JP2013195332A - Stress analysis method and device for engine - Google Patents

Stress analysis method and device for engine Download PDF

Info

Publication number
JP2013195332A
JP2013195332A JP2012065163A JP2012065163A JP2013195332A JP 2013195332 A JP2013195332 A JP 2013195332A JP 2012065163 A JP2012065163 A JP 2012065163A JP 2012065163 A JP2012065163 A JP 2012065163A JP 2013195332 A JP2013195332 A JP 2013195332A
Authority
JP
Japan
Prior art keywords
stress
measurement
analysis
engine
static strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012065163A
Other languages
Japanese (ja)
Other versions
JP5902518B2 (en
Inventor
Ryota Kuriyama
良太 栗山
Tetsuya Fukuda
哲也 福田
Shizuka Oikawa
静 及川
Hajime Shibuya
肇 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2012065163A priority Critical patent/JP5902518B2/en
Publication of JP2013195332A publication Critical patent/JP2013195332A/en
Application granted granted Critical
Publication of JP5902518B2 publication Critical patent/JP5902518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stress analysis method and device for an engine, configured to efficiently analyze stress to be applied to the engine, and to reliably evaluate high stress to be generated by resonance in a predetermined frequency band.SOLUTION: Measurement calculation means 15 measures a static strain and a natural frequency in a portion to be measured in an engine, and a fluctuating stress in the portion to be measured during engine operation, on the basis of an electric signal detected by sensor means 12 and amplified by amplifying means 13. Operation analysis processing means 17 performs a static strain analysis based on a static strain measurement result, a frequency analysis based on a natural frequency measurement result, a peak rotation frequency analysis based on a fluctuating stress measurement result, a peak rotation stress analysis, and a raw waveform analysis. The operation analysis processing means 17 further performs a static strength evaluation based on the static strain analysis result and a material properties of the engine, a resonance evaluation based on the frequency analysis result and a peak rotation frequency analysis result, and a fluctuating strength evaluation based on a peak rotation stress analysis result and the material properties of the engine.

Description

本発明は、エンジン用応力解析方法及び装置に関するものである。   The present invention relates to an engine stress analysis method and apparatus.

一般に、車両等に用いられるエンジンにおいては、その開発に際し、部品、例えば、シリンダブロックやシリンダヘッドに作用する応力の解析を行う必要がある。   In general, in an engine used for a vehicle or the like, it is necessary to analyze a stress acting on a component, for example, a cylinder block or a cylinder head, when developing the engine.

図5は、従来のエンジン用応力解析装置の一例におけるハードウェア構成を示すブロック図であって、エンジンの部品、例えば、シリンダブロックやシリンダヘッドの被測定部位における静歪を測定する静歪測定器1と、エンジン実動時の前記被測定部位における変動応力を測定する変動応力測定器2と、応力解析器3と、共有サーバ4と、レポート作成用パーソナルコンピュータ5とを備えている。   FIG. 5 is a block diagram showing a hardware configuration of an example of a conventional engine stress analysis apparatus, and measures a static strain at a measurement site of an engine component, for example, a cylinder block or a cylinder head. 1, a fluctuating stress measuring device 2 that measures fluctuating stress at the measurement site during engine operation, a stress analyzer 3, a shared server 4, and a report creating personal computer 5.

尚、前記静歪とは、エンジン停止状態で部品をエンジンに取り付けたときの歪のことをいう。   The static strain refers to strain when a component is attached to the engine with the engine stopped.

前記静歪測定器1は、前記エンジンの被測定部位に貼り付けられる歪ゲージ6と、該歪ゲージ6で検出された電気信号を増幅する増幅器7と、該増幅器7で増幅された電気信号に基づきエンジンの被測定部位における静歪を測定する静歪測定部8とを備えてなる構成を有し、該静歪測定部8で測定された静歪が紙に出力されるようになっている。   The static strain measuring device 1 includes a strain gauge 6 attached to a measurement site of the engine, an amplifier 7 for amplifying an electric signal detected by the strain gauge 6, and an electric signal amplified by the amplifier 7. And a static strain measuring unit 8 that measures the static strain at the measurement site of the engine. The static strain measured by the static strain measuring unit 8 is output to the paper. .

前記変動応力測定器2は、前記エンジンの被測定部位に貼り付けられる歪ゲージ6と、該歪ゲージ6で検出された電気信号を増幅する増幅器7と、該増幅器7で増幅された電気信号に基づきエンジン実動時の被測定部位における変動応力を測定する変動応力測定部9、該変動応力測定部9で測定された変動応力を演算処理するパーソナルコンピュータ等の演算処理部10とを備えてなる構成を有し、該演算処理部10で演算処理された変動応力が画面上に表示されると共に、紙に出力されるようになっている。   The variable stress measuring device 2 includes a strain gauge 6 attached to a measurement site of the engine, an amplifier 7 for amplifying an electric signal detected by the strain gauge 6, and an electric signal amplified by the amplifier 7. A variable stress measuring unit 9 for measuring a variable stress at a measurement site during actual engine operation, and an arithmetic processing unit 10 such as a personal computer for calculating the variable stress measured by the variable stress measuring unit 9. The fluctuating stress calculated by the arithmetic processing unit 10 is displayed on the screen and output to paper.

前記応力解析器3においては、前記変動応力測定器2で測定され紙に出力された変動応力をオペレータが手動入力することにより、ピーク回転周波数解析と、ピーク回転応力解析と、生波形解析とが行われ、各解析結果が画面上に表示されると共に、紙に出力されるようになっている。   In the stress analyzer 3, the operator manually inputs the variable stress measured by the variable stress measuring device 2 and output to the paper, whereby the peak rotational frequency analysis, the peak rotational stress analysis, and the raw waveform analysis are performed. Each analysis result is displayed on the screen and output on paper.

前記共有サーバ4には、エンジンの材料特性値が材料特性値データベース11として記憶されている。   The shared server 4 stores engine material characteristic values as a material characteristic value database 11.

前記レポート作成用パーソナルコンピュータ5においては、前記静歪測定器1で測定され紙に出力された静歪と、前記変動応力測定器2で測定され紙に出力された変動応力と、前記共有サーバ4に材料特性値データベース11として記憶されているエンジンの材料特性値とをオペレータが手動入力することにより、静的強度評価と、変動強度評価とが行われ、各評価結果が画面上に表示されると共に、紙に出力されるようになっている。   In the report creation personal computer 5, the static strain measured by the static strain measuring instrument 1 and output to paper, the variable stress measured by the variable stress measuring instrument 2 and output to paper, and the shared server 4. When the operator manually inputs the engine material characteristic values stored as the material characteristic value database 11, the static strength evaluation and the fluctuation strength evaluation are performed, and each evaluation result is displayed on the screen. At the same time, it is output on paper.

そして、図5に示される従来のエンジン用応力解析装置の一例においては、図6のフローチャートに示される如く、静歪測定器1によるエンジンの被測定部位における静歪測定と、変動応力測定器2によるエンジン実動時の被測定部位における変動応力測定とが計測工程として行われ、該計測工程における静歪測定器1での静歪測定結果に基づく静歪解析が該静歪測定器1により解析工程として行われると共に、前記計測工程における変動応力測定器2での変動応力測定結果に基づくピーク回転周波数解析とピーク回転応力解析と生波形解析とが応力解析器3により解析工程として行われ、該解析工程における静歪測定器1での静歪解析結果及び共有サーバ4の材料特性値データベース11に記憶されたエンジンの材料特性値に基づく静的強度評価と、前記解析工程における応力解析器3でのピーク回転周波数解析結果、ピーク回転応力解析結果、生波形解析結果及び前記共有サーバ4の材料特性値データベース11に記憶されたエンジンの材料特性値に基づく変動強度評価とがレポート作成用パーソナルコンピュータ5により評価工程として行われ、該評価工程における静的強度評価と変動強度評価とに基づいてエンジンの製品開発が行われる。   In the example of the conventional engine stress analysis apparatus shown in FIG. 5, as shown in the flowchart of FIG. 6, the static strain measurement at the measurement site of the engine by the static strain measuring instrument 1 and the variable stress measuring instrument 2 are performed. The measurement of the variable stress at the measurement site during actual engine operation is performed as a measurement process, and the static strain analysis based on the static strain measurement result of the static strain measurement instrument 1 in the measurement process is analyzed by the static strain measurement instrument 1 And the peak rotation frequency analysis, the peak rotation stress analysis, and the raw waveform analysis based on the fluctuation stress measurement result in the fluctuation stress measuring device 2 in the measurement step are performed as an analysis step by the stress analyzer 3, Static strength based on the static strain analysis result in the static strain measuring instrument 1 in the analysis process and the material property value of the engine stored in the material property value database 11 of the shared server 4 In the evaluation, the peak rotational frequency analysis result, the peak rotational stress analysis result, the raw waveform analysis result in the stress analyzer 3 in the analysis process, and the material characteristic value of the engine stored in the material characteristic value database 11 of the shared server 4 Based on the static strength evaluation and the fluctuation strength evaluation in the evaluation process, the engine product development is performed.

尚、前述の如きエンジンの応力解析と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level related to engine stress analysis as described above.

特開2009−222539号公報JP 2009-222539 A

しかしながら、前述の如き従来のエンジン用応力解析装置においては、前記変動応力測定器2で測定され紙に出力された変動応力をオペレータが応力解析器3に手動入力し、更に、前記静歪測定器1で測定され紙に出力された静歪と、前記応力解析器3で測定され紙に出力された各解析結果と、前記共有サーバ4に材料特性値データベース11として記憶されているエンジンの材料特性値とをレポート作成用パーソナルコンピュータ5にオペレータが手動入力することにより、レポートを作成することが行われていたため、効率が悪く、又、固有振動数測定による周波数解析に手間が掛かっており、共振により高い応力が発生することを評価することに関し改善の余地が残されていた。   However, in the conventional engine stress analyzer as described above, the operator manually inputs the variable stress measured by the variable stress measuring instrument 2 and output to the paper to the stress analyzer 3, and the static strain measuring instrument 1, the static strain measured on the paper and output on the paper, the analysis results measured on the stress analyzer 3 and output on the paper, and the engine material properties stored in the shared server 4 as the material property value database 11 Since the operator manually inputs the value into the report creation personal computer 5 to create the report, the efficiency is low, and the frequency analysis by the natural frequency measurement is troublesome. There was still room for improvement in assessing the higher stresses generated.

本発明は、斯かる実情に鑑み、エンジンに作用する応力の解析を効率良く行うことができ、且つある周波数帯での共振による高い応力の発生をも確実に評価し得るエンジン用応力解析方法及び装置を提供しようとするものである。   In view of such circumstances, the present invention can efficiently analyze the stress acting on the engine, and can reliably evaluate generation of high stress due to resonance in a certain frequency band, and The device is to be provided.

本発明は、エンジンの被測定部位における静歪測定及び固有振動数測定と、エンジン実動時の被測定部位における変動応力測定とを行う計測工程と、
該計測工程における静歪測定結果に基づく静歪解析と、前記計測工程における固有振動数測定結果に基づく周波数解析と、前記計測工程における変動応力測定結果に基づくピーク回転周波数解析と、前記計測工程における変動応力測定結果に基づくピーク回転応力解析と、前記計測工程における変動応力測定結果に基づく生波形解析とを行う解析工程と、
該解析工程における静歪解析結果及び材料特性値データベースに記憶されたエンジンの材料特性値に基づく静的強度評価と、前記解析工程における周波数解析結果及びピーク回転周波数解析結果に基づく共振評価と、前記解析工程におけるピーク回転応力解析結果及び前記材料特性値データベースに記憶されたエンジンの材料特性値に基づく変動強度評価とを行う評価工程と
を有することを特徴とするエンジン用応力解析方法にかかるものである。
The present invention includes a measurement process for performing static strain measurement and natural frequency measurement at a measurement site of an engine, and measurement of fluctuating stress at a measurement site during engine operation,
Static strain analysis based on the static strain measurement result in the measurement step, frequency analysis based on the natural frequency measurement result in the measurement step, peak rotation frequency analysis based on the variable stress measurement result in the measurement step, and in the measurement step An analysis step for performing a peak rotational stress analysis based on the fluctuation stress measurement result and a raw waveform analysis based on the fluctuation stress measurement result in the measurement step;
Static strength evaluation based on static strain analysis results in the analysis step and material characteristic values of the engine stored in the material characteristic value database, resonance evaluation based on frequency analysis results and peak rotation frequency analysis results in the analysis step, And an evaluation step for performing a fluctuation strength evaluation based on a result of peak rotational stress analysis in the analysis step and a material property value of the engine stored in the material property value database. is there.

前記エンジン用応力解析方法においては、前記静的強度評価及び変動強度評価に基づいて両振換算応力を計算し、前記材料特性値としての疲労限応力を用いることにより、安全率を、
安全率=疲労限応力/両振換算応力
の式から求めることができる。
In the engine stress analysis method, the vibration conversion stress is calculated based on the static strength evaluation and the fluctuation strength evaluation, and by using the fatigue limit stress as the material characteristic value, a safety factor is obtained.
Safety factor = fatigue limit stress / both vibration equivalent stress.

一方、本発明は、エンジンの被測定部位における歪を電気信号として検出するセンサ手段と、
該センサ手段で検出された電気信号を増幅する増幅手段と、
該増幅手段で増幅された電気信号に基づきエンジンの被測定部位における静歪を測定する静歪測定部と、前記増幅手段で増幅された電気信号に基づきエンジンの被測定部位における固有振動数を測定する固有振動数測定部と、前記増幅手段で増幅された電気信号に基づきエンジン実動時の被測定部位における変動応力を測定する変動応力測定部とを有する計測演算手段と、
前記エンジンの材料特性値が材料特性値データベースとして記憶された共有サーバ手段と、
前記計測演算手段で求められた静歪測定結果に基づく静歪解析と、前記計測演算手段で求められた固有振動数測定結果に基づく周波数解析と、前記計測演算手段で求められた変動応力測定結果に基づくピーク回転周波数解析と、前記計測演算手段で求められた変動応力測定結果に基づくピーク回転応力解析と、前記計測演算手段で求められた変動応力測定結果に基づく生波形解析とを行い、前記静歪解析結果及び前記共有サーバ手段に記憶されたエンジンの材料特性値に基づく静的強度評価と、前記周波数解析結果及びピーク回転周波数解析結果に基づく共振評価と、前記ピーク回転応力解析結果及び前記共有サーバ手段に記憶されたエンジンの材料特性値に基づく変動強度評価とを行う演算解析処理手段と
を備えたことを特徴とするエンジン用応力解析装置にかかるものである。
On the other hand, the present invention provides a sensor means for detecting a distortion at a measurement site of an engine as an electric signal;
Amplifying means for amplifying the electrical signal detected by the sensor means;
A static strain measuring unit for measuring a static strain at a measurement site of the engine based on the electrical signal amplified by the amplification means, and a natural frequency at the measurement site of the engine based on the electrical signal amplified by the amplification means A measurement operation unit having a natural frequency measurement unit, and a variable stress measurement unit that measures a variable stress at a measurement site during engine operation based on the electric signal amplified by the amplification unit,
Shared server means in which the material characteristic values of the engine are stored as a material characteristic value database;
Static strain analysis based on the static strain measurement result obtained by the measurement calculation means, frequency analysis based on the natural frequency measurement result obtained by the measurement calculation means, and variable stress measurement result obtained by the measurement calculation means A peak rotational frequency analysis based on the above, a peak rotational stress analysis based on the fluctuation stress measurement result obtained by the measurement calculation means, and a raw waveform analysis based on the fluctuation stress measurement result obtained by the measurement calculation means, Static strength evaluation based on static strain analysis results and engine material characteristic values stored in the shared server means, resonance evaluation based on the frequency analysis results and peak rotation frequency analysis results, the peak rotation stress analysis results and the Computational analysis processing means for performing fluctuation strength evaluation based on engine material characteristic values stored in the shared server means. This is related to a stress analysis apparatus for an automobile.

前記エンジン用応力解析装置においては、前記演算解析処理手段において、前記静的強度評価及び変動強度評価に基づいて両振換算応力を計算し、前記材料特性値としての疲労限応力を用いることにより、安全率を、
安全率=疲労限応力/両振換算応力
の式から求めるよう構成することができる。
In the engine stress analysis device, in the calculation analysis processing means, by calculating the vibration equivalent stress based on the static strength evaluation and the fluctuation strength evaluation, and using the fatigue limit stress as the material characteristic value, Safety factor
It can comprise so that it may obtain | require from the formula of a safety factor = fatigue limit stress / vibration equivalent stress.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

先ず、センサ手段によりエンジンの被測定部位における歪が電気信号として検出され、該電気信号が増幅手段で増幅される。   First, the sensor means detects the distortion at the measurement site of the engine as an electric signal, and the electric signal is amplified by the amplifying means.

前記増幅手段で増幅された電気信号に基づき、エンジンの被測定部位における静歪が計測演算手段の静歪測定部で測定されると共に、エンジンの被測定部位における固有振動数が計測演算手段の固有振動数測定部で測定され、前記計測演算手段の静歪測定部で求められた静歪測定結果に基づく静歪解析と、前記計測演算手段の固有振動数測定部で求められた固有振動数測定結果に基づく周波数解析とが演算解析処理手段で行われ、該演算解析処理手段で更に前記静歪解析結果及び共有サーバ手段に記憶されたエンジンの材料特性値に基づく静的強度評価が行われる。   Based on the electrical signal amplified by the amplifying means, the static strain at the measurement target part of the engine is measured by the static strain measurement unit of the measurement calculation means, and the natural frequency at the measurement target part of the engine is determined by the inherent characteristic of the measurement calculation means. Static strain analysis measured by the frequency measurement unit and based on the static strain measurement result obtained by the static strain measurement unit of the measurement calculation unit, and natural frequency measurement obtained by the natural frequency measurement unit of the measurement calculation unit Frequency analysis based on the result is performed by the arithmetic analysis processing means, and static strength evaluation based on the static strain analysis result and the engine material characteristic value stored in the shared server means is further performed by the arithmetic analysis processing means.

続いて、実際にエンジンを始動して運転を行わせ、この状態で、センサ手段によりエンジン実動時の被測定部位における歪が電気信号として検出され、該電気信号が増幅手段で増幅され、該増幅手段で増幅された電気信号に基づきエンジン実動時の被測定部位における変動応力が計測演算手段の変動応力測定部で測定され、前記計測演算手段の固有振動数測定部で求められた固有振動数測定結果に基づく周波数解析と、前記計測演算手段の変動応力測定部で求められた変動応力測定結果に基づくピーク回転周波数解析と、前記計測演算手段の変動応力測定部で求められた変動応力測定結果に基づくピーク回転応力解析と、前記計測演算手段の変動応力測定部で求められた変動応力測定結果に基づく生波形解析とが演算解析処理手段で行われ、該演算解析処理手段で更に前記周波数解析結果及びピーク回転周波数解析結果に基づく共振評価と、前記ピーク回転応力解析結果及び前記共有サーバ手段に記憶されたエンジンの材料特性値に基づく変動強度評価とが行われる。   Subsequently, the engine is actually started and operated, and in this state, the strain at the measurement site during engine operation is detected as an electric signal by the sensor means, and the electric signal is amplified by the amplifying means, Based on the electric signal amplified by the amplifying means, the fluctuating stress at the measurement site during actual operation of the engine is measured by the fluctuating stress measuring section of the measuring and calculating means, and the natural vibration obtained by the natural frequency measuring section of the measuring and calculating means. Frequency analysis based on numerical measurement results, peak rotation frequency analysis based on the fluctuation stress measurement result obtained by the fluctuation stress measurement unit of the measurement calculation means, and fluctuation stress measurement obtained by the fluctuation stress measurement part of the measurement calculation means The peak rotational stress analysis based on the result and the raw waveform analysis based on the fluctuation stress measurement result obtained by the fluctuation stress measurement unit of the measurement calculation means are performed by the calculation analysis processing means, The calculation analysis means further performs a resonance evaluation based on the frequency analysis result and the peak rotation frequency analysis result, and a fluctuation strength evaluation based on the peak rotation stress analysis result and the material characteristic value of the engine stored in the shared server means. Is called.

前記ピーク回転応力解析結果により、応力値が最大となる回転数を把握することが可能となる。   From the peak rotational stress analysis result, the rotational speed at which the stress value becomes maximum can be grasped.

前記生波形解析結果により、エンジン1サイクル中、最大応力が発生している位置が分かり、応力が発生している原因を推定することが可能となる。   From the raw waveform analysis result, the position where the maximum stress is generated during one cycle of the engine can be known, and the cause of the stress can be estimated.

前記共振評価結果により、ある特定の同じ周波数に高い振幅値が出ている場合、共振による高い応力が発生していると判断することが可能となる。   As a result of the resonance evaluation, when a high amplitude value appears at a specific frequency, it can be determined that a high stress due to resonance is generated.

この結果、本発明においては、各解析に必要な測定項目が自動で入力されて解析が行われ、各解析結果のグラフが一つのシートに出力され、しかも、自動で必要項目を抽出し報告書形式で出力が行われるため、従来のエンジン用応力解析装置のように、前記変動応力測定器で測定され紙に出力された変動応力をオペレータが応力解析器に手動入力し、更に、前記静歪測定器で測定され紙に出力された静歪と、前記応力解析器で測定され紙に出力された各解析結果と、前記共有サーバに材料特性値データベースとして記憶されているエンジンの材料特性値とをレポート作成用パーソナルコンピュータにオペレータが手動入力する必要がなくなり、効率が非常に良くなる。   As a result, in the present invention, the measurement items necessary for each analysis are automatically input and the analysis is performed, and a graph of each analysis result is output on one sheet. Since the output is performed in the form, the operator manually inputs the variable stress measured by the variable stress measuring instrument and output to the paper as in the conventional engine stress analyzer, and further, the static strain Static strain measured by a measuring instrument and outputted to paper, each analysis result measured by the stress analyzer and outputted to paper, and material characteristic values of the engine stored as a material characteristic value database in the shared server This eliminates the need for an operator to manually input the information into a personal computer for creating a report.

又、本発明においては、固有振動数測定による周波数解析が行われ、ある周波数帯で共振により高い応力が発生することをも簡単に評価可能となる。   Further, in the present invention, frequency analysis is performed by measuring the natural frequency, and it can be easily evaluated that high stress is generated by resonance in a certain frequency band.

本発明の場合、前記静的強度評価及び変動強度評価に基づいて両振換算応力を計算し、前記材料特性値としての疲労限応力を用いることにより、安全率を求めるようにすると、該安全率をエンジンの製品開発における一つの指標として役立てることが可能となる。   In the case of the present invention, when the vibration conversion stress is calculated based on the static strength evaluation and the fluctuation strength evaluation, and the fatigue limit stress is used as the material characteristic value, the safety factor is obtained. Can be used as an index in engine product development.

本発明のエンジン用応力解析方法及び装置によれば、エンジンに作用する応力の解析を効率良く行うことができ、且つある周波数帯での共振による高い応力の発生をも確実に評価し得るという優れた効果を奏し得る。   According to the engine stress analysis method and apparatus of the present invention, it is possible to efficiently analyze the stress acting on the engine and to reliably evaluate the generation of high stress due to resonance in a certain frequency band. The effects can be achieved.

本発明のエンジン用応力解析方法及び装置の実施例におけるハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions in the Example of the stress analysis method and apparatus for engines of this invention. 本発明のエンジン用応力解析方法及び装置の実施例における計測から解析を経て評価に至る流れを示すフローチャートである。It is a flowchart which shows the flow from evaluation to analysis through evaluation in the Example of the stress analysis method and apparatus for engines of this invention. (a)は本発明のエンジン用応力解析方法及び装置の実施例におけるピーク回転応力解析結果を示す線図、(b)は本発明のエンジン用応力解析方法及び装置の実施例における生波形解析結果を示す線図、(c)は本発明のエンジン用応力解析方法及び装置の実施例における共振評価結果を示す線図である。(A) is a diagram showing a peak rotational stress analysis result in the embodiment of the engine stress analysis method and apparatus of the present invention, and (b) is a raw waveform analysis result in the embodiment of the engine stress analysis method and apparatus of the present invention. (C) is a diagram showing the resonance evaluation result in the embodiment of the engine stress analysis method and apparatus of the present invention. 本発明のエンジン用応力解析方法及び装置の実施例における安全率の評価の仕方を示す線図である。It is a diagram which shows the method of evaluation of the safety factor in the Example of the stress analysis method and apparatus for engines of this invention. 従来のエンジン用応力解析装置の一例におけるハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions in an example of the conventional stress analysis apparatus for engines. 従来のエンジン用応力解析装置の一例における計測から解析を経て評価に至る流れを示すフローチャートである。It is a flowchart which shows the flow from the measurement in an example of the conventional engine stress analyzer to analysis through analysis.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図4は本発明のエンジン用応力解析方法及び装置の実施例であって、図中、図5及び図6と同一の符号を付した部分は同一物を表わしており、
エンジンの部品、例えば、シリンダブロックやシリンダヘッドの被測定部位における歪を電気信号として検出する歪ゲージ6からなるセンサ手段12と、
該センサ手段12としての歪ゲージ6で検出された電気信号を増幅する増幅器7からなる増幅手段13と、
該増幅手段13としての増幅器7で増幅された電気信号に基づきエンジンの被測定部位における静歪を測定する静歪測定部8と、前記増幅手段13としての増幅器7で増幅された電気信号に基づきエンジンの被測定部位における固有振動数を測定する固有振動数測定部14と、前記増幅手段13としての増幅器7で増幅された電気信号に基づきエンジン実動時の被測定部位における変動応力を測定する変動応力測定部9とを有する計測演算手段15と、
前記エンジンの材料特性値が材料特性値データベース11として記憶された共有サーバ手段16と、
前記計測演算手段15で求められた静歪測定結果に基づく静歪解析と、前記計測演算手段15で求められた固有振動数測定結果に基づく周波数解析と、前記計測演算手段15で求められた変動応力測定結果に基づくピーク回転周波数解析と、前記計測演算手段15で求められた変動応力測定結果に基づくピーク回転応力解析(図3(a)参照)と、前記計測演算手段15で求められた変動応力測定結果に基づく生波形解析(図3(b)参照)とを行い、前記静歪解析結果及び前記共有サーバ手段16に記憶されたエンジンの材料特性値に基づく静的強度評価と、前記周波数解析結果及びピーク回転周波数解析結果に基づく共振評価(図3(c)参照)と、前記ピーク回転応力解析結果及び前記共有サーバ手段16に記憶されたエンジンの材料特性値に基づく変動強度評価とを行うパーソナルコンピュータ等の演算処理部10を有する演算解析処理手段17と
を備えることにより、エンジン用応力解析装置18を構成したものである。
1 to 4 show an embodiment of an engine stress analysis method and apparatus according to the present invention, in which the same reference numerals as those in FIGS. 5 and 6 denote the same parts.
Sensor means 12 comprising a strain gauge 6 for detecting, as an electrical signal, strain in a part to be measured of an engine part, for example, a cylinder block or a cylinder head;
Amplifying means 13 comprising an amplifier 7 for amplifying an electrical signal detected by the strain gauge 6 as the sensor means 12;
Based on the electric signal amplified by the amplifier 7 as the amplifying means 13 and measuring the static strain at the measurement site of the engine based on the electric signal, and based on the electric signal amplified by the amplifier 7 as the amplifying means 13 Based on the electric signal amplified by the natural frequency measuring unit 14 for measuring the natural frequency at the measured site of the engine and the amplifier 7 as the amplifying means 13, the fluctuating stress at the measured site during actual operation of the engine is measured. A measurement calculation means 15 having a variable stress measurement unit 9;
Shared server means 16 in which the material characteristic values of the engine are stored as a material characteristic value database 11;
Static strain analysis based on the static strain measurement result obtained by the measurement calculation means 15, frequency analysis based on the natural frequency measurement result obtained by the measurement calculation means 15, and fluctuation obtained by the measurement calculation means 15 Peak rotation frequency analysis based on the stress measurement result, peak rotation stress analysis based on the fluctuation stress measurement result obtained by the measurement calculation means 15 (see FIG. 3A), and fluctuation obtained by the measurement calculation means 15 A raw waveform analysis based on a stress measurement result (see FIG. 3B), a static strength evaluation based on the static strain analysis result and a material characteristic value of the engine stored in the shared server means 16, and the frequency Resonance evaluation based on the analysis result and the peak rotation frequency analysis result (see FIG. 3C), the peak rotation stress analysis result, and the engine material stored in the shared server means 16 By providing an arithmetic analysis means 17 which has an arithmetic processing unit 10 of the personal computer or the like for the fluctuation strength evaluation based on gender value is obtained by constituting the engine stress analysis device 18.

本実施例の場合、前記演算解析処理手段17において、前記静的強度評価及び変動強度評価に基づいて両振換算応力を計算し、前記材料特性値としての疲労限応力を用いることにより、安全率を、
[数1]
安全率=疲労限応力/両振換算応力
の式から求めるよう構成してある。
In the case of the present embodiment, the arithmetic analysis processing means 17 calculates the vibration conversion stress based on the static strength evaluation and the fluctuation strength evaluation, and uses the fatigue limit stress as the material characteristic value, thereby obtaining a safety factor. The
[Equation 1]
It is configured so as to be obtained from the formula of safety factor = fatigue limit stress / both vibration equivalent stress.

因みに、前記両振換算応力とは、繰返し荷重の向きと大きさが時間と共に変化する、いわゆる両振荷重が作用することを想定し、該荷重に抵抗して釣り合いを保とうとする応力に前記変動応力値を換算したものであって、図4に示す如く、横軸に静歪、縦軸に変動応力を取り、予め、前記材料特性値に基づく降伏点応力並びに真破断応力を横軸途中に設定すると共に、前記材料特性値に基づく疲労限応力並びに降伏点応力を縦軸途中に設定しておき、実際に測定される静歪値と変動応力値との交点Dをプロットし、該交点Dと前記真破断応力とを結ぶ直線と縦軸との交点が前記両振換算応力となる。   By the way, the vibration equivalent stress is assumed to be a so-called double vibration load in which the direction and magnitude of the repeated load changes with time, and the fluctuation is changed to a stress that resists the load and maintains the balance. The stress value is converted, and as shown in FIG. 4, the horizontal axis represents static strain and the vertical axis represents variable stress, and the yield point stress and the true rupture stress based on the material characteristic values are preliminarily placed in the middle of the horizontal axis. The fatigue limit stress and the yield point stress based on the material characteristic values are set in the middle of the vertical axis, and the intersection point D between the actually measured static strain value and the fluctuating stress value is plotted. And the straight axis connecting the true rupture stress and the vertical axis are the vibration equivalent stress.

尚、エンジン実動時には、実際に車両で運転される回転並びに負荷を模擬して変化させた、いわゆるスイープ運転を行うようにしてある。   During actual engine operation, a so-called sweep operation is performed in which the rotation and load actually driven by the vehicle are simulated and changed.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

先ず、エンジンの部品、例えば、シリンダブロックやシリンダヘッドの被測定部位にセンサ手段12としての歪ゲージ6が貼り付けられ、該センサ手段12としての歪ゲージ6によりエンジンの被測定部位における歪が電気信号として検出され、該電気信号が増幅手段13としての増幅器7で増幅される。   First, a strain gauge 6 as the sensor means 12 is attached to a part to be measured of an engine component, for example, a cylinder block or a cylinder head, and the strain gauge 6 as the sensor means 12 causes the strain at the part to be measured of the engine to be electrically It is detected as a signal, and the electric signal is amplified by the amplifier 7 as the amplification means 13.

前記増幅手段13としての増幅器7で増幅された電気信号に基づき、エンジンの被測定部位における静歪が計測演算手段15の静歪測定部8で測定されると共に、エンジンの被測定部位における固有振動数が計測演算手段15の固有振動数測定部14で測定され、前記計測演算手段15の静歪測定部8で求められた静歪測定結果に基づく静歪解析と、前記計測演算手段15の固有振動数測定部14で求められた固有振動数測定結果に基づく周波数解析とが演算解析処理手段17の演算処理部10で行われ、該演算解析処理手段17の演算処理部10で更に前記静歪解析結果及び共有サーバ手段16に記憶されたエンジンの材料特性値に基づく静的強度評価が行われる。   Based on the electrical signal amplified by the amplifier 7 serving as the amplification means 13, the static strain at the measurement site of the engine is measured by the static strain measurement unit 8 of the measurement calculation means 15, and the natural vibration at the measurement site of the engine is measured. The number is measured by the natural frequency measurement unit 14 of the measurement calculation unit 15 and the static strain analysis based on the static strain measurement result obtained by the static strain measurement unit 8 of the measurement calculation unit 15 is performed. Frequency analysis based on the natural frequency measurement result obtained by the frequency measuring unit 14 is performed by the arithmetic processing unit 10 of the arithmetic analysis processing unit 17, and the static strain is further calculated by the arithmetic processing unit 10 of the arithmetic analysis processing unit 17. Static strength evaluation based on the analysis result and the material characteristic value of the engine stored in the shared server means 16 is performed.

続いて、実際にエンジンを始動してスイープ運転を行わせ、この状態で、センサ手段12としての歪ゲージ6によりエンジン実動時の被測定部位における歪が電気信号として検出され、該電気信号が増幅手段13としての増幅器7で増幅され、該増幅手段13としての増幅器7で増幅された電気信号に基づきエンジン実動時の被測定部位における変動応力が計測演算手段15の変動応力測定部9で測定され、前記計測演算手段15の固有振動数測定部14で求められた固有振動数測定結果に基づく周波数解析と、前記計測演算手段15の変動応力測定部9で求められた変動応力測定結果に基づくピーク回転周波数解析と、前記計測演算手段15の変動応力測定部9で求められた変動応力測定結果に基づくピーク回転応力解析(図3(a)参照)と、前記計測演算手段15の変動応力測定部9で求められた変動応力測定結果に基づく生波形解析(図3(b)参照)とが演算解析処理手段17の演算処理部10で行われ、該演算解析処理手段17の演算処理部10で更に前記周波数解析結果及びピーク回転周波数解析結果に基づく共振評価(図3(c)参照)と、前記ピーク回転応力解析結果及び前記共有サーバ手段16に記憶されたエンジンの材料特性値に基づく変動強度評価とが行われる。   Subsequently, the engine is actually started and the sweep operation is performed. In this state, the strain gauge 6 as the sensor means 12 detects the strain at the measured site during actual operation of the engine as an electrical signal, and the electrical signal is Based on the electric signal amplified by the amplifier 7 as the amplifying means 13 and amplified by the amplifier 7 as the amplifying means 13, the fluctuating stress at the measurement site at the actual engine operation is changed by the fluctuating stress measuring section 9 of the measurement calculating means 15. Frequency analysis based on the natural frequency measurement result measured and obtained by the natural frequency measurement unit 14 of the measurement calculation means 15, and the fluctuation stress measurement result obtained by the fluctuation stress measurement part 9 of the measurement calculation means 15 Based peak rotation frequency analysis and peak rotation stress analysis based on the fluctuation stress measurement result obtained by the fluctuation stress measurement unit 9 of the measurement calculation means 15 (see FIG. 3A). And a raw waveform analysis (see FIG. 3B) based on the fluctuation stress measurement result obtained by the fluctuation stress measurement unit 9 of the measurement calculation means 15 is performed by the calculation processing section 10 of the calculation analysis processing means 17. In the arithmetic processing unit 10 of the arithmetic analysis processing means 17, resonance evaluation (see FIG. 3C) based on the frequency analysis result and the peak rotational frequency analysis result, the peak rotational stress analysis result, and the shared server means 16 are added. Fluctuation strength evaluation based on the stored engine material characteristic values is performed.

即ち、図1に示す本実施例のエンジン用応力解析装置18においては、図2のフローチャートに示す如く、エンジンの被測定部位における静歪測定及び固有振動数測定と、エンジン実動時の被測定部位における変動応力測定とが計測工程として行われ、該計測工程における静歪測定結果に基づく静歪解析と、前記計測工程における固有振動数測定結果に基づく周波数解析と、前記計測工程における変動応力測定結果に基づくピーク回転周波数解析と、前記計測工程における変動応力測定結果に基づくピーク回転応力解析と、前記計測工程における変動応力測定結果に基づく生波形解析とが解析工程として行われ、該解析工程における静歪解析結果及び材料特性値データベース11に記憶されたエンジンの材料特性値に基づく静的強度評価と、前記解析工程における周波数解析結果及びピーク回転周波数解析結果に基づく共振評価と、前記解析工程におけるピーク回転応力解析結果及び前記材料特性値データベース11に記憶されたエンジンの材料特性値に基づく変動強度評価とが評価工程として行われ、該評価工程における静的強度評価と共振評価と変動強度評価とに基づいてエンジンの製品開発が行われる。   That is, in the engine stress analysis apparatus 18 of this embodiment shown in FIG. 1, as shown in the flowchart of FIG. 2, the static strain measurement and the natural frequency measurement at the measurement site of the engine and the measurement at the actual engine operation are performed. Fluctuation stress measurement in the part is performed as a measurement process, static strain analysis based on the static strain measurement result in the measurement process, frequency analysis based on the natural frequency measurement result in the measurement process, and variable stress measurement in the measurement process Peak rotational frequency analysis based on the results, peak rotational stress analysis based on the fluctuation stress measurement results in the measurement step, and raw waveform analysis based on the fluctuation stress measurement results in the measurement step are performed as analysis steps. Static strength evaluation based on static strain analysis results and material characteristic values of the engine stored in the material characteristic value database 11; Resonance evaluation based on the frequency analysis result and peak rotational frequency analysis result in the analysis step, and fluctuation strength evaluation based on the peak rotational stress analysis result in the analysis step and the material characteristic value of the engine stored in the material characteristic value database 11 Is performed as an evaluation process, and engine product development is performed based on the static strength evaluation, the resonance evaluation, and the fluctuation strength evaluation in the evaluation step.

前記ピーク回転応力解析結果は、例えば図3(a)に示す如く、横軸に回転数、縦軸に応力値を取った線図として表され、応力値が最大となる回転数を把握することが可能となる。   For example, as shown in FIG. 3 (a), the peak rotational stress analysis result is represented as a diagram with the rotational speed on the horizontal axis and the stress value on the vertical axis, and grasps the rotational speed at which the stress value becomes maximum. Is possible.

前記生波形解析結果は、例えば図3(b)に示す如く、横軸にエンジンクランクシャフトの角度、縦軸に応力値を取った線図として表され、エンジン1サイクル(720°)中、最大応力が発生している位置が分かり、応力が発生している原因を推定することが可能となる。   For example, as shown in FIG. 3 (b), the raw waveform analysis result is represented as a diagram in which the horizontal axis represents the angle of the engine crankshaft and the vertical axis represents the stress value, and the maximum value during one engine cycle (720 °). The position where the stress is generated can be known, and the cause of the stress can be estimated.

前記共振評価結果は、例えば図3(c)に示す如く、横軸に周波数、縦軸に振幅を取った線図として表され、ある特定の同じ周波数に高い振幅値が出ている場合、共振による高い応力が発生していると判断することが可能となる。   For example, as shown in FIG. 3C, the resonance evaluation result is represented as a diagram with the frequency on the horizontal axis and the amplitude on the vertical axis. It is possible to determine that a high stress due to is generated.

又、本実施例の場合、前記演算解析処理手段17においては、前記静的強度評価及び変動強度評価に基づいて両振換算応力が計算され、前記材料特性値としての疲労限応力を用いることにより、安全率が前記[数1]式から求められ、エンジンの製品開発における一つの指標として役立てられる。   Further, in the case of the present embodiment, in the arithmetic analysis processing means 17, the vibration equivalent stress is calculated based on the static strength evaluation and the fluctuation strength evaluation, and the fatigue limit stress is used as the material characteristic value. The safety factor is obtained from the above [Equation 1] and is used as one index in the product development of the engine.

この結果、本実施例においては、各解析に必要な測定項目が自動で入力されて解析が行われ、各解析結果のグラフが一つのシートに出力され、しかも、自動で必要項目を抽出し報告書形式で出力が行われるため、図5及び図6に示される従来のエンジン用応力解析装置のように、前記変動応力測定器2で測定され紙に出力された変動応力をオペレータが応力解析器3に手動入力し、更に、前記静歪測定器1で測定され紙に出力された静歪と、前記応力解析器3で測定され紙に出力された各解析結果と、前記共有サーバ4に材料特性値データベース11として記憶されているエンジンの材料特性値とをレポート作成用パーソナルコンピュータ5にオペレータが手動入力する必要がなくなり、効率が非常に良くなる。   As a result, in this embodiment, measurement items necessary for each analysis are automatically input and analysis is performed, a graph of each analysis result is output on one sheet, and necessary items are automatically extracted and reported. Since the output is performed in a written format, the operator can use the stress analyzer to analyze the variable stress measured by the variable stress measuring instrument 2 and output to the paper as in the conventional engine stress analyzer shown in FIGS. 3, and the static strain measured by the static strain measuring instrument 1 and output to the paper, each analysis result measured by the stress analyzer 3 and output to the paper, and the material to the shared server 4 This eliminates the need for the operator to manually input the material characteristic values of the engine stored as the characteristic value database 11 to the personal computer 5 for creating a report, and the efficiency is greatly improved.

又、本実施例においては、固有振動数測定による周波数解析が行われ、ある周波数帯で共振により高い応力が発生することをも簡単に評価可能となる。   In this embodiment, frequency analysis is performed by measuring the natural frequency, and it can be easily evaluated that high stress is generated due to resonance in a certain frequency band.

こうして、エンジンに作用する応力の解析を効率良く行うことができ、且つある周波数帯での共振による高い応力の発生をも確実に評価し得る。   Thus, the stress acting on the engine can be analyzed efficiently, and the generation of high stress due to resonance in a certain frequency band can be reliably evaluated.

尚、本発明のエンジン用応力解析方法及び装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the engine stress analysis method and apparatus of the present invention are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention.

8 静歪測定部
9 変動応力測定部
10 演算処理部
11 材料特性値データベース
12 センサ手段
13 増幅手段
14 固有振動数測定部
15 計測演算手段
16 共有サーバ手段
17 演算解析処理手段
18 エンジン用応力解析装置
DESCRIPTION OF SYMBOLS 8 Static strain measuring part 9 Fluctuating stress measuring part 10 Operation processing part 11 Material characteristic value database 12 Sensor means 13 Amplifying means 14 Natural frequency measuring part 15 Measurement calculating means 16 Shared server means 17 Calculation analysis processing means 18 Stress analysis apparatus for engines

Claims (4)

エンジンの被測定部位における静歪測定及び固有振動数測定と、エンジン実動時の被測定部位における変動応力測定とを行う計測工程と、
該計測工程における静歪測定結果に基づく静歪解析と、前記計測工程における固有振動数測定結果に基づく周波数解析と、前記計測工程における変動応力測定結果に基づくピーク回転周波数解析と、前記計測工程における変動応力測定結果に基づくピーク回転応力解析と、前記計測工程における変動応力測定結果に基づく生波形解析とを行う解析工程と、
該解析工程における静歪解析結果及び材料特性値データベースに記憶されたエンジンの材料特性値に基づく静的強度評価と、前記解析工程における周波数解析結果及びピーク回転周波数解析結果に基づく共振評価と、前記解析工程におけるピーク回転応力解析結果及び前記材料特性値データベースに記憶されたエンジンの材料特性値に基づく変動強度評価とを行う評価工程と
を有することを特徴とするエンジン用応力解析方法。
A measurement process for performing static strain measurement and natural frequency measurement at a measurement site of the engine, and measurement of fluctuating stress at the measurement site during engine operation,
Static strain analysis based on the static strain measurement result in the measurement step, frequency analysis based on the natural frequency measurement result in the measurement step, peak rotation frequency analysis based on the variable stress measurement result in the measurement step, and in the measurement step An analysis step for performing a peak rotational stress analysis based on the fluctuation stress measurement result and a raw waveform analysis based on the fluctuation stress measurement result in the measurement step;
Static strength evaluation based on static strain analysis results in the analysis step and material characteristic values of the engine stored in the material characteristic value database, resonance evaluation based on frequency analysis results and peak rotation frequency analysis results in the analysis step, An engine stress analysis method comprising: an evaluation step of performing a peak rotational stress analysis result in an analysis step and a fluctuation strength evaluation based on an engine material property value stored in the material property value database.
前記静的強度評価及び変動強度評価に基づいて両振換算応力を計算し、前記材料特性値としての疲労限応力を用いることにより、安全率を、
安全率=疲労限応力/両振換算応力
の式から求める請求項1記載のエンジン用応力解析方法。
By calculating the vibration conversion stress based on the static strength evaluation and the fluctuation strength evaluation, by using the fatigue limit stress as the material characteristic value,
The engine stress analysis method according to claim 1, which is obtained from an equation of safety factor = fatigue limit stress / both vibration equivalent stress.
エンジンの被測定部位における歪を電気信号として検出するセンサ手段と、
該センサ手段で検出された電気信号を増幅する増幅手段と、
該増幅手段で増幅された電気信号に基づきエンジンの被測定部位における静歪を測定する静歪測定部と、前記増幅手段で増幅された電気信号に基づきエンジンの被測定部位における固有振動数を測定する固有振動数測定部と、前記増幅手段で増幅された電気信号に基づきエンジン実動時の被測定部位における変動応力を測定する変動応力測定部とを有する計測演算手段と、
前記エンジンの材料特性値が材料特性値データベースとして記憶された共有サーバ手段と、
前記計測演算手段で求められた静歪測定結果に基づく静歪解析と、前記計測演算手段で求められた固有振動数測定結果に基づく周波数解析と、前記計測演算手段で求められた変動応力測定結果に基づくピーク回転周波数解析と、前記計測演算手段で求められた変動応力測定結果に基づくピーク回転応力解析と、前記計測演算手段で求められた変動応力測定結果に基づく生波形解析とを行い、前記静歪解析結果及び前記共有サーバ手段に記憶されたエンジンの材料特性値に基づく静的強度評価と、前記周波数解析結果及びピーク回転周波数解析結果に基づく共振評価と、前記ピーク回転応力解析結果及び前記共有サーバ手段に記憶されたエンジンの材料特性値に基づく変動強度評価とを行う演算解析処理手段と
を備えたことを特徴とするエンジン用応力解析装置。
Sensor means for detecting, as an electrical signal, distortion at a measurement site of the engine;
Amplifying means for amplifying the electrical signal detected by the sensor means;
A static strain measuring unit for measuring a static strain at a measurement site of the engine based on the electrical signal amplified by the amplification means, and a natural frequency at the measurement site of the engine based on the electrical signal amplified by the amplification means A measurement operation unit having a natural frequency measurement unit, and a variable stress measurement unit that measures a variable stress at a measurement site during engine operation based on the electric signal amplified by the amplification unit,
Shared server means in which the material characteristic values of the engine are stored as a material characteristic value database;
Static strain analysis based on the static strain measurement result obtained by the measurement calculation means, frequency analysis based on the natural frequency measurement result obtained by the measurement calculation means, and variable stress measurement result obtained by the measurement calculation means A peak rotational frequency analysis based on the above, a peak rotational stress analysis based on the fluctuation stress measurement result obtained by the measurement calculation means, and a raw waveform analysis based on the fluctuation stress measurement result obtained by the measurement calculation means, Static strength evaluation based on static strain analysis results and engine material characteristic values stored in the shared server means, resonance evaluation based on the frequency analysis results and peak rotation frequency analysis results, the peak rotation stress analysis results and the Computational analysis processing means for performing fluctuation strength evaluation based on engine material characteristic values stored in the shared server means. Stress analyzer.
前記演算解析処理手段において、前記静的強度評価及び変動強度評価に基づいて両振換算応力を計算し、前記材料特性値としての疲労限応力を用いることにより、安全率を、
安全率=疲労限応力/両振換算応力
の式から求めるよう構成した請求項3記載のエンジン用応力解析装置。
In the arithmetic analysis processing means, by calculating the vibration equivalent stress based on the static strength evaluation and the fluctuation strength evaluation, by using the fatigue limit stress as the material characteristic value,
4. The engine stress analysis apparatus according to claim 3, wherein the engine stress analysis apparatus is configured so as to be obtained from an equation: safety factor = fatigue limit stress / both vibration equivalent stress.
JP2012065163A 2012-03-22 2012-03-22 Engine stress analyzer Active JP5902518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065163A JP5902518B2 (en) 2012-03-22 2012-03-22 Engine stress analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065163A JP5902518B2 (en) 2012-03-22 2012-03-22 Engine stress analyzer

Publications (2)

Publication Number Publication Date
JP2013195332A true JP2013195332A (en) 2013-09-30
JP5902518B2 JP5902518B2 (en) 2016-04-13

Family

ID=49394446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065163A Active JP5902518B2 (en) 2012-03-22 2012-03-22 Engine stress analyzer

Country Status (1)

Country Link
JP (1) JP5902518B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189524A (en) * 1982-04-30 1983-11-05 Sumitomo Heavy Ind Ltd Fault detecting device of motive engine
JPS5992327A (en) * 1982-11-19 1984-05-28 Toshiba Corp Evaluation system for life of prime mover
JPS62277535A (en) * 1986-03-28 1987-12-02 ソシエテ、デテユ−ド・ドウ・マシ−ヌ・テルミツク・エス.ウ.エム.テ−. Method of monitoring operation of internal combustion engineunder usage
JPH08153297A (en) * 1994-11-29 1996-06-11 Isuzu Motors Ltd Instrument for measuring distortion stress or the like of engine operation parts
JP2001311659A (en) * 2000-04-28 2001-11-09 Kubota Corp Vibration analyzing device for engine
JP2002149712A (en) * 2000-11-08 2002-05-24 Fujitsu Nagano Systems Engineering Ltd Method for detecting and evaluating position of breaking point due to fatigue
JP2004324597A (en) * 2003-04-28 2004-11-18 Mazda Motor Corp Breaking prediction method and breaking prediction system for engine parts, and its control program
JP2009222539A (en) * 2008-03-17 2009-10-01 Toyota Central R&D Labs Inc Characteristic analyzer and characteristic analysis program
JP2010287103A (en) * 2009-06-12 2010-12-24 Yanmar Co Ltd Design support method of cylinder block

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189524A (en) * 1982-04-30 1983-11-05 Sumitomo Heavy Ind Ltd Fault detecting device of motive engine
JPS5992327A (en) * 1982-11-19 1984-05-28 Toshiba Corp Evaluation system for life of prime mover
JPS62277535A (en) * 1986-03-28 1987-12-02 ソシエテ、デテユ−ド・ドウ・マシ−ヌ・テルミツク・エス.ウ.エム.テ−. Method of monitoring operation of internal combustion engineunder usage
US4761993A (en) * 1986-03-28 1988-08-09 Societe D'etudes De Machines Thermiques Method for monitoring the operation of an internal combustion engine
JPH08153297A (en) * 1994-11-29 1996-06-11 Isuzu Motors Ltd Instrument for measuring distortion stress or the like of engine operation parts
JP2001311659A (en) * 2000-04-28 2001-11-09 Kubota Corp Vibration analyzing device for engine
JP2002149712A (en) * 2000-11-08 2002-05-24 Fujitsu Nagano Systems Engineering Ltd Method for detecting and evaluating position of breaking point due to fatigue
JP2004324597A (en) * 2003-04-28 2004-11-18 Mazda Motor Corp Breaking prediction method and breaking prediction system for engine parts, and its control program
JP2009222539A (en) * 2008-03-17 2009-10-01 Toyota Central R&D Labs Inc Characteristic analyzer and characteristic analysis program
JP2010287103A (en) * 2009-06-12 2010-12-24 Yanmar Co Ltd Design support method of cylinder block

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015039012; 井口 克之 等: 'ディーゼルエンジンシリンダブロックのトップデッキ隅部の疲労強度に関する有限要素解析' 日本機械学會論文集. A編 Vol.75,No.756, 20090825, 1074-1081 *

Also Published As

Publication number Publication date
JP5902518B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
KR102323514B1 (en) Method for measuring the axial force of bolts
CN106768967B (en) A kind of flange fastening bolt loosens lossless detection method and its system
US20140182388A1 (en) Proximity and strain sensing
KR20190123897A (en) Device for measuring modal damping coefficient and measuring method using the same
CN106052743B (en) A kind of sensor mass of assessing influences frequency response function the method for size
US10018596B2 (en) System and method for monitoring component health using resonance
CN103884482A (en) Compressor-based vibration test method and system
JP2015114294A (en) Inspection apparatus of acoustic device and inspection method of acoustic device and inspection program of acoustic device
Bovsunovskii et al. Application of nonlinear resonances for the diagnostics of closing cracks in rodlike elements
WO2015011791A1 (en) Abnormality detection evaluation system
Gillich et al. Signal post-processing for accurate evaluation of the natural frequencies
JP5902518B2 (en) Engine stress analyzer
Kaul Crack diagnostics in beams using wavelets, kurtosis and skewness
CN108801823B (en) A kind of multiple dimensioned composite structure local fatigue appraisal procedure and system
Abdullahi et al. Accelerometer Based Structural Health Monitoring System on the Go: Developing Monitoring Systems with NI LabVIEW.
Zhou‐lian et al. A new method—ejection method for nondestructive online monitoring of the pretension of building membrane structure
JP2015108607A (en) Method and device of computing dynamic characteristics of turbo machine
JPWO2019234832A1 (en) Diagnostic equipment, diagnostic methods, and programs
JP2016061573A (en) Device, system, and method for estimating structure soundness, and computer program
CN101526417B (en) Method for diagnosing structural damage by musical tone rule
CN102829941B (en) A kind of automatic mode of vibrational system calibrating
US20220397500A1 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
Großhauser Experimental and numerical analysis of the modal behavior of squirrel cage rotors
Madhavan et al. Experimental investigation on forced response of mistuned bladed disc rotor in an aero-engine
Liu et al. Looseness detection utilizing FBG based operational modal strain for a bolted cantilever plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160310

R150 Certificate of patent or registration of utility model

Ref document number: 5902518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250