in-machine pressure measured by the in-machine pressure gauge 52, and the vicinity of the bearing 3 After confirming whether hydrogen gas leaks from the control valve 38, the adjustment valve 38 is further opened.

調整弁38の開度は、機内圧力が予め設定されている安全限界の圧力上限値を超えない範囲内で最大限にする。すなわち、可能な限り一気に窒素ガスを機内に供給する。窒素ガスの供給速度(単位時間当たりの供給量)は、排気側となる大気放出ライン13の排気能力(単位時間当たりの排気量)に応じて決定される。   The opening degree of the regulating valve 38 is maximized within a range where the in-machine pressure does not exceed a preset safety limit pressure upper limit value. That is, nitrogen gas is supplied into the machine as quickly as possible. The supply speed of nitrogen gas (supply amount per unit time) is determined according to the exhaust capacity (exhaust amount per unit time) of the atmospheric discharge line 13 on the exhaust side.

また、窒素ガスの供給終了のタイミングは、機内に水素ガスが混入した際に爆発が生じない程度に窒素ガスの濃度が高まった時点であり、例えば、機内の窒素ガス濃度95%に到達した時点とする。窒素ガス濃度が所定濃度以上に到達しているか否かは、上述した中間置換ガス封入工程と同様に、上述の式(1)を用いて、機内への窒素ガス供給量で判断する。すなわち、機内容積の3倍量となる窒素ガスを供給し終えた時点で、機内の窒素ガス濃度は95%に到達したと判断する。   Also, the timing of the end of the supply of nitrogen gas is the time when the concentration of nitrogen gas increases to such an extent that no explosion occurs when hydrogen gas is mixed in the machine, for example, when the nitrogen gas concentration in the machine reaches 95% And Whether or not the nitrogen gas concentration has reached a predetermined concentration or more is determined by the amount of nitrogen gas supplied into the apparatus using the above equation (1), as in the above-described intermediate replacement gas sealing step. That is, it is determined that the nitrogen gas concentration in the machine has reached 95% when the supply of nitrogen gas that is three times the volume in the machine has been completed.

機内に水素ガスが混入した際に爆発が生じない程度に窒素ガスの濃度が高まったと判断できる窒素ガスを機内に供給し終えると、調整弁38を閉止して窒素ガスの供給を停止して、水素ガスから窒素ガスへの置換(水素ガスの放出)を完了する。すなわち、水素ガス放出工程の全処理ステップを完了する。   When the supply of nitrogen gas that can be determined to have increased to such an extent that no explosion occurs when hydrogen gas is mixed into the machine, the regulator valve 38 is closed to stop the supply of nitrogen gas. The replacement of hydrogen gas with nitrogen gas (hydrogen gas release) is completed. That is, all the processing steps of the hydrogen gas releasing process are completed.

なお、水素ガス放出工程では、ガス純度計56を使用せずに上記式(1)による算出結果から機内の窒素ガス濃度を判断することにしているが、ガス純度計56を使用して機内の窒素ガス濃度を二重チェックしても良い。また、中間置換ガス封入工程と同様に、機内の窒素ガス濃度が95%に到達したと判断するタイミングは、必ずしも機内容積の3倍量である必要はなく、3倍量以上のタイミングであれば任意である。   In the hydrogen gas releasing step, the nitrogen gas concentration in the machine is determined from the calculation result according to the above formula (1) without using the gas purity meter 56. Nitrogen gas concentration may be double checked. Similarly to the intermediate replacement gas filling step, the timing for determining that the nitrogen gas concentration in the machine has reached 95% does not necessarily have to be three times the volume of the machine, and if it is more than three times the timing. Is optional.

中間置換ガス放出工程(図5)では、図5に示されるように、中間置換ガス放出工程の開始前に、マンホール9を使って酸素濃度計58のセンサ59を回転電機1の機内に設置する。また、圧縮空気供給装置29を空気取入管26の開口部26aに接続して圧縮乾燥空気を機内に供給可能する。すなわち、回転電機1の機内の酸素濃度を測定できる状態及び回転電機1の機内に圧縮空気を供給できる状態とした後、中間置換ガス放出工程を開始する。   In the intermediate replacement gas releasing step (FIG. 5), as shown in FIG. 5, the sensor 59 of the oximeter 58 is installed in the machine of the rotating electrical machine 1 using the manhole 9 before the start of the intermediate replacement gas releasing step. . Further, the compressed air supply device 29 can be connected to the opening 26a of the air intake pipe 26 to supply compressed dry air into the machine. That is, after the oxygen concentration in the rotating electrical machine 1 can be measured and the compressed air can be supplied into the rotating electrical machine 1, the intermediate replacement gas releasing step is started.

中間置換ガス放出工程では、まず、機内ガスである窒素ガスを下部管7から大気中へ放出する放出口を確保する。より詳細には、常閉弁である調整弁18,21,22,25,38,41のうち、調整弁41,22を開いて、下部管7が、配管19、調整弁41、調整弁22及び大気放出管23を介して大気と接続された状態(大気開放状態)にする。   In the intermediate replacement gas releasing step, first, a discharge port for releasing nitrogen gas, which is the in-machine gas, from the lower pipe 7 into the atmosphere is secured. More specifically, among the regulating valves 18, 21, 22, 25, 38, 41 that are normally closed valves, the regulating valves 41, 22 are opened, and the lower pipe 7 is connected to the pipe 19, the regulating valve 41, the regulating valve 22. And a state connected to the atmosphere via the atmosphere discharge pipe 23 (atmospheric release state).

続いて、空気を上部管6に供給する。より詳細には、調整弁25を微開し、配管19を流れるガスの音が通常時に生じる音と異なっていないか及び機内圧力計52で計測される機内圧力の上昇がないかを確認した後、調整弁25をさらに開く。   Subsequently, air is supplied to the upper pipe 6. More specifically, after slightly opening the adjustment valve 25 and confirming that the sound of the gas flowing through the pipe 19 is not different from the sound generated during normal time and whether there is an increase in the in-machine pressure measured by the in-machine pressure gauge 52 Then, the regulating valve 25 is further opened.

調整弁25の開度は、機内圧力が予め設定されている安全限界の圧力上限値を超えない範囲内で最大限にする。すなわち、可能な限り一気に空気を機内に供給する。空気の供給速度(単位時間当たりの供給量)は、排気側となる大気放出ライン34の排気能力(単位時間当たりの排気量)に応じて決定される。   The opening degree of the regulating valve 25 is maximized within a range in which the in-machine pressure does not exceed a preset safety limit pressure upper limit value. That is, air is supplied into the aircraft as quickly as possible. The air supply speed (supply amount per unit time) is determined according to the exhaust capacity (exhaust amount per unit time) of the atmospheric discharge line 34 on the exhaust side.

空気の供給終了のタイミングは、例えば、機内の酸素濃度が18%以上に到達した時点とする。機内の酸素濃度が18%以上に到達しているか否かの判断は、上述した中間置換ガス封入工程、水素ガス封入工程及び水素ガス放出工程と同様にガス供給量で判断する。上述の式(1)を用いれば、機内容積の3倍量となる空気を圧縮空気供給装置29から供給し終えた時点で、理論的には機内ガスの95%以上は空気に置換されていると判断できる。   The timing of the end of air supply is, for example, the time when the oxygen concentration in the machine reaches 18% or more. Whether or not the oxygen concentration in the machine has reached 18% or more is determined by the gas supply amount in the same manner as in the intermediate replacement gas filling step, the hydrogen gas filling step, and the hydrogen gas releasing step. If the above formula (1) is used, theoretically, 95% or more of the in-machine gas is replaced with air when the air that is three times the in-machine volume is supplied from the compressed air supply device 29. It can be judged.

ここで、空気(大気)は、窒素ガス、酸素ガス、アルゴンガス等の混合気体であり、大気中に含まれる酸素は約21%である点に鑑みれば、機内ガスの95%が空気である状態は、機内ガスの約20%が酸素といえるため、機内容積の3倍量となる空気を圧縮空気供給装置29から供給し終えた時点で、機内の酸素濃度は18%以上となっていると判断する。   Here, air (atmosphere) is a mixed gas such as nitrogen gas, oxygen gas, and argon gas, and considering that oxygen contained in the atmosphere is about 21%, 95% of the in-flight gas is air. Since it can be said that about 20% of the in-machine gas is oxygen, the oxygen concentration in the machine is 18% or more when the air that is three times the volume of the machine is supplied from the compressed air supply device 29. Judge.

なお、上述の式(1)において、供給する空気の酸素濃度をk%、機内に封入する空気の純度を100(Z=100)%、空気封入前の機内における酸素濃度を0(Z=0)%、空気封入後の機内における酸素濃度x%と仮定して近似すれば、上述の式(1)は、下記式(2)で表すことができる。この下記式(2)を用いて空気の供給終了のタイミングを判断しても良い。 In the above equation (1), the oxygen concentration of the supplied air is k%, the purity of the air sealed in the machine is 100 (Z 0 = 100)%, and the oxygen concentration in the machine before air filling is 0 (Z 1 = 0)%, and the oxygen concentration x% in the machine after air filling is approximated, the above equation (1) can be expressed by the following equation (2). You may determine the timing of the completion | finish of air supply using this following formula (2).

Figure 2013198227
Figure 2013198227

機内の空気(または酸素)濃度が所定濃度以上に到達したと判断できる空気を機内に供給し終えると、調整弁25を閉止して空気の供給を停止して、窒素ガスから空気への置換を完了する。すなわち、中間置換ガス放出工程の全処理ステップを完了する。   When the air (or oxygen) concentration in the machine has been supplied to the machine, the air that can be determined to have reached the predetermined concentration or more is closed, the adjustment valve 25 is closed, the supply of air is stopped, and the nitrogen gas is replaced with air. Complete. That is, all processing steps of the intermediate replacement gas discharge process are completed.

なお、中間置換ガス放出工程では、ガス純度計を使用せずに上記式(1)又は(2)に基づく空気供給量の算出結果から機内の空気濃度(または酸素濃度)を判断することにしているが、保守点検の際の作業員の安全確保等の点を考慮すれば、酸素濃度計58で酸素濃度を測定し、機内の酸素濃度が所定範囲内にあることを確認しておく方が好ましい。また、機内の酸素濃度は18%に到達したと判断するタイミングは、必ずしも機内容積の3倍量となる空気を圧縮空気供給装置29から供給し終えた時点である必要はなく、3倍量以上のタイミングであれば任意である。   In the intermediate replacement gas releasing step, the air concentration (or oxygen concentration) in the machine is determined from the calculation result of the air supply amount based on the above formula (1) or (2) without using a gas purity meter. However, considering the safety of workers during maintenance and inspection, it is better to measure the oxygen concentration with the oxygen concentration meter 58 and confirm that the oxygen concentration in the machine is within the specified range. preferable. The timing at which it is determined that the oxygen concentration in the machine has reached 18% does not necessarily have to be the time when the compressed air supply device 29 has finished supplying air that is three times the volume of the machine, and more than three times the amount. The timing is arbitrary.

さらに、図5に示される圧縮空気供給装置29は、空気供給量の測定機能を持ち、空気供給量を計測できることを前提に説明しているが、圧縮空気供給装置29が空気供給量測定機能を持たない場合には、空気取入管26を流れる空気の流量を計測する流量センサを別途設置することによって、または、圧縮空気供給装置29の空気供給能力(単位時間当たりの排気量)と動作時間から推定することによって、圧縮空気供給装置29が空気供給量測定機能を持たない場合であっても、空気供給量を得ることができ、上述した回転電機の機内ガス置換方法を適用することができる。   Further, the compressed air supply device 29 shown in FIG. 5 has been described on the assumption that the air supply amount can be measured and the air supply amount can be measured. However, the compressed air supply device 29 has the air supply amount measurement function. If not, install a flow rate sensor that measures the flow rate of the air flowing through the air intake pipe 26, or from the air supply capacity (exhaust amount per unit time) of the compressed air supply device 29 and the operation time. By estimating, even if the compressed air supply device 29 does not have an air supply amount measurement function, the air supply amount can be obtained, and the above-described in-machine gas replacement method for a rotating electrical machine can be applied.

上述した回転電機の機内ガス置換方法によれば、機内容積の約3倍量に当たる量のガスを回転電機1の機内へ一気に送り込むことで、機内でガスを積極的に攪拌させて機内ガスの置換(入れ替え)を行うため、従来の回転電機機内ガス置換方法と比較してより短い作業時間で機内ガスの置換を行うことができる。例えば、従来の回転電機機内ガス置換方法の一つである炭酸ガス置換方法では、約4〜5時間を要する回転電機1の機内ガスの置換作業を、回転電機機内ガス置換装置10を用いて行う回転電機1の機内ガス置換方法では、約1〜2時間で行うことができる。   According to the in-machine gas replacement method of the rotating electrical machine described above, by replacing the in-machine gas by actively stirring the gas in the machine, an amount of gas equivalent to about 3 times the volume of the machine is sent into the machine of the rotating electrical machine 1 at a stretch. Since (replacement) is performed, the in-machine gas can be replaced in a shorter working time as compared with the conventional rotating electric machine in-machine gas replacement method. For example, in the carbon dioxide gas replacement method, which is one of the conventional gas replacement methods for rotating electrical machines, the replacement operation of the in-machine gas of the rotating electrical machine 1 requiring about 4 to 5 hours is performed using the rotating electrical machine gas replacement device 10. The in-machine gas replacement method of the rotating electrical machine 1 can be performed in about 1 to 2 hours.

また、上述した回転電機の機内ガス置換方法によれば、機内でガスを積極的に攪拌させて機内ガスの置換するため、従来の回転電機機内ガス置換方法の一つである炭酸ガス置換方法のような空気と炭酸ガスのように比重差による置換と異なり、空気との比重差を考慮することなく中間置換ガスを選択することができる。   In addition, according to the above-described gas replacement method for a rotating electrical machine, the gas is actively stirred in the machine to replace the gas in the machine. Unlike replacement by specific gravity difference such as air and carbon dioxide gas, an intermediate replacement gas can be selected without considering the specific gravity difference with air.

さらに、上述した回転電機の機内ガス置換方法によれば、中間置換ガスとして炭酸ガスを使用しなくても回転電機1の機内ガスを置換することができるため、温室効果ガスの一つである炭酸ガスを大気中に放出することなく機内ガスの置換を行うことができる。   Furthermore, according to the above-described method for replacing the gas inside the rotating electrical machine, the gas inside the rotating electrical machine 1 can be replaced without using carbon dioxide as the intermediate replacement gas. The in-flight gas can be replaced without releasing the gas into the atmosphere.

さらにまた、上述した回転電機の機内ガス置換方法によれば、従来の回転電機機内ガス置換装置10の少なくとも一部を適用して機内ガスの置換(入れ替え)を行うことができるので、既存の回転電機1及び従来の回転電機機内ガス置換装置10をそのまま適用して回転電機1の機内ガスを置換することができる。   Furthermore, according to the above-described in-machine gas replacement method for a rotating electrical machine, it is possible to perform replacement (replacement) of the in-machine gas by applying at least a part of the conventional rotating electrical machine gas replacement apparatus 10, so that the existing rotation The in-machine gas of the rotating electrical machine 1 can be replaced by applying the electrical machine 1 and the conventional rotating electrical machine in-machine gas replacement device 10 as they are.

特に、上述した回転電機の機内ガス置換方法では、機内から掃気(放出)するガスまたは機内ガスの濃度を計測しなくても良いため、従来の回転電機機内ガス置換装置10において、ガス純度計53,56が機能しない(ガス濃度を計測できない)場合であっても、回転電機1の機内ガスの置換を行うことができる。すなわち、ガス制御盤45や掃気盤46が、例えば、大雨、洪水、津波等で水没する等の事態があって動作しなくなったとしても、流路が無事であれば、機内ガスの置換を行える点で有益である。   In particular, in the above-described in-machine gas replacement method for a rotating electrical machine, it is not necessary to measure the concentration of the gas scavenged (released) from the interior of the machine or the gas in the machine. , 56 do not function (the gas concentration cannot be measured), the in-machine gas of the rotating electrical machine 1 can be replaced. In other words, even if the gas control panel 45 and the scavenging panel 46 are not operated due to, for example, flooding due to heavy rain, flooding, tsunami, etc., the gas in the machine can be replaced if the flow path is safe. Useful in terms.

なお、上述した回転電機の機内ガス置換方法は、既存設備の有効利用の観点から、従来の回転電機機内ガス置換装置10の少なくとも一部を適用して行っていた例であるが、本発明の実施形態に係る回転電機の機内ガス置換方法の実施を前提とすれば、回転電機機内ガス置換装置10よりも本発明の実施形態に係る回転電機の機内ガス置換方法の実施に適した回転電機機内ガス置換装置を構成することができる。   The above-described in-machine gas replacement method for a rotating electrical machine is an example in which at least a part of a conventional rotary electrical machine gas replacement apparatus 10 is applied from the viewpoint of effective use of existing equipment. Assuming the implementation of the in-machine gas replacement method for a rotating electrical machine according to the embodiment, the interior of the rotating electrical machine is more suitable for the implementation of the in-machine gas replacement method for a rotating electrical machine according to the embodiment of the present invention than the in-machine gas replacement apparatus 10 of the present invention. A gas replacement device can be configured.

[変形例]
図6は、本発明の実施形態に係る回転電機機内ガス置換装置の一例である回転電機機内ガス置換装置10Aの構成を示す概略図である。
[Modification]
FIG. 6 is a schematic diagram illustrating a configuration of a rotating electrical machine internal gas replacement device 10A which is an example of the rotating electrical machine internal gas replacement device according to the embodiment of the present invention.

回転電機機内ガス置換装置10Aは、従来の回転電機機内ガス置換装置10よりも本発明の実施形態に係る回転電機の機内ガス置換方法の実施に適した構成であり、より詳細には、図1に示される回転電機機内ガス置換装置10の一部構成要素が省略されている点及び制御部65をさらに備える点で相違する。そこで、制御部65を中心に説明し、実質的に同じ構成要素については、同じ符号を付して説明を省略する。   The rotating electrical machine internal gas replacement device 10A is more suitable for implementing the rotating electrical machine gas replacement method according to the embodiment of the present invention than the conventional rotating electrical machine internal gas replacement device 10, and more specifically, FIG. Are different in that some constituent elements of the gas replacement device 10 in the rotating electrical machine shown in FIG. Therefore, the control unit 65 will be mainly described, and substantially the same components are denoted by the same reference numerals and description thereof is omitted.

回転電機機内ガス置換装置10Aでは、制御部65が、回転電機1の機内圧力を計測する圧力計測部としての圧力トランスミッタ67から受け取る前記機内圧力の計測結果に基づいて、回転電機の機内圧力の許容範囲内となるように、水素ガス供給弁16、窒素ガス供給弁36、及び、調整弁18,21,22,25,38,41の少なくとも何れかの開度を調整する。   In the rotating electrical machine internal gas replacement device 10A, the control unit 65 permits the in-machine pressure of the rotating electrical machine based on the measurement result of the in-machine pressure received from the pressure transmitter 67 as a pressure measuring unit that measures the in-machine pressure of the rotating electrical machine 1. The opening degree of at least one of the hydrogen gas supply valve 16, the nitrogen gas supply valve 36, and the adjustment valves 18, 21, 22, 25, 38, 41 is adjusted so as to be within the range.

また、制御部65は、水素ボンベ15の圧力(指示値)に基づいて水素消費量を、不活性ガスの一例である窒素の供給源となる窒素ボンベ35の圧力(指示値)に基づいて窒素消費量を、例えば、配管26に設置する流量計69の流量(指示値)に基づいて空気供給量を、それぞれ、監視するとともに、当該監視結果に基づいて、水素ガス供給弁16、窒素ガス供給弁36、及び、調整弁18,21,22,25,38,41の少なくとも何れかの開度を調整して、水素ガス供給ライン12、大気放出ライン13,34、空気取入ライン14及び不活性ガス供給ライン33の開閉状態を切替制御する。   Further, the control unit 65 calculates the hydrogen consumption based on the pressure (indicated value) of the hydrogen cylinder 15 based on the pressure (indicated value) of the nitrogen cylinder 35 serving as a supply source of nitrogen, which is an example of an inert gas. For example, the air supply amount is monitored based on the flow rate (indicated value) of the flow meter 69 installed in the pipe 26, and the hydrogen gas supply valve 16 and the nitrogen gas supply are determined based on the monitoring result. The opening degree of at least one of the valve 36 and the regulating valves 18, 21, 22, 25, 38, 41 is adjusted so that the hydrogen gas supply line 12, the atmospheric discharge lines 13, 34, the air intake line 14, and the The open / close state of the active gas supply line 33 is switched.

ここで、回転電機機内ガス置換装置10Aでは、水素ガス消費量及び窒素ガス消費量の把握を容易にするため、予め、機内容積の3倍量以上の既知の量の水素ガス及び窒素ガスを用意しておく。この場合、流量計等を用意することなく、準備した全量のガスを消費したか否かで所望のガス供給量に到達したか否かを判断できる。   Here, in the rotating electrical machine internal gas replacement device 10A, in order to make it easy to grasp the hydrogen gas consumption amount and the nitrogen gas consumption amount, a known amount of hydrogen gas and nitrogen gas is prepared in advance that is three times the internal volume or more. Keep it. In this case, it is possible to determine whether or not the desired gas supply amount has been reached based on whether or not the prepared total amount of gas has been consumed without preparing a flow meter or the like.

回転電機機内ガス置換装置10Aは、図1に示される回転電機機内ガス置換装置10に対して、ガス制御盤45(ドラフトゲージ51、機内圧力計52、ガス純度計53)及び掃気盤46(ガス純度計56)が省略されている。ガス制御盤45及び掃気盤46の構成を省略しているのは、上述したように、本発明の実施形態に係る回転電機の機内ガス置換方法では、機内のガス濃度をガス純度計等の濃度計測手段を用いることなく、ガス供給量に基づいて判断するためである。   The rotating electrical machine internal gas replacement device 10A is different from the rotating electrical machine internal gas replacement device 10 shown in FIG. 1 in that a gas control panel 45 (draft gauge 51, in-machine pressure gauge 52, gas purity meter 53) and scavenging panel 46 (gas The purity meter 56) is omitted. As described above, the configuration of the gas control panel 45 and the scavenging panel 46 is omitted in the in-machine gas replacement method for a rotating electrical machine according to the embodiment of the present invention. This is because the determination is made based on the gas supply amount without using the measuring means.

なお、上述した回転電機機内ガス置換装置10Aの制御部65は、空気供給量を監視する一例として、配管26に設置する流量計69の流量(指示値)に基づいて行う例であるが、他の手法で空気供給量を監視することもできる。空気供給量装置29が空気供給量の測定機能を有する場合には、空気供給量装置29が測定する空気供給量に基づいて空気供給量を監視することもできるし、空気供給量装置29の空気供給能力(単位時間当たりの排気量)と必要な空気供給量とから求められる必要な動作時間を監視することによって、空気供給量を監視することもできる。   In addition, although the control part 65 of the gas replacement apparatus 10A in the rotating electrical machine described above is an example performed based on the flow rate (indicated value) of the flow meter 69 installed in the pipe 26 as an example of monitoring the air supply amount, The air supply amount can also be monitored by this method. When the air supply amount device 29 has a function of measuring the air supply amount, the air supply amount can be monitored based on the air supply amount measured by the air supply amount device 29, or the air of the air supply amount device 29 can be monitored. It is also possible to monitor the air supply amount by monitoring the required operating time determined from the supply capacity (the displacement per unit time) and the required air supply amount.

以上、本発明の実施形態に係る回転電機の機内ガス置換方法及び機内ガス置換装置によれば、機内容積の約3倍量に当たる量のガスを回転電機1の機内へ一気に送り込むことで、機内でガスを積極的に攪拌させて機内ガスの置換(入れ替え)を行うため、従来の回転電機機内ガス置換方法よりも作業時間を短縮することができる。   As described above, according to the in-machine gas replacement method and the in-machine gas replacement device of the rotating electrical machine according to the embodiment of the present invention, the gas corresponding to about three times the volume of the interior of the rotating electrical machine 1 is sent into the machine of the rotating electrical machine 1 at once. Since the gas is actively agitated to replace (replace) the in-machine gas, the working time can be shortened as compared with the conventional rotary electric machine gas replacement method.

また、本発明の実施形態に係る回転電機の機内ガス置換方法及び機内ガス置換装置では、空気との比重差に関係なく中間置換ガスを選択することができるため、中間置換ガスとして炭酸ガスを使用しなくても回転電機1の機内ガスを置換することができる。従って、温室効果ガスの一つである炭酸ガスを大気中に放出することなく機内ガスの置換を行うことができる。   In addition, in the in-machine gas replacement method and the in-machine gas replacement apparatus for a rotating electrical machine according to the embodiment of the present invention, an intermediate replacement gas can be selected regardless of the difference in specific gravity with air, so carbon dioxide is used as the intermediate replacement gas. Even if not, the in-machine gas of the rotating electrical machine 1 can be replaced. Therefore, the in-flight gas can be replaced without releasing carbon dioxide, which is one of the greenhouse gases, into the atmosphere.

さらに、本発明の実施形態に係る回転電機の機内ガス置換方法及び機内ガス置換装置では、従来の回転電機機内ガス置換方法のように、機内から掃気(放出)するガスまたは機内ガスの濃度を計測する必要がないので、本発明の実施形態に係る回転電機機内ガス置換装置の一例としてガス純度計53,56を備えない回転電機機内ガス置換装置を構成することができる。すなわち、従来よりも回転電機機内ガス置換装置の構成を簡素化できる。   Furthermore, in the in-machine gas replacement method and the in-machine gas replacement device for a rotating electrical machine according to the embodiment of the present invention, the concentration of the gas scavenged (released) or the in-machine gas is measured from the interior of the machine as in the conventional rotating electrical machine gas replacement method. Therefore, as an example of the gas replacement device for a rotating electrical machine according to the embodiment of the present invention, a gas replacement device for a rotating electrical machine that does not include the gas purity meters 53 and 56 can be configured. That is, it is possible to simplify the configuration of the gas replacement device in the rotating electrical machine as compared with the conventional case.

なお、本明細書において、幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, although several embodiment was described in this specification, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, additions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、図1に示される回転電機機内ガス置換装置10は、本発明の実施形態に係る回転電機機内ガス置換装置の一例であり、本発明の実施形態に係る回転電機機内ガス置換装置は図1に示される装置構成に限定されるものではない。例えば、図1に示される回転電機機内ガス置換装置10に対して、掃気盤46(ガス純度計56)等の使用を前提としてない構成要素を省略した装置を本発明の実施形態に係る回転電機機内ガス置換装置として構成することもできる。   For example, the gas replacement device 10 in the rotating electrical machine shown in FIG. 1 is an example of the gas replacement device in the rotating electrical machine according to the embodiment of the present invention, and the gas replacement device in the rotating electrical machine according to the embodiment of the present invention is shown in FIG. It is not limited to the apparatus structure shown by these. For example, a rotating electrical machine according to an embodiment of the present invention is a device in which components that are not premised on the use of a scavenging board 46 (gas purity meter 56) or the like are omitted from the gas replacing device 10 in the rotating electrical machine shown in FIG. It can also be configured as an in-machine gas replacement device.

1・・・回転電機、2・・・回転軸、3・・・軸受、4・・・軸シール部、6・・・上部管、7・・・下部管、9・・・マンホール、10,10A・・・回転電機機内ガス置換装置、11・・・水素ガス供給部、12・・・水素ガス供給ライン、13・・・大気放出ライン、14・・・空気取入ライン、15・・・水素ガスボンベ、16・・・水素ガス供給弁、17・・・減圧弁、18・・・調整弁、19・・・配管、21・・・調整弁、22・・・調整弁、23・・・大気放出管、23a・・・開口部、25・・・調整弁、26・・・空気取入管、26a・・・開口部、29・・・圧縮空気供給装置、31・・・不活性ガス供給部、33・・・不活性ガス供給ライン、34・・・大気放出ライン、35・・・窒素ガスボンベ、36・・・窒素ガス供給弁、37・・・減圧弁、38・・・調整弁、39・・・配管、41・・・調整弁、43・・・配管、45・・・ガス制御盤、46・・・掃気盤、51・・・ドラフトゲージ、52・・・機内圧力計、53・・・ガス純度計、54・・・大気放出管、56・・・ガス純度計、58・・・酸素濃度計、59・・・センサ、65・・・制御部、67・・・圧力トランスミッタ(圧力計測部)、69・・・流量計。 DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine, 2 ... Rotating shaft, 3 ... Bearing, 4 ... Shaft seal part, 6 ... Upper pipe, 7 ... Lower pipe, 9 ... Manhole, 10, DESCRIPTION OF SYMBOLS 10A ... Gas replacement apparatus in a rotary electric machine, 11 ... Hydrogen gas supply part, 12 ... Hydrogen gas supply line, 13 ... Atmospheric discharge line, 14 ... Air intake line, 15 ... Hydrogen gas cylinder, 16 ... hydrogen gas supply valve, 17 ... pressure reducing valve, 18 ... regulating valve, 19 ... piping, 21 ... regulating valve, 22 ... regulating valve, 23 ... Atmospheric discharge pipe, 23a ... opening, 25 ... regulating valve, 26 ... air intake pipe, 26a ... opening, 29 ... compressed air supply device, 31 ... inert gas supply 33, inert gas supply line, 34 ... atmospheric release line, 35 ... nitrogen gas cylinder, 36 ... nitrogen Gas supply valve, 37 ... pressure reducing valve, 38 ... regulating valve, 39 ... piping, 41 ... regulating valve, 43 ... piping, 45 ... gas control panel, 46 ... scavenging Panel: 51 ... Draft gauge, 52 ... In-machine pressure gauge, 53 ... Gas purity meter, 54 ... Air release pipe, 56 ... Gas purity meter, 58 ... Oxygen concentration meter, 59 ... Sensor, 65 ... Control part, 67 ... Pressure transmitter (pressure measurement part), 69 ... Flow meter.

Claims (8)

回転電機の機内の下部に設置される下部管の管内に不活性ガスを前記回転電機の機内圧力の許容範囲内で一気に供給し、前記下部管に形成された孔から前記回転電機の機内に導かれる前記不活性ガスと前記回転電機の機内に存在する空気とを前記回転電機の機内で攪拌させて、前記回転電機の機内の上部に設置される上部管に形成された孔から前記空気を前記上部管の管内に導いて機外へ放出することで、前記回転電機の機内に前記不活性ガスを封入する第1の工程、
前記上部管の管内に水素ガスを前記回転電機の機内圧力の許容範囲内で一気に供給し、前記上部管の孔から前記回転電機の機内に導かれる前記水素ガスと前記回転電機の機内に封入されている不活性ガスとを前記回転電機の機内で攪拌させて、前記下部管の孔から前記回転電機の機内に封入されている不活性ガスを前記下部管の管内に導いて機外へ放出することで、前記回転電機の機内に前記水素ガスを封入する第2の工程、
前記下部管の管内に不活性ガスを前記回転電機の機内圧力の許容範囲内で一気に供給し、前記下部管の孔から前記回転電機の機内に導かれる前記不活性ガスと前記回転電機の機内に封入されている水素ガスとを前記回転電機の機内で攪拌させて、前記上部管の孔から前記回転電機の機内に封入されている水素ガスを前記上部管の管内に導いて機外へ放出することで、前記回転電機の機内に封入されている水素ガスを機外へ放出する第3の工程、及び、
前記上部管の管内に空気を前記回転電機の機内圧力の許容範囲内で一気に供給し、前記上部管の孔から前記回転電機の機内に導かれる空気と前記回転電機の機内に封入されている不活性ガスとを前記回転電機の機内で攪拌させて、前記下部管の孔から前記回転電機の機内に封入されている不活性ガスを前記下部管の管内に導いて機外へ放出することで、前記回転電機の機内に封入されている不活性ガスを機外へ放出する第4の工程の、少なくとも何れかの工程を備えることを特徴とする回転電機の機内ガス置換方法。
An inert gas is supplied all at once within the allowable range of the internal pressure of the rotating electrical machine into the lower pipe installed in the lower part of the rotating electrical machine, and is introduced into the rotating electrical machine through a hole formed in the lower pipe. The inert gas and the air present in the rotating electrical machine are agitated in the rotating electrical machine, and the air is passed through a hole formed in an upper pipe installed in the upper part of the rotating electrical machine. A first step of enclosing the inert gas in the machine of the rotating electrical machine by guiding it into the pipe of the upper pipe and releasing it outside the machine;
Hydrogen gas is supplied into the upper pipe at a stretch within the permissible range of the in-machine pressure of the rotating electric machine, and the hydrogen gas guided into the rotating electric machine from the hole of the upper pipe is enclosed in the rotating electric machine. The inert gas is agitated in the rotary electric machine, and the inert gas sealed in the rotary electric machine is introduced from the hole of the lower pipe into the lower pipe and discharged outside the machine. Thus, the second step of enclosing the hydrogen gas in the machine of the rotating electrical machine,
An inert gas is supplied into the lower pipe within an allowable range of the in-machine pressure of the rotating electrical machine, and is introduced into the rotating electrical machine from the hole of the lower pipe and into the rotating electrical machine. The sealed hydrogen gas is agitated in the rotary electric machine, and the hydrogen gas sealed in the rotary electric machine is introduced from the hole of the upper pipe into the pipe of the upper pipe and released outside the machine. Thus, a third step of releasing the hydrogen gas sealed in the rotating electric machine out of the machine, and
Air is supplied into the upper pipe within a permissible range of the in-machine pressure of the rotating electrical machine, and air that is introduced into the rotating electrical machine from the hole in the upper pipe and the air that is enclosed in the rotating electrical machine. Active gas is stirred in the rotating electric machine, and the inert gas sealed in the rotating electric machine is introduced into the lower electric pipe through the hole in the lower pipe, and discharged outside the machine. An in-machine gas replacement method for a rotating electrical machine, comprising at least one of the fourth steps of releasing the inert gas sealed in the rotating electrical machine out of the machine.
前記第1の工程及び前記第3の工程は、下記式
Figure 2013198227
のパラメータV,Z,Z,Zを、それぞれ、前記回転電機の機内の容積、前記回転電機の機内に封入する前記不活性ガスの純度、前記不活性ガス封入前の前記回転電機の機内における前記不活性ガスの濃度、及び、前記不活性ガス封入後の前記回転電機の機内における前記不活性ガスの濃度目標値として数値を与えて計算されるガス供給量Q以上の前記不活性ガスを供給した時点で前記回転電機の機内における前記不活性ガスの濃度が前記濃度目標値に到達しているとみなして前記不活性ガスの供給を終了することを特徴とする請求項1記載の回転電機の機内ガス置換方法。
Said 1st process and said 3rd process are following formulas.
Figure 2013198227
Parameters V 0 , Z 0 , Z 1 , and Z 2 are respectively the volume of the rotating electrical machine, the purity of the inert gas sealed in the rotating electrical machine, and the rotating electrical machine before the inert gas is sealed. The inert gas concentration greater than or equal to the gas supply amount Q calculated by giving a numerical value as the concentration target value of the inert gas in the rotating electrical machine after the inert gas filling and in the machine 2. The supply of the inert gas is terminated by assuming that the concentration of the inert gas in the rotary electric machine reaches the concentration target value at the time when the gas is supplied. In-machine gas replacement method for rotating electrical machines.
前記第2の工程は、下記式
Figure 2013198227
のパラメータV,Z,Z,Zを、それぞれ、前記回転電機の機内の容積、前記回転電機の機内に封入する前記水素ガスの純度、前記水素ガス封入前の前記回転電機の機内における前記水素ガスの濃度、及び、前記水素ガス封入後の前記回転電機の機内における前記水素ガスの濃度目標値として数値を与えて計算されるガス供給量Q以上の前記水素ガスを供給した時点で前記回転電機の機内における前記水素ガスの濃度が前記濃度目標値に到達しているとみなして前記水素ガスの供給を終了することを特徴とする請求項1又は2記載の回転電機の機内ガス置換方法。
The second step has the following formula:
Figure 2013198227
Parameters V 0 , Z 0 , Z 1 , Z 2 are respectively the volume of the rotating electrical machine, the purity of the hydrogen gas sealed in the rotating electrical machine, and the interior of the rotating electrical machine before the hydrogen gas sealing. When the hydrogen gas is supplied at a gas supply amount Q or more which is calculated by giving a numerical value as the hydrogen gas concentration target value in the rotary electric machine machine after the hydrogen gas is filled in The in-machine gas replacement for a rotating electrical machine according to claim 1 or 2, wherein the supply of the hydrogen gas is terminated assuming that the concentration of the hydrogen gas in the rotating electrical machine has reached the target concentration value. Method.
前記第4の工程は、下記式
Figure 2013198227
のパラメータV,k,xを、それぞれ、前記回転電機の機内の容積、前記空気封入後の前記回転電機の機内における酸素濃度の目標値、及び、前記回転電機の機内に供給する空気に含まれる酸素の濃度の百分率として数値を与えて計算されるガス供給量Q以上の空気を供給した時点で前記回転電機の機内における前記酸素濃度が前記酸素濃度の目標値に到達しているとみなして、前記空気の供給を終了することを特徴とする請求項1乃至3の何れか1項に記載の回転電機の機内ガス置換方法。
The fourth step has the following formula:
Figure 2013198227
Parameters V 0 , k, and x are included in the volume of the rotating electrical machine, the target value of the oxygen concentration in the rotating electrical machine after the air sealing, and the air supplied to the rotating electrical machine, respectively. Assuming that the oxygen concentration in the machine of the rotating electrical machine has reached the target value of the oxygen concentration at the time of supplying air with a gas supply amount Q or more calculated by giving a numerical value as a percentage of the concentration of oxygen generated The in-machine gas replacement method for a rotating electrical machine according to any one of claims 1 to 3, wherein the supply of air is terminated.
前記第1の工程及び前記第3の工程は、前記回転電機の機内に封入する前記不活性ガスの純度が100%の場合、前記回転電機の機内の容積の3倍量以上の前記不活性ガスを供給した時点で前記回転電機の機内における前記不活性ガスの濃度が95%以上に到達しているとみなして前記不活性ガスの供給を終了することを特徴とする請求項1記載の回転電機の機内ガス置換方法。 In the first step and the third step, when the purity of the inert gas sealed in the rotary electric machine is 100%, the inert gas is more than three times the volume in the rotary electric machine. 2. The rotating electrical machine according to claim 1, wherein the supply of the inert gas is terminated assuming that the concentration of the inert gas in the rotating electrical machine reaches 95% or more at the time of supplying the inert gas. In-flight gas replacement method. 前記第2の工程は、前記回転電機の機内に封入する前記水素ガスの純度が100%の場合、前記回転電機の機内の容積の3倍量以上の前記水素ガスを供給した時点で前記回転電機の機内における前記水素ガスの濃度が95%以上に到達しているとみなして前記水素ガスの供給を終了することを特徴とする請求項1又は2記載の回転電機の機内ガス置換方法。 In the second step, when the purity of the hydrogen gas sealed in the rotary electric machine is 100%, the rotary electric machine is supplied when the hydrogen gas is supplied in an amount not less than three times the volume of the rotary electric machine. The in-machine gas replacement method for a rotating electrical machine according to claim 1 or 2, wherein the supply of the hydrogen gas is terminated assuming that the concentration of the hydrogen gas in the machine reaches 95% or more. 前記第4の工程は、前記回転電機の機内の容積の3倍量以上の前記空気を供給した時点で前記回転電機の機内における酸素濃度が18%以上に到達しているとみなして前記空気の供給を終了することを特徴とする請求項1乃至3の何れか1項に記載の回転電機の機内ガス置換方法。 The fourth step assumes that the oxygen concentration in the rotating electrical machine has reached 18% or more at the time when the air of 3 times or more the volume in the rotating electrical machine is supplied, and the air The in-machine gas replacement method for a rotating electrical machine according to any one of claims 1 to 3, wherein the supply is terminated. 不活性ガスを供給する不活性ガス供給部と回転電機の機内とを調整弁を介して接続する流路であり、前記不活性ガス供給部から前記回転電機の機内へ前記不活性ガスを供給する不活性ガス供給ラインと、
水素ガスを供給する水素ガス供給部と回転電機の機内とを調整弁を介して接続する流路であり、前記水素ガス供給部から前記回転電機の機内へ前記水素ガスを供給する水素ガス供給ラインと、
前記回転電機の機内と大気とを調整弁を介して接続する流路であり、前記回転電機の機内に残存するガスを機外へ放出する大気放出ラインと、
前記回転電機の機内と圧縮空気供給装置とを調整弁を介して接続する流路であり、前記圧縮空気供給装置から空気を供給する空気取入ラインと、
前記不活性ガス供給部のガス供給弁、前記不活性ガス供給ラインの調整弁、前記水素ガス供給部のガス供給弁、前記水素ガス供給ラインの調整弁、前記大気放出ラインの調整弁及び空気取入ラインの調整弁の各々の開度を制御する弁制御部と、を具備し、
前記弁制御部は、前記不活性ガス供給部から受け取る前記不活性ガスの供給量、前記水素ガス供給部から受け取る前記水素ガスの供給量及び前記圧縮空気供給装置から受け取る空気の供給量の情報に基づいて、前記不活性ガス供給部のガス供給弁、前記不活性ガス供給ラインの調整弁、前記水素ガス供給部のガス供給弁、前記水素ガス供給ラインの調整弁、前記大気放出ラインの調整弁及び空気取入ラインの調整弁の少なくともいずれかを開閉して、前記水素ガス供給ライン、前記大気放出ライン、前記空気取入ライン及び前記不活性ガス供給ラインの開閉制御することを特徴とする回転電機の機内ガス置換装置。
It is a flow path that connects an inert gas supply unit that supplies an inert gas and the interior of the rotating electrical machine via a regulating valve, and supplies the inert gas from the inert gas supply unit to the interior of the rotating electrical machine. An inert gas supply line;
A hydrogen gas supply line for supplying the hydrogen gas from the hydrogen gas supply unit to the rotary electric machine, the flow path connecting the hydrogen gas supply part for supplying the hydrogen gas and the rotary electric machine through an adjustment valve. When,
An air discharge line that connects the inside of the rotating electrical machine and the atmosphere via a regulating valve, and releases the gas remaining in the rotating electrical machine to the outside of the machine;
A flow path connecting the inside of the rotating electrical machine and the compressed air supply device via a regulating valve, an air intake line for supplying air from the compressed air supply device,
A gas supply valve of the inert gas supply unit; a regulating valve of the inert gas supply line; a gas supply valve of the hydrogen gas supply unit; a regulating valve of the hydrogen gas supply line; a regulating valve of the atmospheric discharge line; A valve control unit for controlling the opening of each of the inlet line regulating valves,
The valve control unit includes information on the supply amount of the inert gas received from the inert gas supply unit, the supply amount of the hydrogen gas received from the hydrogen gas supply unit, and the supply amount of air received from the compressed air supply device. Based on the gas supply valve of the inert gas supply unit, the adjustment valve of the inert gas supply line, the gas supply valve of the hydrogen gas supply unit, the adjustment valve of the hydrogen gas supply line, the adjustment valve of the atmospheric discharge line And at least one of a regulating valve for the air intake line, and opening / closing control of the hydrogen gas supply line, the atmospheric discharge line, the air intake line, and the inert gas supply line. In-machine gas replacement device.
JP2012061057A 2012-03-16 2012-03-16 In-machine gas replacement method and in-machine gas replacement apparatus for rotating electrical machine Active JP5787802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061057A JP5787802B2 (en) 2012-03-16 2012-03-16 In-machine gas replacement method and in-machine gas replacement apparatus for rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061057A JP5787802B2 (en) 2012-03-16 2012-03-16 In-machine gas replacement method and in-machine gas replacement apparatus for rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2013198227A true JP2013198227A (en) 2013-09-30
JP5787802B2 JP5787802B2 (en) 2015-09-30

Family

ID=49396553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061057A Active JP5787802B2 (en) 2012-03-16 2012-03-16 In-machine gas replacement method and in-machine gas replacement apparatus for rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5787802B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923117A (en) * 2022-05-10 2022-08-19 华能(广东)能源开发有限公司汕头电厂 Gas replacement method for hydrogen-cooled generator
WO2024016770A1 (en) * 2022-07-22 2024-01-25 华能罗源发电有限责任公司 Apparatus for rapidly replacing gas in hydrogen storage tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217845A (en) * 1988-07-04 1990-01-22 Toshiba Corp Hydrogen gas discharging device
JP2000209812A (en) * 1999-01-18 2000-07-28 Hitachi Ltd Hydrogen gas substitution apparatus for cooling rotary electric machine
JP2003153502A (en) * 2001-11-13 2003-05-23 Chubu Electric Power Co Inc Gas substitution method for hydrogen-cooled prime mover
JP2009033868A (en) * 2007-07-26 2009-02-12 Chugoku Electric Power Co Inc:The Gas exchange device, power generation system, and gas exchange method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217845A (en) * 1988-07-04 1990-01-22 Toshiba Corp Hydrogen gas discharging device
JP2000209812A (en) * 1999-01-18 2000-07-28 Hitachi Ltd Hydrogen gas substitution apparatus for cooling rotary electric machine
JP2003153502A (en) * 2001-11-13 2003-05-23 Chubu Electric Power Co Inc Gas substitution method for hydrogen-cooled prime mover
JP2009033868A (en) * 2007-07-26 2009-02-12 Chugoku Electric Power Co Inc:The Gas exchange device, power generation system, and gas exchange method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923117A (en) * 2022-05-10 2022-08-19 华能(广东)能源开发有限公司汕头电厂 Gas replacement method for hydrogen-cooled generator
CN114923117B (en) * 2022-05-10 2024-01-26 华能(广东)能源开发有限公司汕头电厂 Gas replacement method for hydrogen-cooled generator
WO2024016770A1 (en) * 2022-07-22 2024-01-25 华能罗源发电有限责任公司 Apparatus for rapidly replacing gas in hydrogen storage tank

Also Published As

Publication number Publication date
JP5787802B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
CN102654241B (en) Gas decompression supplier, the gas cabinet with this gas decompression supplier, clack box and substrate board treatment
JP5787802B2 (en) In-machine gas replacement method and in-machine gas replacement apparatus for rotating electrical machine
KR100766521B1 (en) Testing apparatus of seal ring for hydrogen gas preventing leakage
US20130104516A1 (en) Method of monitoring an operation of a compressor bleed valve
CN113405912B (en) Intrinsically safe high-purity high-pressure hydrogen environment material compatibility testing system and method
JP2018063247A (en) Material tester and material testing method
US9214247B2 (en) Water filling system for reactor water level gauge
JP4896790B2 (en) Oil-air leakage detection method and oil-air leakage detection device for bearing housing lubrication device
KR100990648B1 (en) Apparatus and method for measuring mixed transformer insulation oil
JP2003153502A (en) Gas substitution method for hydrogen-cooled prime mover
JP5463789B2 (en) Leak inspection device
KR101185466B1 (en) Tightness test system for control valve of steam turbine and method of the same
KR20180127934A (en) Multiple mode hydrogen release system and method for a hydrogen cooled generator
CN205207143U (en) Air compressor's testing equipment
JP2005214859A (en) Airtight testing apparatus for pump for liquefied gas
CN210514049U (en) Top corrosion testing device for variable wind field regulation and control in high-pressure kettle
CN104088675B (en) Monitoring method for vacuum leakage points of steam turbine
KR20010055278A (en) Gas supply apparatus for fabricating semiconductor
CN107179791A (en) The program developing method of ozone control system
JP2015004636A (en) Method of inspecting inflation of high-pressure tank
KR20040059134A (en) An Apparatus for Maintaining the Purity of H2 Gas for Cooling of an Electric Generator
JP2009033868A (en) Gas exchange device, power generation system, and gas exchange method
KR20190000665U (en) Pressure leak-test equipment for generator rotor center hole
KR101281238B1 (en) Cooling hydrogen gas supplying apparatus used for an electronic generator
JP2008240715A (en) Storage box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R151 Written notification of patent or utility model registration

Ref document number: 5787802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151