JP2013195747A5 - - Google Patents

Download PDF

Info

Publication number
JP2013195747A5
JP2013195747A5 JP2012063354A JP2012063354A JP2013195747A5 JP 2013195747 A5 JP2013195747 A5 JP 2013195747A5 JP 2012063354 A JP2012063354 A JP 2012063354A JP 2012063354 A JP2012063354 A JP 2012063354A JP 2013195747 A5 JP2013195747 A5 JP 2013195747A5
Authority
JP
Japan
Prior art keywords
lens
optical system
positive lens
νdpa
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063354A
Other languages
Japanese (ja)
Other versions
JP5896800B2 (en
JP2013195747A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012063354A priority Critical patent/JP5896800B2/en
Priority claimed from JP2012063354A external-priority patent/JP5896800B2/en
Publication of JP2013195747A publication Critical patent/JP2013195747A/en
Publication of JP2013195747A5 publication Critical patent/JP2013195747A5/ja
Application granted granted Critical
Publication of JP5896800B2 publication Critical patent/JP5896800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

このためレトロフォーカス型の光学系では、広画角化を図りつつ、色収差と、球面収差、コマ収差、非点収差などの諸収差をバランス良く補正することが困難である。レトロフォーカス型の光学系において、色収差と球面収差、コマ収差、非点収差等の諸収差とをバランス良く補正するには、特に開口絞よりも像側の正の屈折力の後方レンズ群のレンズ構
成を適切に設定することが重要となってくる。
Therefore, it is difficult for a retrofocus optical system to correct chromatic aberration and various aberrations such as spherical aberration, coma aberration, and astigmatism in a well-balanced manner while achieving a wide angle of view. In the retrofocus type optical system, chromatic and spherical aberration, coma, and aberrations in a good balance correction of such astigmatism, in particular the image side of the Ri aperture opening of the positive refractive power of the rear lens group It is important to set the lens configuration appropriately.

本発明の光学系は、物体側より像側へ順に、第1レンズ群、開口絞り、正の屈折力の第2レンズ群からなり、
最も物体側のレンズ面を通過する近軸軸上光線の光軸からの高さが、光軸と瞳近軸光線との交点より像側において近軸軸上光線がレンズ面を通過する光軸からの高さの最大値よりも小さい光学系であって
前記第2レンズ群は、正レンズAと正レンズBを有し、前記レンズAの材料のアッベ数と部分分散比を各々νdpA、θgFpA、前記レンズBの材料のアッベ数と部分分散比を各々νdpB、θgFpBとするとき、
17<νdpA<25
0.02<θgFpA−0.6438+0.001682×νdpA<0.05
60<νdpB<100
0.001<θgFpB−0.6438+0.001682×νdpB<0.060
なる条件式を満足することを特徴としている。
The optical system of the present invention includes, in order from the object side to the image side, a first lens group, an aperture stop, and a second lens group having a positive refractive power.
The height from the optical axis of the paraxial light beam that passes through the lens surface closest to the object is the optical axis through which the paraxial light beam passes through the lens surface on the image side from the intersection of the optical axis and pupil paraxial light beam. a smaller optics than the maximum value of the height from,
The second lens group has a positive lens A and a positive lens B, wherein each material Abbe numbers and parts partial dispersion ratio of the positive lens A νdpA, θgFpA, Abbe number of the positive lens B materials and parts min When the dispersion ratios are νdpB and θgFpB, respectively.
17 <νdpA <25
0.02 <θgFpA−0.6438 + 0.001682 × νdpA <0.05
60 <νdpB <100
0.001 <θgFpB−0.6438 + 0.001682 × νdpB <0.060
It satisfies the following conditional expression.

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明の光学系は、物体側より像側へ順に、第1レンズ群、開口絞り、正の屈折力の第2レンズ群を有している。また、本発明の光学系は最も物体側のレンズ面を通過する近軸軸上光線の光軸からの高さが、光軸と瞳近軸光線との交点Pより像側で近軸軸上光線がレンズ面を通過する光軸からの高さの最大値よりも小さいレトロフォーカス型より成っている。なお、近軸軸上光線とは、光学系全系の焦点距離を1に正規化したとき、光学系の光軸と平行に、光軸からの高さを1として入射させた近軸光線である。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The optical system of the present invention includes, in order from the object side to the image side, a first lens group, an aperture stop, and a second lens group having a positive refractive power. In the optical system of the present invention, the height from the optical axis of the paraxial ray passing through the lens surface closest to the object side is on the paraxial axis on the image side from the intersection P between the optical axis and the pupil paraxial ray. It consists of a retrofocus type that is smaller than the maximum height from the optical axis through which the light beam passes the lens surface. Note that the paraxial light beam is a paraxial light beam that is incident with the height from the optical axis set to 1 in parallel with the optical axis of the optical system when the focal length of the entire optical system is normalized to 1. is there.

図1は、本発明の光学系の実施例1のレンズ断面図、図2は実施例1の光学系の無限合焦状態の収差図である。図3は、本発明の光学系の実施例2のレンズ断面図、図4は実施例2の光学系の無限合焦状態の収差図である。図5は、本発明の光学系の実施例3のレンズ断面図、図6は実施例3の光学系の無限合焦状態の収差図である。図は本発明の撮像装置の要部概略図である。 FIG. 1 is a lens cross-sectional view of Example 1 of the optical system of the present invention, and FIG. 2 is an aberration diagram of the optical system of Example 1 in an infinitely focused state. 3 is a lens cross-sectional view of Example 2 of the optical system of the present invention, and FIG. 4 is an aberration diagram of the optical system of Example 2 in an infinitely focused state. FIG. 5 is a lens cross-sectional view of Example 3 of the optical system of the present invention, and FIG. 6 is an aberration diagram of the optical system of Example 3 in an infinitely focused state. FIG. 7 is a schematic view of the main part of the imaging apparatus of the present invention.

レンズ断面図において、LAは光学系である。光学系LAは開口絞りSPを挟んで物体側に負の屈折力の第1レンズ群L1と像側に正の屈折力の第2レンズ群L2を有している。LFはフォーカシングに際して移動するフォーカスレンズ群である。フォーカスレンズ群LFは第1レンズ群L1の一部と第2レンズ群L2より構成されている。フォーカスレンズ群LFは無限遠物体から近距離物体へのフォーカシングに際して矢印の如く物体側へ移動する。 In the lens cross-sectional view, LA is an optical system. The optical system LA has a first lens unit L1 having negative refractive power on the object side and a second lens unit L2 having positive refractive power on the image side with the aperture stop SP interposed therebetween. LF is a focus lens group that moves during focusing. The focus lens group LF is composed of a part and a second lens group L2 in the first lens unit L1. The focus lens unit LF moves to the object side as indicated by an arrow during focusing from an infinitely distant object to a close object.

各実施例の光学系において、第2レンズ群L2は2つ以上の正の屈折力のレンズ(以下「正レンズ」という。)を有している。2つ以上の正レンズのうちの1つの正レンズをレンズA、他の1つの正レンズをレンズBとする。レンズAの材料のアッベ数と、部分分散比を各々νdpA、θgFpA、レンズBの材料のアッベ数と、部分分散比を各々νdpB、θgFpBとする。 In the optical system of each embodiment, the second lens unit L2 includes two or more lenses having a positive refractive power (hereinafter referred to as “positive lenses”). One of the two or more positive lenses is a positive lens A, and the other positive lens is a positive lens B. The Abbe number and partial dispersion ratio of the material of the positive lens A are νdpA and θgFpA, respectively. The Abbe number of the material of the positive lens B and the partial dispersion ratio are νdpB and θgFpB, respectively.

条件式(1a)、(1b)、(2a)、(2b)は第2レンズ群L2内のレンズAとレンズBの材料のアッベ数と異常分散を適切に設定することでレンズ系全体の色収差を良好に補正するための条件である。高分散の異常分散硝材が色収差の補正の分担をすることで、レンズの屈折力の増加を抑え色収差とその他の諸収差の補正を容易にしている。条件式(1a)、(1b)、(2a)、(2b)を同時に満足することによって光学系全体で諸収差の悪化を軽減しつつ、色収差を良好に補正している。 Conditional expressions (1a), (1b), (2a), and (2b) are obtained by appropriately setting the Abbe number and anomalous dispersion of the materials of the positive lens A and the positive lens B in the second lens unit L2. This is a condition for satisfactorily correcting the chromatic aberration. The high dispersion anomalous dispersion glass material shares the correction of chromatic aberration, thereby suppressing the increase of the refractive power of the lens and facilitating correction of chromatic aberration and other various aberrations. By satisfying the conditional expressions (1a), (1b), (2a), and (2b) at the same time, the chromatic aberration is corrected well while reducing the deterioration of various aberrations in the entire optical system.

各実施例では高分散、高屈折率の材料よりなるレンズAを第2レンズ群L2中の最も像側に配置することで、諸収差の発生を抑えつつ倍率色収差の2次スペクトルの曲がりの補正を効果的に行っている。また、バックフォーカスを長くすることを容易にしている。実施例1、2、3においてはレンズAが条件式(1a)、(1b)を満足する。実施例1においては2つのレンズB1、B2、実施例2においては1つのレンズB1、実施例3においては1つのレンズB1が条件式(2a)、(2b)を満足するレンズBに相当している。 In each embodiment, the positive lens A made of a material having a high dispersion and a high refractive index is arranged on the most image side in the second lens unit L2, thereby suppressing the occurrence of various aberrations and bending of the secondary spectrum of lateral chromatic aberration. The correction is performed effectively. In addition, it is easy to increase the back focus. In Examples 1, 2, and 3, the positive lens A satisfies the conditional expressions (1a) and (1b). In the first embodiment, two lenses B1 and B2, one lens B1 in the second embodiment, and one lens B1 in the third embodiment correspond to the positive lens B that satisfies the conditional expressions (2a) and (2b). ing.

また、低分散の材料よりなるレンズBを実施例1においては2つ、実施例2と実施例3においては各1つ、第2レンズ群L2中に配置することでレンズAとの分散のバランスをとり、第2レンズ群L2において色収差を良好に補正している。 The two in the embodiment 1 of the positive lens B consisting of the low-dispersion material, each one in Examples 2 and 3, the dispersion of the positive lens A by placing in the second lens group L2 Thus, the chromatic aberration is corrected well in the second lens unit L2.

条件式(1a)、(2a)の下限を超えてレンズAとレンズBの材料の分散が大きくなりすぎると、色収差が過補正となりよくない。条件式(1a)、(2a)の上限を超えてレンズAとレンズBの材料の分散が小さくなりすぎると、色収差の補正効果が小さくなりよくない。もしくは同等の効果を得るために各レンズのパワーを増加させなければならなくなり諸収差の良好な補正が困難となる。より好ましくは、条件式(1a)、(1b)、(2a)、(2b)の数値範囲を次の如く設定するのがよい。
18<νdpA<24 ・・・(1aa)
0.022<θgFpA−0.6438+0.001682×νdpA<0.040
・・・(1bb)
63<νdpB<96 ・・・(2aa)
0.012<θgFpB−0.6438+0.001682×νdpB<0.052
・・・(2bb)
各実施例では以上のように構成することにより広画角でありながら色収差を良好に補正し、高い光学性能を有した光学系を得ている。各実施例において更に好ましくは次の諸条件のうち1以上を満足するのが良い。レンズAの焦点距離をfpA、レンズBの焦点距離をfpB、全系の焦点距離をfとする。
If the dispersion of the materials of the positive lens A and the positive lens B becomes too large beyond the lower limits of the conditional expressions (1a) and (2a), chromatic aberration is not overcorrected. If the dispersion of the materials of the positive lens A and the positive lens B becomes too small beyond the upper limits of the conditional expressions (1a) and (2a), the correction effect of chromatic aberration is not likely to be small. Or, in order to obtain an equivalent effect, the power of each lens must be increased, and it is difficult to correct various aberrations. More preferably, the numerical ranges of the conditional expressions (1a), (1b), (2a), and (2b) are set as follows.
18 <νdpA <24 (1aa)
0.022 <θgFpA−0.6438 + 0.001682 × νdpA <0.040
... (1bb)
63 <νdpB <96 (2aa)
0.012 <θgFpB−0.6438 + 0.001682 × νdpB <0.052
... (2bb)
In each embodiment, by configuring as described above, chromatic aberration is corrected well with a wide angle of view, and an optical system having high optical performance is obtained. In each embodiment, it is more preferable to satisfy one or more of the following conditions. The focal length of the positive lens A is fpA, the focal length of the positive lens B is fpB, and the focal length of the entire system is f.

第1レンズ群L1は物体側から像側へ順に、連続して配置された2枚以上の負レンズを有している。そして連続した2つ以上の負レンズのうち、1つの負レンズをレンズCとし、レンズCの材料のアッベ数と部分分散比を各々νdnC、θgFnCとする。レンズCの焦点距離をfnCとする。 The first lens unit L1 includes two or more negative lenses that are sequentially arranged from the object side to the image side. Of the two or more consecutive negative lenses, one negative lens is a negative lens C, and the Abbe number and partial dispersion ratio of the material of the negative lens C are νdnC and θgFnC, respectively. Let the focal length of the negative lens C be fnC.

このとき、次の条件式のうち1以上を満足するのが良い。
20<νdpA×fpA/f<70 ・・・(3)
1.2<(νdpB×fpB)/(νdpA×fpA)<6.0 ・・・(4)
2<|(νdnC×fnC)/(νdpA×fpA)|<14 ・・・(5a)
0.001<θgFnC−0.6438+0.001682×νdnC<0.060
・・・(5b)
次に前述した各条件式の技術的意味について説明する。条件式(3)はレンズAの材料のアッベ数と焦点距離に関し、レンズAの色消しの強さを適切に設定することで色収差を良好に補正するための条件である。条件式(3)の下限を超えるとレンズAの色消しが強くなりすぎて、色収差が過補正となりよくない。
At this time, it is preferable to satisfy one or more of the following conditional expressions.
20 <νdpA × fpA / f <70 (3)
1.2 <(νdpB × fpB) / (νdpA × fpA) <6.0 (4)
2 <| (νdnC × fnC) / (νdpA × fpA) | <14 (5a)
0.001 <θgFnC−0.6438 + 0.001682 × νdnC <0.060
... (5b)
Next, the technical meaning of each conditional expression described above will be described. Condition (3) relates to the Abbe number and the focal length of the positive lens A material, the strength of the achromatic positive lens A by appropriately setting a condition for well correcting chromatic aberration. When the lower limit of conditional expression (3) is exceeded, the achromaticity of the positive lens A becomes too strong, and chromatic aberration is not overcorrected.

もしくは正の屈折力の第2レンズ群L2全体の過補正を防ぐために第2レンズ群L2中の負レンズにレンズAと同程度以上の高分散な材料を用いる必要がある。一般的に高分散材料は部分分散比θgFも大きくなるため、レンズAの色消し効果を打ち消してしまいよくない。 Alternatively, in order to prevent overcorrection of the entire second lens unit L2 having a positive refractive power, it is necessary to use a highly dispersed material that is equal to or higher than the positive lens A for the negative lens in the second lens unit L2. In general, a high dispersion material has a large partial dispersion ratio θgF, which is not good for canceling the achromatic effect of the positive lens A.

条件式(3)の上限を超えるとレンズAの色消しが弱くなりすぎて、良好な色収差の補正が困難となるためよくない。より好ましくは条件式(3)の数値範囲を次の如く設定するのがよい。
25<νdpA×fpA/f<60 ・・・(3a)
If the upper limit of conditional expression (3) is exceeded, the achromaticity of the positive lens A becomes too weak, and it is difficult to correct chromatic aberration, which is not good. More preferably, the numerical range of conditional expression (3) is set as follows.
25 <νdpA × fpA / f <60 (3a)

条件式(4)はレンズAとレンズBの色消しの強さの比に関し、色消しの強さのバランスを適切に設定することで色収差を良好に補正するための条件である。条件式(4)の下限を超えるとレンズAの色消しが強くなりすぎて、2次スペクトルの曲がりに対する補正効果は大きくなるが、1次の色収差が過補正となりよくない。条件式(4)の上限を超えるとレンズBの色消しが強くなりすぎて、低分散な硝材で強い色消しをすることになるためにレンズの屈折力を増加しなければならず、色以外の諸収差が悪化するためよくない。 Conditional expression (4) relates to the ratio of the achromatic intensity between the positive lens A and the positive lens B, and is a condition for correcting chromatic aberration satisfactorily by appropriately setting the achromatic intensity balance. If the lower limit of the conditional expression (4) is exceeded, the achromaticity of the positive lens A becomes too strong, and the correction effect for the curvature of the secondary spectrum becomes large, but the primary chromatic aberration is not overcorrected. If the upper limit of conditional expression (4) is exceeded, the achromaticity of the positive lens B becomes too strong, and the achromaticity of the positive lens B will be strongly achromatic, so the refractive power of the lens must be increased. Various aberrations other than that are not good.

より好ましくは、条件式(4)の数値範囲を次の如く設定するのがよい。
1.5<(νdpB×fpB)/(νdpA×fpA)<5.0
・・・(4a)
条件式(5a)はレンズAとレンズCの色消しの強さの比に関し、色消しの強さのバランスを適切に設定することで倍率色収差を良好に補正するための条件である。条件式(5a)の下限を超えるとレンズCの色消しが強くなりすぎて、特に1次の倍率色収差が過補正となりよくない。条件式(5a)の上限を超えるとレンズCの色消しが弱くなりすぎて、物体側のレンズの屈折力を下げなければならず、物体側のレンズの有効径(前玉有効径)が大型化するためよくない。
More preferably, the numerical range of conditional expression (4) is set as follows.
1.5 <(νdpB × fpB) / (νdpA × fpA) <5.0
... (4a)
Conditional expression (5a) relates to the ratio of the achromatic intensity of the positive lens A and the negative lens C, and is a condition for properly correcting the lateral chromatic aberration by appropriately setting the balance of the achromatic intensity. If the lower limit of conditional expression (5a) is exceeded, the achromaticity of the negative lens C becomes too strong, and in particular primary chromatic aberration of magnification is not overcorrected. If the upper limit of conditional expression (5a) is exceeded, the achromaticity of the negative lens C becomes too weak, and the refractive power of the object side lens must be lowered, and the effective diameter of the object side lens (front lens effective diameter) is It is not good because it is large.

より好ましくは条件式(5a)の数値範囲を次の如く設定するのがよい。
3<|(νdpC×fpC)/(νdpA×fpA)|<13・・・(5aa)
条件式(5b)はレンズCの材料の部分分散比に関し、倍率色収差の2次スペクトルの曲がりを良好に補正するための条件である。また、実施例1においては3つのレンズC1、C2、C3、実施例2においては1つのレンズC1、実施例3においては2つのレンズC1、C2が条件式(5a)、(5b)を満たすレンズCに相当する。これらの負レンズを配置することで効果的に倍率色収差の補正を行っている。
More preferably, the numerical range of conditional expression (5a) should be set as follows.
3 <| (νdpC × fpC) / (νdpA × fpA) | <13 (5aa)
Conditional expression (5b) relates to the partial dispersion ratio of the material of the negative lens C, and is a condition for satisfactorily correcting the bending of the secondary spectrum of lateral chromatic aberration. In Example 1, three lenses C 1 , C 2 , C 3 , in Example 2, one lens C 1 , and in Example 3, two lenses C 1 , C 2 are conditional expressions (5a), This corresponds to the negative lens C satisfying (5b). By arranging these negative lenses, the lateral chromatic aberration is effectively corrected.

図7は各実施例の光学系を用いたデジタルスチルカメラの要部概略図である。図7において20はカメラ本体、21は各実施例で説明したいずれかの光学系によって構成された撮影光学系である。22はカメラ本体20に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(撮像素子)(光電変換素子)である。 FIG. 7 is a schematic diagram of a main part of a digital still camera using the optical system of each embodiment. In FIG. 7, reference numeral 20 denotes a camera body, and 21 denotes a photographing optical system constituted by any one of the optical systems described in each embodiment. Reference numeral 22 denotes a solid-state imaging device (imaging device) (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 21 and is built in the camera body 20.

Claims (8)

物体側より像側へ順に、第1レンズ群、開口絞り、正の屈折力の第2レンズ群からなり、
最も物体側のレンズ面を通過する近軸軸上光線の光軸からの高さが、光軸と瞳近軸光線との交点より像側において近軸軸上光線がレンズ面を通過する光軸からの高さの最大値よりも小さい光学系であって
前記第2レンズ群は、正レンズAと正レンズBを有し、前記レンズAの材料のアッベ数と部分分散比を各々νdpA、θgFpA、前記レンズBの材料のアッベ数と部分分散比を各々νdpB、θgFpBとするとき、
17<νdpA<25
0.02<θgFpA−0.6438+0.001682×νdpA<0.05
60<νdpB<100
0.001<θgFpB−0.6438+0.001682×νdpB<0.060
なる条件式を満足することを特徴とする光学系。
In order from the object side to the image side, the first lens unit, an aperture stop, and a second lens unit having a positive refractive power,
The height from the optical axis of the paraxial light beam that passes through the lens surface closest to the object is the optical axis through which the paraxial light beam passes through the lens surface on the image side from the intersection of the optical axis and pupil paraxial light beam. a smaller optics than the maximum value of the height from,
The second lens group has a positive lens A and a positive lens B, wherein each material Abbe numbers and parts partial dispersion ratio of the positive lens A νdpA, θgFpA, Abbe number of the positive lens B materials and parts min When the dispersion ratios are νdpB and θgFpB, respectively.
17 <νdpA <25
0.02 <θgFpA−0.6438 + 0.001682 × νdpA <0.05
60 <νdpB <100
0.001 <θgFpB−0.6438 + 0.001682 × νdpB <0.060
An optical system that satisfies the following conditional expression:
前記レンズAの焦点距離をfpA、全系の焦点距離をfとするとき、
20<νdpA×fpA/f<70
なる条件式を満足することを特徴とする請求項1に記載の光学系。
When the focal length of the positive lens A is fpA and the focal length of the entire system is f,
20 <νdpA × fpA / f <70
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズAは前記第2レンズ群の中で最も像側に配置されていることを特徴とする請求項1又は2に記載の光学系。 The positive lens A has an optical system according to claim 1 or 2, characterized in that it is arranged on the most image side in the second lens group. 前記レンズAの焦点距離をfpA、前記レンズBの焦点距離をfpBとするとき、
1.2<(νdpB×fpB)/(νdpA×fpA)<6.0
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載の光学系。
When the focal length of the positive lens A is fpA and the focal length of the positive lens B is fp B ,
1.2 <(νdpB × fpB) / (νdpA × fpA) <6.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1レンズ群は、物体側から像側へ連続して配置された以上の負レンズを有し、
前記連続して配置された以上の負レンズに含まれるの負レンズをレンズCとし、該レンズCの材料のアッベ数をνdnC、前記レンズCの焦点距離をfnC、前記レンズAの焦点距離をfpAとするとき、
2<|(νdnC×fnC)/(νdpA×fpA)|<14
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載の光学系。
The first lens group includes two or more negative lenses which are arranged to continue communicating to the image side from the object side,
Said the one negative lens which continuously included in the arranged 2 or more negative lenses and a negative lens C, NyudnC the Abbe number of the negative lens C material, FNC the focal length of the negative lens C, When the focal length of the positive lens A is fpA,
2 <| (νdnC × fnC) / (νdpA × fpA) | <14
5. The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズCの材料の部分分散比をθgFnCとするとき、
0.001<θgFnC−0.6438+0.001682×νdnC<0.060
なる条件式を満足することを特徴とする請求項5に記載の光学系。
When the partial dispersion ratio of the material of the negative lens C is θgFnC,
0.001 <θgFnC−0.6438 + 0.001682 × νdnC <0.060
The optical system according to claim 5, wherein the following conditional expression is satisfied.
フォーカシングに際して前記第1レンズ群の一部と前記第2レンズ群移動することを特徴とする請求項1乃至6のいずれか1項の光学系。 Claims 1 to any one of the optical system of the 6 part and the second lens group of the first lens group is thus being moved during focusing. 請求項1乃至7のいずれか1項に記載の光学系と、該光学系によって形成される像を受光する撮像素子を有することを特徴とする撮像装置。 An image pickup apparatus comprising: the optical system according to claim 1 ; and an image pickup element that receives an image formed by the optical system .
JP2012063354A 2012-03-21 2012-03-21 Optical system and optical apparatus having the same Active JP5896800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063354A JP5896800B2 (en) 2012-03-21 2012-03-21 Optical system and optical apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063354A JP5896800B2 (en) 2012-03-21 2012-03-21 Optical system and optical apparatus having the same

Publications (3)

Publication Number Publication Date
JP2013195747A JP2013195747A (en) 2013-09-30
JP2013195747A5 true JP2013195747A5 (en) 2015-04-23
JP5896800B2 JP5896800B2 (en) 2016-03-30

Family

ID=49394760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063354A Active JP5896800B2 (en) 2012-03-21 2012-03-21 Optical system and optical apparatus having the same

Country Status (1)

Country Link
JP (1) JP5896800B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292896B2 (en) * 2014-01-22 2018-03-14 キヤノン株式会社 Optical system and imaging apparatus having the same
JP6601162B2 (en) * 2015-10-30 2019-11-06 株式会社リコー Imaging lens system, imaging device, and inspection device
JP6604144B2 (en) * 2015-10-30 2019-11-13 株式会社リコー Imaging lens system, imaging device, and inspection device
JP6755227B2 (en) * 2017-09-25 2020-09-16 富士フイルム株式会社 Imaging lens, projection display device, and imaging device
JP2020052349A (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Image capturing lens and image capturing device
JP7379092B2 (en) * 2019-10-31 2023-11-14 キヤノン株式会社 Optical system and imaging device having the same
JP7395658B1 (en) 2022-06-15 2023-12-11 キヤノン株式会社 Optical system and imaging device equipped with the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215434B4 (en) * 2002-04-08 2015-01-15 Carl Zeiss Lens and lens series
JP4745707B2 (en) * 2005-04-22 2011-08-10 キヤノン株式会社 Optical system
JP5046746B2 (en) * 2007-05-24 2012-10-10 キヤノン株式会社 Optical system and optical apparatus having the same
US7880978B2 (en) * 2008-08-25 2011-02-01 Acm Projektentwicklung Gmbh Objective lens system
JP5300467B2 (en) * 2008-12-26 2013-09-25 キヤノン株式会社 Optical system and optical apparatus having the same

Similar Documents

Publication Publication Date Title
US9746658B2 (en) Objective for microscope
US9310592B2 (en) Zoom lens and image pickup apparatus including the same
JP5818209B2 (en) Macro lens
KR20160068504A (en) Optical system
JP2013195747A5 (en)
US10620409B2 (en) Optical system and image pickup apparatus including the same
US9746653B2 (en) Imaging lens and imaging apparatus
GB2568358A (en) Optical system and image pickup apparatus
JP6563130B2 (en) Imaging optical system and imaging apparatus
US11204481B2 (en) Optical system and imaging apparatus including the same
US20170351113A1 (en) Optical system and image pickup apparatus including the same
JP2015215437A5 (en)
US11042012B2 (en) Optical system and imaging apparatus including the same
JP2017142297A (en) Imaging lens and imaging device
JP5896800B2 (en) Optical system and optical apparatus having the same
JP2014052626A (en) Lens module
JP2019060918A5 (en)
JP2017032927A (en) Imaging optical system, image projection device, and image capturing device
JP2019117423A (en) Image capturing optical system and image capturing device
WO2018216789A1 (en) Optical system for image pickup, and image pickup device
JP7148153B2 (en) Imaging optical system and imaging device
JPS6139016A (en) Compact zoom lens
US9804372B2 (en) Optical system and imaging apparatus including the same
JP2011150240A5 (en)
US20210072516A1 (en) Lens system and image pickup apparatus