JP2013197390A - Dicing sheet and method of manufacturing semiconductor chip - Google Patents

Dicing sheet and method of manufacturing semiconductor chip Download PDF

Info

Publication number
JP2013197390A
JP2013197390A JP2012064155A JP2012064155A JP2013197390A JP 2013197390 A JP2013197390 A JP 2013197390A JP 2012064155 A JP2012064155 A JP 2012064155A JP 2012064155 A JP2012064155 A JP 2012064155A JP 2013197390 A JP2013197390 A JP 2013197390A
Authority
JP
Japan
Prior art keywords
adhesive layer
dicing sheet
sensitive adhesive
pressure
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012064155A
Other languages
Japanese (ja)
Inventor
Yousuke Sato
陽輔 佐藤
Michio Kanai
道生 金井
Yuto Nakanishi
勇人 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2012064155A priority Critical patent/JP2013197390A/en
Publication of JP2013197390A publication Critical patent/JP2013197390A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dicing sheet which can be diced and picked up without breaking a chip while a residue of a pressure-sensitive adhesive layer is not left between projection electrodes (through electrodes).SOLUTION: A dicing sheet 10 comprises a base material 3, an intermediate layer 2 provided to one side thereof and made of an urethane-containing cured body, and a pressure-sensitive adhesive layer 1 provided on the intermediate layer 2 and having a thickness of 8-30 μm. The intermediate layer 2 has a storage elastic modulus G' of 10or larger and less than 10Pa at 23°C, and the pressure-sensitive adhesive layer 1 contains a compound having energy-beam curable double bonds in a molecule, and has the storage elastic modulus G' of 3×10Pa or larger at 23°C. When the dicing sheet is stuck on a wafer 30 where columnar electrodes 20 of 15 μm in height and 15 μm in diameter are formed in three rows and three columns at equal intervals of 40 μm in pitch with the pressure-sensitive adhesive layer 1 interposed, the pressure-sensitive adhesive layer 1 does not come into contact with a portion of 7.5 μm or less of an electrode in the center of the columnar electrodes 20 formed in the three rows and three columns.

Description

本発明は、半導体ウエハを回路毎に個片化し、半導体チップを作成する際に、半導体ウエハを固定するために使用されるダイシングシートに関する。また、本発明は該ダイシングシートを使用した半導体チップの製造方法に関する。特に本発明のダイシングシートは、表面に突起状電極を有する半導体ウエハ、たとえばいわゆる貫通電極(TSV)を有する半導体ウエハを固定、切断し、チップを製造する際に好ましく用いられる。   The present invention relates to a dicing sheet used for fixing a semiconductor wafer when a semiconductor wafer is separated into individual circuits and semiconductor chips are formed. The present invention also relates to a method for manufacturing a semiconductor chip using the dicing sheet. In particular, the dicing sheet of the present invention is preferably used when a semiconductor wafer having protruding electrodes on its surface, for example, a semiconductor wafer having a so-called through electrode (TSV) is fixed and cut to manufacture a chip.

半導体ウエハは表面に回路が形成された後、ウエハの裏面側に研削加工を施し、ウエハの厚さを調整する裏面研削工程およびウエハを所定のチップサイズに個片化するダイシング工程が行われる。また裏面研削工程に続いて、さらに裏面にエッチング処理などの発熱を伴う加工処理や、裏面への金属膜の蒸着のように高温で行われる処理が施されることがある。チップサイズに個片化された半導体ウエハ(半導体チップ)は、ピックアップされ、次の工程に移送される。   After a circuit is formed on the surface of the semiconductor wafer, a grinding process is performed on the back side of the wafer, and a back grinding process for adjusting the thickness of the wafer and a dicing process for dividing the wafer into a predetermined chip size are performed. Further, following the back surface grinding step, there may be a case where processing on the back surface is accompanied by heat generation such as an etching process, or processing performed at a high temperature such as vapor deposition of a metal film on the back surface. A semiconductor wafer (semiconductor chip) separated into chips is picked up and transferred to the next process.

近年のICカードの普及にともない、その構成部材である半導体チップの薄型化が進められている。このため、従来350μm程度の厚みであったウエハを、50〜100μmあるいはそれ以下まで薄くすることが求められるようになった。   With the spread of IC cards in recent years, the semiconductor chip that is a constituent member thereof is being made thinner. For this reason, it has been required to reduce the thickness of a conventional wafer having a thickness of about 350 μm to 50 to 100 μm or less.

また、電子回路の大容量化、高機能化に対応して、複数の半導体チップを立体的に積層した積層回路の開発が進んでいる。このような積層回路においては、従来は半導体チップの導電接続をワイヤボンディングにより行うことが一般的であったが、近年の小型化・高機能化の必要性により、ワイヤボンディングをすることなく、半導体チップに回路形成面から裏面に貫通する電極(貫通電極)を設けて、直接上下のチップ間を導電接続する方法が効果的な手法として開発されている。   In response to the increase in capacity and functionality of electronic circuits, the development of stacked circuits in which a plurality of semiconductor chips are stacked three-dimensionally is in progress. Conventionally, in such a laminated circuit, the conductive connection of the semiconductor chip is generally performed by wire bonding. However, due to the recent need for miniaturization and high functionality, the semiconductor chip can be connected without wire bonding. An effective method has been developed in which a chip is provided with an electrode (penetrating electrode) penetrating from the circuit formation surface to the back surface and directly conductively connected between the upper and lower chips.

このような貫通電極付チップの製造方法としては、例えば、半導体ウエハの所定の位置にプラズマ等により貫通孔を設け、この貫通孔に銅等の導電体を流し込んだ後、エッチング等を施して半導体ウエハの表面に回路と貫通電極とを設ける方法等が挙げられる。回路及び貫通電極が設けられた半導体ウエハは、基材フィルム上に粘着剤層が形成されたダイシングシートを用いてダイシングされ、個々の貫通電極付チップが得られる。   As a method of manufacturing such a chip with a through electrode, for example, a through hole is formed in a predetermined position of a semiconductor wafer by plasma or the like, a conductor such as copper is poured into the through hole, and then etching or the like is applied to the semiconductor. Examples thereof include a method of providing a circuit and a through electrode on the surface of the wafer. A semiconductor wafer provided with a circuit and a through electrode is diced using a dicing sheet in which an adhesive layer is formed on a base film, and individual chips with through electrodes are obtained.

上記のような貫通電極付チップにおいては、貫通電極がチップのいずれかの面に突出している(突起状電極)。貫通電極付チップを得るためのダイシング工程においては、基材フィルム上に形成された粘着剤層が貼付面に突出した貫通電極に押し当てられることで変形し、電極の突出部と略同形状の粘着剤層の陥没部に電極を埋め込むことで、貫通電極が形成された半導体ウエハをダイシングシートに貼付・固定し、次いでダイシングを行い、個々のチップを得る方法が提案されている(特許文献1,2)。しかしながら、特許文献1,2に記載のダイシングシートでは、貫通電極を粘着剤層が埋め込むため、貫通電極間に粘着剤層の残渣が残留するおそれがあった。該残渣により、チップ表面は汚染され、半導体チップの信頼性が低下することがある。特許文献1、2の方法においてもこのような残渣残留の低減手段が提案されているが、残渣残留の可能性を完全に払拭できるとは言い切れなかった。また、特許文献1,2に記載のダイシングシートでは、貫通電極を埋め込むためにダイシング時の弾性は低く調整する必要がある。このため、ダイシング時の振動によりチップ欠け(チッピング)が発生しやすいという問題も抱えていた。   In the chip with a through electrode as described above, the through electrode protrudes on any surface of the chip (protruding electrode). In the dicing process for obtaining a chip with a through electrode, the adhesive layer formed on the base film is deformed by being pressed against the through electrode protruding on the pasting surface, and has substantially the same shape as the protruding portion of the electrode. A method has been proposed in which an electrode is embedded in a recessed portion of an adhesive layer so that a semiconductor wafer on which a through electrode is formed is attached and fixed to a dicing sheet, and then dicing is performed to obtain individual chips (Patent Document 1). , 2). However, in the dicing sheets described in Patent Documents 1 and 2, since the adhesive layer is embedded in the through electrode, the adhesive layer residue may remain between the through electrodes. The residue may contaminate the chip surface and reduce the reliability of the semiconductor chip. In the methods of Patent Documents 1 and 2, such a residual residue reducing means has been proposed, but it cannot be said that the possibility of residual residue can be completely eliminated. Further, in the dicing sheets described in Patent Documents 1 and 2, the elasticity during dicing needs to be adjusted to be low in order to embed the through electrode. For this reason, the chip | tip chip | tip (chipping) was easy to generate | occur | produce by the vibration at the time of dicing.

特開2006−202926号公報JP 2006-202926 A 特開2010−135494号公報JP 2010-135494 A

本発明は、上記のような従来技術に伴う問題を解決しようとするものである。すなわち、本発明は、突起状電極(貫通電極)間に粘着剤層の残渣が残留せず、チップを破損せずにダイシングおよびピックアップ可能なダイシングシートを提供することを目的とする。   The present invention seeks to solve the problems associated with the prior art as described above. That is, an object of the present invention is to provide a dicing sheet that can be diced and picked up without causing a residue of the adhesive layer to remain between the protruding electrodes (through electrodes) and without damaging the chip.

このような課題の解決を目的とした本発明の要旨は以下の通りである。
〔1〕基材と、その片面に設けられた含ウレタン硬化物からなる中間層と、中間層の上に設けられた厚みが8〜30μmの粘着剤層とからなり、
中間層の23℃における貯蔵弾性率G’が10Pa以上10Pa未満であり、
粘着剤層が、エネルギー線硬化性二重結合を分子内に有する化合物を含有し、
粘着剤層の23℃における貯蔵弾性率G’が3×10Pa以上であり、
高さ15μm、直径15μmの円柱型電極が40μmのピッチで等間隔に3行3列に形成されたウエハに、粘着剤層を介して貼付した場合に、3行3列に形成された円柱型電極の中心の電極において、該電極の高さ7.5μm以下の部分に粘着剤層が接触しないことを特徴とするダイシングシート。
The gist of the present invention aimed at solving such problems is as follows.
[1] A substrate, an intermediate layer made of a urethane-containing cured product provided on one side thereof, and a pressure-sensitive adhesive layer having a thickness of 8 to 30 μm provided on the intermediate layer,
The storage elastic modulus G ′ at 23 ° C. of the intermediate layer is 10 4 Pa or more and less than 10 5 Pa,
The pressure-sensitive adhesive layer contains a compound having an energy ray-curable double bond in the molecule,
The storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer is 3 × 10 5 Pa or more,
When a cylindrical electrode having a height of 15 μm and a diameter of 15 μm is pasted through a pressure-sensitive adhesive layer on a wafer in which a cylindrical electrode having a pitch of 40 μm is formed at equal intervals in 3 rows and 3 columns, a cylindrical shape formed in 3 rows and 3 columns A dicing sheet characterized in that, in the electrode at the center of the electrode, the pressure-sensitive adhesive layer does not contact a portion of the electrode having a height of 7.5 μm or less.

〔2〕中間層が、重量平均分子量10000以上のウレタンオリゴマーと、分子量1000未満のエネルギー線硬化性モノマーと、光重合開始剤とを含む配合物の硬化物である〔1〕に記載のダイシングシート。 [2] The dicing sheet according to [1], wherein the intermediate layer is a cured product of a blend containing a urethane oligomer having a weight average molecular weight of 10,000 or more, an energy ray-curable monomer having a molecular weight of less than 1000, and a photopolymerization initiator. .

〔3〕エネルギー線硬化性二重結合を分子内に有する化合物が、重合体の主鎖または側鎖に、エネルギー線重合性基が結合されてなるエネルギー線硬化型粘着性重合体を含む〔1〕または〔2〕に記載のダイシングシート。 [3] The compound having an energy beam curable double bond in the molecule includes an energy beam curable adhesive polymer in which an energy beam polymerizable group is bonded to the main chain or side chain of the polymer [1. ] Or the dicing sheet according to [2].

〔4〕粘着剤層が、反応性官能基を有するアクリル重合体および架橋剤を含有し、
アクリル重合体100質量部に対して、架橋剤を5質量部以上含有することを特徴とする〔1〕〜〔3〕のいずれかに記載のダイシングシート。
[4] The pressure-sensitive adhesive layer contains an acrylic polymer having a reactive functional group and a crosslinking agent,
The dicing sheet according to any one of [1] to [3], which contains 5 parts by mass or more of a crosslinking agent with respect to 100 parts by mass of the acrylic polymer.

〔5〕架橋剤がイソシアネート系架橋剤であることを特徴とする〔4〕に記載のダイシングシート。 [5] The dicing sheet according to [4], wherein the crosslinking agent is an isocyanate-based crosslinking agent.

〔6〕突起状電極が設けられたウエハに貼付して用いることを特徴とする〔1〕〜〔5〕のいずれかに記載のダイシングシート。 [6] The dicing sheet according to any one of [1] to [5], wherein the dicing sheet is used by being attached to a wafer provided with a protruding electrode.

〔7〕突起状電極が、貫通電極である〔6〕に記載のダイシングシート。 [7] The dicing sheet according to [6], wherein the protruding electrode is a through electrode.

〔8〕中間層が、突起状電極の高さの0.5〜1.5倍の厚みであることを特徴とする〔6〕または〔7〕に記載のダイシングシート。 [8] The dicing sheet according to [6] or [7], wherein the intermediate layer has a thickness of 0.5 to 1.5 times the height of the protruding electrode.

〔9〕突起状電極を有する半導体ウエハの電極が形成された面に、〔1〕〜〔8〕のいずれかに記載のダイシングシートを貼付する工程、該半導体ウエハを回路ごとに個片化して半導体チップを作製する工程、半導体チップをピックアップする工程を含む半導体チップの製造方法。 [9] A step of affixing the dicing sheet according to any one of [1] to [8] to a surface of the semiconductor wafer having the projecting electrodes, wherein the semiconductor wafer is divided into individual circuits. A method for manufacturing a semiconductor chip, comprising a step of manufacturing a semiconductor chip and a step of picking up the semiconductor chip.

本発明に係るダイシングシートは、半導体ウエハに貼着される際に、粘着剤層が突起状電極間に追従せず、突起状電極の形成された領域(電極形成領域)の外周部に追従する。その結果、突起状電極間に粘着剤層の残渣は残留せず、かつ重合不全による電極形成領域の外周部における残渣残留も抑制される。また、電極形成領域の外周部において粘着剤層を半導体ウエハに貼着し、かつ粘着剤層が過度に柔軟化していないため、ダイシング時における水の侵入を防ぎ、ダイシング性に優れ、チッピングの発生を防止できる。また、粘着剤層をエネルギー線硬化することにより、その粘着力を制御できるため、チップのピックアップが容易であると共に、チップの破損を防止できる。   When the dicing sheet according to the present invention is adhered to a semiconductor wafer, the pressure-sensitive adhesive layer does not follow between the protruding electrodes, but follows the outer peripheral portion of the region where the protruding electrodes are formed (electrode forming region). . As a result, no residue of the pressure-sensitive adhesive layer remains between the projecting electrodes, and residual residue at the outer periphery of the electrode formation region due to polymerization failure is also suppressed. In addition, the adhesive layer is attached to the semiconductor wafer at the outer periphery of the electrode formation area, and the adhesive layer is not excessively flexible, preventing water from entering during dicing, excellent dicing properties, and chipping. Can be prevented. Moreover, since the adhesive force can be controlled by curing the pressure-sensitive adhesive layer with energy rays, chip pick-up is easy and breakage of the chip can be prevented.

本発明に係るダイシングシートの概略断面図である。It is a schematic sectional drawing of the dicing sheet concerning this invention. 本発明に係るダイシングシートを円柱型電極が形成されたウエハに貼付した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which affixed the dicing sheet which concerns on this invention to the wafer in which the cylindrical electrode was formed. 円柱型電極が形成された半導体ウエハの回路形成面の平面図を示す。The top view of the circuit formation surface of the semiconductor wafer in which the cylindrical electrode was formed is shown.

以下、本発明に係るダイシングシートについて、具体的に説明する。図1に示すように、本発明に係るダイシングシート10は、基材3と、その片面に設けられた中間層2と、中間層2の上に設けられた粘着剤層1とからなる。   Hereinafter, the dicing sheet according to the present invention will be specifically described. As shown in FIG. 1, a dicing sheet 10 according to the present invention includes a base material 3, an intermediate layer 2 provided on one side thereof, and an adhesive layer 1 provided on the intermediate layer 2.

(粘着剤層1)
粘着剤層の23℃における貯蔵弾性率G’は、3×10Pa以上、好ましくは3.5×10〜1×10Paである。粘着剤層の23℃における貯蔵弾性率G’が3×10Pa未満であると、後述する突起状電極間に粘着剤層が追従し、突起状電極間における粘着剤層の残渣の発生や、ピックアップ時におけるチップの破損が発生する。粘着剤層の23℃における貯蔵弾性率G’を上記範囲とすることで、粘着剤層の突起状電極間への追従を抑制する効果等がより確実に得られる。また、粘着剤層の23℃における貯蔵弾性率G’は、好ましくは中間層の23℃における貯蔵弾性率G’の4倍よりも大きく、より好ましくは中間層の23℃における貯蔵弾性率G’の5倍よりも大きい。このように低弾性率の中間層2を覆う形で、比較的弾性の高い粘着剤層が存在することで、突起状電極間に粘着剤層が追従することを好適に抑制し、突起状電極間における粘着剤層の残渣の発生や、ピックアップ時におけるチップの破損を防止できる。なお、粘着剤層の23℃における貯蔵弾性率G’はエネルギー線照射により粘着剤層を硬化させる前の貯蔵弾性率である。
(Adhesive layer 1)
The storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer is 3 × 10 5 Pa or more, preferably 3.5 × 10 5 to 1 × 10 7 Pa. When the storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer is less than 3 × 10 5 Pa, the pressure-sensitive adhesive layer follows between the protruding electrodes to be described later, and generation of residues of the pressure-sensitive adhesive layer between the protruding electrodes Chip breakage during pick-up occurs. By setting the storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer in the above range, the effect of suppressing the follow-up between the protruding electrodes of the pressure-sensitive adhesive layer and the like can be obtained more reliably. Further, the storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer is preferably larger than 4 times the storage elastic modulus G ′ at 23 ° C. of the intermediate layer, more preferably the storage elastic modulus G ′ of the intermediate layer at 23 ° C. It is larger than 5 times. In this way, the adhesive layer having relatively high elasticity exists so as to cover the intermediate layer 2 having a low elastic modulus, so that the adhesive layer can be suitably prevented from following between the protruding electrodes. It is possible to prevent the occurrence of a residue of the adhesive layer in the meantime and damage of the chip during pickup. The storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer is a storage elastic modulus before the pressure-sensitive adhesive layer is cured by energy ray irradiation.

粘着剤層の厚みは、8〜30μmであり、より好ましくは8〜25μmの範囲である。粘着剤層の厚みが上記範囲にあることで、ダイシング性が向上し、チッピングの発生を抑制できる。また、突起状電極間に粘着剤層が追従することを好適に抑制し、突起状電極間における粘着剤層の残渣の発生や、ピックアップ時におけるチップの破損を防止でき、かつ突起状電極の形成された領域(電極形成領域)の外周部におけるダイシングシートの追従性が維持される。   The thickness of an adhesive layer is 8-30 micrometers, More preferably, it is the range of 8-25 micrometers. When the thickness of the pressure-sensitive adhesive layer is in the above range, the dicing property is improved and the occurrence of chipping can be suppressed. In addition, it is preferable to prevent the pressure-sensitive adhesive layer from following between the protruding electrodes, and it is possible to prevent generation of residue of the pressure-sensitive adhesive layer between the protruding electrodes and damage of the chip during pick-up, and formation of the protruding electrodes The followability of the dicing sheet at the outer periphery of the formed region (electrode formation region) is maintained.

粘着剤層は、エネルギー線硬化性二重結合を分子内に有する化合物および粘着性を発現させるための物質からなる成分(以下、「エネルギー線硬化型粘着成分」と記載することがある。)を含有する。   The pressure-sensitive adhesive layer includes a compound composed of a compound having an energy ray-curable double bond in the molecule and a substance for expressing adhesiveness (hereinafter sometimes referred to as “energy ray-curable pressure-sensitive adhesive component”). contains.

粘着剤層は、エネルギー線硬化型粘着成分と必要に応じ光重合開始剤とを配合した粘着剤組成物とを用いて形成される。さらに、上記粘着剤組成物には、各種物性を改良するため、必要に応じ、その他の成分が含まれていてもよい。その他の成分としては架橋剤が好ましい。   An adhesive layer is formed using the adhesive composition which mix | blended the energy-beam curable adhesive component and the photoinitiator as needed. Furthermore, in order to improve various physical properties, the said adhesive composition may contain the other component as needed. As other components, a crosslinking agent is preferable.

以下、エネルギー線硬化型粘着成分について、アクリル系粘着剤を例として具体的に説明する。   Hereinafter, the energy ray-curable pressure-sensitive adhesive component will be specifically described using an acrylic pressure-sensitive adhesive as an example.

アクリル系粘着剤は、粘着剤組成物に十分な粘着性および造膜性(シート形成性)を付与するためにアクリル重合体(A)を含有し、またエネルギー線硬化性化合物(B)を含有する。エネルギー線硬化性化合物(B)は、エネルギー線重合性基を含み、紫外線、電子線等のエネルギー線の照射を受けると重合硬化し、粘着剤組成物の粘着力を低下させる機能を有する。また、エネルギー線硬化性二重結合を分子内に有する化合物として、重合体の主鎖または側鎖に、エネルギー線重合性基が結合されてなるエネルギー線硬化型粘着性重合体(以下、成分(AB)と記載する場合がある)を用いることが好ましい。このようなエネルギー線硬化型粘着性重合体(AB)は、粘着性とエネルギー線硬化性とを兼ね備える性質を有する。   The acrylic pressure-sensitive adhesive contains an acrylic polymer (A) for imparting sufficient pressure-sensitive adhesiveness and film-forming property (sheet-forming property) to the pressure-sensitive adhesive composition, and also contains an energy ray-curable compound (B). To do. The energy ray-curable compound (B) contains an energy ray-polymerizable group and has a function of being polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams and reducing the adhesive strength of the pressure-sensitive adhesive composition. In addition, as a compound having an energy ray curable double bond in the molecule, an energy ray curable adhesive polymer in which an energy ray polymerizable group is bonded to the main chain or side chain of the polymer (hereinafter referred to as component ( (AB) may be used). Such an energy ray curable pressure-sensitive adhesive polymer (AB) has a property having both adhesiveness and energy ray curable properties.

アクリル重合体(A)としては、従来公知のアクリル重合体を用いることができる。アクリル重合体(A)の重量平均分子量(Mw)は、1万〜200万であることが好ましく、10万〜150万であることがより好ましい。また、アクリル重合体(A)のガラス転移温度(Tg)は、好ましくは−70〜30℃、さらに好ましくは−60〜20℃の範囲にある。   A conventionally well-known acrylic polymer can be used as an acrylic polymer (A). The weight average molecular weight (Mw) of the acrylic polymer (A) is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1,500,000. The glass transition temperature (Tg) of the acrylic polymer (A) is preferably in the range of −70 to 30 ° C., more preferably in the range of −60 to 20 ° C.

アクリル重合体(A)を構成するモノマーとしては、(メタ)アクリル酸エステルモノマーまたはその誘導体が挙げられる。
具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレートなどのアルキル基の炭素数が1〜18であるアルキル(メタ)アクリレート;
シクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレートなどの環状骨格を有する(メタ)アクリレート;
ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート;
アクリル酸、メタクリル酸、イタコン酸、グリシジルアクリレート、グリシジルメタクリレートなどが挙げられる。
また、酢酸ビニル、アクリロニトリル、スチレン等が共重合されていてもよい。
これらは1種単独で用いてもよく、2種以上を併用してもよい。
As a monomer which comprises an acrylic polymer (A), a (meth) acrylic acid ester monomer or its derivative (s) is mentioned.
Specifically, alkyl having 1 to 18 carbon atoms in an alkyl group such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. (Meth) acrylate;
Cycloalkyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, imide (meth) (Meth) acrylates having a cyclic skeleton such as acrylate;
Hydroxyl group-containing (meth) acrylates such as hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate;
Examples include acrylic acid, methacrylic acid, itaconic acid, glycidyl acrylate, and glycidyl methacrylate.
Vinyl acetate, acrylonitrile, styrene, or the like may be copolymerized.
These may be used alone or in combination of two or more.

また、本発明におけるアクリル重合体(A)は反応性官能基を有することが好ましい。反応性官能基は、本発明における粘着剤層を構成する粘着剤組成物に好ましく添加される架橋剤の反応性官能基と反応して三次元網目構造を形成し、粘着剤層の23℃における貯蔵弾性率G’を所定範囲に調整することが容易になる。アクリル重合体(A)の反応性官能基としては、カルボキシル基、アミノ基、エポキシ基、水酸基等が挙げられるが、架橋剤と選択的に反応させやすいことから、水酸基であることが好ましい。反応性官能基は、上述した水酸基含有(メタ)アクリレートやアクリル酸等の反応性官能基を有する単量体を用いてアクリル重合体(A)を構成することで、アクリル重合体(A)に導入できる。   Moreover, it is preferable that the acrylic polymer (A) in this invention has a reactive functional group. The reactive functional group reacts with the reactive functional group of the crosslinking agent preferably added to the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer in the present invention to form a three-dimensional network structure, and the pressure-sensitive adhesive layer at 23 ° C. It becomes easy to adjust the storage elastic modulus G ′ to a predetermined range. Examples of the reactive functional group of the acrylic polymer (A) include a carboxyl group, an amino group, an epoxy group, and a hydroxyl group, and a hydroxyl group is preferable because it can be easily reacted selectively with a crosslinking agent. The reactive functional group is composed of an acrylic polymer (A) by using the monomer having a reactive functional group such as a hydroxyl group-containing (meth) acrylate or acrylic acid as described above. Can be introduced.

アクリル重合体(A)は、その構成する全単量体中、反応性官能基を有する単量体を5〜30質量%含むことが好ましく、10〜25質量%含むことがさらに好ましい。反応性官能基を有する単量体の配合割合をこのような範囲とすることで、架橋剤によりアクリル重合体(A)が効率的に架橋され、粘着剤層の23℃における貯蔵弾性率G’を所定範囲に調整することが容易になる。また、アクリル重合体(A)の反応性官能基(例えば水酸基)当量は、架橋剤の反応性官能基(例えばイソシアネート基)当量の0.17〜2.0倍であることが好ましい。アクリル重合体(A)の反応性官能基当量と、架橋剤の反応性官能基当量との関係を上記範囲にすることで、粘着剤層の23℃における貯蔵弾性率G’を所定範囲に調整することがさらに容易になる。   The acrylic polymer (A) preferably contains 5 to 30% by mass, more preferably 10 to 25% by mass of a monomer having a reactive functional group in all the monomers constituting the acrylic polymer (A). By setting the blending ratio of the monomer having a reactive functional group in such a range, the acrylic polymer (A) is efficiently crosslinked by the crosslinking agent, and the storage elastic modulus G ′ of the pressure-sensitive adhesive layer at 23 ° C. Can be easily adjusted to a predetermined range. Moreover, it is preferable that the reactive functional group (for example, hydroxyl group) equivalent of an acrylic polymer (A) is 0.17 to 2.0 times the reactive functional group (for example, isocyanate group) equivalent of a crosslinking agent. By adjusting the relationship between the reactive functional group equivalent of the acrylic polymer (A) and the reactive functional group equivalent of the crosslinking agent within the above range, the storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer is adjusted to a predetermined range. It will be easier to do.

エネルギー線硬化性化合物(B)は、紫外線、電子線等のエネルギー線の照射を受けると重合硬化する化合物である。このエネルギー線硬化性化合物の例としては、エネルギー線重合性基を有する低分子量化合物(単官能、多官能のモノマーおよびオリゴマー)が挙げられ、具体的には、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、1,4−ブチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレートなどのアクリレート、ジシクロペンタジエンジメトキシジアクリレート、イソボルニルアクリレートなどの環状脂肪族骨格含有アクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレートオリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート、イタコン酸オリゴマーなどのアクリレート系化合物が用いられる。このような化合物は、分子内にエネルギー線硬化性二重結合を有し、通常は、分子量が100〜30000、好ましくは300〜10000程度である。   The energy ray curable compound (B) is a compound that is polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams. Examples of the energy ray curable compounds include low molecular weight compounds (monofunctional and polyfunctional monomers and oligomers) having an energy ray polymerizable group, and specifically include trimethylolpropane triacrylate and tetramethylolmethane. Acrylates such as tetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, dicyclopentadiene dimethoxydiacrylate, Cyclic aliphatic skeleton-containing acrylates such as isobornyl acrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate Goma, epoxy-modified acrylates, polyether acrylates, acrylate compounds such as itaconic acid oligomer is used. Such a compound has an energy ray-curable double bond in the molecule, and usually has a molecular weight of about 100 to 30,000, preferably about 300 to 10,000.

一般的には成分(A)(後述するエネルギー線硬化型粘着性重合体(AB)を含む)100質量部に対して、エネルギー線重合性基を有する低分子量化合物は好ましくは0〜200質量部、より好ましくは1〜100質量部、さらに好ましくは、1〜30質量部程度の割合で用いられる。エネルギー線重合性基を有する低分子量化合物は、その分子量の低さから、添加することによりエネルギー線硬化前の粘着剤層を軟化させる。すると、後述するような突起状電極間に粘着剤層が追従しにくくなるという本発明の効果が十分に得られなくなるおそれがある。このため、エネルギー線重合性基を有する低分子量化合物の使用量は少なく制限することが好ましい。   Generally, the low molecular weight compound having an energy ray polymerizable group is preferably 0 to 200 parts by mass with respect to 100 parts by mass of the component (A) (including the energy ray curable adhesive polymer (AB) described later). More preferably, it is used in a ratio of about 1 to 100 parts by mass, and more preferably about 1 to 30 parts by mass. The low molecular weight compound having an energy ray polymerizable group softens the pressure-sensitive adhesive layer before curing with energy rays due to its low molecular weight. Then, there is a possibility that the effect of the present invention that the pressure-sensitive adhesive layer hardly follows between the protruding electrodes as described later cannot be sufficiently obtained. For this reason, it is preferable to restrict | limit the usage-amount of the low molecular weight compound which has an energy-beam polymeric group few.

エネルギー線硬化型粘着性重合体(AB)は、重合体の主鎖または側鎖に、エネルギー線重合性基が結合されてなる。上述のとおり、エネルギー線重合性基を有する低分子量化合物の使用量は少なく制限することが好ましいが、この場合にはエネルギー線の照射による粘着剤層の硬化が不十分となり、粘着剤層の被着体への残渣の抑制という効果が低下する可能性がある。そこで、エネルギー線硬化型粘着性重合体(AB)を粘着剤層に適用することで、エネルギー線照射前の粘着剤層を軟化させることなく、かつ、エネルギー線の照射により粘着剤層の硬化を十分に進行させることができる。
また、エネルギー線硬化型粘着性重合体(AB)は分子内にエネルギー線重合性基を有し、かつ反応性官能基をも有することが可能であるため、一分子が他の分子と結合する確率が高い。このため、エネルギー線を照射し、粘着剤層を硬化させた後、低分子成分が三次元網目構造に取り込まれずに残存する可能性が低い。したがって、三次元網目構造に取り込まれずに残存した低分子成分に起因した残渣の発生が抑制される。
The energy ray curable adhesive polymer (AB) is formed by bonding an energy ray polymerizable group to the main chain or side chain of a polymer. As described above, it is preferable to limit the amount of the low molecular weight compound having an energy ray polymerizable group to be small. However, in this case, the pressure-sensitive adhesive layer is not sufficiently cured by irradiation with energy rays, and the pressure-sensitive adhesive layer is covered. There is a possibility that the effect of suppressing residue on the body will be reduced. Therefore, by applying the energy ray curable pressure-sensitive adhesive polymer (AB) to the pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer can be cured by irradiation with energy rays without softening the pressure-sensitive adhesive layer before irradiation with energy rays. It can be fully advanced.
In addition, since the energy ray curable adhesive polymer (AB) has an energy ray polymerizable group in the molecule and can also have a reactive functional group, one molecule is bonded to another molecule. Probability is high. For this reason, after irradiating an energy ray and hardening an adhesive layer, possibility that a low molecular component will remain without being taken in into a three-dimensional network structure is low. Therefore, the generation | occurrence | production of the residue resulting from the low molecular component which was not taken in into a three-dimensional network structure and was suppressed is suppressed.

エネルギー線硬化型粘着性重合体の主骨格は特に限定はされず、粘着剤として汎用されているアクリル共重合体であってもよい。なお、エネルギー線硬化型粘着性重合体(AB)がアクリル重合体である場合には、アクリル重合体(A)にも該当する。   The main skeleton of the energy ray curable adhesive polymer is not particularly limited, and may be an acrylic copolymer that is widely used as an adhesive. In addition, when energy-beam curable adhesive polymer (AB) is an acrylic polymer, it corresponds also to an acrylic polymer (A).

エネルギー線硬化型粘着性重合体の主鎖または側鎖に結合するエネルギー線重合性基は、たとえばエネルギー線硬化性の炭素−炭素二重結合を含む基であり、具体的には(メタ)アクリロイル基等を例示することができる。エネルギー線重合性基は、アルキレン基、アルキレンオキシ基、ポリアルキレンオキシ基を介してエネルギー線硬化型粘着性重合体に結合していてもよい。   The energy beam polymerizable group bonded to the main chain or side chain of the energy beam curable adhesive polymer is, for example, a group containing an energy beam curable carbon-carbon double bond, and specifically, (meth) acryloyl. Examples include groups. The energy beam polymerizable group may be bonded to the energy beam curable pressure-sensitive adhesive polymer via an alkylene group, an alkyleneoxy group, or a polyalkyleneoxy group.

エネルギー線重合性基が結合されたエネルギー線硬化型粘着性重合体(AB)の重量平均分子量(Mw)は、1万〜200万であることが好ましく、10万〜150万であることがより好ましい。また、エネルギー線硬化型粘着性重合体(AB)のガラス転移温度(Tg)は、好ましくは−70〜30℃、より好ましくは−60〜20℃の範囲にある。   The weight average molecular weight (Mw) of the energy ray curable adhesive polymer (AB) to which the energy ray polymerizable group is bonded is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. preferable. The glass transition temperature (Tg) of the energy ray curable adhesive polymer (AB) is preferably in the range of −70 to 30 ° C., more preferably in the range of −60 to 20 ° C.

エネルギー線硬化型粘着性重合体(AB)は、例えば、ヒドロキシル基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を含有するアクリル粘着性重合体と、該官能基と反応する置換基とエネルギー線重合性炭素−炭素二重結合を1分子毎に1〜5個を有する重合性基含有化合物とを反応させて得られる。アクリル粘着性重合体は、ヒドロキシル基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を有する(メタ)アクリル酸エステルモノマーまたはその誘導体と、前述した成分(A)を構成するモノマーとからなる共重合体であることが好ましい。該重合性基含有化合物としては、(メタ)アクリロイルオキシエチルイソシアネート、メタ−イソプロペニル−α,α−ジメチルベンジルイソシアネート、(メタ)アクリロイルイソシアネート、アリルイソシアネート、グリシジル(メタ)アクリレート;(メタ)アクリル酸等が挙げられる。   The energy ray curable adhesive polymer (AB) reacts with the acrylic adhesive polymer containing a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group, for example, with the functional group. It is obtained by reacting a substituent with a polymerizable group-containing compound having 1 to 5 energy beam polymerizable carbon-carbon double bonds per molecule. Acrylic adhesive polymer is a monomer that comprises (meth) acrylic acid ester monomer or derivative thereof having a functional group such as hydroxyl group, carboxyl group, amino group, substituted amino group, and epoxy group, and component (A) described above. A copolymer consisting of Examples of the polymerizable group-containing compound include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate; (meth) acrylic acid Etc.

上記のようなアクリル重合体(A)およびエネルギー線硬化性化合物(B)又は、エネルギー線硬化型粘着性重合体(AB)を含むアクリル系粘着剤は、エネルギー線照射により硬化する。エネルギー線としては、具体的には、紫外線、電子線等が用いられる。   The acrylic pressure sensitive adhesive containing the acrylic polymer (A) and the energy ray curable compound (B) or the energy ray curable adhesive polymer (AB) as described above is cured by irradiation with energy rays. Specifically, ultraviolet rays, electron beams, etc. are used as the energy rays.

光重合開始剤としては、ベンゾイン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、チオキサントン化合物、パーオキサイド化合物等の光開始剤、アミンやキノン等の光増感剤などが挙げられ、具体的には、1−ヒドロキシシクロヘキシルフェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ジベンジル、ジアセチル、β−クロールアンスラキノン、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイドなどが例示できる。エネルギー線として紫外線を用いる場合に、光重合開始剤を配合することにより照射時間、照射量を少なくすることができる。   Examples of photopolymerization initiators include photoinitiators such as benzoin compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, thioxanthone compounds, and peroxide compounds, and photosensitizers such as amines and quinones. 1-hydroxycyclohexyl phenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, dibenzyl, diacetyl, β-chloranthraquinone Examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide. When ultraviolet rays are used as energy rays, the irradiation time and irradiation amount can be reduced by adding a photopolymerization initiator.

光重合開始剤の含有量は、理論的には、粘着剤層中に存在する不飽和結合量(エネルギー線硬化性二重結合量)やその反応性及び使用される光重合開始剤の反応性に基づいて決定されるべきであるが、複雑な混合物系においては必ずしも容易ではない。一般的な指針として、光重合開始剤の含有量は、エネルギー線硬化性化合物(B)100質量部に対して、好ましくは0.1〜10質量部、より好ましくは1〜5質量部である。光重合開始剤の含有量が前記範囲を下回ると光重合の不足で満足なピックアップ性が得られないことがあり、前記範囲を上回ると光重合に寄与しない残留物が生成し、粘着剤層の硬化性が不充分となることがある。   The content of the photopolymerization initiator is theoretically the amount of unsaturated bonds (energy ray curable double bonds) present in the pressure-sensitive adhesive layer, the reactivity thereof, and the reactivity of the photopolymerization initiator used. However, it is not always easy in a complex mixture system. As a general guideline, the content of the photopolymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the energy ray curable compound (B). . If the content of the photopolymerization initiator is less than the above range, a satisfactory pick-up property may not be obtained due to insufficient photopolymerization, and if it exceeds the above range, a residue that does not contribute to photopolymerization is generated, Curability may be insufficient.

架橋剤としては、有機多価イソシアネート化合物、有機多価エポキシ化合物、有機多価イミン化合物等が挙げられ、有機多価イソシアネート化合物(イソシアネート系架橋剤)が好ましい。   Examples of the crosslinking agent include organic polyvalent isocyanate compounds, organic polyvalent epoxy compounds, organic polyvalent imine compounds, and the like, and organic polyvalent isocyanate compounds (isocyanate-based crosslinking agents) are preferable.

有機多価イソシアネート化合物としては、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物、脂環族多価イソシアネート化合物およびこれらの有機多価イソシアネート化合物の三量体、ならびにこれら有機多価イソシアネート化合物とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等を挙げることができる。   Examples of organic polyvalent isocyanate compounds include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimers of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds. Examples thereof include terminal isocyanate urethane prepolymers obtained by reacting with a polyol compound.

有機多価イソシアネート化合物のさらに具体的な例としては、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、1,3−キシリレンジイソシアネート、1,4−キシレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、ジフェニルメタン−2,4’−ジイソシアネート、3−メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、トリメチロールプロパンアダクトトリレンジイソシアネートおよびリジンイソシアネートが挙げられる。   As more specific examples of the organic polyvalent isocyanate compound, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4 '-Diisocyanate, diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, trimethylolpropane adduct Examples include tolylene diisocyanate and lysine isocyanate.

有機多価エポキシ化合物の具体的な例としては、1,3−ビス(N,N’−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、エチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミンなどが挙げられる。   Specific examples of the organic polyvalent epoxy compound include 1,3-bis (N, N′-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-m-xylylenediamine, Examples include ethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, diglycidyl aniline, and diglycidyl amine.

有機多価イミン化合物の具体的な例としては、N,N’−ジフェニルメタン−4,4’−ビス(1−アジリジンカルボキシアミド)、トリメチロールプロパン−トリ−β−アジリジニルプロピオネート、テトラメチロールメタン−トリ−β−アジリジニルプロピオネートおよびN,N’−トルエン−2,4−ビス(1−アジリジンカルボキシアミド)トリエチレンメラミン等を挙げることができる。   Specific examples of organic polyvalent imine compounds include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinyl propionate, tetra And methylolmethane-tri-β-aziridinylpropionate and N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine.

架橋剤はアクリル重合体(A)(エネルギー線硬化型粘着性重合体(AB)を含む)100質量部に対して、好ましくは5質量部以上、より好ましくは8〜35質量部、特に好ましくは12〜30質量部の比率で用いられる。架橋剤の配合量を上記範囲とすることで、粘着剤層の23℃における貯蔵弾性率G’を好ましい範囲に調整することが容易となる。   The crosslinking agent is preferably 5 parts by mass or more, more preferably 8 to 35 parts by mass, particularly preferably 100 parts by mass of the acrylic polymer (A) (including the energy ray curable adhesive polymer (AB)). It is used at a ratio of 12 to 30 parts by mass. By making the compounding quantity of a crosslinking agent into the said range, it becomes easy to adjust the storage elastic modulus G 'in 23 degreeC of an adhesive layer in a preferable range.

また、他の成分として、架橋剤のほかに染料、顔料、劣化防止剤、帯電防止剤、難燃剤、シリコーン化合物、連鎖移動剤等を添加してもよい。   In addition to the crosslinking agent, dyes, pigments, deterioration inhibitors, antistatic agents, flame retardants, silicone compounds, chain transfer agents and the like may be added as other components.

また、粘着剤層のエネルギー線照射前における粘着力は、好ましくは500mN/25mm以上であり、より好ましくは800〜30000mN/25mmである。また、エネルギー線照射後における粘着力は、好ましくは10〜500mN/25mmであり、より好ましくは10〜300mN/25mmである。粘着剤層の粘着力を上記範囲とすることで、ダイシング性とピックアップ性に優れる。   Moreover, the adhesive force before energy beam irradiation of an adhesive layer becomes like this. Preferably it is 500 mN / 25mm or more, More preferably, it is 800-30000 mN / 25mm. Moreover, the adhesive force after energy beam irradiation becomes like this. Preferably it is 10-500 mN / 25mm, More preferably, it is 10-300 mN / 25mm. By setting the adhesive strength of the pressure-sensitive adhesive layer within the above range, the dicing property and the pickup property are excellent.

また、粘着剤層には、その使用前に粘着剤層を保護するために剥離シートが積層されていてもよい。剥離シートは、特に限定されるものではなく、例えば、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン等の樹脂からなるフィルムまたはそれらの発泡フィルムや、グラシン紙、コート紙、ラミネート紙等の紙に、シリコーン系、フッ素系、長鎖アルキル基含有カルバメート等の剥離剤で剥離処理したものを使用することができる。   In addition, a release sheet may be laminated on the pressure-sensitive adhesive layer in order to protect the pressure-sensitive adhesive layer before use. The release sheet is not particularly limited. For example, a film made of a resin such as polyethylene terephthalate, polypropylene, or polyethylene or a foamed film thereof, paper such as glassine paper, coated paper, laminated paper, silicone-based, fluorine A system and a release agent such as a long chain alkyl group-containing carbamate can be used.

(中間層2)
中間層2は、含ウレタン硬化物からなる。含ウレタン硬化物は、ウレタンオリゴマーおよび/またはウレタン(メタ)アクリレートオリゴマーと必要に応じて添加されるエネルギー線硬化性モノマーとを含む配合物をエネルギー線硬化させた硬化物である。
(Intermediate layer 2)
The mid layer 2 is made of a urethane-containing cured product. The urethane-containing cured product is a cured product obtained by energy beam curing of a blend containing a urethane oligomer and / or a urethane (meth) acrylate oligomer and an energy beam curable monomer added as necessary.

ウレタンオリゴマーは、ポリオール化合物と多価イソシアネート化合物とを重付加して得られる。   The urethane oligomer is obtained by polyaddition of a polyol compound and a polyvalent isocyanate compound.

ポリオール化合物は、ヒドロキシ基を2つ以上有する化合物であれば特に限定されず、公知のものを使用することができる。具体的には、例えば、アルキレンジオール、ポリエーテル型ポリオール、ポリエステル型ポリオール、ポリカーボネート型ポリオールの何れであってもよいが、ポリエーテル型ポリオールを用いることで、より良好な効果が得られる。また、ポリオールであれば特に限定はされず、2官能のジオール、3官能のトリオール、さらには4官能以上のポリオールであってよいが、入手の容易性、汎用性、反応性などの観点から、ジオールを使用することが特に好ましい。したがって、ポリエーテル型ジオールが好ましく使用される。   A polyol compound will not be specifically limited if it is a compound which has two or more of hydroxyl groups, A well-known thing can be used. Specifically, for example, any of an alkylene diol, a polyether type polyol, a polyester type polyol, and a polycarbonate type polyol may be used, but a better effect can be obtained by using a polyether type polyol. The polyol is not particularly limited, and may be a bifunctional diol, a trifunctional triol, or a tetrafunctional or higher polyol. From the viewpoint of availability, versatility, and reactivity, It is particularly preferred to use a diol. Accordingly, polyether type diols are preferably used.

ポリエーテル型ポリオールの代表例であるポリエーテル型ジオールは、一般にHO-(-R-O-)n-Hで示される。ここで、Rは2価の炭化水素基、好ましくはアルキレン基であり、さらに好ましくは炭素数1〜6のアルキレン基、特に好ましくは炭素数3または4のアルキレン基である。また、炭素数1〜6のアルキレン基の中でも好ましくはエチレン、プロピレンまたはテトラメチレン、特に好ましくはプロピレンまたはテトラメチレンである。したがって、特に好ましいポリエーテル型ジオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールであり、さらに好ましいポリエーテル型ジオールとしては、ポリプロピレングリコール、ポリテトラメチレングリコールが挙げられる。nは(-R-O-)の繰り返し数であり、10〜250程度が好ましく、25〜205程度とすることがさらに好ましく、40〜185程度とすることが特に好ましい。nが10より小さいと、ウレタンオリゴマーのウレタン結合の濃度が高くなってしまい、中間層の貯蔵弾性率が高くなってしまう。nが250より大きいと、中間層の貯蔵弾性率が過剰に低下し、ダイシングシートの端面から中間層が押し出され、重ねたシート同士が端部で付着したり、厚みが均一でなくなったりする懸念がある。   A polyether-type diol, which is a representative example of a polyether-type polyol, is generally represented by HO — (— R—O—) n—H. Here, R is a divalent hydrocarbon group, preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms, and particularly preferably an alkylene group having 3 or 4 carbon atoms. Among the alkylene groups having 1 to 6 carbon atoms, ethylene, propylene or tetramethylene is preferable, and propylene or tetramethylene is particularly preferable. Accordingly, particularly preferred polyether type diols are polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and more preferred polyether type diols include polypropylene glycol and polytetramethylene glycol. n is the number of repetitions of (—R—O—), preferably about 10 to 250, more preferably about 25 to 205, and particularly preferably about 40 to 185. When n is smaller than 10, the concentration of urethane bonds in the urethane oligomer is increased, and the storage elastic modulus of the intermediate layer is increased. When n is larger than 250, the storage elastic modulus of the intermediate layer is excessively lowered, the intermediate layer is pushed out from the end face of the dicing sheet, and the stacked sheets may adhere to each other at the end or the thickness may not be uniform. There is.

ポリエステル型ポリオールの製造に用いられる多塩基酸成分としては、一般にポリエステルの多塩基酸成分として知られている各種公知のものを使用することができる。具体的には、例えば、アジピン酸、マレイン酸、コハク酸、しゅう酸、フマル酸、マロン酸、グルタル酸、ピメリン酸、アゼライン酸、セバシン酸、スベリン酸等の二塩基酸、無水フタル酸、イソフタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸等の二塩基酸や、トリメリット酸、ピロメリット酸等の芳香族多塩基酸、これらに対応する無水物やその誘導体およびダイマー酸、水添ダイマー酸などが挙げられる。これらの多塩基酸成分と、既知のグリコール類を重縮合(エステル化反応)させることで、ポリエステル系ポリオールが得られる。なお、当該エステル化反応には、必要に応じて各種公知の触媒を使用してもよい。触媒としては、例えば、ジブチルスズオキサイドやオクチル酸第一スズなどのスズ化合物やテトラブチルチタネート、テトラプロピルチタネートなどのアルコキシチタンが挙げられる。グリコール類としては、1,4−ブタンジオール、1,6−ヘキサンジオール等が挙げられる。   As the polybasic acid component used for the production of the polyester type polyol, various known ones generally known as polyester polybasic acid components can be used. Specifically, for example, dibasic acids such as adipic acid, maleic acid, succinic acid, oxalic acid, fumaric acid, malonic acid, glutaric acid, pimelic acid, azelaic acid, sebacic acid, suberic acid, phthalic anhydride, isophthalic acid Dibasic acids such as acid, terephthalic acid and 2,6-naphthalenedicarboxylic acid, aromatic polybasic acids such as trimellitic acid and pyromellitic acid, their corresponding anhydrides and derivatives, dimer acids, and hydrogenated dimers An acid etc. are mentioned. Polyester polyols can be obtained by polycondensation (esterification reaction) of these polybasic acid components and known glycols. In addition, you may use various well-known catalysts for the said esterification reaction as needed. Examples of the catalyst include tin compounds such as dibutyltin oxide and stannous octylate, and alkoxytitanium such as tetrabutyl titanate and tetrapropyl titanate. Examples of glycols include 1,4-butanediol and 1,6-hexanediol.

ポリカーボネート型ポリオールとしては、特に限定されず、公知のものを用いることができる。具体的には、例えば、ポリエステル系ポリオールの合成に用いられるものとして挙げたグリコール類とアルキレンカーボネートとの反応物などが挙げられる。   It does not specifically limit as a polycarbonate type polyol, A well-known thing can be used. Specifically, for example, a reaction product of glycols and alkylene carbonates exemplified as those used for the synthesis of polyester-based polyols can be used.

水酸基価から算出したポリオール化合物の分子量としては、1000〜10000程度が好ましく、1500〜9000程度とすることがさらに好ましい。分子量が1000より低いと、ウレタンオリゴマーのウレタン結合の濃度が高くなってしまい、中間層の貯蔵弾性率が高くなってしまうことがある。分子量が高すぎると、中間層の貯蔵弾性率が低下しにくいことがある。   The molecular weight of the polyol compound calculated from the hydroxyl value is preferably about 1000 to 10,000, and more preferably about 1500 to 9000. If the molecular weight is lower than 1000, the urethane bond concentration of the urethane oligomer may be high, and the storage elastic modulus of the intermediate layer may be high. If the molecular weight is too high, the storage elastic modulus of the intermediate layer may be difficult to decrease.

なお、ポリエーテル型ポリオールの分子量は、ポリエーテル型ポリオール官能基数×56.11×1000/水酸基価[mgKOH/g]であり、ポリエーテル型ポリオールの水酸基価から算出される値である。   The molecular weight of the polyether-type polyol is polyether-type polyol functional group number × 56.11 × 1000 / hydroxyl value [mgKOH / g], which is a value calculated from the hydroxyl value of the polyether-type polyol.

多価イソシアネート化合物としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネート類、イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ω,ω’−ジイソシアネートジメチルシクロヘキサン等の脂環族系ジイソシアネート類、4,4'−ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、トリジンジイソシアネート、テトラメチレンキシリレンジイソシアネート、ナフタレン−1,5−ジイソシアネート等の芳香族系ジイソシアネート類などが挙げられる。これらの中では、イソホロンジイソシアネートやヘキサメチレンジイソシアネート、キシリレンジイソシアネートを用いることが、ウレタンオリゴマーの粘度を低く維持でき、取り扱い性が良好となるため好ましい。   Examples of the polyvalent isocyanate compound include aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, and dicyclohexylmethane-2,4. Aliphatic diisocyanates such as' -diisocyanate, ω, ω'-diisocyanate dimethylcyclohexane, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tolidine diisocyanate, tetramethylene xylylene diisocyanate, naphthalene-1, And aromatic diisocyanates such as 5-diisocyanate. Among these, it is preferable to use isophorone diisocyanate, hexamethylene diisocyanate, or xylylene diisocyanate because the viscosity of the urethane oligomer can be kept low and the handleability becomes good.

ポリオール化合物と多価イソシアネート化合物とを反応させるための条件としては、ポリオール化合物および多価イソシアネート化合物を、必要に応じて溶剤、触媒の存在下、60〜100℃程度で、1〜4時間程度反応させればよい。   As a condition for reacting the polyol compound and the polyvalent isocyanate compound, the polyol compound and the polyvalent isocyanate compound are reacted at about 60 to 100 ° C. for about 1 to 4 hours in the presence of a solvent and a catalyst as necessary. You can do it.

ウレタン(メタ)アクリレートオリゴマーは、(メタ)アクリロイル基を有し、ウレタン結合を有する化合物である。このようなウレタン(メタ)アクリレートオリゴマーは、たとえばポリエステル型またはポリエーテル型などのポリオール化合物と、多価イソシアネート化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー(ウレタンオリゴマー)に、ヒドロキシル基を有する(メタ)アクリレートを反応させて得られる。なお、本明細書において、(メタ)アクリルは、アクリルおよびメタアクリルの両者を包含した意味で用いる。ポリオール化合物や多価イソシアネート化合物は、ウレタンオリゴマーの製造に用いたポリオール化合物や多価イソシアネート化合物を同様に例示できる。   The urethane (meth) acrylate oligomer is a compound having a (meth) acryloyl group and having a urethane bond. Such a urethane (meth) acrylate oligomer has a hydroxyl group in a terminal isocyanate urethane prepolymer (urethane oligomer) obtained by reacting a polyol compound such as polyester type or polyether type with a polyvalent isocyanate compound. Obtained by reacting (meth) acrylate. In addition, in this specification, (meth) acryl is used in the meaning including both acryl and methacryl. The polyol compound and polyvalent isocyanate compound can similarly illustrate the polyol compound and polyvalent isocyanate compound used in the production of the urethane oligomer.

ヒドロキシ基を有する(メタ)アクリレートとしては、1分子中にヒドロキシ基および(メタ)アクリロイル基を有する化合物であれば、特に限定されず、公知のものを使用することができる。具体的には、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、5−ヒドロキシシクロオクチル(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のヒドロキシ基を有する(メタ)アクリレート、N−メチロール(メタ)アクリルアミド等のヒドロキシ基含有(メタ)アクリルアミド、ビニルアルコール、ビニルフェノール、ビスフェノールAのジグリシジルエステルに(メタ)アクリル酸を反応させて得られる反応物などが挙げられる。   The (meth) acrylate having a hydroxy group is not particularly limited as long as it is a compound having a hydroxy group and a (meth) acryloyl group in one molecule, and known ones can be used. Specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 5-hydroxycyclooctyl (meta ) Acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate-containing (meth) acrylate N-methylol (meth) acrylamide-containing (meth) acrylamide, vinyl alcohol, vinylphenol, diglycidyl ester of bisphenol A (meth) acrylate And a reaction product obtained by reacting the acrylic acid and the like.

末端イソシアネートウレタンプレポリマーおよびヒドロキシ基を有する(メタ)アクリレートを反応させるための条件としては、末端イソシアネートウレタンプレポリマーとヒドロキシ基を有する(メタ)アクリレートとを、必要に応じて溶剤、触媒の存在下、60〜100℃程度で、1〜4時間程度反応させればよい。   As conditions for reacting the terminal isocyanate urethane prepolymer and the hydroxy group-containing (meth) acrylate, the terminal isocyanate urethane prepolymer and the hydroxy group-containing (meth) acrylate may be reacted in the presence of a solvent and a catalyst, if necessary. The reaction may be performed at about 60 to 100 ° C. for about 1 to 4 hours.

このようにして得られたウレタン(メタ)アクリレートオリゴマーは、分子内に光重合性の二重結合を有し、エネルギー線照射により重合硬化し、皮膜を形成する性質を有する。   The urethane (meth) acrylate oligomer thus obtained has a photopolymerizable double bond in the molecule and has a property of being polymerized and cured by irradiation with energy rays to form a film.

上記のウレタンオリゴマーやウレタン(メタ)アクリレートオリゴマーは一種単独で、または二種以上を組み合わせて用いることができる。   Said urethane oligomer and urethane (meth) acrylate oligomer can be used individually by 1 type or in combination of 2 or more types.

ウレタンオリゴマーの重量平均分子量(ゲルパーミエテーションクロマトグラフィーによるポリスチレン換算値をいう、以下同様。)は、特に限定されないが、好ましくは10000以上、より好ましくは10000〜100000、さらに好ましくは10000〜75000である。重量平均分子量を上記範囲とすることで、ウレタンオリゴマーが上述した粘着剤層へ移行することを防止し、粘着剤層の貯蔵弾性率G’の低下を抑制できる。その結果、電極形成領域の内周部におけるダイシングシートの追従性が低下し、電極間における粘着剤層の残渣の発生を防止できる。また、中間層2を流延製膜により形成するための液状の配合物を調製した場合、液状の配合物の粘度が過度に低下して塗工が困難となることが抑制され好ましい。   The weight average molecular weight of the urethane oligomer (referred to as polystyrene converted by gel permeation chromatography, the same shall apply hereinafter) is not particularly limited, but is preferably 10,000 or more, more preferably 10,000 to 100,000, and still more preferably 10,000 to 75,000. is there. By making a weight average molecular weight into the said range, it can prevent that a urethane oligomer transfers to the adhesive layer mentioned above, and can suppress the fall of the storage elastic modulus G 'of an adhesive layer. As a result, the followability of the dicing sheet in the inner peripheral portion of the electrode formation region is lowered, and the generation of the adhesive layer residue between the electrodes can be prevented. Moreover, when the liquid formulation for forming the intermediate | middle layer 2 by casting film forming is prepared, it is suppressed that the viscosity of a liquid formulation falls too much and coating becomes difficult.

ウレタン(メタ)アクリレートオリゴマーの重量平均分子量は、特に限定されないが、好ましくは5000〜70000、より好ましくは10000〜50000である。重量平均分子量を上記範囲とすることで、重合硬化後のウレタン(メタ)アクリレートオリゴマーの架橋構造中の、架橋密度が適当に調整され、中間層の貯蔵弾性率を後述する範囲に調整しやすくなる。また、中間層2を流延製膜により形成するための液状の配合物を調製した場合、液状の配合物の粘度が過度に増大せず塗工が容易となり好ましい。なお、ウレタン(メタ)アクリレートオリゴマーを含む配合物は硬化性が高いため、中間層2の貯蔵弾性率を後述する好ましい範囲に調整するためには、ウレタン(メタ)アクリレートオリゴマーの重量平均分子量は、ウレタンオリゴマーの重量平均分子量よりもやや低い範囲が好ましい。   Although the weight average molecular weight of a urethane (meth) acrylate oligomer is not specifically limited, Preferably it is 5000-70000, More preferably, it is 10000-50000. By setting the weight average molecular weight within the above range, the crosslinking density in the crosslinked structure of the urethane (meth) acrylate oligomer after polymerization and curing is appropriately adjusted, and the storage elastic modulus of the intermediate layer can be easily adjusted to the range described later. . Moreover, when the liquid compound for forming the intermediate | middle layer 2 by casting film forming is prepared, the viscosity of a liquid compound does not increase excessively, but it becomes easy to apply and is preferable. In addition, since the compound containing a urethane (meth) acrylate oligomer has high curability, in order to adjust the storage elastic modulus of the intermediate layer 2 to a preferable range described later, the weight average molecular weight of the urethane (meth) acrylate oligomer is: A range slightly lower than the weight average molecular weight of the urethane oligomer is preferable.

また、ウレタンオリゴマーやウレタン(メタ)アクリレートオリゴマーのみの配合物では、製膜が困難な場合が多いため、通常、これらにエネルギー線硬化性モノマーを添加して得られる配合物を用いて製膜した後、これを硬化して中間層を得る。特に、ウレタンオリゴマーはそれのみではエネルギー線硬化性を有さないため、ウレタン(メタ)アクリレートオリゴマーを併用しない場合には、エネルギー線硬化性モノマーを併用する。エネルギー線硬化性モノマーは、分子内にエネルギー線重合性の二重結合を有し、特に本発明では、比較的嵩高い基を有するアクリル酸エステル系化合物が好ましく用いられる。   In addition, since the film formation is often difficult with a composition containing only a urethane oligomer or a urethane (meth) acrylate oligomer, it is usually formed using a composition obtained by adding an energy ray-curable monomer thereto. Thereafter, this is cured to obtain an intermediate layer. In particular, since the urethane oligomer alone does not have energy beam curability, when the urethane (meth) acrylate oligomer is not used in combination, an energy beam curable monomer is used in combination. The energy ray curable monomer has an energy ray polymerizable double bond in the molecule, and particularly in the present invention, an acrylate ester compound having a relatively bulky group is preferably used.

エネルギー線硬化性モノマーの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等のアルキル基の炭素数が1〜30の(メタ)アクリレート;イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレートなどの脂環式構造を有する(メタ)アクリレート;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレートなどの芳香族構造を有する(メタ)アクリレート、もしくはテトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレートなどの複素環式構造を有する(メタ)アクリレート、スチレン、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、N-ビニルホルムアミド、N−ビニルピロリドンまたはN−ビニルカプロラクタムなどのビニル化合物が挙げられる。また、必要に応じて多官能(メタ)アクリレートを用いても良い。   Specific examples of energy ray curable monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meta ) Acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, eicosyl (Meth) acrylates having an alkyl group such as (meth) acrylate having 1 to 30 carbon atoms; isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) (Meth) acrylate having an alicyclic structure such as acrylate, cyclohexyl (meth) acrylate, adamantane (meth) acrylate, etc .; having an aromatic structure such as phenylhydroxypropyl acrylate, benzyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate (Meth) acrylate, (meth) acrylate having a heterocyclic structure such as tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, styrene, hydroxyethyl vinyl acetate Le, hydroxybutyl vinyl ether, N- vinyl formamide, vinyl compounds such as N- vinyl pyrrolidone or N- vinyl caprolactam. Moreover, you may use polyfunctional (meth) acrylate as needed.

エネルギー線硬化性モノマーの分子量は、好ましくは1000未満、より好ましくは200〜900である。エネルギー線硬化性モノマーの分子量を上記範囲とすることで、中間層を形成するための配合物の粘度の上昇を抑制し、塗工適性を向上させることができる。   The molecular weight of the energy ray curable monomer is preferably less than 1000, more preferably 200 to 900. By setting the molecular weight of the energy ray-curable monomer in the above range, an increase in the viscosity of the compound for forming the intermediate layer can be suppressed, and the coating suitability can be improved.

これらの中でも、ウレタンオリゴマーやウレタン(メタ)アクリレートオリゴマーとの相溶性の点から、比較的嵩高い基を有する脂環式構造を有する(メタ)アクリレート、芳香族構造を有する(メタ)アクリレート、複素環式構造を有する(メタ)アクリレートが好ましい。   Among these, from the viewpoint of compatibility with urethane oligomers and urethane (meth) acrylate oligomers, (meth) acrylates having alicyclic structures having relatively bulky groups, (meth) acrylates having aromatic structures, and complex A (meth) acrylate having a cyclic structure is preferred.

このエネルギー線硬化性モノマーの使用量は、ウレタンオリゴマーまたはウレタン(メタ)アクリレートオリゴマー100質量部(固形分)に対して、10〜500質量部が好ましく、30〜300質量部がより好ましい。   10-500 mass parts is preferable with respect to 100 mass parts (solid content) of a urethane oligomer or a urethane (meth) acrylate oligomer, and, as for the usage-amount of this energy-beam curable monomer, 30-300 mass parts is more preferable.

エネルギー線硬化性モノマーとしての、脂環式構造を有する(メタ)アクリレート、芳香族構造を有する(メタ)アクリレート、および複素環式構造を有する(メタ)アクリレートの合計量は、ウレタンオリゴマーまたはウレタン(メタ)アクリレートオリゴマー100質量部(固形分)に対して、10〜200質量部が好ましく、30〜150質量部が好ましい。このような範囲とすることで、中間層の貯蔵弾性率を後述する範囲に調整することが容易となる。   The total amount of the (meth) acrylate having an alicyclic structure, the (meth) acrylate having an aromatic structure, and the (meth) acrylate having a heterocyclic structure as the energy ray curable monomer is a urethane oligomer or a urethane ( 10-200 mass parts is preferable with respect to 100 mass parts (solid content) of a meth) acrylate oligomer, and 30-150 mass parts is preferable. By setting it as such a range, it becomes easy to adjust the storage elastic modulus of an intermediate | middle layer to the range mentioned later.

製膜方法としては、流延製膜(キャスト製膜)と呼ばれる手法が好ましく採用できる。具体的には、液状の配合物(上記成分の混合物を、必要に応じ溶媒で希釈した液状物)を、たとえば本発明における基材上に薄膜状にキャストした後に、塗膜にエネルギー線を照射して重合硬化させて中間層を形成する。このような製法によれば、製膜時に樹脂にかかる応力が少なく、フィッシュアイの形成が少ない。また、膜厚の均一性も高く、厚み精度は、通常2%以内になる。エネルギー線としては、具体的には、紫外線、電子線等が用いられる。また、その照射量は、エネルギー線の種類によって様々であり、たとえば紫外線を用いる場合には、紫外線強度は50〜300mW/cm、紫外線照射量は100〜1200mJ/cm程度が好ましい。 As the film forming method, a technique called casting film formation (cast film formation) can be preferably employed. Specifically, a liquid compound (a liquid product obtained by diluting a mixture of the above components with a solvent if necessary) is cast into a thin film, for example, on a substrate in the present invention, and then the coating film is irradiated with energy rays. Then, it is polymerized and cured to form an intermediate layer. According to such a manufacturing method, the stress applied to the resin during film formation is small, and the formation of fish eyes is small. Moreover, the uniformity of the film thickness is also high, and the thickness accuracy is usually within 2%. Specifically, ultraviolet rays, electron beams, etc. are used as the energy rays. Further, the irradiation amount is different depending on the type of the energy ray, for example, when ultraviolet rays are used, the ultraviolet intensity is 50~300mW / cm 2, the amount of ultraviolet irradiation is preferably about 100~1200mJ / cm 2.

該配合物には、硬化性を高めるために光重合開始剤を配合することが好ましい。このような光重合開始剤としては、粘着剤層に配合しうるものとして上述したものと同じものが挙げられる。   In order to improve curability, it is preferable to mix | blend a photoinitiator with this compound. As such a photoinitiator, the same thing as what was mentioned above as what can be mix | blended with an adhesive layer is mentioned.

光重合開始剤の使用量は、ウレタンオリゴマーおよび/またはウレタン(メタ)アクリレートオリゴマーと、エネルギー線硬化性モノマーとの合計100質量部に対して、好ましくは0.05〜15質量部、さらに好ましくは0.1〜10質量部、特に好ましくは0.3〜5質量部である。   The amount of the photopolymerization initiator used is preferably 0.05 to 15 parts by mass, more preferably 100 parts by mass with respect to a total of 100 parts by mass of the urethane oligomer and / or urethane (meth) acrylate oligomer and the energy ray curable monomer. It is 0.1-10 mass parts, Most preferably, it is 0.3-5 mass parts.

また、中間層には顔料や染料等の着色剤等の添加物が含有されていてもよい。   The intermediate layer may contain additives such as colorants such as pigments and dyes.

中間層2の23℃における貯蔵弾性率G’は、10Pa以上10Pa未満であり、好ましくは10〜9×10Pa、より好ましくは10〜8×10Paである。中間層2の23℃における貯蔵弾性率G’が10Pa未満の場合、突起状電極間に粘着剤層が追従し、突起状電極間に粘着剤層の残渣が発生することがある。また、中間層2の23℃における貯蔵弾性率G’が10Pa以上の場合、電極形成領域の外周部におけるダイシングシートの追従性が低下し、突起状電極が形成されたウエハに本発明のダイシングシートを貼付する際に、電極形成領域の外周部において、ウエハとダイシングシートとの間に噛み込む空気の量が多くなるため、空気中の酸素によりエネルギー線硬化性化合物等の活性が一部失われ、エネルギー線照射時に粘着剤層が重合不全を起こすことがある。その結果、電極形成領域の外周部において糊残りが発生するおそれがある。中間層の23℃における貯蔵弾性率G’を上記範囲に調整することで、電極形成領域の外周部におけるダイシングシートの追従性を向上させる効果がより確実に得られる。本発明のダイシングシートは、粘着剤層に対して所定の程度弾性率が低い中間層を粘着剤層と基材の間に具備することで、通常比較的弾性の高い粘着剤層のみを設けた場合と比べて、電極形成領域の外周部におけるダイシングシートの追従性が向上する。一方で、突起状電極間においては粘着剤層が追従しやすくなる傾向は見られないが、これは、電極間においては比較的弾性の高い粘着剤層が突起状電極を支柱として伸展された状態にあり、粘着剤層が形状を維持しようとする力と、中間層が電極間に侵入しようとする力とが拮抗するためと考察する。なお、中間層においてウレタン(メタ)アクリレートオリゴマーの(メタ)アクリロイル基、エネルギー線硬化性モノマーのエネルギー線重合性の二重結合等が未反応で残存しており、ダイシングシートへのエネルギー線照射前後において、中間層の23℃における貯蔵弾性率G’が変化する場合には、中間層の23℃における貯蔵弾性率G’はエネルギー線照射により中間層が硬化される前の貯蔵弾性率である。 The storage elastic modulus G ′ at 23 ° C. of the intermediate layer 2 is 10 4 Pa or more and less than 10 5 Pa, preferably 10 4 to 9 × 10 4 Pa, more preferably 10 4 to 8 × 10 4 Pa. When the storage elastic modulus G ′ at 23 ° C. of the intermediate layer 2 is less than 10 4 Pa, the adhesive layer may follow between the protruding electrodes, and a residue of the adhesive layer may be generated between the protruding electrodes. Further, when the storage elastic modulus G ′ at 23 ° C. of the intermediate layer 2 is 10 5 Pa or more, the followability of the dicing sheet in the outer peripheral portion of the electrode forming region is reduced, and the wafer of the present invention is formed on the wafer on which the protruding electrodes are formed. When attaching a dicing sheet, the amount of air that is caught between the wafer and the dicing sheet increases at the outer periphery of the electrode formation region, so that the activity of energy ray curable compounds and the like is partially due to oxygen in the air. It may be lost and the adhesive layer may fail to polymerize when irradiated with energy rays. As a result, adhesive residue may occur at the outer periphery of the electrode formation region. By adjusting the storage elastic modulus G ′ at 23 ° C. of the intermediate layer to the above range, the effect of improving the followability of the dicing sheet in the outer peripheral portion of the electrode forming region can be obtained more reliably. The dicing sheet of the present invention is provided with only an adhesive layer that is usually relatively elastic by providing an intermediate layer having a low modulus of elasticity with respect to the adhesive layer between the adhesive layer and the substrate. Compared to the case, the followability of the dicing sheet in the outer peripheral portion of the electrode formation region is improved. On the other hand, there is no tendency for the pressure-sensitive adhesive layer to follow easily between the protruding electrodes, but this is a state in which the pressure-sensitive adhesive layer having a relatively high elasticity is extended between the protruding electrodes with the protruding electrode as a column. It is considered that the force that the pressure-sensitive adhesive layer tries to maintain the shape and the force that the intermediate layer tries to penetrate between the electrodes antagonize. In the intermediate layer, the (meth) acryloyl group of the urethane (meth) acrylate oligomer, the energy ray polymerizable double bond of the energy ray curable monomer, etc. remain unreacted, and before and after the irradiation of the energy beam to the dicing sheet When the storage elastic modulus G ′ of the intermediate layer at 23 ° C. changes, the storage elastic modulus G ′ of the intermediate layer at 23 ° C. is the storage elastic modulus before the intermediate layer is cured by irradiation with energy rays.

また、中間層の厚みは、後述する突起状電極の高さの0.5〜1.5倍であることが好ましく、1.0〜1.5倍であることがより好ましい。中間層の具体的な厚みは、上記の好ましい範囲から選択し、適用されるウエハの突起状電極の高さから計算して定めればよい。中間層の厚みが上記範囲にあることで、突起状電極間におけるダイシングシートの非追従性及び電極形成領域の外周部におけるダイシングシートの追従性に優れ、ダイシング性が向上し、チッピングの発生を抑制できる。   Further, the thickness of the intermediate layer is preferably 0.5 to 1.5 times, more preferably 1.0 to 1.5 times the height of the protruding electrode described later. The specific thickness of the intermediate layer may be selected from the above preferable range and calculated from the height of the protruding electrode of the applied wafer. When the thickness of the intermediate layer is within the above range, the dicing sheet non-following property between the protruding electrodes and the dicing sheet following property in the outer periphery of the electrode forming region are excellent, the dicing property is improved, and the occurrence of chipping is suppressed. it can.

(基材3)
基材3としては、特に限定はされないが、例えば、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、ポリイミドフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、フッ素樹脂フィルム、およびその水添加物または変性物等からなるフィルムが用いられる。またこれらの架橋フィルム、共重合体フィルムも用いられる。上記の基材は1種単独でもよいし、さらにこれらを2種類以上組み合わせた複合フィルムであってもよい。
(Substrate 3)
Although it does not specifically limit as the base material 3, For example, polyethylene films, such as a low density polyethylene (LDPE) film, a linear low density polyethylene (LLDPE) film, a high density polyethylene (HDPE) film, a polypropylene film, a polybutene film, Polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, polyimide film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene (Meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film Fluororesin film, and the film is used consisting of the hydrogenated product or modified product or the like. These crosslinked films and copolymer films are also used. The above-mentioned base material may be one kind alone, or may be a composite film in which two or more kinds are combined.

また、粘着剤層および/または中間層を硬化するために照射するエネルギー線として紫外線を用いる場合には、紫外線に対して透過性を有する基材が好ましい。なお、エネルギー線として電子線を用いる場合には基材に光線透過性の必要はない。基材が着色されていると、ダイシングシートが被着体に貼付されていることを作業者が視認できるため好ましい。被着体面の視認性が求められる場合、基材は透明であることが好ましい。   Moreover, when using an ultraviolet-ray as an energy ray irradiated in order to harden an adhesive layer and / or an intermediate | middle layer, the base material which has a transmittance | permeability with respect to an ultraviolet-ray is preferable. In addition, when using an electron beam as an energy ray, the base material does not need to be light-transmitting. It is preferable that the base material is colored because an operator can visually recognize that the dicing sheet is attached to the adherend. When visibility of the adherend surface is required, the substrate is preferably transparent.

また、基材の上面、すなわち中間層が設けられる側の基材表面には中間層との密着性を向上させるために、コロナ処理を施したり、プライマー層を設けてもよい。また、中間層とは反対面に各種の塗膜を塗工してもよい。本発明に係るダイシングシートは、上記のような基材の片面に中間層を形成し、該中間層の上に粘着剤層を設けることで製造される。基材の厚みは、好ましくは20〜200μm、より好ましくは25〜110μm、特に好ましくは50〜90μmの範囲にある。基材の厚みが大きいと、基材の曲げに対抗する力が大きくなり、ピックアップ時の剥離角度が大きくなりにくい。このため、ピックアップに要する力が増加し、ピックアップ性に劣る場合がある。基材の厚みが小さい場合には、材料によっては製膜が困難となる場合があったり、ダイシングの際、ブレードが切り込んだ際に破断したりする懸念がある。   Moreover, in order to improve adhesiveness with an intermediate | middle layer, you may perform a corona treatment or a primer layer in the upper surface of a base material, ie, the base-material surface in the side in which an intermediate | middle layer is provided. Various coating films may be applied to the surface opposite to the intermediate layer. The dicing sheet according to the present invention is produced by forming an intermediate layer on one side of the base material as described above and providing an adhesive layer on the intermediate layer. The thickness of the substrate is preferably in the range of 20 to 200 μm, more preferably 25 to 110 μm, particularly preferably 50 to 90 μm. When the thickness of the substrate is large, the force against the bending of the substrate is increased, and the peeling angle at the time of pick-up is difficult to increase. For this reason, the force required for pick-up increases and the pick-up property may be inferior. When the thickness of the substrate is small, there is a concern that film formation may be difficult depending on the material, or that the blade may break when the blade is cut during dicing.

上記基材の表面に中間層を設ける方法は、中間層を構成する中間層用組成物を剥離シート上に所定の膜厚になるように塗布して中間層を形成し、上記基材の表面に転写しても構わないし、上記基材の表面に中間層用組成物を直接塗布して中間層を形成しても構わない。中間層の上に粘着剤層を設ける方法は、粘着剤組成物を用い、基材上に中間層を設ける方法と同様である。このようにして本発明に係るダイシングシートが得られる。   The method of providing the intermediate layer on the surface of the base material is formed by applying the intermediate layer composition constituting the intermediate layer on the release sheet so as to have a predetermined film thickness, and forming the intermediate layer. The intermediate layer may be formed by directly applying the intermediate layer composition onto the surface of the substrate. The method of providing the pressure-sensitive adhesive layer on the intermediate layer is the same as the method of using the pressure-sensitive adhesive composition and providing the intermediate layer on the substrate. In this way, the dicing sheet according to the present invention is obtained.

このような本発明に係るダイシングシートは、高さ15μm、直径15μmの円柱型電極が40μmのピッチで等間隔に3行3列に形成されたウエハに、その粘着剤層を介して貼付した場合に、3行3列に形成された円柱型電極の中心の電極において、該電極の高さ7.5μm以下の部分に粘着剤層が接触しないものである。つまり、図2及び図3に示すように、本発明に係るダイシングシート10は、高さ15μm、直径15μmの円柱型電極20(20a〜20i)が40μmのピッチで等間隔に3行3列に形成された領域(電極形成領域)の内周部25(図3における破線の内側)においては、粘着剤層1が電極20間に追従せず、電極20eの高さ7.5μm以下の部分に粘着剤層1が接触しない。突起状電極の代表例としての上記の寸法および配列の円柱型電極の電極間の根元部分(電極の高さ7.5μm以下の部分)に粘着剤層が接触しないように調整することにより、突起状電極の電極間に粘着剤層が追従しにくいという本発明の効果を得ることができる。このような特性は、特定厚みの粘着剤層および中間層をダイシングシートが有し、貼付時においての中間層と粘着剤層の23℃における貯蔵弾性率G’を所定の範囲とすることにより調整可能である。
また、電極形成領域の外周部26(図3における破線の外側)において、粘着剤層1が電極20に追従しウエハ30に貼着する。このため、ダイシング時における水の侵入を防ぎ、ダイシング性に優れ、チッピングの発生を防止できる。また、粘着剤層1をエネルギー線硬化することにより、その粘着力を制御できるため、チップのピックアップが容易であると共に、チップの破損を防止できる。
なお、上記の特性の評価の際における本発明のダイシングシートのウエハへの貼付は、23℃、貼付圧0.3MPa、貼付速度5mm/秒の条件下で行われる。
Such a dicing sheet according to the present invention is a case where a cylindrical electrode having a height of 15 μm and a diameter of 15 μm is pasted on a wafer formed in 3 rows and 3 columns at a pitch of 40 μm through the adhesive layer. Further, in the center electrode of the cylindrical electrode formed in 3 rows and 3 columns, the pressure-sensitive adhesive layer does not come into contact with the portion of the electrode having a height of 7.5 μm or less. That is, as shown in FIGS. 2 and 3, the dicing sheet 10 according to the present invention has cylindrical electrodes 20 (20a to 20i) having a height of 15 μm and a diameter of 15 μm arranged at equal intervals in 3 rows and 3 columns at a pitch of 40 μm. In the inner peripheral portion 25 (inside the broken line in FIG. 3) of the formed region (electrode forming region), the pressure-sensitive adhesive layer 1 does not follow between the electrodes 20, and the height of the electrode 20e is 7.5 μm or less. The adhesive layer 1 does not contact. By adjusting the pressure-sensitive adhesive layer so that it does not come into contact with the base portion (portion where the electrode height is 7.5 μm or less) between the cylindrical electrodes having the above dimensions and arrangement as representative examples of the protruding electrode, The effect of the present invention that the pressure-sensitive adhesive layer hardly follows between the electrodes of the electrode can be obtained. Such characteristics are adjusted by adjusting the storage elastic modulus G ′ at 23 ° C. of the intermediate layer and the adhesive layer at the time of application to a predetermined range in the dicing sheet having the adhesive layer and the intermediate layer having a specific thickness. Is possible.
Further, the adhesive layer 1 follows the electrode 20 and adheres to the wafer 30 at the outer peripheral portion 26 (outside the broken line in FIG. 3) of the electrode formation region. For this reason, the penetration | invasion of the water at the time of dicing is prevented, it is excellent in dicing property, and generation | occurrence | production of chipping can be prevented. Moreover, since the adhesive force can be controlled by curing the pressure-sensitive adhesive layer 1 with energy rays, the chip can be easily picked up and the chip can be prevented from being damaged.
Note that the dicing sheet of the present invention is attached to the wafer at the time of evaluation of the above characteristics under the conditions of 23 ° C., an application pressure of 0.3 MPa, and an application speed of 5 mm / second.

本発明に係るダイシングシートは、突起状電極を有する半導体ウエハの電極が形成された面に貼付されることに用いられることが好ましい。突起状電極としては、円柱型電極、球状電極等が挙げられる。本発明に係るダイシングシートは特に近年使用の増えている貫通電極を有するウエハに好適に用いることができる。半導体ウエハへのダイシングシートの貼付方法は特に限定されない。   The dicing sheet according to the present invention is preferably used for being attached to a surface on which an electrode of a semiconductor wafer having protruding electrodes is formed. Examples of the protruding electrode include a cylindrical electrode and a spherical electrode. The dicing sheet according to the present invention can be suitably used particularly for a wafer having a through electrode that has been increasingly used in recent years. The method for attaching the dicing sheet to the semiconductor wafer is not particularly limited.

次いで、ダイシングブレードなどの切断手段を用いて、半導体ウエハを回路毎に個片化して半導体チップを作製する。この際の切断深さは、半導体ウエハの厚みと、粘着剤層と中間層の厚みとの合計およびダイシングブレードの摩耗分を加味した深さにする。   Next, using a cutting means such as a dicing blade, the semiconductor wafer is separated into individual circuits to produce semiconductor chips. The cutting depth at this time is a depth that takes into account the total thickness of the semiconductor wafer, the thickness of the adhesive layer and the intermediate layer, and the wear of the dicing blade.

ダイシング後、必要に応じて本発明に係るダイシングシートをエキスパンドして各半導体チップの間隔を離間させた後、吸引コレット等の汎用手段により各半導体チップのピックアップを行うことで、半導体チップが製造される。また、粘着剤層にエネルギー線を照射し、粘着力を低下させた後、エキスパンド、ピックアップを行うことが好ましい。   After dicing, the dicing sheet according to the present invention is expanded as necessary to separate the intervals between the semiconductor chips, and then the semiconductor chips are picked up by general-purpose means such as a suction collet. The Further, it is preferable to perform expansion and pickup after irradiating the pressure-sensitive adhesive layer with energy rays to reduce the adhesive strength.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例および比較例における「追従性」、「ダイシング性」、「ピックアップ性」、「粘着剤層の残渣」および「貯蔵弾性率G’」は下記のように評価した。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples. “Followability”, “dicing property”, “pickup property”, “residue of adhesive layer” and “storage modulus G ′” in the following examples and comparative examples were evaluated as follows.

<追従性>
3行3列に40μmのピッチで等間隔に、両面に円柱型電極(高さ15μm、直径15μm)がそれぞれ突出して形成されたシリコンウエハ(直径8インチ、厚み50μm)の片面に、ダイシングシートを貼付(23℃、貼付圧0.3MPa、貼付速度5mm/秒)した。次いで、紫外線照射装置(リンテック社製 RAD−2000m/12)を用い、窒素雰囲気下にて紫外線を照射し(照度230mW/cm、光量190mJ/cm)、粘着剤層を硬化した。ウエハからダイシングシートを剥離した後、1行1列目の円柱型電極(図3の20aの円柱型電極)の痕の中心と、3行3列目の円柱型電極(図3の20iの円柱型電極)の痕の中心を結ぶ直線に沿って、剥離したダイシングシートを切断した。切断面をデジタル顕微鏡を用いて観察し、円柱型電極の頭頂部が接していた点と、粘着剤層がウエハ表面に最も接近した点の、ウエハ表面からの距離の差を求め、この差が7.5μmよりも小さくなっているか否かを確認することで、円柱型電極の高さ7.5μm以下の部分に粘着剤層が接触したか否かを判断した。
円柱型電極間に粘着剤層が追従していない場合(電極の高さ7.5μm以下の部分に粘着剤層が接触していない場合)を「A」、円柱型電極間に追従した場合を「B」と評価した。
<Followability>
A dicing sheet is placed on one side of a silicon wafer (8 inches in diameter and 50 μm in thickness) formed by projecting cylindrical electrodes (height 15 μm, diameter 15 μm) on both sides at regular intervals with a pitch of 40 μm in 3 rows and 3 columns. Pasting (23 ° C., pasting pressure 0.3 MPa, pasting speed 5 mm / second) was performed. Next, using a UV irradiation device (RAD-2000m / 12 manufactured by Lintec Corporation), UV irradiation was performed in a nitrogen atmosphere (illuminance 230 mW / cm 2 , light amount 190 mJ / cm 2 ) to cure the pressure-sensitive adhesive layer. After peeling the dicing sheet from the wafer, the center of the mark of the columnar electrode in the first row and first column (columnar electrode 20a in FIG. 3) and the columnar electrode in the third row and third column (column 20i in FIG. 3). The peeled dicing sheet was cut along a straight line connecting the centers of the traces of the mold electrode). The cut surface was observed using a digital microscope, and the difference in distance from the wafer surface between the point where the top of the cylindrical electrode was in contact and the point where the adhesive layer was closest to the wafer surface was determined. By checking whether or not it was smaller than 7.5 μm, it was determined whether or not the pressure-sensitive adhesive layer was in contact with a portion of the cylindrical electrode having a height of 7.5 μm or less.
When the pressure-sensitive adhesive layer does not follow between the cylindrical electrodes (when the pressure-sensitive adhesive layer is not in contact with the portion of the electrode height of 7.5 μm or less), “A”, and when the pressure-sensitive adhesive layer follows between the cylindrical electrodes Rated “B”.

<ダイシング性>
シリコンウエハをダイシングしてチップを得、10個の該チップにおける端部を観察し、端部において30μmより大きいチッピング(チップ端部の欠け)がない場合を「A」、30μm超、50μm以下のチッピングがある場合を「B」、50μmより大きいチッピングがある場合を「C」と評価した。なお、ダイシング条件は以下の通りである。
<Dicing property>
A silicon wafer is diced to obtain chips, and the end portions of the ten chips are observed, and the case where there is no chipping (chip chipping) larger than 30 μm at the ends is “A”, more than 30 μm and less than 50 μm The case where there was chipping was evaluated as “B”, and the case where there was chipping larger than 50 μm was evaluated as “C”. The dicing conditions are as follows.

ダイシング条件
両面に円柱型電極(高さ15μm、直径15μm)が形成されたシリコンウエハ(直径8インチ、厚み50μm)の片面に、ダイシングシートを貼付(23℃、貼付圧0.3MPa、貼付速度5mm/秒)した。ダイシング装置(ディスコ社製 DFD651)を用い、切断速度20mm/分、ダイシングシートの基材への切り込み深さ20μmでシリコンウエハのダイシングを行い、チップ(サイズ:5mm×5mm)を得た。なお、ダイシングブレードとしては、ディスコ社製ダイシングブレード(27HECC)を用い、ブレードの回転数を40000rpmとした。また、円柱型電極は40μmのピッチで等間隔に形成され、1mm当たり400個であった。
Dicing conditions A dicing sheet is pasted on one side of a silicon wafer (diameter 8 inches, thickness 50 μm) on which cylindrical electrodes (height 15 μm, diameter 15 μm) are formed on both sides (23 ° C., pasting pressure 0.3 MPa, pasting speed 5 mm) / Second). The silicon wafer was diced using a dicing apparatus (DFD651 manufactured by Disco Corporation) at a cutting speed of 20 mm / min and a cutting depth of the dicing sheet into the substrate of 20 μm to obtain a chip (size: 5 mm × 5 mm). A dicing blade (27HECC) manufactured by Disco Corporation was used as the dicing blade, and the rotation speed of the blade was set to 40000 rpm. Further, the cylindrical electrodes were formed at equal intervals with a pitch of 40 μm, and 400 pieces per 1 mm 2 .

<ピックアップ性>
シリコンウエハをダイシングしてチップを得、紫外線照射装置(リンテック社製 RAD−2000m/12)を用い、窒素雰囲気下にて紫外線を照射した(照度230mW/cm、光量190mJ/cm)。次いで、ピックアップ装置(キャノンマシナリー社製 BESTEM D02)を用いて、チップをピックアップした。チップのピックアップが可能であった場合を「A」、ピックアップできなかった場合を「B」と評価した。なお、ダイシング条件は上記の通りである。
<Pickup property>
A silicon wafer was diced to obtain a chip, and ultraviolet rays were irradiated under a nitrogen atmosphere (illuminance 230 mW / cm 2 , light amount 190 mJ / cm 2 ) using an ultraviolet irradiation device (RAD-2000m / 12 manufactured by Lintec Corporation). Next, the chip was picked up using a pickup device (BESTEM D02 manufactured by Canon Machinery Co., Ltd.). The case where the chip could be picked up was evaluated as “A”, and the case where the chip could not be picked up was evaluated as “B”. The dicing conditions are as described above.

<粘着剤層の残渣>
ピックアップ後のチップの表面を観察し、円柱型電極間および円柱型電極形成領域の外周部における粘着剤層の残渣の有無を確認した。残渣が発生しなかった場合を「A」、残渣がわずかに発生した場合を「B」、残渣が発生した場合を「C」と評価した。
<Residue of adhesive layer>
The surface of the chip after pick-up was observed, and the presence or absence of a residue of the pressure-sensitive adhesive layer was confirmed between the cylindrical electrodes and at the outer periphery of the cylindrical electrode forming region. The case where no residue was generated was evaluated as “A”, the case where a residue was slightly generated was evaluated as “B”, and the case where a residue was generated was evaluated as “C”.

<貯蔵弾性率G’>
硬化前の中間層および粘着剤層の23℃における貯蔵弾性率G’は、動的粘弾性装置(レオメトリクス社製 RDAII)により、周波数1Hz、ねじり量0.5%で測定した。
<Storage elastic modulus G '>
The storage elastic modulus G ′ at 23 ° C. of the intermediate layer and the pressure-sensitive adhesive layer before curing was measured with a dynamic viscoelastic device (RDAII manufactured by Rheometrics) at a frequency of 1 Hz and a twist amount of 0.5%.

(実施例1)
〔粘着剤組成物の作製〕
ブチルアクリレート/メチルメタクリレート/2−ヒドロキシエチルアクリレート=62/10/28(質量比)を反応させて得られたアクリル粘着性重合体と、該アクリル粘着性重合体100g当たり30.2g(アクリル粘着性重合体の2−ヒドロキシエチルアクリレート単位100モル当たり80モル)のメタクリロイルオキシエチルイソシアネート(MOI)とを反応させて得られたエネルギー線硬化型粘着性重合体(重量平均分子量:60万)100質量部、光重合開始剤(α−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティ・ケミカルズ株式会社製 イルガキュア184))3質量部、及び架橋剤(多価イソシアネート化合物(日本ポリウレタン社製 コロネートL))8.6質量部を溶媒中で混合し、粘着剤組成物を得た。なお、重量平均分子量は、市販の分子量測定機(本体製品名「HLC−8220GPC」、東ソー(株)製;カラム製品名「TSKGel SuperHZM-M」、東ソー(株)製;展開溶媒 テトラヒドロフラン)を用いて得た値である(以下、同様。)。また、質量部数は溶媒希釈された荷姿のものであっても、すべて固形分換算の値である(以下、同様。)。
Example 1
[Preparation of pressure-sensitive adhesive composition]
Acrylic adhesive polymer obtained by reacting butyl acrylate / methyl methacrylate / 2-hydroxyethyl acrylate = 62/10/28 (mass ratio), and 30.2 g (acrylic adhesive property) per 100 g of the acrylic adhesive polymer 100 parts by mass of an energy ray-curable adhesive polymer (weight average molecular weight: 600,000) obtained by reacting methacryloyloxyethyl isocyanate (MOI) of 80 mol per 100 mol of 2-hydroxyethyl acrylate unit of the polymer. , 3 parts by mass of a photopolymerization initiator (α-hydroxycyclohexyl phenyl ketone (Irgacure 184 manufactured by Ciba Specialty Chemicals Co., Ltd.)) and 8.6 masses of a crosslinking agent (polyvalent isocyanate compound (Coronate L manufactured by Nippon Polyurethane Co., Ltd.)) Part in a solvent and adhesive group A composition was obtained. The weight average molecular weight is measured using a commercially available molecular weight measuring instrument (main product name “HLC-8220GPC”, manufactured by Tosoh Corporation; column product name “TSKGel SuperHZM-M”, manufactured by Tosoh Corporation; developing solvent tetrahydrofuran). (The same applies hereinafter). Moreover, even if a mass part is a thing of the packing form diluted with a solvent, all are values of solid content conversion (hereinafter, the same).

〔中間層組成物の作製〕
水酸基価から算出した分子量4000のポリプロピレングリコール(以下PPG4000と記述)とイソホロンジイソシアネート(以下IPDIと記述)を用い、PPG4000/IPDI=6/7(質量比)を重合させて、重量平均分子量が50000のウレタンオリゴマーを得た。なお、当該重量平均分子量は、市販の分子量測定機(本体製品名「HLC−8220GPC」、東ソー(株)製;カラム製品名「TSKGel SuperHZM-M」、東ソー(株)製;展開溶媒 テトラヒドロフラン)を用いて得た値である(以下、同様。)。
[Preparation of intermediate layer composition]
Polypropylene glycol having a molecular weight of 4000 calculated from the hydroxyl value (hereinafter referred to as PPG4000) and isophorone diisocyanate (hereinafter referred to as IPDI) are polymerized to PPG4000 / IPDI = 6/7 (mass ratio) to obtain a weight average molecular weight of 50,000. A urethane oligomer was obtained. The weight average molecular weight was measured using a commercially available molecular weight measuring instrument (main product name “HLC-8220GPC”, manufactured by Tosoh Corporation; column product name “TSKGel SuperHZM-M”, manufactured by Tosoh Corporation; developing solvent tetrahydrofuran). It is the value obtained by using (hereinafter the same).

得られたウレタンオリゴマー100質量部(固形分)、エネルギー線硬化性モノマーとしてイソボルニルアクリレート90質量部(固形分)、2−ヒドロキシ−3−フェノキシプロピルアクリレート50質量部(固形分)及び光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(BASF社製 イルガキュア184、固形分濃度100質量%)2.5質量部を添加し、中間層組成物としての配合物(常温液体のエネルギー線硬化型組成物を得た。   100 parts by mass (solid content) of the obtained urethane oligomer, 90 parts by mass (solid content) of isobornyl acrylate as an energy ray curable monomer, 50 parts by mass (solid content) of 2-hydroxy-3-phenoxypropyl acrylate, and photopolymerization 2.5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184, solid concentration 100% by mass, manufactured by BASF) as an initiator is added, and a composition as an intermediate layer composition (energy ray curing of room temperature liquid) A mold composition was obtained.

〔ダイシングシートの作製〕
剥離フィルム(リンテック社製 SP−PET3811)に、上記中間層組成物を、乾燥後の厚みが15μmとなるように塗布し、紫外線を照射(照度200mW/cm、光量1000mJ/cm)して硬化し、剥離フィルム上に形成された中間層を得た。次いで、中間層と基材(エチレンメタクリル酸共重合フィルム 80μm厚)とを貼り合わせて、中間層上から剥離フィルムを剥離し、中間層を基材上に転写した。
[Production of dicing sheet]
The intermediate layer composition is applied to a release film (SP-PET3811 manufactured by Lintec Corporation) so that the thickness after drying is 15 μm, and irradiated with ultraviolet rays (illuminance 200 mW / cm 2 , light quantity 1000 mJ / cm 2 ). Cured to obtain an intermediate layer formed on the release film. Next, the intermediate layer and the substrate (ethylene methacrylic acid copolymer film 80 μm thick) were bonded together, the release film was peeled off from the intermediate layer, and the intermediate layer was transferred onto the substrate.

また、剥離フィルム(リンテック社製 SP−PET3811)に、上記粘着剤組成物を、乾燥後の厚みが10μmとなるように塗布・乾燥(乾燥条件:100℃、1分間)して、剥離フィルム上に形成された粘着剤層を得た。   In addition, the pressure-sensitive adhesive composition was applied to a release film (SP-PET3811 manufactured by Lintec Corporation) and dried (drying conditions: 100 ° C., 1 minute) so that the thickness after drying was 10 μm, and then on the release film. The pressure-sensitive adhesive layer formed was obtained.

その後、基材付き中間層と剥離フィルム付き粘着剤層とを貼り合わせ、剥離フィルムを除去してダイシングシートを得、各評価を行った。結果を表1に示す。   Then, the intermediate | middle layer with a base material and the adhesive layer with a peeling film were bonded together, the peeling film was removed, the dicing sheet was obtained, and each evaluation was performed. The results are shown in Table 1.

(実施例2)
中間層の厚みを20μmとしたこと以外は実施例1と同様にしてダイシングシートを得、各評価を行った。結果を表1に示す。
(Example 2)
A dicing sheet was obtained in the same manner as in Example 1 except that the thickness of the intermediate layer was 20 μm, and each evaluation was performed. The results are shown in Table 1.

(実施例3)
以下の中間層組成物を用い、中間層の厚みを20μmとしたこと以外は実施例1と同様にしてダイシングシートを得、各評価を行った。結果を表1に示す。
(Example 3)
A dicing sheet was obtained in the same manner as in Example 1 except that the following intermediate layer composition was used and the thickness of the intermediate layer was 20 μm, and each evaluation was performed. The results are shown in Table 1.

〔中間層組成物の作製〕
水酸基価から算出した分子量2000のポリテトラメチレングリコール(以下PTMG2000と記述)とイソホロンジイソシアネートを用い、PTMG2000/IPDI=5/6(質量比)を重合させて、重量平均分子量が35000のウレタンオリゴマーを得た。
[Preparation of intermediate layer composition]
Polymerization of PTMG2000 / IPDI = 5/6 (mass ratio) using polytetramethylene glycol (hereinafter referred to as PTMG2000) having a molecular weight of 2000 calculated from the hydroxyl value and isophorone diisocyanate to obtain a urethane oligomer having a weight average molecular weight of 35,000. It was.

得られたウレタンオリゴマー100質量部(固形分)、エネルギー線硬化性モノマーとしてイソボルニルアクリレート80質量部(固形分)、2−ヒドロキシ−3−フェノキシプロピルアクリレート60質量部(固形分)及び光重合開始剤として2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(BASF社製 ダロキュア1173、固形分濃度100質量%)2.4質量部を添加し、中間層組成物としての配合物(常温液体のエネルギー線硬化型組成物を得た。   100 mass parts (solid content) of the obtained urethane oligomer, 80 mass parts (solid content) of isobornyl acrylate as an energy ray-curable monomer, 60 mass parts (solid content) of 2-hydroxy-3-phenoxypropyl acrylate, and photopolymerization Addition of 2.4 parts by mass of 2-hydroxy-2-methyl-1-phenyl-propan-1-one (BASF Darocur 1173, solid concentration 100% by mass) as an initiator, and blending as an intermediate layer composition Product (room temperature liquid energy ray curable composition was obtained.

(実施例4)
以下の中間層組成物を用い、中間層の厚みを20μmとしたこと以外は実施例1と同様にしてダイシングシートを得、各評価を行った。結果を表1に示す。
Example 4
A dicing sheet was obtained in the same manner as in Example 1 except that the following intermediate layer composition was used and the thickness of the intermediate layer was 20 μm, and each evaluation was performed. The results are shown in Table 1.

〔中間層組成物の作製〕
水酸基価から算出した分子量4000のポリプロピレングリコールとヘキサメチレンジイソシアネート(以下HMDIと記述)を重合させて得られる末端イソシアネートウレタンプレポリマーの末端に、2−ヒドロキシエチルメタクリレート(以下HEMAと記述)を、PPG4000/HMDI/HEMA=5/6/2(質量比)で反応させ、重量平均分子量が40000のウレタン(メタ)アクリレートオリゴマーを得た。
[Preparation of intermediate layer composition]
At the end of a terminal isocyanate urethane prepolymer obtained by polymerizing polypropylene glycol having a molecular weight of 4000 calculated from the hydroxyl value and hexamethylene diisocyanate (hereinafter referred to as HMDI), 2-hydroxyethyl methacrylate (hereinafter referred to as HEMA) is added to PPG4000 / It was made to react by HMDI / HEMA = 5/6/2 (mass ratio), and the urethane (meth) acrylate oligomer whose weight average molecular weight was 40000 was obtained.

得られたウレタン(メタ)アクリレートオリゴマー100質量部(固形分)、エネルギー線硬化性モノマーとしてイソボルニルアクリレート30質量部(固形分)、2−ヒドロキシ−3−フェノキシプロピルアクリレート50質量部(固形分)及び光重合開始剤として2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(BASF社製 ダロキュア1173、固形分濃度100質量%)1.8質量部を添加し、中間層組成物としての配合物(常温液体のエネルギー線硬化型組成物を得た。   100 parts by mass (solid content) of the obtained urethane (meth) acrylate oligomer, 30 parts by mass of isobornyl acrylate (solid content) as an energy ray-curable monomer, 50 parts by mass of 2-hydroxy-3-phenoxypropyl acrylate (solid content) ) And 1.8 parts by mass of 2-hydroxy-2-methyl-1-phenyl-propan-1-one (BASF Darocur 1173, solid concentration 100% by mass) as a photopolymerization initiator, Formulation as product (room temperature liquid energy ray curable composition was obtained.

(比較例1)
中間層を用いなかったこと以外は実施例1と同様にしてダイシングシートを得、各評価を行った。結果を表1に示す。
(Comparative Example 1)
A dicing sheet was obtained in the same manner as in Example 1 except that no intermediate layer was used, and each evaluation was performed. The results are shown in Table 1.

(比較例2)
中間層を用いず、粘着剤層の厚みを25μmとしたこと以外は実施例1と同様にしてダイシングシートを得、各評価を行った。結果を表1に示す。
(Comparative Example 2)
A dicing sheet was obtained and evaluated in the same manner as in Example 1 except that the intermediate layer was not used and the thickness of the pressure-sensitive adhesive layer was 25 μm. The results are shown in Table 1.

(比較例3)
以下の中間層組成物を用いたこと以外は、実施例1と同様にしてダイシングシートを得、各評価を行った。結果を表1に示す。
(Comparative Example 3)
A dicing sheet was obtained and evaluated in the same manner as in Example 1 except that the following intermediate layer composition was used. The results are shown in Table 1.

〔中間層組成物の作製〕
水酸基価から算出した分子量4000のポリプロピレングリコールとイソホロンジイソシアネートを重合させて得られる末端イソシアネートウレタンプレポリマーの末端に、2−ヒドロキシエチルメタクリレートを、PPG4000/IPDI/HEMA=6/7/2(質量比)で反応させ、重量平均分子量が45000のウレタン(メタ)アクリレートオリゴマーを得た。
[Preparation of intermediate layer composition]
At the end of the terminal isocyanate urethane prepolymer obtained by polymerizing polypropylene glycol having a molecular weight of 4000 calculated from the hydroxyl value and isophorone diisocyanate, 2-hydroxyethyl methacrylate is added to PPG4000 / IPDI / HEMA = 6/7/2 (mass ratio). To obtain a urethane (meth) acrylate oligomer having a weight average molecular weight of 45,000.

得られたウレタン(メタ)アクリレートオリゴマー100質量部(固形分)、エネルギー線硬化性モノマーとしてイソボルニルアクリレート100質量部(固形分)、2−ヒドロキシ−3−フェノキシプロピルアクリレート130質量部(固形分)及び光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(BASF社製 イルガキュア184、固形分濃度100質量%)3.3質量部を添加し、中間層組成物としての配合物(常温液体のエネルギー線硬化型組成物を得た。   100 parts by mass (solid content) of the urethane (meth) acrylate oligomer obtained, 100 parts by mass (solid content) of isobornyl acrylate as an energy ray-curable monomer, 130 parts by mass (solid content) of 2-hydroxy-3-phenoxypropyl acrylate ) And 3.3 parts by mass of 1-hydroxy-cyclohexyl-phenyl-ketone (BASF's Irgacure 184, solid content concentration 100% by mass) as a photopolymerization initiator, and a composition (room temperature liquid) as an intermediate layer composition The energy ray-curable composition was obtained.

(比較例4)
以下の粘着剤組成物を用いたこと以外は、実施例1と同様にしてダイシングシートを得、各評価を行った。結果を表1に示す。
(Comparative Example 4)
A dicing sheet was obtained and evaluated in the same manner as in Example 1 except that the following pressure-sensitive adhesive composition was used. The results are shown in Table 1.

〔粘着剤組成物の作製〕
2−エチルヘキシルアクリレート/2−ヒドロキシエチルアクリレート=88/12(質量比)を反応させて得られたアクリル重合体(重量平均分子量:72万)100質量部、及び、架橋剤(多価イソシアネート化合物(日本ポリウレタン社製 コロネートL))0.6質量部を溶媒中で混合し、粘着剤組成物を得た。
[Preparation of pressure-sensitive adhesive composition]
100 parts by mass of an acrylic polymer (weight average molecular weight: 720,000) obtained by reacting 2-ethylhexyl acrylate / 2-hydroxyethyl acrylate = 88/12 (mass ratio), and a crosslinking agent (polyvalent isocyanate compound ( Nippon Polyurethane Co., Ltd. Coronate L)) 0.6 parts by mass was mixed in a solvent to obtain an adhesive composition.

(比較例5)
粘着剤層の厚みを40μmとしたこと以外は実施例1と同様にしてダイシングシートを得、各評価を行った。結果を表1に示す。
(Comparative Example 5)
A dicing sheet was obtained and evaluated in the same manner as in Example 1 except that the thickness of the pressure-sensitive adhesive layer was 40 μm. The results are shown in Table 1.

Figure 2013197390
Figure 2013197390

比較例1及び2のダイシングシートでは、中間層がないため、電極形成領域の外周部におけるダイシングシートの追従性が低く、粘着剤層の残渣が発生した。
また、比較例3のダイシングシートでは、中間層の23℃における貯蔵弾性率G’が大きいため、電極形成領域の外周部におけるダイシングシートの追従性が低く、粘着剤層の残渣が発生した。
また、比較例4のダイシングシートでは、粘着剤層の23℃における貯蔵弾性率G’が小さいため、電極間に粘着剤層が追従し、電極間における粘着剤層の残渣が発生し、ピックアップできなかった。
また、比較例5のダイシングシートでは、粘着剤層が厚すぎるために、電極形成領域の外周部におけるダイシングシートの追従性が不十分となり、粘着剤層の残渣が発生した。
In the dicing sheets of Comparative Examples 1 and 2, since there was no intermediate layer, the followability of the dicing sheet in the outer peripheral portion of the electrode formation region was low, and a residue of the adhesive layer was generated.
Moreover, in the dicing sheet of Comparative Example 3, since the storage elastic modulus G ′ at 23 ° C. of the intermediate layer was large, the followability of the dicing sheet at the outer peripheral portion of the electrode forming region was low, and a residue of the adhesive layer was generated.
In the dicing sheet of Comparative Example 4, since the storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer is small, the pressure-sensitive adhesive layer follows between the electrodes, and a residue of the pressure-sensitive adhesive layer between the electrodes is generated and picked up. There wasn't.
Moreover, in the dicing sheet of Comparative Example 5, since the pressure-sensitive adhesive layer was too thick, the followability of the dicing sheet in the outer peripheral portion of the electrode formation region was insufficient, and a pressure-sensitive adhesive layer residue was generated.

10:ダイシングシート
1 :粘着剤層
2 :中間層
3 :粘着剤層
20(20a〜20i):円柱型電極
30:半導体ウエハ

DESCRIPTION OF SYMBOLS 10: Dicing sheet 1: Adhesive layer 2: Intermediate layer 3: Adhesive layer 20 (20a-20i): Cylindrical electrode 30: Semiconductor wafer

Claims (9)

基材と、その片面に設けられた含ウレタン硬化物からなる中間層と、中間層の上に設けられた厚みが8〜30μmの粘着剤層とからなり、
中間層の23℃における貯蔵弾性率G’が10Pa以上10Pa未満であり、
粘着剤層が、エネルギー線硬化性二重結合を分子内に有する化合物を含有し、
粘着剤層の23℃における貯蔵弾性率G’が3×10Pa以上であり、
高さ15μm、直径15μmの円柱型電極が40μmのピッチで等間隔に3行3列に形成されたウエハに、粘着剤層を介して貼付した場合に、3行3列に形成された円柱型電極の中心の電極において、該電極の高さ7.5μm以下の部分に粘着剤層が接触しないことを特徴とするダイシングシート。
It consists of a base material, an intermediate layer made of a urethane-containing cured product provided on one side thereof, and an adhesive layer having a thickness of 8 to 30 μm provided on the intermediate layer,
The storage elastic modulus G ′ at 23 ° C. of the intermediate layer is 10 4 Pa or more and less than 10 5 Pa,
The pressure-sensitive adhesive layer contains a compound having an energy ray-curable double bond in the molecule,
The storage elastic modulus G ′ at 23 ° C. of the pressure-sensitive adhesive layer is 3 × 10 5 Pa or more,
When a cylindrical electrode having a height of 15 μm and a diameter of 15 μm is pasted through a pressure-sensitive adhesive layer on a wafer in which a cylindrical electrode having a pitch of 40 μm is formed at equal intervals in 3 rows and 3 columns, a cylindrical shape formed in 3 rows and 3 columns A dicing sheet characterized in that, in the electrode at the center of the electrode, the pressure-sensitive adhesive layer does not contact a portion of the electrode having a height of 7.5 μm or less.
中間層が、重量平均分子量10000以上のウレタンオリゴマーと、分子量1000未満のエネルギー線硬化性モノマーと、光重合開始剤とを含む配合物の硬化物である請求項1に記載のダイシングシート。   The dicing sheet according to claim 1, wherein the intermediate layer is a cured product of a blend containing a urethane oligomer having a weight average molecular weight of 10,000 or more, an energy ray-curable monomer having a molecular weight of less than 1000, and a photopolymerization initiator. エネルギー線硬化性二重結合を分子内に有する化合物が、重合体の主鎖または側鎖に、エネルギー線重合性基が結合されてなるエネルギー線硬化型粘着性重合体を含む請求項1または2に記載のダイシングシート。   The compound having an energy ray curable double bond in the molecule includes an energy ray curable adhesive polymer in which an energy ray polymerizable group is bonded to the main chain or side chain of the polymer. The dicing sheet described in 1. 粘着剤層が、反応性官能基を有するアクリル重合体および架橋剤を含有し、
アクリル重合体100質量部に対して、架橋剤を5質量部以上含有することを特徴とする請求項1〜3のいずれかに記載のダイシングシート。
The pressure-sensitive adhesive layer contains an acrylic polymer having a reactive functional group and a crosslinking agent,
The dicing sheet according to any one of claims 1 to 3, comprising 5 parts by mass or more of a crosslinking agent with respect to 100 parts by mass of the acrylic polymer.
架橋剤がイソシアネート系架橋剤であることを特徴とする請求項4に記載のダイシングシート。   The dicing sheet according to claim 4, wherein the crosslinking agent is an isocyanate-based crosslinking agent. 突起状電極が設けられたウエハに貼付して用いることを特徴とする請求項1〜5のいずれかに記載のダイシングシート。   The dicing sheet according to any one of claims 1 to 5, wherein the dicing sheet is used by being attached to a wafer provided with a protruding electrode. 突起状電極が、貫通電極である請求項6に記載のダイシングシート。   The dicing sheet according to claim 6, wherein the protruding electrode is a through electrode. 中間層が、突起状電極の高さの0.5〜1.5倍の厚みであることを特徴とする請求項6または7に記載のダイシングシート。   The dicing sheet according to claim 6 or 7, wherein the intermediate layer has a thickness of 0.5 to 1.5 times the height of the protruding electrode. 突起状電極を有する半導体ウエハの電極が形成された面に、請求項1〜8のいずれかに記載のダイシングシートを貼付する工程、該半導体ウエハを回路ごとに個片化して半導体チップを作製する工程、半導体チップをピックアップする工程を含む半導体チップの製造方法。
A step of attaching the dicing sheet according to any one of claims 1 to 8 to a surface of a semiconductor wafer having a protruding electrode, wherein the semiconductor wafer is separated into pieces for each circuit to produce a semiconductor chip. A method of manufacturing a semiconductor chip, comprising a step of picking up a semiconductor chip.
JP2012064155A 2012-03-21 2012-03-21 Dicing sheet and method of manufacturing semiconductor chip Pending JP2013197390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012064155A JP2013197390A (en) 2012-03-21 2012-03-21 Dicing sheet and method of manufacturing semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064155A JP2013197390A (en) 2012-03-21 2012-03-21 Dicing sheet and method of manufacturing semiconductor chip

Publications (1)

Publication Number Publication Date
JP2013197390A true JP2013197390A (en) 2013-09-30

Family

ID=49395957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064155A Pending JP2013197390A (en) 2012-03-21 2012-03-21 Dicing sheet and method of manufacturing semiconductor chip

Country Status (1)

Country Link
JP (1) JP2013197390A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102342A1 (en) * 2014-01-03 2015-07-09 주식회사 엘지화학 Dicing film and dicing die bonding film
KR20150081232A (en) * 2014-01-03 2015-07-13 주식회사 엘지화학 Dicing film and dicing die-bonding film
WO2016002387A1 (en) * 2014-06-30 2016-01-07 Dic株式会社 Ultraviolet ray-curable adhesive agent composition, adhesive film, and production method for adhesive film
WO2016139840A1 (en) * 2015-03-02 2016-09-09 リンテック株式会社 Dicing sheet and method for manufacturing semiconductor chip
JPWO2015111310A1 (en) * 2014-01-21 2017-03-23 リンテック株式会社 Wafer protection adhesive sheet
JP2020102492A (en) * 2018-12-20 2020-07-02 三井化学東セロ株式会社 Manufacturing method of electronic device
CN113508167A (en) * 2019-03-07 2021-10-15 琳得科株式会社 Solid wafer and method for manufacturing semiconductor chip with film-like adhesive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053819A (en) * 2000-08-08 2002-02-19 Mitsui Chemicals Inc Tacky film for protecting semiconductor wafer surface and method for protecting semiconductor wafer surface by using the same film
JP2002141309A (en) * 2000-11-02 2002-05-17 Lintec Corp Dicing sheet and method of using the same
JP2005340796A (en) * 2004-04-28 2005-12-08 Mitsui Chemicals Inc Surface protecting film for semiconductor wafer and protecting method of semiconductor wafer using the protecting film
JP2011054940A (en) * 2009-08-07 2011-03-17 Nitto Denko Corp Adhesive sheet for supporting and protecting semiconductor wafer and method for grinding back of semiconductor wafer
JP2011258636A (en) * 2010-06-07 2011-12-22 Furukawa Electric Co Ltd:The Adhesive tape for wafer dicing process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053819A (en) * 2000-08-08 2002-02-19 Mitsui Chemicals Inc Tacky film for protecting semiconductor wafer surface and method for protecting semiconductor wafer surface by using the same film
JP2002141309A (en) * 2000-11-02 2002-05-17 Lintec Corp Dicing sheet and method of using the same
JP2005340796A (en) * 2004-04-28 2005-12-08 Mitsui Chemicals Inc Surface protecting film for semiconductor wafer and protecting method of semiconductor wafer using the protecting film
JP2011054940A (en) * 2009-08-07 2011-03-17 Nitto Denko Corp Adhesive sheet for supporting and protecting semiconductor wafer and method for grinding back of semiconductor wafer
JP2011258636A (en) * 2010-06-07 2011-12-22 Furukawa Electric Co Ltd:The Adhesive tape for wafer dicing process

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761476B2 (en) 2014-01-03 2017-09-12 Lg Chem, Ltd. Dicing film and dicing die-bonding film
KR20150081232A (en) * 2014-01-03 2015-07-13 주식회사 엘지화학 Dicing film and dicing die-bonding film
WO2015102342A1 (en) * 2014-01-03 2015-07-09 주식회사 엘지화학 Dicing film and dicing die bonding film
JP2017508304A (en) * 2014-01-03 2017-03-23 エルジー・ケム・リミテッド Dicing film and dicing die bonding film
KR101722137B1 (en) * 2014-01-03 2017-03-31 주식회사 엘지화학 Dicing film and dicing die-bonding film
JPWO2015111310A1 (en) * 2014-01-21 2017-03-23 リンテック株式会社 Wafer protection adhesive sheet
WO2016002387A1 (en) * 2014-06-30 2016-01-07 Dic株式会社 Ultraviolet ray-curable adhesive agent composition, adhesive film, and production method for adhesive film
JP5943230B2 (en) * 2014-06-30 2016-07-05 Dic株式会社 UV-curable adhesive composition, adhesive film, and method for producing adhesive film
JPWO2016002387A1 (en) * 2014-06-30 2017-04-27 Dic株式会社 UV-curable adhesive composition, adhesive film, and method for producing adhesive film
WO2016139840A1 (en) * 2015-03-02 2016-09-09 リンテック株式会社 Dicing sheet and method for manufacturing semiconductor chip
CN107078037A (en) * 2015-03-02 2017-08-18 琳得科株式会社 The manufacture method of cutting sheet and semiconductor chip
KR20170121146A (en) 2015-03-02 2017-11-01 린텍 가부시키가이샤 Dicing sheet and method for manufacturing semiconductor chip
JPWO2016139840A1 (en) * 2015-03-02 2017-12-14 リンテック株式会社 Dicing sheet and semiconductor chip manufacturing method
JP2020102492A (en) * 2018-12-20 2020-07-02 三井化学東セロ株式会社 Manufacturing method of electronic device
JP7285068B2 (en) 2018-12-20 2023-06-01 三井化学東セロ株式会社 Electronic device manufacturing method
CN113508167A (en) * 2019-03-07 2021-10-15 琳得科株式会社 Solid wafer and method for manufacturing semiconductor chip with film-like adhesive
CN113508167B (en) * 2019-03-07 2023-08-18 琳得科株式会社 Method for manufacturing die-attach sheet and semiconductor chip with film-like adhesive

Similar Documents

Publication Publication Date Title
JP5975621B2 (en) Dicing sheet and semiconductor chip manufacturing method
JP5762781B2 (en) Base film and pressure-sensitive adhesive sheet provided with the base film
JP6475901B2 (en) Adhesive tape for semiconductor processing and method for manufacturing semiconductor device
JP6623210B2 (en) Dicing sheet and semiconductor chip manufacturing method
KR101893937B1 (en) Base film and pressure-sensitive adhesive sheet provided therewith
JP2013197390A (en) Dicing sheet and method of manufacturing semiconductor chip
KR102085533B1 (en) Film, sheet substrate for processing workpiece, and sheet for processing workpiece
KR20210023871A (en) Adhesive tape for semiconductor processing and manufacturing method of semiconductor device
TW202016234A (en) Semiconductor processing adhesive tape and method of manufacturing semiconductor device
WO2014061774A1 (en) Adhesive sheet for processing electronic component and method for manufacturing semiconductor device
JP5904809B2 (en) Sheet and pressure-sensitive adhesive sheet using the sheet
JP6009189B2 (en) Adhesive sheet for processing electronic parts and method for manufacturing semiconductor device
JP6717484B2 (en) Adhesive sheet
JP6006953B2 (en) Adhesive sheet for processing electronic parts and method for manufacturing semiconductor device
KR20210122087A (en) Protective sheet for semiconductor processing and method for manufacturing semiconductor apparatus
CN113471129A (en) Protective sheet for semiconductor processing and method for manufacturing semiconductor device
TW202239911A (en) Adhesive sheet for semiconductor processing and method for producing semiconductor device
CN117099185A (en) Adhesive tape for semiconductor processing and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160816